Parallel Fast Ewald Summation Based on Nonequispaced Fourier Transforms

Michael Pippig

Department of Mathematics Chemnitz University of Technology

March 1, 2011

supported by BMBF grant 01IH08001B

2 Parallel Fast Fourier Transform

3 Parallel Nonequispaced Fast Fourier Transforms

Parallel Fast Ewald Summation

- 2 Parallel Fast Fourier Transform
- **3** Parallel Nonequispaced Fast Fourier Transforms
- Parallel Fast Ewald Summation

Motivation

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$egin{aligned} \phi(oldsymbol{x}_j) &= \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l\|_2}, & j = 1, \dots, M \ \widetilde{\phi}(oldsymbol{x}_j) &= \sum_{oldsymbol{r} \in \mathbb{Z}^3} \ \sum_{l=1}^{M}' rac{q_l}{\|oldsymbol{x}_j - oldsymbol{x}_l + oldsymbol{r}\|_2}, & j = 1, \dots, M \end{aligned}$$

Coulomb Interaction in Particle Systems - $\mathcal{O}(M^2)$

$$\phi(\boldsymbol{x}_j) = \sum_{l=1}^{M'} \frac{q_l}{\|\boldsymbol{x}_j - \boldsymbol{x}_l\|_2}, \qquad j = 1, \dots, M$$
$$\widetilde{\phi}(\boldsymbol{x}_j) = \sum_{\boldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M'} \frac{q_l}{\|\boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r}\|_2}, \qquad j = 1, \dots, M$$

Fast Algorithms

Ewald Sum	P ³ MG	Tree Codes	FMM	P^3M	Fast Sum
1921	1977	1986	1987	1987	2004
$\mathcal{O}(M^{3/2})$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M)$	$\mathcal{O}(M \log M)$	$\mathcal{O}(M \log M)$
Ewald	Brandt	Barnes	Greengard	Hockney	Nieslony
	Hackbusch	Hut	Rokhlin	Eastwood	Potts
	Trottenberg				Steidl

2 Parallel Fast Fourier Transform

3 Parallel Nonequispaced Fast Fourier Transforms

Parallel Fast Ewald Summation

Task of 3d-DFT

Consider a three-dimensional dataset of $n_0 \times n_1 \times n_2$ complex numbers $\hat{g}_{k_0k_1k_2} \in \mathbb{C}$. Compute

$$g_{l_0 l_1 l_2} := \sum_{k_0=0}^{n_0-1} \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1} + k_0 \frac{l_0}{n_0}\right)} \\ = \sum_{k_0=0}^{n_0-1} \left(\sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1}\right)} \right) e^{-2\pi i k_0 \frac{l_0}{n_0}}$$

for all $l_t = 0, \ldots, n_t - 1$ (t = 0, 1, 2).

Realized by 3d-FFT $(n_0 = n_1 = n_2 = n)$ $\Rightarrow \mathcal{O}(n^3 \log n)$ instead of $\mathcal{O}(n^6)$

One-Dimensional Data Distribution

p - number of processors

Features of FFTW [Frigo, Johnson]

- open source
- easy interface
- arbitrary size
- *d*-dim. FFT
- in place FFT

- high performance
- many transforms
- communicator
- adjust planning
- collect wisdom

Maximum Number of Processors p_{\max}^{1D} ($n_0 = n_1 = n_2 = n$)

 $p_{\max}^{1\mathrm{D}} = n$

FFTW combines portable performance and good usability, but is not scalable enough.

Two-Dimensional Data Distribution

[Ding, Eleftheriou et al. 03, Plimpton, Pekurovsky - P3DFFT]

 \perp 1D

2D

2

 $p_0 imes p_1$ - size of processor grid

	n	$p_{\text{max}} = n$	$p_{\text{max}} = n^{-1}$
Maximum Number of	64	64	4096
Processors p_{\max}^{2D}	128	128	16384
$(n_0 = n_1 = n_2 = n)$	256	256	65536
"2D "2	512	512	262144
$p_{\max} = n$	1024	1024	1048576

Comparison of PFFT and P3DFFT

P3DFFT Unique Features [Pekurovsky]

• r2c FFT

Common Features

- open source
- high scalability
- portability
- multiple precisions
- C interface
- Fortran interface
- ghost cell support

PFFT Unique Features

- c2c FFT
- completely in place FFT
- FFTW like interface (basic, advanced and guru)
- adjustable blocksize
- separate communicator
- accumulated wisdom
- change of planning effort without recompilation
- *d*-dimensional parallel FFT
- over- and downsampling

