
Michael Pippig

Massively Parallel,
Fast Fourier Transforms
and Particle-Mesh Methods

Michael Pippig

Massively Parallel,
Fast Fourier Transforms

and Particle-Mesh Methods

Universitätsverlag Chemnitz

2016

Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Angaben sind im Internet über
http://dnb.d-nb.de abrufbar.

Diese Arbeit wurde von der Fakultät für Mathematik der Technischen Universität
Chemnitz als Dissertation zur Erlangung des akademischen Grades
Dr. rer. nat. genehmigt.
Die Arbeit wurde in englischer Sprache verfasst.

Tag der Einreichung: 25. Juni 2015

Betreuer: Prof. Dr. Daniel Potts, Technische Universität Chemnitz

1. Gutachter: Prof. Dr. Daniel Potts, Technische Universität Chemnitz
2. Gutachter: Prof. Dr. Christian Holm, Universität Stuttgart
3. Gutachter: Prof. Dr. Matthias Bolten, Universität Kassel

Tag der öffentlichen Prüfung: 13. Oktober 2015

Technische Universität Chemnitz/Universitätsbibiliothek
Universitätsverlag Chemnitz
09107 Chemnitz
http://www.tu-chemnitz.de/ub/univerlag

Herstellung und Auslieferung
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster
http://www.mv-verlag.de

ISBN 978–3–944640–76–1

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197359

http://dnb.d-nb.de
http://www.tu-chemnitz.de/ub/univerlag
http://www.mv-verlag.de
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197359

Contents

1 Introduction 9

2 Parallel fast Fourier transforms 17
2.1 Definitions . 20
2.2 One-dimensional fast Fourier transforms 21

2.2.1 Pruned fast Fourier transform 21
2.2.2 Fast Fourier transform with shifted index sets 22
2.2.3 Pruned fast Fourier transform with shifted index sets 23

2.3 Multidimensional fast Fourier transform 24
2.4 Basic modules for multidimensional array transformation 27

2.4.1 The serial FFT module . 28
2.4.2 The local transposition module 29
2.4.3 Combination of serial FFT and local transposition 29
2.4.4 Parallel block decomposition 30
2.4.5 Folding multidimensional arrays in row-major order 31
2.4.6 Parallel matrix transposition 32
2.4.7 The parallel multidimensional transposition module 34

2.5 Parallel FFT with multidimensional data decomposition 35
2.6 Parallel pruned FFT . 40
2.7 Parallel FFT with shifted index sets 42
2.8 The ghost cell communication modules 44
2.9 The PFFT software library . 46
2.10 Numerical results . 48

2.10.1 Description of the parallel computing architectures 48
2.10.2 Strong scaling behavior of PFFT on JUGENE 48
2.10.3 Comparison of PFFT and FFTW on JUROPA 49
2.10.4 Parallel pruned FFT on JUGENE 49
2.10.5 Weak scaling behavior of PFFT on JUQUEEN and JUROPA 50
2.10.6 Strong scaling behavior of PFFT on JUQUEEN and JUROPA 51

3 Parallel nonequispaced fast Fourier transforms 55
3.1 Definitions . 56
3.2 The three-dimensional NFFT algorithm 57

3.2.1 Window functions . 64

3.2.2 Shifted NFFT . 67
3.2.3 Interlaced NFFT . 68
3.2.4 Optimized deconvolution . 69

3.3 The parallel three-dimensional NFFT 74
3.3.1 Parallel data decomposition 74
3.3.2 Description of the algorithm 74

3.4 The parallel three-dimensional NDFT 81
3.5 The PNFFT software library . 81
3.6 Numerical results . 83

3.6.1 Strong scaling of pruned PNFFT on JUGENE 84

4 Parallel particle-mesh methods based on NFFT 89
4.1 Definitions . 90
4.2 The Ewald splitting . 92
4.3 The short-range and self interaction modules 94
4.4 The long-range interaction module 96

4.4.1 The common approximation framework and fast algorithm . . 96
4.4.2 Periodicity in three dimensions 97
4.4.3 Periodicity in two dimensions 99
4.4.4 Periodicity in one dimension 101
4.4.5 Periodicity in no dimension 102
4.4.6 Two-point Taylor interpolation using Newton basis polynomials103
4.4.7 Some notes on Fourier approximations of non-periodic functions105

4.5 The P2NFFT framework . 109
4.6 The relation of P2NFFT and P3M . 109

4.6.1 Interlaced P2NFFT and P3M 113
4.7 The relation of P2NFFT to other particle-mesh methods 116

4.7.1 Fast summation with non-periodic boundary conditions 117
4.7.2 Ewald summation . 118
4.7.3 Fast Ewald summation based on NFFT 119
4.7.4 Particle-mesh Ewald . 119
4.7.5 Smooth particle-mesh Ewald 119
4.7.6 Gaussian split Ewald . 120
4.7.7 Spectrally accurate Ewald . 120

4.8 Complexity of Ewald summation and parameter selection 120
4.8.1 Runtime model . 123
4.8.2 Potential computation via Ewald summation 124
4.8.3 Potential computation via P2NFFT 124
4.8.4 Field computation via Ewald summation 125
4.8.5 Field compuation via P2NFFT 127
4.8.6 Selection of P2NFFT parameters 127

4.9 Parallel P2NFFT . 130

7

4.10 The parallel P2NFFT software library 134
4.11 Numerical results . 135

4.11.1 Description of test systems . 135
4.11.2 Parameter selection and accuracy of 3d-periodic P2NFFT . . . 136
4.11.3 Parameter selection and accuracy for mixed periodicity 137
4.11.4 Strong scaling of 0d-periodic P2NFFT on JUGENE 138
4.11.5 Comparison of P2NFFT to other fast Coulomb solvers 141

List of publications 147

Bibliography 149

List of algorithms 157

Nomenclature 159

1 Introduction
The development of efficient numerical algorithms can, without exaggeration, be
called the fundamental basis of high performance computing. For sure, the perma-
nent increase of computing power has changed our life in many ways. Problems
that have been considered practically not computable for many years are now solv-
able within seconds. However, this enormous speedup would not have been possible
without the development of adapted algorithms that are able to exploit the available
computing power. Thereby, the continual change of computing architectures poses
great challenges to the design of sustainable high performance software and requires
repeated algorithmic rethinking.
The current trend of hardware design is mainly driven by massive parallelism.

This includes shared memory parallelism, distributed memory parallelism, paral-
lelism due to accelerators such as graphics processing units, and also any combi-
nation of these three. Still, programmers also have to consider the more or less
traditional performance relevant problems such as optimal cache utilization and in-
struction set extensions like SSE and AVX - just to name a few. Programming on
these environments gets increasingly sophisticated, which emphasizes the need for
optimized software packages that encapsulate the solution of sub-problems within
standalone modules. Note that typical applications in scientific computing are con-
glomerates of many different algorithmic modules. In most cases it is practically
impossible to know all the performance relevant details of each algorithmic step. In-
stead, we may rely on low-level software modules that are highly optimized for these
specific tasks. The philosophy behind this thesis is to reuse such low-level modules
as much as possible and combine them to higher-level modules. The benefits of
this so-called modularized approach are obvious. First of all, the modularized view
on algorithms reveals a lot of common structure that simplifies programming and
prevents code repetition. Second, improvements of low-level modules automatically
inherit to higher-level modules, i.e., performance optimization can be focused on the
modular level.
One can think of several attributes that such a software module should have

as minimal requirements. Obviously, this list will strongly depend on the precise
application of the software but we give a non-exhaustive list of important features
that stand in the focus the present thesis:

• Low complexity: A focus on large problem sizes emphasizes the impact of fast
algorithms. Within this thesis fast means that an algorithm scales almost
linear in the number of degrees of freedom N , i.e., the number of arithmetic

9

10 1 Introduction

operations increases at most proportional to N logN .
• Hardware adaptivity: A software module should be portable to a broad vari-

ety of hardware architectures and result in high performance on all of these
architectures.

