
An Efficient and Flexible Parallel FFT
Implementation Based on FFTW

Michael Pippig

Faculty of Mathematics
Chemnitz University of Technology

22.06.2010

supported by BMBF grant 01IH08001B



Table of Contents

1 Parallel FFT Algorithms

2 Parallel FFT Based on FFTW

3 Parallel Non-Equispaced FFT



Discrete Fast Fourier Transform

Task of 3d-DFT
Consider a three-dimensional dataset of n0 × n1 × n2 complex
numbers ĝk0k1k2 ∈ C. Compute

gl0l1l2 :=
n0−1∑
k0=0

n1−1∑
k1=0

n2−1∑
k2=0

ĝk0k1k2 e−2πi(k2
l2
n2

+k1
l1
n1

+k0
l0
n0

)

=
n0−1∑
k0=0

n1−1∑
k1=0

n2−1∑
k2=0

ĝk0k1k2 e−2πi(k2
l2
n2

+k1
l1
n1

)

 e−2πik0
l0
n0

for all lt = 0, . . . ,nt − 1 (t = 0, 1, 2).

Realized by 3d-FFT (n0 = n1 = n2 = n)
⇒ O(n3 log n) instead of O(n6)



One-Dimensional Data Distribution

p

n2
n0

n1

T

p
n2

n0

n1

p - number of
processors

Features of FFTW [Frigo, Johnson]

open source
easy interface
communicator
arbitrary size
d-dim. FFT
in place FFT

high performance
many transforms
adjust blocksize
adjust planning
collect wisdom

Maximum Number of Processors p1D
max

(n0 = n1 = n2 = n)

p1D
max = n

FFTW combines portable performance and
good usability, but is not scalable enough.



Two-Dimensional Data Distribution

[Ding, Eleftheriou et al. 03, Plimpton, Pekurovsky - P3DFFT]

p1p0

n1
n0

n2
T

p1

p0

n1n0

n2

T
p0

p1
n1

n0

n2

p0 × p1 - size of processor grid

Maximum Number of
Processors p2D

max
(n0 = n1 = n2 = n)

p2D
max = n2

n p1D
max = n p2D

max = n2

64 64 4096
128 128 16384
256 256 65536
512 512 262144

1024 1024 1048576



Algorithms Supported by FFTW3.3alpha1

Aim
Implement a new parallel FFT sofware library (PFFT) based on
FFTW and the highly scalable two-dimensional data distribution.

1d-FFT Combined with Local Transposition

n̂0 × n̂1 × n̂2
FFT2→
012

n̂0 × n̂1 × n2

n̂0 × n̂1 × n̂2
FFT2→
102

n̂1 × n̂0 × n2

n̂0 × n̂1 × n̂2
FFT2→
021

n̂0 × n2 × n̂1

(n̂0 × n̂1)× n̂2
FFT2→
201

n2 × (n̂0 × n̂1)



Algorithms Supported by FFTW3.3alpha1

Transposition of One-Dimensional Distributed Data

N0 × N1
P

T→ N0
P ×N1

Group two of the three dimensions to use FFTWs matrix
transposition on two-dimensional decomposed data, e.g.
N0 = n2,N1 = n0 × n1

p1
,P = p0.

Transposition of Two-Dimensional Distributed Data

n2 × (n0
p0
× n1

p1
) T→ n2

p0
× (n0 × n1

p1
)



Two-Dimensional Distributed FFT Based on FFTW

PFFT Forward Transform
n̂0
p0
× n̂1

p1
× n̂2

FFT2→
201

n2 × n̂0
p0
× n̂1

p1

T→
n2
p1
× n̂0

p0
× n̂1

FFT2→
201

n1 × n2
p1
× n̂0

p0

T→
n1
p0
× n2

p1
× n̂0

FFT2→
102

n2
p1
× n1

p0
× n0

PFFT Backward Transform
n2
p1
× n1

p0
× n0

FFT2→
201

n̂0 × n2
p1
× n1

p0

T→
n̂0
p0
× n2

p1
× n1

FFT2→
201

n̂1 × n̂0
p0
× n2

p1

T→
n̂1
p1
× n̂0

p0
× n2

FFT2→
102

n̂0
p0
× n̂1

p1
× n̂2



Scaling FFT of Size 5123 on BlueGene/P

26 28 210 212 214 216 218

26

28

210

212

214

216

218

number of cores

sp
ee
du

p
Perfect
PFFT

P3DFFT



Scaling FFT of Size 10243 on BlueGene/P

29 211 213 215 217

29

211

213

215

217

number of cores

sp
ee
du

p
Perfect
PFFT

P3DFFT



Comparison of PFFT and P3DFFT

P3DFFT Unique Features
[Pekurovsky]

r2c FFT
Fortran interface

Common Features
open source
high scalability
portability
multiple precisions
C interface
ghost cell support

PFFT Unique Features
c2c FFT
completely in place FFT
FFTW like interface
basic, advanced and guru
interface
adjustable blocksize
separate communicator
accumulated wisdom
change of planning effort
without recompilation
d-dimensional parallel FFT
truncated FFT support



Non-Equispaced Discrete Fourier Transform

Task of 3d-DFT and 3d-NDFT
For f̂k0k1k2 ∈ C compute

fl0l1l2 :=
N−1∑
k0=0

N−1∑
k1=0

N−1∑
k2=0

f̂k0k1k2 e−2πi(k2
l2
N +k1

l1
N +k0

l0
N ) (DFT)

for all 0 ≤ lt < N (⇒ 0 ≤ lt
N < 1), t = 0, 1, 2, and compute

fj :=
N−1∑
k0=0

N−1∑
k1=0

N−1∑
k2=0

f̂k0k1k2 e−2πi(k2x(2)
j +k1x(1)

j +k0x(0)
j ) (NDFT)

for x(t)
j ∈ [0, 1) (t = 0, 1, 2), j = 1, . . . ,M .

Realized by 3d-NFFT [NFFT software library]
⇒ O(N 3 log N + log3(1

ε )M ) instead of O(N 3M )



Parallel NFFT

Matrix-Vector-Notation

f = Af̂ ,

where f = (fj)j , A = (e−2πikxj )k,j , f̂ = (f̂k0k1k2)k

Approximation [Dutt, Rohklin 93, Beylkin 95, Steidl 96, . . . ]

f = Af̂ ≈ BFDf̂ ,

where
D ∈ CN3×N3 diagonal matrix,
F ∈ Cn3×N3 truncated Fourier matrix (n ≥ N )
B ∈ CM×n3 sparse matrix



Summary

FFTW Features
performance
interface
portability

Additional Features
truncated FFT
ghost cellsPFFT

2d data distribution
High Scalability

PNFFT


	Parallel FFT Algorithms
	Parallel FFT Based on FFTW
	Parallel Non-Equispaced FFT

