

TECHNISCHE UNIVERSITÄT CHEMNITZ

Faculty of Mathematics **Applied Functional Analysis** Franziska Nestler and Michael Pippig

A versatile framework for computing NFFT based fast Ewald summation **P²NFFT**

Ewald splitting

The identity
$$\frac{1}{r} = \frac{\operatorname{erfc}(\alpha r)}{r} + \frac{\operatorname{erf}(\alpha r)}{r}$$
 splits $\phi_{\mathcal{S}_p}(\boldsymbol{r}_j) = \phi_{\mathcal{S}_p}^{\mathrm{S}}(\boldsymbol{r}_j) + \phi_{\mathcal{S}_p}^{\mathrm{L}}(\boldsymbol{r}_j)$ with the short-range part

$$\phi_{\mathcal{S}_p}^{\mathrm{S}}(\boldsymbol{r}_j) = \sum_{\boldsymbol{n}\in\mathcal{S}_p} \sum_{i=1}^{N} q_i \frac{\operatorname{erfc}(\alpha \|\boldsymbol{r}_{ij} + L\boldsymbol{n}\|)}{\|\boldsymbol{r}_{ij} + L\boldsymbol{n}\|} - \frac{2\alpha}{\sqrt{\pi}} q_j$$

and the long-range part

σ

×

Fourier

P²NF

Results

Numerical

$$\phi_{\mathcal{S}_p}^{\mathrm{L}}(\boldsymbol{r}_j) = \sum_{\boldsymbol{n}\in\mathcal{S}_p} \sum_{i=1}^{N} q_i \frac{\mathrm{erf}(\alpha \|\boldsymbol{r}_{ij} + L\boldsymbol{n}\|)}{\|\boldsymbol{r}_{ij} + L\boldsymbol{n}\|}.$$

Fourier series along periodic dimensions

Computing the Fourier series of the long-range part $\phi_{S_n}^{L}(r_j)$ along periodic dimensions converts $x \to k_x, y \to k_y, z \to k_z$ and yields the well known Ewald formulas.

$$\begin{array}{ll} \mathbf{3dp:} & \phi_{\mathcal{S}_{3}}^{\mathrm{L}}(\boldsymbol{r}_{j}) = \sum_{i=1}^{N} q_{i} \sum_{k_{x},k_{y},k_{z}} \Theta^{\mathrm{3d}} \left(\sqrt{k_{x}^{2} + k_{y}^{2} + k_{z}^{2}} \right) & \mathrm{e}^{\frac{2\pi\mathrm{i}}{L}(k_{x}x_{ij} + k_{y}y_{ij} + k_{z}z_{ij})} \\ \mathbf{2dp:} & \phi_{\mathcal{S}_{2}}^{\mathrm{L}}(\boldsymbol{r}_{j}) = \sum_{i=1}^{N} q_{i} \sum_{k_{x},k_{y}} \Theta^{\mathrm{2d}} \left(\sqrt{k_{x}^{2} + k_{y}^{2}}, |z_{ij}| \right) & \mathrm{e}^{\frac{2\pi\mathrm{i}}{L}(k_{x}x_{ij} + k_{y}y_{ij})} \\ \mathbf{1dp:} & \phi_{\mathcal{S}_{1}}^{\mathrm{L}}(\boldsymbol{r}_{j}) = \sum_{i=1}^{N} q_{i} \sum_{k_{x}} \Theta^{\mathrm{1d}} \left(|k_{x}|, \sqrt{y_{ij}^{2} + z_{ij}^{2}} \right) & \mathrm{e}^{\frac{2\pi\mathrm{i}}{L}(k_{x}x_{ij})} \\ \mathbf{0dp:} & \phi_{\mathcal{S}_{0}}^{\mathrm{L}}(\boldsymbol{r}_{j}) = \sum_{i=1}^{N} q_{i} & \Theta^{\mathrm{0d}} \left(\sqrt{x_{ij}^{2} + y_{ij}^{2} + z_{ij}^{2}} \right) \end{array}$$

Analytically known Fourier coefficients The Fourier coefficients and their type of decay are given as follows. **3dp:** $\Theta^{3d}(k) := \frac{e^{-\pi^2 k^2 / (\alpha^2 L^2)}}{\pi L k^2}$ **2dp:** $\Theta^{2d}(0,r) := -\frac{2\sqrt{\pi}}{L^2} \left[\frac{1}{\alpha} e^{-\alpha^2 r^2} + \sqrt{\pi} z \operatorname{erf}(\alpha r) \right]$ type B $\Theta^{2d}(k,r) := \frac{1}{2Lk} \left[e^{2\pi kr/L} \operatorname{erfc} \left(\frac{\pi k}{\alpha L} + \alpha r \right) \right]$ type A $+ e^{-2\pi kr/L} \operatorname{erfc}\left(\frac{\pi k}{\alpha L} - \alpha r\right)$ **1dp:** $\Theta^{1d}(0,r) := -\frac{1}{I} \left[\gamma + \Gamma(0, \alpha^2 r^2) + \ln(\alpha^2 r^2) \right]$ type B

$$\begin{split} \Theta^{1\mathrm{d}}(k,r) &:= \frac{1}{L} K_0 \left(\frac{\pi^2 k_x^2}{\alpha^2 L^2}, \alpha^2 r^2 \right) & \text{type } A \\ \mathsf{dp:} \quad \Theta^{0\mathrm{d}}(r) \quad &:= \frac{\operatorname{erf}(\alpha r)}{r} & \text{type } B \end{split}$$

All of these functions asymptotically tend to zero as $\frac{1}{k^2}e^{-k^2}$ for $k \to \infty$, which justifies truncation of the Fourier series along periodic dimensions.