• Parallel scalability: In order to exploit the computing power of massively par-
allel architectures, all software modules should be scalable in terms of runtime
and memory consumption. This implies that the underlying algorithms must
be adapted in order to circumvent scalability bottlenecks. Within this the-
sis we aim for distributed memory parallelism for hundreds of thousands of
processes.

• Error control and parameter selection: Approximate algorithms often intro-
duce a set of parameters that can be used to balance the required accuracy
against the total computation time. In this case precise error estimates are
desirable in order to assist selection of optimal parameters.

• Flexibility: The design of our algorithms should be abstract enough in order
to suit a broad variety of applications. Optimizations that only effect rare use
cases should not end up in a completely new software module.

• Usability: The sophisticated optimizations and algorithmic details should be
hidden from the user by an easy to use interface.

• Public availability: All modules should be available as part of open source
software libraries that are freely available. This makes it possible for other
researchers to compare the underlying algorithms and contribute to the devel-
opment process.

To find the modular structure of algorithms can not always be assumed to be
trivial. Indeed, the use of different viewpoints and notation often leads to inde-
pendent reinvention of algorithms in scientific literature. Also approaches that look
remarkably different at the first sight may turn out to be closely related from an
appropriate viewpoint. This is especially true for the broad variety of publications
about the Fast Fourier Transform (FFT). In [127] the rigorous use of matrix-vector
notation led to an unified framework that reveals the common structure and hid-
den beauty of supposedly distinct FFT approaches. The structured view not only
helped to understand and classify existing FFT algorithms but also resulted in the
discovery of new approaches. On the one hand, the vast variety of different FFT
approaches makes it hard to choose the best suitable algorithm for a given problem;
on the other hand, plurality gives the chance of algorithmic adaption with respect
to changing hardware. A very elegant exploitation of this fact defines the design
concept of the FFTW [57, 58] software library. Under the hood FFTW takes into
account many different highly optimized FFT approaches and chooses the fastest
one at runtime. However, the sophisticated implementation is hidden from the user
by an easy to use interface. In this sense, FFTW fulfills all of the above mentioned
criteria of a software module but one, namely, high scalability on distributed mem-
ory architectures. This led to the development of PFFT – an extension of FFTW

1 Introduction 11

to massively parallel architectures that will be the topic of Chapter 2 in this thesis.
Another example that stands in the focus of this thesis is given by the diverse

literature about particle-mesh methods. These are fast numerical methods for com-
puting the Coulomb interactions between N charged particles in three-dimensional
space. Loosely speaking, the basic concept of particle-mesh methods is to convert
the given data in a suitable way such that fast Fourier transforms can be applied.
Thereby, it is necessary to pre-process and post-processes the data in order to con-
nect the irregularly distributed particle positions with the equispaced mesh points
of the FFT. Within Chapter 4 of this thesis we show that so-called nonequispaced
Fourier transforms (NFFTs) represent a powerful tool to reveal the common modu-
larized structure of particle-mesh methods. NFFTs are generalizations of the FFT
to nonequispaced sampling points and have been studied and optimized for a long
time. Based on the NFFT framework we are able to summarize all particle-mesh
methods within one unified framework called Particle-Particle–NFFT (P2NFFT).
However, before this unified picture can be drawn, it is necessary to extend the
NFFT framework by several algorithmic modules that are motivated by particle-
mesh methods but also recur in other applications of NFFT. This will be the main
topic of Chapter 3 of this thesis. We will see that the modularized view of particle-
mesh algorithms in terms of NFFTs leads to novel algorithmic developments of both
– NFFT and particle-mesh methods.
To this end, the present thesis is about three algorithmic frameworks that are built

on top of each other, namely FFT→NFFT→P2NFFT. Each of these frameworks is
designed with the above listed software module requirements in mind. Special em-
phasis will be placed on the parallel scalability on distributed memory architectures
up to hundreds of thousands of processes. More precisely, this thesis is structured
in the following three parts that are devoted to the three self-contained frameworks.

Outline of the Thesis
Chapter 2: Parallel fast Fourier transforms

At first, we derive the PFFT Framework2.5 – a highly scalable FFT framework de-
signed for massive parallelism on distributed memory architectures. We start with
some elementary definitions in Section 2.1. In Sections 2.2 and 2.3 we introduce
the concept of pruned FFT with possibly shifted index sets in one and multiple
dimensions. These FFT adaptions appear naturally during the approximation of
non-periodic functions by finite Fourier series and will be an important ingredient
of the algorithmic frameworks presented in the following chapters. We derive var-
ious representations of pruned FFT and FFT with shifted index sets in order to
have the freedom to choose the most scalable approach for parallelization later on.
As an interim result we get Corollary 2.3 that shows how one-dimensional pruned

12 1 Introduction

FFT with shifted index sets can be computed without explicit data shifts. The
multidimensional generalization of this fact is given in (2.9).
Next, in Section 2.4 we show how the algorithms that are already implemented

within the FFTW software library can be turned into two powerful algorithmic
modules for operating on parallel block-decomposed data. More precisely, these
are the serial FFT and transposition module presented in Section 2.4.3 and the
parallel multidimensional transposition module introduced in Section 2.4.7. Special
attention is given to the generality of these modules. Especially, the pitfalls of
unequal block decomposition in multiple dimensions are investigated in detail in
Section 2.4.5.
We will see that the above mentioned two modules are sufficient to derive the

main result of this chapter – the versatile PFFT Framework 2.5 for computing
massively parallel FFT in a highly scalable way. Furthermore, we present the PFFTH

Framework 2.6 that essentially computes the parallel inverse FFT.
In Sections 2.6 and 2.7 we compare the different approaches for computing pruned

FFT and FFT with shifted index sets with respect to their parallel scalability. It
turns out that the most scalable approach is to apply pruning on a per-dimension
basis, while shifted index sets should be incorporated by a suitable rescaling in
Fourier space. Of course, our PFFT Framework 2.5 is based on these most scalable
approaches. Furthermore, we give a brief overview of two ghost cell communication
modules in Section 2.8. These modules accomplish the frequently occurring task of
next neighbor communication in distributed memory parallelism.
As a major result of this chapter, a freely available implementation of PFFT is

presented in Section 2.9. This exceptionally flexible software module is not only
basis for all of the following frameworks in Chapters 3 and 4 but also deserves
appreciation as a standalone library. Finally, we provide numerical evidence for
the high scalability of our parallel FFT implementation with an extensive list of
numerical tests in Section 2.10. These tests include investigation of strong and weak
scaling on multiple hardware architectures as well as performance evaluations of
parallel pruned FFT.
Parts of this chapter have already been published in condensed form in the peer-

reviewed papers [4, 2]. A self-contained software library based on the PFFT frame-
work is freely available at [11]. Most of the performance measurements have been
published as parts of the proceedings [9, 7, 8].

