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Discrete Fast Fourier Transform

Task of 3d-DFT
Consider a three-dimensional dataset of n0 × n1 × n2 complex
numbers ĝk0k1k2 ∈ C. Compute
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for all lt = 0, . . . ,nt − 1 (t = 0, 1, 2).

Realized by 3d-FFT (n0 = n1 = n2 = n)
⇒ O(n3 log n) instead of O(n6)



One-Dimensional Data Distribution
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Features of FFTW [Frigo, Johnson]

open source
easy interface
communicator
arbitrary size
d-dim. FFT
in place FFT

high performance
many transforms
adjust blocksize
adjust planning
collect wisdom

Maximum Number of Processors p1D
max

(n0 = n1 = n2 = n)

p1D
max = n

FFTW combines portable performance and
good usability, but is not scalable enough.



Two-Dimensional Data Distribution

[Ding, Eleftheriou et al. 03, Plimpton, Pekurovsky - P3DFFT]
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p0 × p1 - size of processor grid

Maximum Number of
Processors p2D

max
(n0 = n1 = n2 = n)

p2D
max = n2

n p1D
max = n p2D

max = n2

64 64 4096
128 128 16384
256 256 65536
512 512 262144

1024 1024 1048576



Algorithms Supported by FFTW3.3alpha1

Aim
Implement a new parallel FFT sofware library (PFFT) based on
FFTW and the highly scalable two-dimensional data distribution.

1d-FFT Combined with Local Transposition
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Algorithms Supported by FFTW3.3alpha1

Transposition of One-Dimensional Distributed Data

N0 × N1
P

T→ N0
P ×N1

Group two of the three dimensions to use FFTWs matrix
transposition on two-dimensional decomposed data, e.g.
N0 = n2,N1 = n0 × n1

p1
,P = p0.

Transposition of Two-Dimensional Distributed Data
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Two-Dimensional Distributed FFT Based on FFTW

PFFT Forward Transform
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PFFT Backward Transform
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Scaling FFT of Size 5123 on BlueGene/P
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Scaling FFT of Size 10243 on BlueGene/P
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Comparison of PFFT and P3DFFT

P3DFFT Unique Features
[Pekurovsky]

r2c FFT
Fortran interface

Common Features
open source
high scalability
portability
multiple precisions
C interface
ghost cell support

PFFT Unique Features
c2c FFT
completely in place FFT
FFTW like interface
basic, advanced and guru
interface
adjustable blocksize
separate communicator
accumulated wisdom
change of planning effort
without recompilation
d-dimensional parallel FFT
truncated FFT support



Non-Equispaced Discrete Fourier Transform

Task of 3d-DFT and 3d-NDFT
For f̂k0k1k2 ∈ C compute
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N−1∑
k2=0

f̂k0k1k2 e−2πi(k2
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for all 0 ≤ lt < N (⇒ 0 ≤ lt
N < 1), t = 0, 1, 2, and compute

fj :=
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for x(t)
j ∈ [0, 1) (t = 0, 1, 2), j = 1, . . . ,M .

Realized by 3d-NFFT [NFFT software library]
⇒ O(N 3 log N + log3(1

ε )M ) instead of O(N 3M )



Parallel NFFT

Matrix-Vector-Notation

f = Af̂ ,

where f = (fj)j , A = (e−2πikxj )k,j , f̂ = (f̂k0k1k2)k

Approximation [Dutt, Rohklin 93, Beylkin 95, Steidl 96, . . . ]

f = Af̂ ≈ BFDf̂ ,

where
D ∈ CN3×N3 diagonal matrix,
F ∈ Cn3×N3 truncated Fourier matrix (n ≥ N )
B ∈ CM×n3 sparse matrix



Summary

FFTW Features
performance
interface
portability

Additional Features
truncated FFT
ghost cellsPFFT

2d data distribution
High Scalability

PNFFT
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