## Introduction to Practical FFT and NFFT

Michael Pippig and Daniel Potts

Department of Mathematics Chemnitz University of Technology

September 14, 2011

supported by BMBF grant 01IH08001B

# **Table of Contents**







**③** Parallel Fast Summation







#### Task of 3d-DFT

Consider a three-dimensional dataset of  $n_0 \times n_1 \times n_2$  complex numbers  $\hat{g}_{k_0k_1k_2} \in \mathbb{C}$ . Compute

$$g_{l_0 l_1 l_2} = \sum_{k_0=0}^{n_0-1} \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1} + k_0 \frac{l_0}{n_0}\right)}$$

for all  $l_t = 0, \ldots, n_t - 1$  (t = 0, 1, 2).

Realized by 3d-FFT  $(n_0 = n_1 = n_2 = n)$  $\Rightarrow \mathcal{O}(n^3 \log n)$  instead of  $\mathcal{O}(n^6)$ 

| Examples of FFT implementations                                                                              |                                                                              |                                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| • IBM ESSL                                                                                                   | <ul> <li>Intel MKL</li> </ul>                                                | • FFTW                                                                          |  |  |  |
| Features of FFTW [Frigo, Johnson]                                                                            |                                                                              |                                                                                 |  |  |  |
| <ul> <li>public available</li> <li>open source</li> <li>high performance</li> <li>many transforms</li> </ul> | <ul> <li>arbitrary size</li> <li>d-dim. FFT</li> <li>in place FFT</li> </ul> | <ul><li>collect wisdom</li><li>adjust planning</li><li>easy interface</li></ul> |  |  |  |
| Available at<br>http://www.fftw.org                                                                          |                                                                              |                                                                                 |  |  |  |

# Using FFTW



## **Basic Interface**

- simple
- do a single transform

#### Advanced Interface

- do a transform on multiple datasets by one call
- supports strided input and output
- use a plan on different datasets

## **Guru Interface**

- most powerful and most complicated
- combine transform and data permutation
- 64 bit compatible

## Nonequispaced Discrete Fourier Transform

#### Task of 3d-DFT and 3d-NDFT

For  $\hat{f}_{k_0k_1k_2} \in \mathbb{C}$  compute

$$f_{l_0 l_1 l_2} := \sum_{k_0=0}^{N-1} \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} \hat{f}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{N} + k_1 \frac{l_1}{N} + k_0 \frac{l_0}{N}\right)}$$
(DFT)

for all  $0 \le l_t < N \ (\Rightarrow 0 \le \frac{l_t}{N} < 1)$ , t = 0, 1, 2, and compute

$$f_j := \sum_{k_0=0}^{N-1} \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} \hat{f}_{k_0 k_1 k_2} e^{-2\pi i (k_2 x_j^{(2)} + k_1 x_j^{(1)} + k_0 x_j^{(0)})}$$
(NDFT)

for 
$$x_j^{(t)} \in [0,1)$$
  $(t = 0, 1, 2)$ ,  $j = 1, \dots, M$ .

Realized by 3d-NFFT [NFFT software library]  $\Rightarrow \mathcal{O}(N^3 \log N + \log^3(\frac{1}{\varepsilon})M) \text{ instead of } \mathcal{O}(N^3M)$ 

#### **Matrix-Vector-Notation**

Compute  $\boldsymbol{f} = (f_j)_j \in \mathbb{C}^M$  via

$$f = A\hat{f},$$

where 
$$\boldsymbol{A} = (e^{-2\pi i \boldsymbol{k} \boldsymbol{x}_j})_{\boldsymbol{k},j} \in \mathbb{C}^{M \times N^3}$$
 and  $\boldsymbol{\hat{f}} = (\hat{f}_{k_0 k_1 k_2})_{\boldsymbol{k}} \in \mathbb{C}^{N^3}$ 

Approximation [Dutt, Rohklin 93, Beylkin 95, Steidl 96, ...]

$$A \approx BFD, \qquad A^{H} \approx DF^{H}B^{T}$$

where

- $oldsymbol{D} \in \mathbb{R}^{N^3 imes N^3}$  diagonal matrix
- $\boldsymbol{F} \in \mathbb{C}^{n^3 \times N^3}$  truncated Fourier matrix  $(n \ge N)$
- $oldsymbol{B} \in \mathbb{R}^{M imes n^3}$  sparse matrix

#### NFFT Software Library [Keiner, Kunis, Potts]

#### Available at

#### http://www.tu-chemnitz.de/~potts/nfft





# **NFFT** Precompute

## PRE\_FULL\_PSI

- fully precomputed window function
- Storage:  $(2m+2)^d M$ , Computation: None

## PRE\_PSI

- tensor product based precomputation
- Storage: d(2m+2)M, Computation:  $(2m+2)^dM$

## PRE\_LIN\_PSI

- linear interpolation from lookup table
- Storage: dK, Computation:  $2(2m+2)^dM$

## PRE\_FG\_PSI

- fast Gaussian gridding
- Storage: 2dM, Computation:  $(2m+2)^dM$







#### Task of 3d-DFT

Consider a three-dimensional dataset of  $n_0 \times n_1 \times n_2$  complex numbers  $\hat{g}_{k_0k_1k_2} \in \mathbb{C}$ . Compute

$$g_{l_0 l_1 l_2} := \sum_{k_0=0}^{n_0-1} \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1} + k_0 \frac{l_0}{n_0}\right)}$$
$$= \sum_{k_0=0}^{n_0-1} \left( \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1}\right)} \right) e^{-2\pi i k_0 \frac{l_0}{n_0}}$$

for all  $l_t = 0, \ldots, n_t - 1$  (t = 0, 1, 2).