Chapter 3: Parallel nonequispaced fast Fourier transforms

The second framework presented in this work is PNFFT – a highly scalable NFFT
framework designed for massive parallelism on distributed memory architectures.
It makes use of the previously derived PFFT framework from Chapter 2 but also
incorporates many other algorithmic modules that are presented in this chapter.
Again, we start with some elementary definitions in Section 3.1 and review the

1 Introduction 13

NFFT approximation ideas at the beginning of Section 3.2. Hereby, we introduce the
new concept of pruned NFFT that can be understood as the nonequispaced analog
of pruned FFT and becomes important for the evaluation of non-periodic Fourier
approximations. Furthermore, we present two fast approaches for the computation of
the NFFT’s gradient that originate from particle-mesh methods but have never been
considered as individual modules of the NFFT framework before. In Section 3.2.2
we introduce the new concept of shifted NFFT, i.e., an approximation similar to
NFFT but with a mesh shifted by half the inverse mesh size. This enables us
to transfer the concepts of interlacing from particle-mesh methods to the NFFT
framework in Section 3.2.3. Interlacing can be understood as the average of standard
NFFT outputs and shifted NFFT outputs. As far as we know, this is the first time
that interlacing is considered in the context of the modularized NFFT framework.
Another theoretical result on NFFT is presented in Section 3.2.4. There, we derive
the formulas of optimal deconvolution coefficients of all presented NFFT types with
respect to a mean square aliasing error. Also the interlaced NFFT is considered and
the accuracy improvement of interlacing can be shown analytically. We emphasize
that these optimized coefficients yield the missing link between NFFT and P3M – a
special kind of particle-mesh algorithm; cf. Chapter 4 for a detailed comparison of
both methods.
In Section 3.3 we derive the PNFFT Framework 3.1 and the PNFFTH Frame-

work 3.2 for computing the NFFT and its adjoint in parallel. Thereby, we pay
special attention to parallel scalability and make use of the parallel FFT frame-
works that have been derived in the previous chapter. The parallel modules for
the direct computation of nonequispaced discrete Fourier transforms in Section 3.4
further extend the flexibility of the PNFFT framework and provide the link between
PNFFT and Ewald summation later on in Section 4.7.2. A freely available imple-
mentation of PNFFT is presented in Section 2.9. Finally, the numerical tests in
Section 3.6 proof the high scalability of our parallel NFFT frameworks.
Parts of this chapter are based on the peer-reviewed paper [5]. The PNFFT

framework has been published as a self-contained software library called PNFFT,
which is freely available at [12]. We emphasize that the PNFFT library is the first
open source, massively parallel software library for computing the NFFT.

Chapter 4: Parallel particle-mesh methods based on nonequispaced fast
Fourier transforms

The last chapter is devoted to the Particle-Particle–NFFT (P2NFFT) – an NFFT-
based, fast framework for the computation of Coulomb interactions.
After some introductory part we define the Coulomb problem with mixed-periodic

boundary conditions in Section 4.1 and review the Ewald splitting – a well know
approach for splitting Coulomb interactions into short-range and smooth long-range
contributions – in Section 4.2. Afterward, the derivation of an algorithmic module

14 1 Introduction

for the computation of the short-range part is straightforward; see Section 4.3. In
Section 4.4 we take a closer look at the smooth long-range part. Thereby, we present
a new NFFT-based long-range interaction Module 4.3 for the fast computation of
the long-range part in Section 4.4.1. In the following Sections 4.4.2–4.4.5, we show
that this module can be applied for all types of periodicity. A crucial point is
the correct treatment of non-periodic boundary conditions in order to get highly
accurate Fourier approximations at modest mesh sizes. Our approach involves the
embedding of non-periodic functions into smooth periodic functions that can be
approximated well by finite Fourier series. Thereby, smoothness in the endpoints is
ensured by continuation with a special kind of Hermite-Birkhoff interpolation. In
Section 4.4.6 we present a new representation of such an interpolating polynomial
in terms of Newton basis polynomials that allows an efficient evaluation. A detailed
comparison of our continuation approach to other proposed Fourier approximations
of non-periodic functions from the literature is given in Section 4.4.7.
Altogether, the modules for computing the short-range and long-range parts are

combined in Section 4.5 and form the very flexible P2NFFT Framework 4.4. The
close connection of 3d-periodic P2NFFT and the Particle-Particle–Particle-Mesh
(P3M) method is subject of investigation in Section 4.6. We show that P3M is
essentially a special case of P2NFFT and that NFFTs provide a modularized view
on P3M. A unique characteristic of P3M is its optimal deconvolution in Fourier space
with respect to the mean square aliasing error. Almost the same deconvolution can
be derived by P2NFFT with the optimal NFFT deconvolution that was derived in
Section 3.2.4. Furthermore, we show in Section 4.6.1 that application of interlaced
NFFT to P2NFFT results in four kinds of interlaced particle-mesh algorithms – only
two of them have been considered in the literature for interlaced P3M. However, we
will also see that we can save one FFT in interlaced P3M if we apply one of the two
new interlacing approaches.
Beside P3M, many other particle-mesh methods are included in the P2NFFT

framework. We review some of them in Section 4.7. These include NFFT-based fast
summation, Ewald summation, NFFT-based fast Ewald summation, the Particle-
Mesh Ewald method, the Smooth Particle-Mesh Ewald method, Gaussian Split
Ewald and Spectrally Accurate Ewald.
Section 4.8 is devoted to a rigorous investigation of the asymptotic runtime of

Ewald summation and P2NFFT. Although it is very popular that Ewald summa-
tion scales as O(N3/2) for optimal choice of parameters, we show that this is only
true for the computation of the Coulomb fields. Indeed, the computation of the
Coulomb potential scales slightly worse as O((N logN)3/2). On the other hand,
optimal choice of parameters can turn the P2NFFT into a method that scales as
O(N

√
logN) for the field computation and as O(N

√
logN(log logN)3/2) for the

potential computation. Note that this is slightly better than the commonly cited
O(N logN) scaling of particle-mesh methods.
In Section 4.8.6 we present a heuristic approach for P2NFFT parameter choice

1 Introduction 15

that enables us to tune the 7 available P2NFFT parameters for arbitrary prescribed
root mean square error bounds. Thereby, 2 parameters can be eliminated by error
bounds of the real space and Fourier space parts, one parameter can be assumed
fixed in order to reach machine precision, 3 parameters have to be tuned for small
test systems and can be kept constant with increasing N , and the last free parameter
can be tuned in order to balance the real and Fourier space computation times.
The parallel P2NFFT Framework 4.8 introduced in Section 4.9 is a generalization

of P2NFFT to massive parallelism on distributed memory architectures. The main
ingredients are the parallel NFFT frameworks that have been derived in Chapter 3.
A parallel implementation of P2NFFT is part of the ScaFaCoS software library and
will be presented in Section 4.10.
Finally, we provide numerical evidence for the validity of the P2NFFT parameter

tuning up to high precision in Section 4.11. Furthermore, we compare P2NFFT to
other fast Coulomb solvers with respect to runtime and parallel scalability.
Parts of this chapter are based on the peer-reviewed papers [5, 1, 3] and the

proceedings [6]. A freely available implementation of the P2NFFT framework has
been published as part of the ScaFaCoS software library [10].

