An Efficient and Flexible Parallel FFT Implementation Based on FFTW

Michael Pippig

Faculty of Mathematics
Chemnitz University of Technology
22.06.2010

Table of Contents

(1) Parallel FFT Algorithms
(2) Parallel FFT Based on FFTW
(3) Parallel Non-Equispaced FFT

Discrete Fast Fourier Transform

Task of 3d-DFT

Consider a three-dimensional dataset of $n_{0} \times n_{1} \times n_{2}$ complex numbers $\hat{g}_{k_{0} k_{1} k_{2}} \in \mathbb{C}$. Compute

$$
\begin{aligned}
g_{l_{0} l_{1} l_{2}} & :=\sum_{k_{0}=0}^{n_{0}-1} \sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \hat{g}_{k_{0} k_{1} k_{2}} \mathrm{e}^{-2 \pi \mathrm{i}\left(k_{2} \frac{l_{2}}{n_{2}}+k_{1} \frac{l_{1}}{n_{1}}+k_{0} \frac{l_{0}}{n_{0}}\right)} \\
& =\sum_{k_{0}=0}^{n_{0}-1}\left(\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \hat{g}_{k_{0} k_{1} k_{2}} \mathrm{e}^{-2 \pi \mathrm{i}\left(k_{2} \frac{l_{2}}{n_{2}}+k_{1} \frac{l_{1}}{n_{1}}\right)}\right) \mathrm{e}^{-2 \pi \mathrm{i} k_{0} \frac{l_{0}}{n_{0}}}
\end{aligned}
$$

for all $l_{t}=0, \ldots, n_{t}-1(t=0,1,2)$.

Realized by 3d-FFT ($n_{0}=n_{1}=n_{2}=n$)
$\Rightarrow \mathcal{O}\left(n^{3} \log n\right)$ instead of $\mathcal{O}\left(n^{6}\right)$

One-Dimensional Data Distribution

Features of FFTW [Frigo, Johnson]

- open source
- easy interface
- communicator
- arbitrary size
- d-dim. FFT
- in place FFT

Maximum Number of Processors $p_{\text {max }}^{1 \mathrm{D}}$

($n_{0}=n_{1}=n_{2}=n$)

$$
p_{\max }^{1 \mathrm{D}}=n
$$

FFTW combines portable performance and good usability, but is not scalable enough.

Two-Dimensional Data Distribution

[Ding, Eleftheriou et al. 03, Plimpton, Pekurovsky - P3DFFT]

$p_{0} \times p_{1}$ - size of processor grid
Maximum Number of
Processors $p_{\text {max }}^{2 \mathrm{D}}$
$\left(n_{0}=n_{1}=n_{2}=n\right)$

$$
p_{\max }^{2 \mathrm{D}}=n^{2}
$$

n	$p_{\max }^{1 \mathrm{D}}=n$	$p_{\max }^{2 \mathrm{D}}=n^{2}$
64	64	4096
128	128	16384
256	256	65536
512	512	262144
1024	1024	1048576

Algorithms Supported by FFTW3.3alpha1

Aim

Implement a new parallel FFT sofware library (PFFT) based on FFTW and the highly scalable two-dimensional data distribution.

1d-FFT Combined with Local Transposition

$$
\begin{array}{ccl}
\hat{n}_{0} \times \hat{n}_{1} \times \hat{n}_{2} & \stackrel{\mathrm{FFT} 2}{\overrightarrow{0} 2} & \hat{n}_{0} \times \hat{n}_{1} \times n_{2} \\
\hat{n}_{0} \times \hat{n}_{1} \times \hat{n}_{2} & \stackrel{\mathrm{FFT} 2}{\overrightarrow{102}} & \hat{n}_{1} \times \hat{n}_{0} \times n_{2} \\
\hat{n}_{0} \times \hat{n}_{1} \times \hat{n}_{2} & \stackrel{\mathrm{FFT} 2}{\longrightarrow} & \hat{n}_{0} \times n_{2} \times \hat{n}_{1} \\
\left(\hat{n}_{0} \times \hat{n}_{1}\right) \times \hat{n}_{2} & \stackrel{\mathrm{FFT} 2}{\overrightarrow{201}} & n_{2} \times\left(\hat{n}_{0} \times \hat{n}_{1}\right)
\end{array}
$$

Algorithms Supported by FFTW3.3alpha1

Transposition of One-Dimensional Distributed Data

$$
N_{0} \times \frac{N_{1}}{P} \quad \xrightarrow{\mathrm{~T}} \quad \frac{N_{0}}{P} \times N_{1}
$$

Group two of the three dimensions to use FFTWs matrix transposition on two-dimensional decomposed data, e.g. $N_{0}=n_{2}, N_{1}=n_{0} \times \frac{n_{1}}{p_{1}}, P=p_{0}$.