**Realized by 3d-FFT**  $(n_0 = n_1 = n_2 = n)$  $\Rightarrow \mathcal{O}(n^3 \log n)$  instead of  $\mathcal{O}(n^6)$ 

# **One-Dimensional Data Distribution**



p - number of processors

## Features of FFTW [Frigo, Johnson]

- open source
- easy interface
- communicator
- arbitrary size
- *d*-dim. FFT
- in place FFT

- high performance
- many transforms
- adjust blocksize
- adjust planning
- collect wisdom

Maximum Number of Processors  $p_{\max}^{1D}$ ( $n_0 = n_1 = n_2 = n$ )  $p_{\max}^{1D} = n$ 

FFTW combines portable performance and good usability, but is not scalable enough.

## **Two-Dimensional Data Distribution**

[Ding, Eleftheriou et al. 03, Plimpton, Pekurovsky - P3DFFT]



1 1D

2D

2

 $p_0 imes p_1$  - size of processor grid

|                            | n    | $p_{\text{max}} = n$ | $p_{\text{max}} = n^{-1}$ |
|----------------------------|------|----------------------|---------------------------|
| Maximum Number of          | 64   | 64                   | 4096                      |
| Processors $p_{\max}^{2D}$ | 128  | 128                  | 16384                     |
| $(n_0 = n_1 = n_2 = n)$    | 256  | 256                  | 65536                     |
| "2D "2                     | 512  | 512                  | 262144                    |
| $p_{\max} = n$             | 1024 | 1024                 | 1048576                   |

#### Aim

Implement a new parallel FFT sofware library (PFFT) based on FFTW and the highly scalable two-dimensional data distribution.

#### **1d-FFT Combined with Local Transposition**

$$\begin{array}{cccc} \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\rightarrow} & \hat{n}_0 \times \hat{n}_1 \times n_2 \\ \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\rightarrow} & \hat{n}_1 \times \hat{n}_0 \times n_2 \\ \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\rightarrow} & \hat{n}_1 \times \hat{n}_0 \times n_2 \\ \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\rightarrow} & \hat{n}_0 \times n_2 \times \hat{n}_1 \\ (\hat{n}_0 \times \hat{n}_1) \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\rightarrow} & n_2 \times (\hat{n}_0 \times \hat{n}_1) \end{array}$$

Transposition of One-Dimensional Distributed Data

$$N_0 \times \frac{N_1}{P} \xrightarrow{\mathsf{T}} \frac{N_0}{P} \times N_1$$

Group two of the three dimensions to use FFTWs matrix transposition on two-dimensional decomposed data, e.g.  $N_0 = n_2, N_1 = n_0 \times \frac{n_1}{p_1}, P = p_0.$ 

Transposition of Two-Dimensional Distributed Data

$$n_2 \times \left(\frac{n_0}{p_0} \times \frac{n_1}{p_1}\right) \xrightarrow{\mathsf{T}} \frac{n_2}{p_0} \times \left(n_0 \times \frac{n_1}{p_1}\right)$$



#### **PFFT Backward Transform**

$$\begin{array}{cccc} \frac{n_1}{p_0} \times \frac{n_2}{p_1} \times n_0 & \stackrel{\mathsf{FFT2}}{\to} & \frac{n_1}{p_0} \times \frac{n_2}{p_1} \times \hat{n}_0 & \stackrel{\mathsf{T}}{\to} \\ n_1 \times \frac{n_2}{p_1} \times \frac{\hat{n}_0}{p_0} & \stackrel{\mathsf{FFT0}}{\to} & \frac{n_2}{p_1} \times \frac{\hat{n}_0}{p_0} \times \hat{n}_1 & \stackrel{\mathsf{T}}{\to} \\ n_2 \times \frac{\hat{n}_0}{p_0} \times \frac{\hat{n}_1}{p_1} & \stackrel{\mathsf{FFT0}}{\to} & \frac{\hat{n}_0}{p_0} \times \frac{\hat{n}_1}{p_1} \times \hat{n}_2 \end{array}$$