16 1 Introduction

Acknowledgments
During the preparation of this thesis I enjoyed the help of many people. It is not
an exaggeration to say, that this work would not have been possible without their
support and I express my sincere gratitude to all of them. First of all, I like to
thank my wife Jule for the continuous assistance and encouragement. I also thank
my son Gustav and the rest of my family for their patience and tolerance regarding
my limited free time due to long nights of programming.
I want to proclaim my deep appreciation to Prof. Dr. Daniel Potts – founder of

the topic and outstanding adviser for many years. His expertise not only enriched
my academic work but also my personality. Furthermore, I gratefully acknowledge
the help of Prof. Dr. Christian Holm and Prof. Dr. Matthias Bolten, who agreed
to examine this thesis.
A special thanks goes to my colleague Franziska Nestler. Her rigorous mathe-

matical understanding really pushed forward the generalization of our particle-mesh
methods to mixed-periodic boundary conditions. Beside Franziska I also like to
thank all the other members of the working group on Applied Functional Analysis
at Technische Universität Chemnitz for the nice atmosphere and fruitful discussions
during the coffee breaks.
Many thanks go to all the contributors of the ScaFaCoS project. Especially, I want

to acknowledge the great help of the following persons: Dr. Godehard Sutmann
always managed to support me with computing time. I really adore him for his
broad understanding of particle methods. From Dr. Axel Arnold and Dr. Olaf Lenz
I gained a lot of experience on particle-mesh methods and code optimization. The
competition with the FMM library authored by Dr. Holger Dachsel and Dr. Ivo
Kabadshow initiated many performance improvements in my codes. Dr. Michael
Hofmann did an excellent job in the support of massively parallel sorting, short-range
interactions and build systems. I seriously admire his fast and helpful responses to
my putative bug reports. Rene Halver put a lot of effort into the user friendliness of
the ScaFaCoS library and Dr. Franz Gähler enforced invaluable improvements of our
software packages due to his endless tests and applications to real world problems.
Again, many thanks go to all of them.
This work was partly supported by the German Ministery of Science and Edu-

cation (BMBF) under grant 01IH08001. Last but not least, I am grateful to the
Jülich Supercomputing Center for providing the computational resources on Jülich
Blue Gene/P (JUGENE), Jülich Blue Gene/Q (JUQUEEN) and Jülich Research on
Petaflop Architectures (JUROPA).

2 Parallel fast Fourier transforms
Without doubt, the fast Fourier transform (FFT) is one of the most important
algorithms in scientific computing. It provides the basis of many fast algorithms
and there is no chance to give an exhaustive list of the tremendous number of ap-
plications. The crucial point in these applications is that the FFT reduces the
complexity from O(N2) to O(N logN), whereby N denotes the total number of
degrees of freedom. For large N this comes with an enormous decrease in runtime.
The original FFT algorithm was published in 1965 [32], although it was already
known to Gauss [69]. Since then, an immense number of alternative algorithms and
generalizations has been published, including FFT algorithms for arbitrary input
size N , in-place algorithms, shared and distributed memory parallelism, FFTs on
graphics processing units, optimized cache use, and many more hardware specific
optimizations. A nice survey and abstract view is provided in [127]. But even
this book does not include all the different approaches that have been used to find
FFT algorithms. This variety of algorithms and the continuous change of hard-
ware architectures made it practically impossible to find one FFT algorithm that
is best suitable for all circumstances. This shortcoming led to the development of
the FFTW [57] software library. Under the hood, FFTW compares a wide variety
of different FFT algorithms and measures their runtime to find the most appro-
priate one for a given problem size and hardware architecture. The sophisticated
implementation is hidden behind an easy interface structure. Therefore, users of
FFTW are able to apply highly optimized FFT algorithms without knowing all the
details about them. These algorithms have been continuously improved by many
collaborators in order to support new hardware trends, such as SSE, AVX, graphics
processing units, shared memory parallelism, distributed memory parallelism and
so on.
Since the focus of this chapter is distributed memory parallelism for multidimen-

sional FFTs we take a closer look at the available algorithms. There are two main
approaches; the first is binary exchange algorithms, and the second is transpose algo-
rithms. An introduction and theoretical comparison can be found in [66]. However,
the second approach has been used in most implementations since it allows the use of
highly optimized serial FFT kernels and offers a lot of flexibility. For a closer look at
this approach we assume a three-dimensional input array of size m̂0× m̂1× m̂2 with
m̂0 ≥ m̂1 ≥ m̂2. For the sake of simplicity, we assume that the array size m̂0 along
the first dimension is divisible by the total number of parallel processes P . Then,
the left hand side of Figure 2.1 gives an overview of the so-called slab decomposition

17

18 2 Parallel fast Fourier transforms

P

m̂2
m̂0

m̂1
T P

m̂2

m̂0

m̂1

Figure 2.1: Decomposition of a three-dimensional array of size m̂0 × m̂1 × m̂2 =
8 × 4 × 4 on a one-dimensional process mesh of size P = 8. After the
transposition (T) half of the processes remain idle.

P1P0

m̂1
m̂0

m̂2
T

P1

P0

m̂1m̂0

m̂2

T
P0

P1
m̂1

m̂0

m̂2

Figure 2.2: Distribution of a three-dimensional array of size m̂0×m̂1×m̂2 = 8×4×4
on a two-dimensional process mesh of size P0 × P1 = 4× 2. None of the
processes remains idle in any calculation step.

or one-dimensional decomposition. It is well known that a multidimensional FFT
can be efficiently computed by a sequence of lower-dimensional FFTs. Therefore,
a parallel FFT algorithm based on slab decomposition is given as follows. First,
compute the m̂0/P locally available, two-dimensional FFTs of size m̂1 × m̂2 on each
process. Second, perform a transposition such that only the second dimension of
the data array is decomposed. Finally, compute the remaining m̂1/P × m̂2 locally
available, one-dimensional FFTs of size m̂0 on each process. This approach has been
implemented in many software libraries including the IBM PESSL library [54], the
Intel Math Kernel Library [75], and the FFTW [57] software package. The main
drawback of one-dimensional decomposition is given by the fact that we can not
use more than m̂1 parallel processes without sacrificing performance due to idle
processes. This shortcoming is illustrated in Figure 2.1.
The main idea in overcoming this scalability bottleneck is to use a two-dimensional

data decomposition. Assume a two-dimensional mesh of P0 × P1 processes. Then,
Figure 2.2 illustrates the so-called rod or pencil decomposition. This time, every
process starts with the computation of m̂0/P0 × m̂1/P1 one-dimensional FFTs of size
m̂2, followed by a communication step that ensures a new two-dimensional data

2 Parallel fast Fourier transforms 19

decomposition along m̂0 and m̂2. After another m̂0/P0× m̂2/P1 one-dimensional FFTs
of size m̂1 and one more parallel transposition, we end up with another m̂1/P0× m̂2/P1

one-dimensional FFTs of size m̂0. Note that the number of data transpositions is
increased by one in comparison to the one-dimensional decomposition approach.
However, these data transpositions are performed in smaller subgroups along the
rows and columns of the process mesh, which results in a better latency bound.
The two-dimensional data decomposition allows us to increase the number of

processes to at most m̂1 · m̂2. It was first proposed in 1995 [40]. Eleftheriou
et al. [47] implemented a software library for power-of-two FFTs customized to
the Blue Gene/L architecture based on the two-dimensional data decomposition.
They used to call it volumetric domain decomposition – which is a bit mislead-
ing. Indeed the a three-dimensional data decomposition is remapped to a two-
dimensional one, before serial FFTs are computed. The first publicly available imple-
mentation of the two-dimensional decomposition approach came with Sandia-FFT
[110, 109]. Afterward, several other packages appeared such as P3DFFT [107, 106],
FFTE [124, 123] and 2DECOMP&FFT [91, 90]. Performance evaluations of two-
dimensional decomposed parallel FFTs have been published in [51, 124, 104]. How-
ever, finding other approaches for highly scalable, parallel FFT is still a vital re-
search topic [34, 22, 119, 60]. Although the two-dimensional decomposition allows
to employ more processes for parallel computation, it also increases the amount of
inherent communication due to multiple parallel data transpositions. In this sense,
high scalability and low communication overhead are somehow contradictory. It was
argued that the one-dimensional decomposition should be used as long as the total
number of processes is less or equal to the FFT mesh size in each dimension [77] and
switch to two-dimensional decomposition otherwise. An elegant approach came up
with OpenFFT [44, 43]. Here, the transition from one- to two-dimensional decom-
position is performed step by step resulting in a less regular domain decomposition
that optimizes the locality of data blocks. Therefore, less data needs to be send
during the parallel transposition. However, the less regular decomposition places an
additional burden on the user and the implementation of the transposition is much
more complicated. Especially, it is much harder to figure out neighboring processes
with respect to this decomposition scheme.
All of these FFT implementations based on two-dimensional domain decomposi-

tion offer a different set of features, introduce their own interface and have several
restrictions that the user must be aware of. Unfortunately, this inconvenience can
not the avoided by using the highly appreciated FFTW library since it only supports
one-dimensional domain decomposition. This problem naturally leads to the ques-
tion if there is a way to extend FFTW to two-dimensional domain decompositions.
Thereby, the important point is to implement all performance relevant steps of a
two-dimensional distributed FFT with modules that can be completely implemented
by FFTW calls. Following this route, one can combine the hardware adaptivity of
FFTW with the improved scalability of the two-dimensional decomposition. This is