Type A Fourier approximation

If $\Theta^{\mathrm{pd}}(k,r)$ is neglible for $|r| \geq h \geq 2L$, we can use its *h*-periodization instead and apply the Poisson summation formula. E.g., in the 2d-periodic case we have

$\Theta^{2d}(k,z) \approx \sum_{n \in \mathbb{Z}} \Theta^{2d}(k,z+hn) = \frac{1}{h} \sum_{k \in \mathbb{Z}} \widehat{\Theta}^{2d}\left(k,\frac{k_z}{h}\right) e^{\frac{2\pi i}{h}k_z z},$

where the analytically known, continuous Fourier transform of $\Theta^{2d}(k, \cdot)$ fulfills $\widehat{\Theta}^{2d}(k, v) \sim \frac{1}{v^2} e^{-v^2}$ for $v \to \infty$.

Type B Fourier approximations

But what if $\Theta^{pd}(k, r)$ does not decay fast enough? **Type B1:** A first attempt is to repeat $\Theta^{pd}(k, r)$ with period $h \geq 2L$. But the kink at $r = \pm h$ implies a rather slow 2nd order convergence in Fourier space.

Remaining problem:

How to convert the non-periodic dimensions to Fourier space?

Decay of type A and B

The decay of the smooth functions $\Theta^{pd}(k,r)$ for $r \to \infty$ falls into two categories. Type A functions decay very fast, while type B functions do not decay at all or not fast enough.

Type B2: Instead, we construct an interpolating polynomial within [L, h - L] that fits the first m derivatives of $\Theta^{pd}(k, r)$ at $r = \pm L$. Then, the convergence rate will be m + 2.

 $-\frac{h}{2}-L \qquad L \quad \frac{h}{2} \quad h-L \qquad \frac{3h}{2} \qquad -\frac{h}{2}-L \qquad L \quad \frac{h}{2} \quad h-L \qquad \frac{3h}{2}$

Final approximation

0dp

Massive parallelism

In summary, we can write the truncated series as

$$\phi_{\mathcal{S}_p}^{\mathrm{L}}(\boldsymbol{r}_j) \approx \sum_{i=1}^{N} q_i \sum_{\boldsymbol{k} \in \mathcal{M}} c_{\boldsymbol{k}}^{\mathrm{pd}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{ij}},$$

where $\boldsymbol{k} = (k_x, k_y, k_z)$ runs in a finite 3d mesh \mathcal{M} .

Short-range evaluation

If the particles are sufficiently homogeneously distributed, the short-range part $\phi_{S}^{S}(\mathbf{r}_{i})$ can be computed directly within $\mathcal{O}(N)$ operations.

Long-range evaluation

The approximated long-range part is evaluated by non-equispaced fast Fourier transforms (NFFT) within $\mathcal{O}(N \log N)$ operations.

adjoint 3d-NFFT:

3d-NFFT:

	Historical context			
	Fast particle-mesh algorithms	3dp	2dp	1dp
	P3M [Hockney, Eastwood 1988]	\checkmark	×	×
	PME [Darden et al. 1993]	\checkmark	X	X
	SPME [Essmann et al. 1995]	\checkmark	X	X
	Type B1 approximated fast Ewald [Martyna et al. 2002]	×	\checkmark	\checkmark
	Gaussian split Ewald [Shan et. al 2004]	\checkmark	X	X
	NFFT based fast summation [Nieslony, Potts, Steidl 2004]	×	X	X
	NFFT based fast Ewald [Hedman, Laaksonen 2006]	\checkmark	X	X
	Spectrally accurate Ewald [Lindbo, Tornberg 2011, 2012]	\checkmark	\checkmark	X
	P ² NFFT [Nestler, Pippig, Potts 2013, 2015]	\checkmark	\checkmark	\checkmark
1	•••			

Modularized algorithm structure

One of the benefits of the P^2NFFT is its highly modularized structure. All the performance critical steps are encapsulated and can be implemented by existing software libraries.

High accuracy independent of periodicity

We demonstrate the high accuracy of P²NFFT at the example of a cloud-wall test system with N = 300 particles.

Visit our software page or join us at Github! www.tu-chemnitz.de/~mpip/software.php.en www.github.com/mpip

Franziska Nestler

franziska.nestler@mathematik.tu-chemnitz.de www.tu-chemnitz.de/~nesfr

Michael Pippig

michael.pippig@mathematik.tu-chemnitz.de www.tu-chemnitz.de/~mpip