Ghost Cell Support

 p_0

Oversampled & Downsampled FFT

Without Library Support

PFFT Library Support

 \hat{n}_0

Scaling PFFT of Size 512^3 on BlueGene/P

Scaling PFFT of Size 512^3 on BlueGene/P

2 Parallel Fast Fourier Transform

3 Parallel Nonequispaced Fast Fourier Transforms

Task of 3d-DFT and 3d-NDFT For $\hat{f}_{k_0k_1k_2} \in \mathbb{C}$ compute $f_{l_0l_1l_2} = \sum_{k_0=0}^{N-1} \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} \hat{f}_{k_0k_1k_2} e^{-2\pi i (k_2 \frac{l_2}{N} + k_1 \frac{l_1}{N} + k_0 \frac{l_0}{N})}$ (DFT)

for all $l_0, l_1, l_2 \in \{0, \dots, N-1\} \ (\Rightarrow \frac{l_0}{N}, \frac{l_1}{N}, \frac{l_2}{N} \in [0, 1))$, and

$$f_j = \sum_{k_0=0}^{N-1} \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} \hat{f}_{k_0 k_1 k_2} e^{-2\pi i (k_2 z_j + k_1 y_j + k_0 x_j)}$$
(NDFT)

for $x_j, y_j, z_j \in [0, 1), j = 1, \dots, M$.

Task of 3d-NDFT and 3d-NDFT^H For $\hat{f}_{k_0k_1k_2} \in \mathbb{C}$ compute $N_{-1} N_{-1} N_{-1}$ $f_j = \sum \sum \hat{f}_{k_0 k_1 k_2} e^{-2\pi i (k_2 z_j + k_1 y_j + k_0 x_j)}$ (NDFT) $k_0 = 0$ $k_1 = 0$ $k_2 = 0$ for $x_i, y_i, z_i \in [0, 1), i = 1, \dots, M$, and for $h_i \in \mathbb{C}$ compute $\hat{h}_{k_0k_1k_2} = \sum_{i=1}^{M} h_j e^{+2\pi i(k_2 z_j + k_1 y_j + k_0 x_j)}$ $(NDFT^{H})$ for $z_i, y_i, x_i \in [0, 1), k_0, k_1, k_2 \in \{0, \dots, N-1\}.$

Nonequispaced Fast Fourier Transforms

Matrix-Vector-Notation of NDFT and NDFT H

For $\boldsymbol{\hat{f}} \in \mathbb{C}^{N^3}$ and $\boldsymbol{h} \in \mathbb{C}^M$ compute

$$\begin{split} \boldsymbol{f} &= \boldsymbol{A} \boldsymbol{\hat{f}} \in \mathbb{C}^{M}, \quad & (\text{NDFT}) \\ \boldsymbol{\hat{h}} &= \boldsymbol{A}^{\mathsf{H}} \boldsymbol{h} \in \mathbb{C}^{N^{3}}, \quad & (\text{NDFT}^{\mathsf{H}}) \end{split}$$

where $\boldsymbol{A} = \left(\mathrm{e}^{-2\pi\mathrm{i}(k_2 z_j + k_1 y_j + k_0 x_j)}\right)_{j,k_0,k_1,k_2} \in \mathbb{C}^{M \times N^3}.$

NFFT [Dutt, Rohklin 93, Beylkin 95, Steidl 96, ...]

$$\boldsymbol{A} pprox \boldsymbol{B} \boldsymbol{F} \boldsymbol{D}, \qquad \boldsymbol{A}^{ op} pprox \boldsymbol{D} \boldsymbol{F}^{ op} \boldsymbol{B}^{ op}$$

•
$$\boldsymbol{D} \in \mathbb{R}^{N^3 imes N^3}$$
 diagonal matrix

•
$$F \in \mathbb{C}^{n^3 \times N^3}$$
 truncated Fourier matrix $(n \ge N)$

• $oldsymbol{B} \in \mathbb{R}^{M imes n^3}$ sparse matrix

 $\Rightarrow \mathcal{O}(N^3 \log N + \log^3(\frac{1}{\epsilon})M)$ instead of $\mathcal{O}(N^3M)$

Scaling PNFFT of Size 128^3 on BlueGene/P

Scaling PNFFT of Size 128^3 on BlueGene/P

- 2 Parallel Fast Fourier Transform
- **3** Parallel Nonequispaced Fast Fourier Transforms

Coulomb Interaction in Periodic Particle Systems

Calculation of the Potential

$$\widetilde{\phi}(oldsymbol{x}_j) = \sum_{oldsymbol{r}\in\mathbb{Z}^3} \sum_{l=1}^{M'} rac{q_l}{\|oldsymbol{x}_j-oldsymbol{x}_l+oldsymbol{r}\|_2}\,,\quad j=1,\ldots,M$$