Transposition of Two-Dimensional Distributed Data

$$
n_{2} \times\left(\frac{n_{0}}{p_{0}} \times \frac{n_{1}}{p_{1}}\right) \quad \xrightarrow{\mathrm{T}} \quad \frac{n_{2}}{p_{0}} \times\left(n_{0} \times \frac{n_{1}}{p_{1}}\right)
$$

Two-Dimensional Distributed FFT Based on FFTW

PFFT Forward Transform

$$
\begin{array}{llll}
\frac{\hat{n}_{0}}{p_{0}} \times \frac{\hat{n}_{1}}{p_{1}} \times \hat{n}_{2} & \stackrel{\mathrm{FFT} 2}{\overrightarrow{201}} & n_{2} \times \frac{\hat{n}_{0}}{p_{0}} \times \frac{\hat{n}_{1}}{p_{1}} & \xrightarrow{\mathrm{~T}} \\
\frac{n_{2}}{p_{1}} \times \frac{\hat{n}_{0}}{p_{0}} \times \hat{n}_{1} & \underset{201}{\mathrm{FFT} 2} & n_{1} \times \frac{n_{2}}{p_{1}} \times \frac{\hat{n}_{0}}{p_{0}} & \xrightarrow{\mathrm{~T}} \\
\frac{n_{1}}{p_{0}} \times \frac{n_{2}}{p_{1}} \times \hat{n}_{0} & \underset{102}{\mathrm{FFT} 2} & \frac{n_{2}}{p_{1}} \times \frac{n_{1}}{p_{0}} \times n_{0} &
\end{array}
$$

PFFT Backward Transform

$$
\begin{array}{llll}
\frac{n_{2}}{p_{1}} \times \frac{n_{1}}{p_{0}} \times n_{0} & \stackrel{\mathrm{FFT} 2}{\overrightarrow{2}} & \hat{n}_{0} \times \frac{n_{2}}{p_{1}} \times \frac{n_{1}}{p_{0}} & \xrightarrow{\mathrm{~T}} \\
\frac{\hat{n}_{0}}{p_{0}} \times \frac{n_{2}}{p_{1}} \times n_{1} & \underset{201}{\mathrm{FFT} 2} & \hat{n}_{1} \times \frac{\hat{n}_{0}}{p_{0}} \times \frac{n_{2}}{p_{1}} & \xrightarrow{\mathrm{~T}} \\
\frac{\hat{n}_{1}}{p_{1}} \times \frac{\hat{n}_{0}}{p_{0}} \times n_{2} & \stackrel{\mathrm{FFT} 2}{\vec{\longrightarrow}} & \frac{\hat{n}_{0}}{p_{0}} \times \frac{\hat{n}_{1}}{p_{1}} \times \hat{n}_{2} &
\end{array}
$$

Scaling FFT of Size 512^{3} on BlueGene/P

Scaling FFT of Size 1024^{3} on BlueGene/P

Comparison of PFFT and P3DFFT

P3DFFT Unique Features

[Pekurovsky]

- r2c FFT
- Fortran interface

Common Features

- open source
- high scalability
- portability
- multiple precisions
- C interface
- ghost cell support

PFFT Unique Features

- c2c FFT
- completely in place FFT
- FFTW like interface
- basic, advanced and guru interface
- adjustable blocksize
- separate communicator
- accumulated wisdom
- change of planning effort without recompilation
- d-dimensional parallel FFT
- truncated FFT support

Non-Equispaced Discrete Fourier Transform

Task of 3d-DFT and 3d-NDFT
For $\hat{f}_{k_{0} k_{1} k_{2}} \in \mathbb{C}$ compute

$$
\begin{equation*}
f_{l_{0} l_{1} l_{2}}:=\sum_{k_{0}=0}^{N-1} \sum_{k_{1}=0}^{N-1} \sum_{k_{2}=0}^{N-1} \hat{f}_{k_{0} k_{1} k_{2}} \mathrm{e}^{-2 \pi \mathbf{i}\left(k_{2} \frac{l_{2}}{N}+k_{1} \frac{l_{1}}{N}+k_{0} \frac{l_{0}}{N}\right)} \tag{DFT}
\end{equation*}
$$

for all $0 \leq l_{t}<N\left(\Rightarrow 0 \leq \frac{l_{t}}{N}<1\right), t=0,1,2$, and compute

$$
\begin{equation*}
f_{j}:=\sum_{k_{0}=0}^{N-1} \sum_{k_{1}=0}^{N-1} \sum_{k_{2}=0}^{N-1} \hat{f}_{k_{0} k_{1} k_{2}} \mathrm{e}^{-2 \pi \mathrm{i}\left(k_{2} x_{j}^{(2)}+k_{1} x_{j}^{(1)}+k_{0} x_{j}^{(0)}\right)} \tag{NDFT}
\end{equation*}
$$

for $x_{j}^{(t)} \in[0,1)(t=0,1,2), j=1, \ldots, M$.
Realized by 3d-NFFT [NFFT software library]
$\Rightarrow \mathcal{O}\left(N^{3} \log N+\log ^{3}\left(\frac{1}{\varepsilon}\right) M\right)$ instead of $\mathcal{O}\left(N^{3} M\right)$

Parallel NFFT

Matrix-Vector-Notation

$$
f=\boldsymbol{A} \hat{\boldsymbol{f}}
$$

where $\boldsymbol{f}=\left(f_{j}\right)_{j}, \boldsymbol{A}=\left(\mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{k} \boldsymbol{x}_{j}}\right)_{\boldsymbol{k}, j}, \hat{\boldsymbol{f}}=\left(\hat{f}_{k_{0} k_{1} k_{2}}\right)_{\boldsymbol{k}}$

Approximation [Dutt, Rohklin 93, Beylkin 95, Steidl 96, ...]

$$
f=\boldsymbol{A} \hat{f} \approx B F D \hat{f}
$$

where

- $\boldsymbol{D} \in \mathbb{C}^{N^{3} \times N^{3}}$ diagonal matrix,
- $\boldsymbol{F} \in \mathbb{C}^{n^{3} \times N^{3}}$ truncated Fourier matrix $(n \geq N)$
- $\boldsymbol{B} \in \mathbb{C}^{M \times n^{3}}$ sparse matrix

Summary

High Scalability

- 2d data distribution

FFTW Features

- performance
- interface
- portability

PFFT
Additional Features

- truncated FFT
- ghost cells

