Parallel Fast Computation of Coulomb Interactions Based on Nonequispaced Fourier Methods

Michael Pippig

Department of Mathematics Chemnitz University of Technology

March 28, 2012

supported by BMBF grant 01IH08001B

Past Fourier Transforms

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \ \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Applications

- molecular dynamics
- astrophysics
- statistical physics
- plasma physics

- material sciences
- physical chemistry
- biophysics

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \ \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Ewald Sum 1921 $\mathcal{O}(M^{3/2})$	Multigrid 1977	Tree Codes 1986	FMM 1987	$P^{3}M$ 1988	Fast Sum 2004
Ewald	Brandt Hackbusch Trottenberg	Barnes Hut	Greengard Rokhlin	Hockney Eastwood	Nieslony Potts Steidl

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \ \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Ewald Sum 1921	Multigrid 1977	Tree Codes 1986	FMM 1987	P ³ M 1988	Fast Sum 2004
$\mathcal{O}(M^{3/2})$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M \log M)$
Ewald	Brandt Hackbusch	Barnes Hut	Greengard Rokhlin	Hockney Eastwood	Potts
	Trottenberg				Steidl

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{r \in \mathbb{Z}^3} \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Ewald Sum	Multigrid	Tree Codes	FMM	P ³ M	Fast Sum
1921	1977	1986	1987	1988	2004
$\mathcal{O}(M^{3/2})$ Ewald	$\mathcal{O}(M)$ Brandt Hackbusch Trottenberg	$\mathcal{O}(M \log M)$ Barnes Hut	$\mathcal{O}(M)$ Greengard Rokhlin	$\mathcal{O}(M \log M)$ Hockney Eastwood	$\mathcal{O}(M \log M)$ Nieslony Potts Steidl

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{r \in \mathbb{Z}^3} \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + r\|_2}, & j = 1, \dots, M \end{aligned}$$

Ewald Sum	Multigrid	Tree Codes	FMM	P ³ M	Fast Sum
1921	1977	1986	1987	1988	2004
$\mathcal{O}(M^{3/2})$ Ewald	$\mathcal{O}(M)$ Brandt Hackbusch Trottenberg	$\mathcal{O}(M \log M)$ Barnes Hut	$\mathcal{O}(M)$ Greengard Rokhlin	$\mathcal{O}(M \log M)$ Hockney Eastwood	$\mathcal{O}(M \log M)$ Nieslony Potts Steidl

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \ \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Ewald Sum	Multigrid	Tree Codes	FMM	P^3M	Fast Sum
1921	1977	1986	1987	1988	2004
$\mathcal{O}(M^{3/2})$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M \log M)$
Ewald	Brandt	Barnes	Greengard	Hockney	Nieslony
	Hackbusch	Hut	Rokhlin	Eastwood	Potts
	Trottenberg				Steidl

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{r \in \mathbb{Z}^3} \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + r\|_2}, & j = 1, \dots, M \end{aligned}$$

Ewald Sum	Multigrid	Tree Codes	FMM	P^3M	Fast Sum
1921	1977	1986	1987	1988	2004
$\mathcal{O}(M^{3/2})$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M \log M)$
Ewald	Brandt	Barnes	Greengard	Hockney	Nieslony
	Hackbusch	Hut	Rokhlin	Eastwood	Potts
	Trottenberg				Steidl

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$\phi(\boldsymbol{x}_j) = \sum_{l=1}^{M'} \frac{q_l}{\|\boldsymbol{x}_j - \boldsymbol{x}_l\|_2}, \qquad j = 1, \dots, M$$
$$\widetilde{\phi}(\boldsymbol{x}_j) = \sum_{\boldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M'} \frac{q_l}{\|\boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r}\|_2}, \qquad j = 1, \dots, M$$

Fast Algorithms Based on Discrete Fourier Transforms

Ewald Sum	Multigrid	Tree Codes	FMM	P^3M	Fast Sum
1921	1977	1986	1987	1988	2004
$\mathcal{O}(M^{3/2})$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M \log M)$
Ewald	Brandt		Greengard	Hockney	Nieslony
	Hackbusch	Hut	Rokhlin	Eastwood	Potts
	Trottenberg				Steidl