- conditionally convergent
- computational work is $\mathcal{O}(M^2)$

Ewald Splitting

$$\frac{1}{r} = \frac{1 - f(r)}{r} + \frac{f(r)}{r} \quad \Rightarrow \quad \widetilde{\phi} = \widetilde{\phi}^{\text{real}} + \widetilde{\phi}^{\text{reci}}$$

• $\frac{1-f(r)}{r}$ converges fast in real space • $\frac{f(r)}{r}$ converges fast in reciprocal space and $\lim_{r\to 0} \frac{f(r)}{r}$ exists

Ewald Splitting with Error Function

Ewald Summation

Nearfield Approximation - $\mathcal{O}(M^2 R^3) \xrightarrow{\alpha_{\text{opt}}} \mathcal{O}(M^{3/2})$ $\widetilde{\phi}^{\text{real}}(\boldsymbol{x}_j) = -2q_j \frac{\alpha}{\sqrt{\pi}} + \sum_{\boldsymbol{r} \in \mathbb{Z}^3} \sum_{l=1}^{M'} q_l \frac{\operatorname{erfc}(\alpha \| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2)}{\| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2}$ $\approx -2q_j \frac{\alpha}{\sqrt{\pi}} + \sum_{\boldsymbol{r} \in I_R} \sum_{l=1}^{M} q_l \frac{\operatorname{erfc}(\alpha \| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2)}{\| \boldsymbol{x}_j - \boldsymbol{x}_l + \boldsymbol{r} \|_2}$

Farfield Approximation - $\mathcal{O}(MN^3) \xrightarrow{\alpha_{\text{opt}}} \mathcal{O}(M^{3/2})$

$$\widetilde{\phi}^{\text{reci}}(\boldsymbol{x}_{j}) = \frac{1}{\pi} \sum_{\boldsymbol{k} \in \mathbb{Z}^{3} \setminus \{\boldsymbol{0}\}} \frac{\mathrm{e}^{-\pi^{2} \|\boldsymbol{k}\|_{2}^{2}/\alpha^{2}}}{\|\boldsymbol{k}\|_{2}^{2}} \sum_{l=1}^{M} q_{l} \mathrm{e}^{-2\pi \mathrm{i}\boldsymbol{k}(\boldsymbol{x}_{j}-\boldsymbol{x}_{l})}$$
$$\approx \frac{1}{\pi} \sum_{\boldsymbol{k} \in I_{\boldsymbol{N}} \setminus \{\boldsymbol{0}\}} \frac{\mathrm{e}^{-\pi^{2} \|\boldsymbol{k}\|_{2}^{2}/\alpha^{2}}}{\|\boldsymbol{k}\|_{2}^{2}} \left(\sum_{l=1}^{M} q_{l} \mathrm{e}^{+2\pi \mathrm{i}\boldsymbol{k}\boldsymbol{x}_{l}}\right) \mathrm{e}^{-2\pi \mathrm{i}\boldsymbol{k}\boldsymbol{x}_{j}}$$

Fast Ewald Summation [Hedman, Laaksonen 2006]

Farfield Approximation -
$$\mathcal{O}(MN^3)$$

 $\widetilde{\phi}^{\text{reci}}(\boldsymbol{x}_j) \approx \frac{1}{\pi} \sum_{\boldsymbol{k} \in I_N \setminus \{\mathbf{0}\}} \frac{\mathrm{e}^{-\pi^2 \|\boldsymbol{k}\|_2^2 / \alpha^2}}{\|\boldsymbol{k}\|_2^2} \left(\sum_{l=1}^M q_l \mathrm{e}^{+2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_l} \right) \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$

Calculate by NFFT^H -
$$\mathcal{O}(\log^3(\frac{1}{\varepsilon})M + N^3 \log N)$$

 $S(\mathbf{k}) = \sum_{l=1}^M q_l \mathrm{e}^{+2\pi \mathrm{i} \mathbf{k} \mathbf{x}_l}$

Calculate by NFFT -
$$\mathcal{O}(\log^3(\frac{1}{\varepsilon})M + N^3 \log N)$$

$$\sum_{\boldsymbol{k} \in I_N \setminus \{\mathbf{0}\}} \left(\frac{1}{\pi} \frac{\mathrm{e}^{-\pi^2 \|\boldsymbol{k}\|_2^2 / \alpha^2}}{\|\boldsymbol{k}\|_2^2} S(\boldsymbol{k}) \right) \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_j}$$

Summary