20 2 Parallel fast Fourier transforms

exactly what the PFFT [11] software library stands for and the precise algorithmic
structure of the PFFT framework will be described in this chapter. Thereby, we
pay special attention to the flexibility of our framework in the sense that it supports
many features that are not available in other parallel FFT implementations. Theses
include (d− 1)-dimensional domain decomposition of d-dimensional FFTs, adapted
parallel algorithm design for pruned FFTs and an efficient parallel implementation
of FFTs with shifted index sets. Note that pruned FFTs with shifted index sets
naturally appear in the approximation of non-periodic functions by finite Fourier
series and will be an important ingredient of the algorithmic frameworks presented
in Chapters 3 and 4.

2.1 Definitions
Throughout this thesis we use the common notations N,Z,R, and C, for the sets of
all natural numbers, integers, real numbers and complex numbers, respectively. Let
the Kronecker symbol δk be defined as δk := 0 for k 6= 0 and δ0 := 1. For an arbitrary
vector d = (d0, d1, . . . , dn−1)T ∈ Cn we denote the corresponding n × n diagonal
matrix by diagd = diag(d0, . . . , dn−1) := (diδi−j)n−1

i,j=0. Let In := diag(1, 1, . . . , 1)
denote the n× n identity matrix, and 0m,n the m× n matrix with zero entries. For
the square case m = n we introduce the shorthand 0n. The Kronecker product of
two matrices A ∈ Cp×q, B ∈ Cs×t is defined as

A⊗B :=

a0,0B · · · a0,q−1B
...

ap−1,0B · · · ap−1,q−1B

 ∈ Cps×qt.

In the following, some basic properties of the Kronecker product are revisited. An
extended list and proofs can be found in [120]. The Kronecker product is bi-linear,
associative and the Kronecker product of two identity matrices yields an identity
matrix Im ⊗ In = Im·n. The transposition of a Kronecker product is the Kronecker
product of the transpositions, i.e., (A ⊗ B)T = BT ⊗ AT. Let C ∈ Cq×r, and
D ∈ Ct×u, i.e., the products AC and BD are well defined. Then, the Kronecker
product fulfills

(A⊗B)(C⊗D) = (AC)⊗ (BD).

Especially, we get

A⊗B = (A⊗ Is) (Iq ⊗B) = (Ip ⊗B) (A⊗ It) . (2.1)

This property allows us to separate the computation of algorithmic steps that oper-
ate on individual dimensions. Moreover, we see that we are free to choose the order
of execution as long as we take care of the correct strides.

2.2 One-dimensional fast Fourier transforms 21

2.2 One-dimensional fast Fourier transforms
For any given mesh size M ∈ N we define the Fourier matrix

FM :=
(
e−2πikl/M)M−1,M−1

k,l=0 .

The linear mapping DFT : CM → CM , that assigns a complex vector ĝ = (ĝk)M−1
k=0 ∈

CM to DFT(ĝ) = FM ĝ ∈ CM is known as discrete Fourier transform (DFT).
Furthermore, the adjoint discrete Fourier transform (DFTH) is given by the lin-
ear mapping DFTH : CM → CM that assigns complex vectors g = (gl)M−1

l=0 ∈ CM

to DFTH(g) = FH
Mg ∈ CM . Hereby, FH

M denotes the adjoint of FM . It is well
known that the Fourier matrix fulfills FMFH

M = MIM , i.e., FM is unitary up to a
normalization factor. A direct computation of a DFT requires O(M2) arithmetic op-
erations. In 1965 Cooley and Tukey [32] published a divide-and-conquer algorithm
that reduces the arithmetic complexity to O(M logM) by exploiting the structure
of the Fourier matrix. This algorithm was restricted to highly composite mesh size
M , i.e., the prime factors of M are sufficiently small. Later on, algorithms with
the same complexity have been developed also for large prime sizes M , cf. [116, 27].
The whole class of fast algorithms that realize DFTs within O(M logM) arithmetic
operations are commonly known as fast Fourier transforms (FFTs). Similarly, we
denote any fast algorithm for computing the DFTH as adjoint fast Fourier transform
(FFTH). In the following, we discuss the generalization of one-dimensional DFTs to
pruned input and output as well as the definition of DFTs with shifted index sets.
These transforms are building blocks of the algorithms given in Chapter 3.

2.2.1 Pruned fast Fourier transform
A DFT of size m̂ ∈ N can be interpreted as the evaluation of a one-dimensional
trigonometric polynomial g : R→ C given by

g(x) :=
m̂−1∑

k=0
ĝke−2πikx

at equispaced nodes, i.e., g (l/m̂), l = 0, . . . , m̂ − 1. This corresponds to a distance
of 1/m̂ between the equispaced nodes. In our context, a pruned DFT means that we
want to sample the trigonometric polynomial g only atm ∈ N equispaced points with
a possibly smaller sampling distance 1/M ≤ 1/m̂. More precisely, let M, m̂,m ∈ N
such that m̂ ≤M and m ≤M . Then, the pruned DFT is given by the sums

gl := g
(
l
M

)
=

m̂−1∑

k=0
ĝke−2πikl/M =

M−1∑

k=0
ĝke−2πikl/M , l = 0, . . . ,m− 1. (2.2)

22 2 Parallel fast Fourier transforms

Hereby, we extended the last sum by appending zero coefficients ĝk := 0, k =
m̂, . . . ,M−1 at the end of the input vector ĝ. In order to give a matrix representation
of the pruned FFT we define the zero padding matrix Pr,s ∈ Rr×s for r, s ∈ N with
r ≥ s by

Pr,s :=
(

Is
0r−s,s

)
.

Note that the transpose PT
r,s ∈ Rs×r of the zero padding matrix accomplishes a

truncation of the last r− s rows. Now, the pruned FFT (2.2) reads in matrix-vector
form

g = PT
M,mFMPM,m̂ĝ,

with the vectors ĝ := (ĝk)m̂−1
k=0 ∈ Cm̂ and g = (gl)m−1

l=0 ∈ Cm. From this representation
it is clear that a pruned FFT can be computed by an FFT of sizeM that is preceded
by a zero padding and followed by a truncation. The pruned FFTH is defined as the
adjoint of the pruned FFT and, therefore, yields an adjoint matrix factorization.

