An Efficient and Flexible Parallel FFT Implementation Based on FFTW

Michael Pippig

Faculty of Mathematics Chemnitz University of Technology

22.06.2010

supported by BMBF grant 01IH08001B

3 Parallel Non-Equispaced FFT

Task of 3d-DFT

Consider a three-dimensional dataset of $n_0 \times n_1 \times n_2$ complex numbers $\hat{g}_{k_0k_1k_2} \in \mathbb{C}$. Compute

$$g_{l_0 l_1 l_2} := \sum_{k_0=0}^{n_0-1} \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1} + k_0 \frac{l_0}{n_0}\right)}$$
$$= \sum_{k_0=0}^{n_0-1} \left(\sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{g}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{n_2} + k_1 \frac{l_1}{n_1}\right)} \right) e^{-2\pi i k_0 \frac{l_0}{n_0}}$$

for all $l_t = 0, \ldots, n_t - 1$ (t = 0, 1, 2).

Realized by 3d-FFT $(n_0 = n_1 = n_2 = n)$ $\Rightarrow \mathcal{O}(n^3 \log n)$ instead of $\mathcal{O}(n^6)$

One-Dimensional Data Distribution

p - number of processors

Features of FFTW [Frigo, Johnson]

- open source
- easy interface
- communicator
- arbitrary size
- *d*-dim. FFT
- in place FFT

- high performance
- many transforms
- adjust blocksize
- adjust planning
- collect wisdom

Maximum Number of Processors p_{\max}^{1D} ($n_0 = n_1 = n_2 = n$) $p_{\max}^{1D} = n$

FFTW combines portable performance and good usability, but is not scalable enough.

Two-Dimensional Data Distribution

[Ding, Eleftheriou et al. 03, Plimpton, Pekurovsky - P3DFFT]

 \perp 1D

2D

2

 $p_0 imes p_1$ - size of processor grid

	n	$p_{\text{max}} = n$	$p_{\text{max}} = n^{-1}$
Maximum Number of	64	64	4096
Processors p_{\max}^{2D}	128	128	16384
$(n_0 = n_1 = n_2 = n)$	256	256	65536
"2D "2	512	512	262144
$p_{\max} = n$	1024	1024	1048576

Aim

Implement a new parallel FFT sofware library (PFFT) based on FFTW and the highly scalable two-dimensional data distribution.

1d-FFT Combined with Local Transposition

$$\begin{array}{cccc} \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\longrightarrow} & \hat{n}_0 \times \hat{n}_1 \times n_2 \\ \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\longrightarrow} & \hat{n}_1 \times \hat{n}_0 \times n_2 \\ \hat{n}_0 \times \hat{n}_1 \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\longrightarrow} & \hat{n}_0 \times n_2 \times \hat{n}_1 \\ (\hat{n}_0 \times \hat{n}_1) \times \hat{n}_2 & \stackrel{\mathsf{FFT2}}{\longrightarrow} & n_2 \times (\hat{n}_0 \times \hat{n}_1) \end{array}$$

Transposition of One-Dimensional Distributed Data

$$N_0 \times \frac{N_1}{P} \xrightarrow{\mathsf{T}} \frac{N_0}{P} \times N_1$$

Group two of the three dimensions to use FFTWs matrix transposition on two-dimensional decomposed data, e.g. $N_0 = n_2, N_1 = n_0 \times \frac{n_1}{p_1}, P = p_0.$

Transposition of Two-Dimensional Distributed Data

$$n_2 \times \left(\frac{n_0}{p_0} \times \frac{n_1}{p_1}\right) \xrightarrow{\mathsf{T}} \frac{n_2}{p_0} \times \left(n_0 \times \frac{n_1}{p_1}\right)$$

PFFT Backward Transform

$\frac{n_2}{p_1} \times \frac{n_1}{p_0} \times n_0$	$FFT2 \rightarrow 201$	$\hat{n}_0 \times \frac{n_2}{p_1} \times \frac{n_1}{p_0}$	\xrightarrow{T}
$\frac{\hat{n}_0}{p_0} \times \frac{n_2}{p_1} \times n_1$	$\stackrel{FFT2}{\underset{201}{\rightarrow}}$	$\hat{n}_1 imes rac{\hat{n}_0}{p_0} imes rac{n_2}{p_1}$	$\stackrel{T}{\rightarrow}$
$\frac{\hat{n}_1}{p_1} \times \frac{\hat{n}_0}{p_0} \times n_2$	$\stackrel{FFT2}{\underset{102}{\to}}$	$\frac{\hat{n}_0}{p_0} \times \frac{\hat{n}_1}{p_1} \times \hat{n}_2$	

Scaling FFT of Size 512^3 on BlueGene/P

Scaling FFT of Size 1024^3 on BlueGene/P

Comparison of PFFT and P3DFFT

P3DFFT Unique Features [Pekurovsky]

- r2c FFT
- Fortran interface

Common Features

- open source
- high scalability
- portability
- multiple precisions
- C interface
- ghost cell support

PFFT Unique Features

- c2c FFT
- completely in place FFT
- FFTW like interface
- basic, advanced and guru interface
- adjustable blocksize
- separate communicator
- accumulated wisdom
- change of planning effort without recompilation
- *d*-dimensional parallel FFT
- truncated FFT support

Non-Equispaced Discrete Fourier Transform

Task of 3d-DFT and 3d-NDFT

For $\hat{f}_{k_0k_1k_2} \in \mathbb{C}$ compute

$$f_{l_0 l_1 l_2} := \sum_{k_0=0}^{N-1} \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} \hat{f}_{k_0 k_1 k_2} e^{-2\pi i \left(k_2 \frac{l_2}{N} + k_1 \frac{l_1}{N} + k_0 \frac{l_0}{N}\right)}$$
(DFT)

for all $0 \le l_t < N \ (\Rightarrow 0 \le \frac{l_t}{N} < 1)$, t = 0, 1, 2, and compute

$$f_j := \sum_{k_0=0}^{N-1} \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} \hat{f}_{k_0 k_1 k_2} e^{-2\pi i (k_2 x_j^{(2)} + k_1 x_j^{(1)} + k_0 x_j^{(0)})}$$
(NDFT)

for
$$x_j^{(t)} \in [0,1)$$
 $(t = 0, 1, 2)$, $j = 1, \dots, M$.

Realized by 3d-NFFT [NFFT software library] $\Rightarrow \mathcal{O}(N^3 \log N + \log^3(\frac{1}{\varepsilon})M) \text{ instead of } \mathcal{O}(N^3M)$ **Matrix-Vector-Notation**

$$oldsymbol{f}=oldsymbol{A}oldsymbol{\hat{f}},$$

where
$$f = (f_j)_j$$
, $A = (e^{-2\pi i k x_j})_{k,j}$, $\hat{f} = (\hat{f}_{k_0 k_1 k_2})_k$

Approximation [Dutt, Rohklin 93, Beylkin 95, Steidl 96, \dots] $f = A \hat{f} pprox BFD \hat{f},$

where

- $\boldsymbol{D} \in \mathbb{C}^{N^3 imes N^3}$ diagonal matrix,
- $\boldsymbol{F} \in \mathbb{C}^{n^3 \times N^3}$ truncated Fourier matrix $(n \ge N)$
- $\boldsymbol{B} \in \mathbb{C}^{M imes n^3}$ sparse matrix