Task of 3d-DFT (Discrete Fourier Transform) For $\hat{f}_{k} \in \mathbb{C}$ compute

$$f_{l} = \sum_{k \in I_{N}} \hat{f}_{k} e^{-2\pi i \left(k_{0} \frac{l_{0}}{N} + k_{1} \frac{l_{1}}{N} + k_{2} \frac{l_{2}}{N}\right)}$$

for all
$$l \in I_N := \{0, \dots, N-1\}^3 \ (\Rightarrow \frac{l_0}{N}, \frac{l_1}{N}, \frac{l_2}{N} \in [0, 1)).$$

Task of 3d-NDFT (Nonequispaced DFT)

For $\hat{f}_{k} \in \mathbb{C}$ compute

$$f_j = \sum_{\boldsymbol{k} \in I_{\boldsymbol{N}}} \hat{f}_{\boldsymbol{k}} e^{-2\pi i (k_0 \boldsymbol{x}_j + k_1 \boldsymbol{y}_j + k_2 \boldsymbol{z}_j)}$$

for $x_j, y_j, z_j \in [0, 1), j = 1, \dots, M$.

Nonequispaced Fast Fourier Transforms

Matrix-Vector-Notation of NDFT and adjont NDFT

For
$$\boldsymbol{\hat{f}} \in \mathbb{C}^{N^3}$$
 and $\boldsymbol{h} \in \mathbb{C}^M$ compute

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & & & \ eta & & \ e$$

where
$$\boldsymbol{A} = \left(\mathrm{e}^{-2\pi\mathrm{i}(k_0x_j+k_1y_j+k_2z_j)}
ight)_{j,(k_0,k_1,k_2)} \in \mathbb{C}^{M imes N^3}$$

NFFT [Dutt, Rohklin 93, Beylkin 95, Steidl 96, ...]

$$oldsymbol{A} pprox oldsymbol{CFD}, \qquad oldsymbol{A}^{ee} pprox oldsymbol{DF}^{ee} oldsymbol{C}^{ee}$$

•
$$oldsymbol{D} \in \mathbb{R}^{N^3 imes N^3}$$
 diagonal matrix

•
$$m{F} \in \mathbb{C}^{n^3 imes N^3}$$
 truncated Fourier matrix $(n \ge N)$

• $oldsymbol{C} \in \mathbb{R}^{M imes n^3}$ sparse matrix

 $\Rightarrow \mathcal{O}(N^3 \log N + \log^3(\frac{1}{\epsilon})M) \text{ instead of } \mathcal{O}(N^3M)$

FFTW

[Frigo, Johnson 2005]

PFFT Features

- open source
- high scalability
- portability
- c2c, r2c FFT

- FFTW like interface
- completely in place FFT
- *d*-dimensional parallel FFT
- ghost cell support

Scaling Parallel FFT of Size 512^3 on BlueGene/P

$$\boldsymbol{A} = \boldsymbol{C} \boldsymbol{F} \boldsymbol{D}, \quad \boldsymbol{A}^{\mathsf{H}} = \boldsymbol{D} \boldsymbol{F}^{\mathsf{H}} \boldsymbol{C}^{\mathsf{T}}$$

$$oldsymbol{A} = oldsymbol{C} \, oldsymbol{F} \, oldsymbol{D}, \quad oldsymbol{A}^{ee} = oldsymbol{D} \, oldsymbol{F}^{ee} \, oldsymbol{C}^{ op}$$

Scaling PNFFT of Size 128^3 on BlueGene/P

Coulomb Interaction in Open Particle Systems

Calculation of the Potential

$$\phi(\pmb{x}_j) = \sum_{l=1}^{M'} rac{q_l}{\|\pmb{x}_j - \pmb{x}_l\|_2}, \quad j = 1, \dots, M$$

$$\frac{1}{r} = \left(\frac{1}{r} - R(r)\right) + R(r) \quad \Rightarrow \quad R(\|\boldsymbol{x}\|_2) \approx \sum_{\boldsymbol{k} \in I_N} \hat{R}_{\boldsymbol{k}} e^{-2\pi i \boldsymbol{k} \boldsymbol{x}}$$

Fast Summation [Nieslony, Potts, Steidl 2004]