2.2.2 Fast Fourier transform with shifted index sets
In many applications it is more convenient to define the DFT of even mesh size
M ∈ 2N with index sets shifted by M/2, i.e., for f̂k ∈ C, k = −M/2, . . . ,M/2 − 1
compute the sums

fl :=
M/2−1∑

k=−M/2

f̂k e−2πikl/M ∈ C, l = −M
2 , . . . ,

M
2 − 1. (2.3)

In this case we define the input vector f̂ := (f̂k)M/2−1
k=−M/2 ∈ CM , the output vector

f := (fl)M/2−1
l=−M/2 ∈ CM and the shift matrix

SM :=
(

0M/2 IM/2
IM/2 0M/2

)
.

Then, we can rewrite (2.3) in matrix-vector form as

f = SMFMSM f̂ . (2.4)

An application of the shift matrix SM to a given vector is often called FFT shift. It
moves the first half of the input vector to the end as following

SM
(
f̂−M/2, . . . , f̂−1, f̂0, . . . , f̂M/2−1

)T
=
(
f̂0, . . . , f̂M/2−1, f̂−M/2, . . . , f̂−1

)T
.

The matrix-vector representation (2.4) shows that computing the FFT with shifted
index sets is essentially nothing else than computing an ordinary FFT preceded and
followed by this kind of data shift.

2.2 One-dimensional fast Fourier transforms 23

2.2.3 Pruned fast Fourier transform with shifted index sets
The definition of the pruned FFT changes slightly for the case of shifted index sets.
Let M, m̂,m ∈ 2N with m̂ ≤ M and m ≤ M . Then, the pruned DFT with shifted
index sets is defined as

fl =
m̂/2−1∑

k=−m̂/2

f̂ke−2πikl/M , l = −m
2 , . . . ,

m
2 − 1.

This can be written in matrix-vector form as

f = P̃T
M,mSMFMSMP̃M,m̂f̂ , (2.5)

with the vectors f = (fl)m/2−1
l=−m/2 ∈ Cm, f̂ := (f̂k)m̂/2−1

k=−m̂/2 ∈ Cm̂ and the shifted zero
padding matrix P̃r,s ∈ Rr×s that is defined for r, s ∈ 2N with r ≥ s by

P̃r,s :=

0(r−s)/2,s
Is

0(r−s)/2,s

 .

Note that half of the zero padding and truncation is now applied to the first rows
and only the other half is applied to the last rows. The pruned DFTH with shifted
index sets is defined by the adjoint of (2.5).
In Sections 2.6 and 2.7 we will see that representation (2.5) is not well suited to

design a scalable parallel algorithm. The main shortcoming are the explicit data
movements due to FFT shifts that correspond to global communications on parallel
environments. Therefore, we derive an alternative representation of the pruned FFT
with shifted index sets that does not involve data reordering. Let the twiddle matrix
TM ∈ RM×M of size M be given by

TM := diag
(
(−1)k

)M−1
k=0 .

Lemma 2.1. For M ∈ 2N we have

FMSM = TMFM ,

SMFM = FMTM , and
SMTM = (−1)M/2TMSM .

Proof. Let m := M/2 ∈ N and block the Fourier matrix FM = (FL
M,m

∣∣FR
M,m) into the

left hand side columns FL
M,m := (e−2πikl/M)M−1,m−1

k=0,l=0 and the right hand side columns
FR
M,m := (e−2πikl/M)M−1,M−1

k=0,l=m . As a consequence of e−2πik(l+m)/M = (−1)ke−2πikl/M we

24 2 Parallel fast Fourier transforms

obtain FL
M,m = TMFR

M,m and, equivalently, FR
M,m = TMFL

M,m. Now, the evidence of
the first claim results from

FMSM =
(
FR
M,m

∣∣FL
M,m

)
=
(
TMFL

M,m

∣∣TMFR
M,m

)
= TMFM .

Because of the symmetries FM = FT
M , SM = ST

M and TM = TT
M we obtain the

second claim by SMFM = (FMSM)T = (TMFM)T = FMTM . Finally, we represent
TM by the following block structure

TM =
(

Tm 0m
0m (−1)mTm

)
,

and get

SMTM =
(

0m (−1)mTm

Tm 0m

)
= (−1)mTMSM .

�

Lemma 2.2. Let M, m̂ ∈ 2N such that m̂ ≤M . Then,

TMP̃M,m̂ = (−1)(M+m̂)/2P̃M,m̂Tm̂.

Proof. We have

TMP̃M,m̂ =

0(M−m̂)/2,m̂

(−1)(M−m̂)/2Tm̂

0(M−m̂)/2,m̂

 = (−1)(M−m̂)/2P̃M,m̂Tm̂.

Since m̂ is even, we can multiply this line with 1 = (−1)m̂ and obtain the claim. �

Finally, we yield an alternative representation of the pruned FFT with shifted
index sets by straightforward combination of Lemma 2.1 and Lemma 2.2.

Corollary 2.3. Let M, m̂,m ∈ 2N such that m̂ ≤M and m ≤M . Then, the matrix
representation of the pruned DFT with shifted index sets can be rewritten as

P̃T
M,mSMFMSMP̃M,m̂ = (−1)(M+m+m̂)/2TmP̃T

M,mFMP̃M,m̂Tm̂.

2.3 Multidimensional fast Fourier transform
The definitions from Section 2.2 can be generalized straightforward to d ∈ N di-
mensions by using Kronecker products. Let the d-dimensional mesh sizes M =
(Mt)d−1

t=0 , m̂ = (m̂t)d−1
t=0 ,m = (mt)d−1

t=0 ∈ Nd be given such that m̂ ≤M andm ≤M

2.3 Multidimensional fast Fourier transform 25

Algorithm 2.1 Multidimensional pruned FFT - Variant A
Input: ĝ ∈ Cm̂0···m̂d−1

. .
1: Pad the d-dimensional input array with zeros: ĝ ← (PM0,m̂0⊗· · ·⊗PMd−1,m̂d−1)ĝ.
2: Compute the multidimensional FFT: g ← (FM0 ⊗ · · · ⊗ FMd−1)ĝ.
3: Truncate the d-dimensional input array: g ← (PT

M0,m0 ⊗ · · · ⊗PT
Md−1,md−1

)g.
. .
Output: g = PT

M ,mFMPM ,m̂ĝ ∈ Cm0···md−1

Algorithm 2.2 Multidimensional pruned FFT - Variant B
Input: ĝ ∈ Cm̂0···m̂d−1

. .
1: g ← ĝ
2: for t = d− 1, . . . , 0 do
3: g ← (Im0 ⊗ · · · ⊗ Imt−1)⊗PT

Mt,mt
FMtPMt,m̂t ⊗ (Im̂t+1 ⊗ · · · ⊗ Im̂d−1)g

4: end for
. .
Output: g = PT

M ,mFMPM ,m̂ĝ ∈ Cm0···md−1

holds component-wise. Then, the matrix representation of the d-dimensional pruned
DFT is given by

PT
M ,mFMPM ,m̂ ∈ C(m0···md−1)×(m̂0···m̂d−1), (2.6)

where all matrices are defined as their corresponding Kronecker products PT
M ,m :=⊗d−1

t=0 PT
Mt,mt

, FM :=
⊗d−1

t=0 FMt , and PM ,m̂ :=
⊗d−1

t=0 PMt,m̂t . This representation
directly leads to the simple three-step Algorithm 2.1 for computing the d-dimensional
pruned FFT. However, the definitions

At := (Im0 ⊗ · · · ⊗ Imt−1)⊗PT
Mt,mtFMtPMt,m̂t ⊗ (Im̂t+1 ⊗ · · · ⊗ Im̂d−1),

t = 0, . . . , d− 1 together with the Kronecker product property (2.1) directly lead to
the alternative factorization

PT
M ,mFMPM ,m̂ = A0A1 · · ·Ad−1. (2.7)