# Scaling FFT of Size $512^3$ on BlueGene/P



# Scaling FFT of Size $512^3$ on BlueGene/P



# Scaling FFT of Size $1024^3$ on BlueGene/P



# Scaling FFT of Size $1024^3$ on BlueGene/P



# Comparison of PFFT and P3DFFT

#### **Common Features**

- open source
- high scalability
- portability
- multiple precisions
- Fortran interface
- C interface
- r2c FFT
- ghost cell support

### **PFFT Unique Features**

- c2c FFT
- completely in place FFT
- FFTW like interface (basic, advanced and guru)
- adjustable blocksize
- separate communicator
- accumulated wisdom
- change of planning effort without recompilation
- *d*-dimensional parallel FFT
- over- and downsampling

# Ghost Cell Support



 $p_0$ 

# **Oversampled & Downsampled FFT**

#### Without Library Support







## PFFT Library Support







 $\hat{n}_0$ 









## PFFT Software Library [Pippig]

# Available at http://www.tu-chemnitz.de/~mpip/software

#### **Matrix-Vector-Notation**

Compute  $\boldsymbol{f} = (f_j)_j \in \mathbb{C}^M$  via

$$f = A\hat{f},$$

where 
$$\boldsymbol{A} = (e^{-2\pi i \boldsymbol{k} \boldsymbol{x}_j})_{\boldsymbol{k},j} \in \mathbb{C}^{M \times N^3}$$
 and  $\boldsymbol{\hat{f}} = (\hat{f}_{k_0 k_1 k_2})_{\boldsymbol{k}} \in \mathbb{C}^{N^3}$ 

Approximation [Dutt, Rohklin 93, Beylkin 95, Steidl 96, ...]

$$\boldsymbol{A} pprox \boldsymbol{B} \boldsymbol{F} \boldsymbol{D}, \qquad \boldsymbol{A}^{\mathsf{H}} pprox \boldsymbol{D} \boldsymbol{F}^{\mathsf{H}} \boldsymbol{B}^{T}$$

where

- $oldsymbol{D} \in \mathbb{R}^{N^3 imes N^3}$  diagonal matrix
- $\boldsymbol{F} \in \mathbb{C}^{n^3 imes N^3}$  truncated Fourier matrix  $(n \ge N)$
- $\pmb{B} \in \mathbb{R}^{M imes n^3}$  sparse matrix

# **PNFFT** in Pictures



## **PNFFT Software Library** [Pippig]

## Available at

#### http://www.tu-chemnitz.de/~mpip/software



## **2** Parallel FFT Algorithms



## Parallel Fast Summation

#### Task

Fast computation of

$$h_j = \sum_{l=1}^{L} a_l K(\| \boldsymbol{y}_j - \boldsymbol{x}_l \|_2), \quad j = 1, \dots, M, \quad \boldsymbol{y}_j, \boldsymbol{x}_l \in \mathbb{R}^3$$

**Example of Radial Kernel Function** 

$$K(\|\bm{x}\|_2) = \frac{1}{\|\bm{x}\|_2}, \dots$$

## Realized with 3d-NFFT [NFFT Software Library]

 $\Rightarrow \mathcal{O}(\log^3(\frac{1}{\epsilon})(M+L))$  instead of  $\mathcal{O}(ML)$ 

**Matrix-Vector-Notation** 

Compute  $\boldsymbol{h} = (h_j)_{j=1}^M$  via

h = Ka,

where  $\boldsymbol{K} = (K(\|\boldsymbol{y}_j - \boldsymbol{x}_l\|))_{j,l=1}^{M,M}$  and  $\boldsymbol{a} = (a_l)_{l=1}^M \in \mathbb{C}^M$ .

Standard Algorithm for Equispaced Nodes

$$\pmb{K} = \pmb{F} \pmb{D} \pmb{F}^{arepsilon}$$

where

- $\boldsymbol{F} \in \mathbb{C}^{M imes M}$  equispaced Fourier matrix
- $\boldsymbol{D} \in \mathbb{C}^{M imes M}$  diagonal matrix

# **Parallel Fast Summation**

#### **Matrix-Vector-Notation**

Compute  $\boldsymbol{h} = (h_j)_{j=1}^M$  via

$$h = Ka$$
,

where 
$$K = (K(||y_j - x_l||))_{j,l=1}^{M,L}$$
 and  $a = (a_l)_{l=1}^{L} \in \mathbb{C}^{L}$ .

Approximation [Potts, Steidl, Nieslony 2004]

$$\boldsymbol{K} pprox \boldsymbol{A}_2 \boldsymbol{D} \boldsymbol{A}_1^{ op} + \boldsymbol{K}_{NF}$$

where

•  $A_2 = (e^{-2\pi i k y_j})_{j,k} \in \mathbb{C}^{M \times N^3}$  nonequispaced Fourier matrix •  $D \in \mathbb{C}^{N^3 \times N^3}$  diagonal matrix •  $A_1 = (e^{-2\pi i k x_l})_{l,k} \in \mathbb{C}^{L \times N^3}$  nonequispaced Fourier matrix •  $K_{NF} \in \mathbb{C}^{M \times L}$  sparse near field correction