Nearfield Approximation -
$$\mathcal{O}(\nu M)$$

$$\phi^{\text{near}}(\boldsymbol{x}_j) = -q_j R(0) + \sum_{l \in I_j}' q_l \left(\frac{1}{\|\boldsymbol{x}_j - \boldsymbol{x}_l\|_2} - R(\|\boldsymbol{x}_j - \boldsymbol{x}_l\|_2) \right)$$

$$I_{j} = \left\{ l = 1, \dots, M : \left\| oldsymbol{x}_{j} - oldsymbol{x}_{l}
ight\|_{2} < arepsilon_{I}
ight\}, \quad
u := \max_{j} |I_{j}|$$

Farfield Approximation - $\mathcal{O}(MN^3) \rightarrow \mathcal{O}(\log^3(\frac{1}{\epsilon})M + N^3 \log N)$

$$\begin{split} \phi^{\text{far}}(\boldsymbol{x}_j) &= \sum_{l=1}^M q_l R(\|\boldsymbol{x}_j - \boldsymbol{x}_l\|_2) \approx \sum_{l=1}^M q_l \sum_{\boldsymbol{k} \in I_N} \hat{R}_{\boldsymbol{k}} \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{k}(\boldsymbol{x}_j - \boldsymbol{x}_l)} \\ &= \sum_{\boldsymbol{k} \in I_N} \hat{R}_{\boldsymbol{k}} \left(\sum_{l=1}^M q_l \mathrm{e}^{+2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_l} \right) \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j} \end{split}$$

Matrix decomposition: $C^{\text{near}} + A \operatorname{diag}(\hat{R}_k) A^{H}$

- **2** Fast Fourier Transforms
- **3** Fast Summation

Coulomb Interaction in Periodic Particle Systems

Calculation of the Potential

$$\widetilde{\phi}(oldsymbol{x}_j) = \sum_{oldsymbol{r}\in\mathbb{Z}^3} \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j-oldsymbol{x}_l+oldsymbol{r}\|_2}\,,\quad j=1,\ldots,M$$

Fast Ewald Summation [Hedman, Laaksonen 2006]

Nearfield Approximation -
$$\mathcal{O}(\nu M)$$

 $\widetilde{\phi}^{\text{near}}(\boldsymbol{x}_j) \approx -q_j \frac{2\alpha}{\sqrt{\pi}} + \sum_{\boldsymbol{r} \in \mathbb{Z}^3} \sum_{l \in I_j(\boldsymbol{r})}' q_l \frac{1 - \text{erf}(\alpha \| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2)}{\| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2}$
 $I_j(\boldsymbol{r}) := \{l = 1, \dots, M : \| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2 < \varepsilon_I \}, \quad \nu := \max_{j, \boldsymbol{r}} |I_j(\boldsymbol{r})|$

Farfield Approximation -
$$\mathcal{O}(\log^3(\frac{1}{\varepsilon})M + N^3 \log N)$$

 $\widetilde{\phi}^{\text{far}}(\boldsymbol{x}_j) \approx \frac{1}{\pi} \sum_{\boldsymbol{k} \in I_N \setminus \{\mathbf{0}\}} \frac{\mathrm{e}^{-\pi^2 \|\boldsymbol{k}\|_2^2 / \alpha^2}}{\|\boldsymbol{k}\|_2^2} \sum_{l=1}^M q_l \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{k}(\boldsymbol{x}_j - \boldsymbol{x}_l)}$
 $= \frac{1}{\pi} \sum_{\boldsymbol{k} \in I_N \setminus \{\mathbf{0}\}} \hat{R}_{\boldsymbol{k}} \left(\sum_{l=1}^M q_l \mathrm{e}^{+2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_l}\right) \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$

Matrix decomposition: $C^{\text{near}} + A \operatorname{diag}(\hat{R}_k) A^{H}$

Scaling Parallel Fast Ewald on BlueGene/P

Parallel FFT

$C F D \operatorname{diag}(\hat{R}_k) D F^{\vdash} C^{\top} + C^{\operatorname{near}}$

$$C F D \operatorname{diag}(\hat{R}_k) DF^{\mathsf{H}} C^{\mathsf{T}} + C^{\operatorname{near}}$$

PFFT & PNFFT Software Library and Papers Available at http://www.tu-chemnitz.de/~mpip