This representation yields the theoretical foundation for separating multidimensional
pruned FFTs into a sequence of one-dimensional pruned FFTs of multiple, non-
unit stride input vectors as given in Algorithm 2.2. This formulation will be the
starting point for the parallel pruned FFT algorithms presented in this work; cf.
the comparison of Algorithms 2.1 and 2.2 for parallel scalability in Section 2.6.
Analogously, for M , m̂,m ∈ 2Nd with m̂ ≤ M , m ≤ M the matrix rep-

resentation of the d-dimensional pruned DFT with shifted index sets is given by

26 2 Parallel fast Fourier transforms

P̃T
M ,mSMFMSM P̃M ,m̂, with the tensor product matrices P̃T

M ,m :=
⊗d−1

t=0 P̃T
Mt,mt

,
SM :=

⊗d−1
t=0 SMt , and P̃M ,m̂ :=

⊗d−1
t=0 P̃Mt,m̂t . Again, by Kronecker product prop-

erty (2.1) we see that

P̃T
M ,mSMFMSM P̃M ,m̂ = B0B1 · · ·Bd−1, (2.8)

where for t = 0, . . . , d− 1 the matrix factors Bt are defined as

Bt := (Im0 ⊗ · · · ⊗ Imt−1)⊗ P̃T
Mt,mtSMtFMtSMtP̃Mt,m̂t ⊗ (Im̂t+1 ⊗ · · · ⊗ Im̂d−1).

Now, application of Corollary 2.3 to every matrix Bt in (2.8) and reorder of Kro-
necker products with the help of (2.1) gives the following d-dimensional analogue of
Corollary 2.3

P̃T
M ,mSMFMSM P̃M ,m̂ =

d−1∏

t=0
(−1)(Mt+mt+m̂t)/2TmP̃T

M ,mFM P̃M ,m̂Tm̂. (2.9)

Hereby, the d-dimensional analogue of the twiddle matrix Tm :=
⊗d−1

t=0 Tmt is a
diagonal matrix since it evolves as a tensor product of diagonal matrices. Note
that the application of the diagonal matrices Tm, Tm̂ can be easily performed as a
point-wise scaling of the multidimensional input array. Analogously to (2.7) we can
factorize

P̃T
M ,mFM P̃M ,m̂ = Ã0Ã1 · · · Ãd−1, (2.10)

where for t = 0, . . . , d− 1 the matrix factors Ãt are defined as

Ãt := (Im0 ⊗ · · · ⊗ Imt−1)⊗ P̃T
Mt,mtFMtP̃Mt,m̂t ⊗ (Im̂t+1 ⊗ · · · ⊗ Im̂d−1).

Finally, combination of (2.9) and (2.10) yields Algorithm 2.3 for the computation
of the multidimensional pruned FFT with shifted index sets. The benefits of Algo-
rithm 2.3 for parallel computations will become clear when we come to parallel data
decomposition. A detailed discussion can be found in Sections 2.6 and 2.7.

Remark 2.4. A comparison of Algorithm 2.2 and Algorithm 2.3 reveals that a
multidimensional pruned FFT can be easily extended to shifted index sets by the
following three steps. First, we need to add a simple scaling of the FFT inputs and
outputs given by the twiddle matrices Tm̂ and Tm in Algorithm 2.3. Second, we
replace PMt,m̂t by P̃Mt,m̂t , which means that the zero padding takes place at another
position in the input vectors. Last, the FFT outputs are truncated at a different po-
sition due to the exchange of P̃T

Mt,mt
for PT

Mt,mt
. Therefore, we focus in the following

derivations on a parallel FFT framework based on the serial Algorithm 2.2. Once
a parallel counterpart of Algorithm 2.2 is found, Algorithm 2.3 can be parallelized
analogously by a simple exchange of PT

Mt,m̂t
and PT

Mt,mt
. �

2.4 Basic modules for multidimensional array transformation 27

Algorithm 2.3 Multidimensional pruned FFT with shifted index sets
Input: f̂ ∈ Cm̂0···m̂d−1 , m̂0, . . . , m̂d−1 ∈ 2N
. .
1: f ← Tm̂f̂
2: for t = d− 1, . . . , 0 do
3: f ← (Im0 ⊗ · · · ⊗ Imt−1)⊗ P̃T

Mt,mt
FMtP̃Mt,m̂t ⊗ (Im̂t+1 ⊗ · · · ⊗ Im̂d−1)f

4: end for
5: f ←∏d−1

t=0 (−1)(Mt+mt+m̂t)/2 ·Tmf
. .
Output: f̂ = P̃T

M ,mSMFMSM P̃M ,m̂f ∈ Cm0···md−1 , m̂0, . . . , m̂d−1 ∈ 2N

Algorithm 2.4 Multidimensional pruned FFTH - Variant B
Input: f ∈ Cm0···md−1

. .
1: f̂ ← f
2: for t = 0, . . . , d− 1 do
3: f̂ ← (Im0 ⊗ · · · ⊗ Imt−1)⊗PT

Mt,m̂t
FH
Mt

PMt,mt ⊗ (Im̂t+1 ⊗ · · · ⊗ Im̂d−1)f̂
4: end for
. .
Output: f̂ = PT

M ,m̂FH
MPM ,mf ∈ Cm̂0···m̂d−1

Remark 2.5. So far we considered matrix factorizations and fast algorithms for
computing DFTs. Note that the corresponding adjoint algorithms are immediately
given by the adjoint matrix factorization of the DFT. For example, the adjoint
factorization of (2.7) is given by

PT
M ,m̂FH

MPM ,m = AH
d−1 · · ·AH

0 .

and yields Algorithm 2.4 for computing the multidimensional pruned FFTH; cf. the
non-adjoint Algorithm 2.2. �

2.4 Basic modules for multidimensional array
transformation

Our parallel FFT framework will be a composition of several multidimensional array
transformations. During these transformations the size of the data array may change
and the dimensions of the array may be transposed. We will also see that all of these
transformations can be realized in-place and out-of-place. In order to focus on the
algorithmic workflow we introduce an appropriate shorthand notation that concen-
trates on the absolutely essential details about the multidimensional transformations

28 2 Parallel fast Fourier transforms

and data layout. The starting point is that we abbreviate a fixed d-dimensional ar-
ray g ∈ CM0×···×Md−1 simply by its size M0 × · · · ×Md−1. Furthermore, we declare
that arrays given in this notation are stored contiguously in memory following a
linearized row-major order, i.e., the entry of g at position k = (kt)d−1

t=0 , 0 ≤ kt < Mt

can be found in memory at position
∑d−1

t=0 kt
∏d−1

r=t+1 Mr. In the following, we will
see that this notation can be extended naturally to express the effects of several
multidimensional array transformations.

2.4.1 The serial FFT module
Assume a three-dimensional input array ĝ ∈ Ch0×m̂×h1 . We introduce the notation

h0 × m̂× h1
FFT→ h0 ×m× h1 (2.11)

to abbreviate an application of the matrix Ih0⊗PT
M,mFMPM,m̂⊗Ih1 , i.e., we compute

h0 ·h1 pruned one-dimensional FFTs along the second dimension of ĝ with stride h1.
Note that we do not compute the one-dimensional FFTs along the first dimension
h0. Later, we will use h0 to store the parallel distributed dimensions. The additional
dimension h1 at the end of the array allows us to compute a set of h1 serial FFTs
at once. We will see that h1 can be used in a higher-dimensional setting to store all
the dimensions where the FFT was already performed. Analogously, we define

h0 ×m× h1
FFT→ h0 × m̂× h1

as a set of h0 · h1 pruned one-dimensional adjoint FFTs along the second dimension
with stride h1. Note that the position of the hat distinguishes non-adjoint and
adjoint FFTs in our shorthand notation. This module can be implemented by one
appropriately chosen FFTW plan. At this point it is important to recall that FFTW
chooses the best suitable plan for a given problem and hardware out of a large
collection of different FFT algorithms. Therefore, our serial FFT module inherits
the automatic hardware adaptivity. Moreover, the application of FFTW introduces
much flexibility to our serial FFT module. For example, this module can be executed
in-place and applies fast O(M logM) algorithms also for prime size FFTs.

Remark 2.6. For sake of simplicity, we restrict the serial FFT module to complex
input data. However, the serial FFT transforms can be easily replaced by specialized
FFT algorithms that take into account the additional symmetries of real input data
as shown in [4]. In principle any one-dimensional transformation can be applied
instead of an FFT. �

Remark 2.7. Note that the serial FFT module can be easily extended to support
pruned FFT with shifted index sets. In this case it is sufficient to implement the
matrix operation given by Ih0 ⊗ P̃T

M,mFMP̃M,m̂ ⊗ Ih1 , see also Remark 2.4. �

2.4 Basic modules for multidimensional array transformation 29

2.4.2 The local transposition module
The following shorthand notation describes a transposition of a three-dimensional
array ĝ ∈ Ch0×m̂×h1 along its first two dimensions

m̂× h0 × h1 →TI
h0 × m̂× h1 (2.12)

and
h0 × m̂× h1 →TO

m̂× h0 × h1. (2.13)

Thereby, we can choose whether the input (TI) or the output (TO) array should be
transposed, respectively.
This module can be realized by a single appropriately chosen FFTW plan. Al-

though array transposition is a standard task in matrix computations, its efficient
implementation is indeed a nontrivial task. Especially, one has to think of many
details about the memory hierarchy of current computer architectures. At this
point, we benefit of the cache oblivious array transpositions [59] that are imple-
mented within FFTW. This means that the asymptotic number of cache misses is
minimized independently of the cache size.

2.4.3 Combination of serial FFT and local transposition
A combination of the serial FFT module (2.11) and local transpositions (2.12), (2.13)
results in the following two three-dimensional array transformations

m̂× h0 × h1
FFT→
TI
h0 ×m× h1,

h0 × m̂× h1
FFT→
TO

m× h0 × h1. (2.14)

Both realize a set of pruned one-dimensional FFTs. However, the first one starts
with an input array that is transposed in the first two dimensions, while the second
one ends up in a transposed output array. Note that we do not specify the order
of execution between the transposition and the FFTs a priori. For example, we can
implement the first transform with only one appropriate chosen FFTW plan. But
we are also free to use two successive plans to perform the serial FFT first and the
transpose in the second step as

m̂× h0 × h1
FFT→ m× h0 × h1 →TI

h0 ×m× h1

or the other way around as follows

m̂× h0 × h1 →TI
h0 × m̂× h1

FFT→ h0 ×m× h1.

We leave it to a planner to find the fastest of these three algorithms at runtime.
The serial FFT with transposed output is handled analogously.

30 2 Parallel fast Fourier transforms

0 1 2 3 4 5 6 7

Process 0

[M/P]30

Process 1

[M/P]31

Process 2

[M/P]32

Process 3

[M/P]33

Figure 2.3: An array of size M = 8 gets block decomposed on P = 4 processes with
block size B = 3. The picture shows the resulting local blocks [M/P]Bj
for all processes j ∈ {0, 1, 2, 3}.

2.4.4 Parallel block decomposition

In the following, we introduce the data decomposition that is used for our parallel
FFT algorithms. We start with the definition of a one-dimensional block decomposi-
tion. Afterward, we discuss the straightforward generalization to higher-dimensional
settings.
Assume a one-dimensional array ĝ = (ĝk)M−1

k=0 of complex numbers that should be
distributed on P ∈ N processes. We use the notation [M/P]Bj to symbolize that all
data elements ĝk with jB ≤ k < (j + 1)B belong to process j ∈ {0, . . . , P − 1}.
Hereby, the block size B ∈ N must be chosen B ≥ M/P such that no data remains
undistributed. We see that the first dM/Be processes get contiguous data blocks
of block length B. Thereby, we used the notation dxe := min{z ∈ Z : x ≤ z}
for rounding x ∈ R up. For the sake of convenience, we skip the index j in the
aforementioned block notations whenever a statement is valid for all processes j =
0, . . . , P − 1. This means [M/P]B can be read as [M/P]Bj for all j = 0, . . . , P − 1.
Analogously, we skip the block size B whenever a statement is valid for any integer
block size B ≥ M/P . Figure 2.3 shows an example of a one-dimensional block
decomposition.
Of course, we are interested in block sizes that imply an almost equal data dis-

tribution on all processes. One way to choose the block size automatically is to
set the default value B = dM/Pe in correspondence to the definition of the parallel
FFTW interface. If M is divisible by P , the default block size is simply B = M/P
and results in P equal pieces each consisting of M/P contiguous data elements of ĝ
as illustrated in Figure 2.4.
Multidimensional block decompositions are defined straightforward by the blocks

that result from one-dimensional block decomposition along each dimension. In
combination with the shorthand array notation that was introduced at the beginning
of Section 2.4 we are now able to express multidimensional arrays that are block
distributed along several dimensions. For example, assume a three-dimensional array
(ĝk0,k1,k2)M0−1,M1−1,M2−1

k0,k1,k2=0 of sizeM0×M1×M2 that is block distributed on a Cartesian
process mesh of size P0×P1 along the first two dimensions. Then, we write [M0/P0]B0

i ×
[M1/P1]B1

j ×M2 to express that process (i, j) ∈ {0, . . . , P0− 1}×{0, . . . , P1− 1} owns

2.4 Basic modules for multidimensional array transformation 31

0 1 2 3 4 5 6 7

Process 0

[M/P]20

Process 1

[M/P]21

Process 2

[M/P]22

Process 3

[M/P]23

Figure 2.4: An array of size M = 8 gets block decomposed on P = 4 processes with
default block size B = 2. The picture shows the resulting local blocks
[M/P]Bj for all processes j ∈ {0, 1, 2, 3}. Since M is divisible by P , the
default block size decomposition yields perfect load balancing.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

j = 0 j = 1 j = 2

i = 0

i = 1

Process mesh columns
Pr

oc
es

s
m

es
h

ro
w

s
Figure 2.5: A two-dimensional array of size M0×M1 = 3×8 gets block decomposed

on a two-dimensional process mesh of size P0 × P1 = 2× 3 with default
block sizes B0 = 2 and B1 = 3. The picture shows the mapping of the
local array blocks [M0/P0]B0

i × [M1/P1]B1
j to each process (i, j). Hereby, i

and j are running indexes along the process mesh rows and columns,
respectively.

all data ĝk0,k1,k2 with iB0 ≤ k0 < (i+ 1)B0, jB1 ≤ k1 < (j+ 1)B1, and 0 ≤ k2 < M2.
Thereby, we declare all data blocks to be stored in row-major order. In Figure 2.5
we present an illustration of a two-dimensional block decomposition with unequal
block sizes. Furthermore, we define the notation [(M0 ×M1)/P]Bj by a one-dimensional
block decomposition that results from the following two steps. First, linearize the
two-dimensional array M0 ×M1 in row-major order and, second, block decompose
this linearized array on P processes with block size B. In this case, block size
B ≥ M0M1/P must be fulfilled in order to distribute all data.

2.4.5 Folding multidimensional arrays in row-major order
An important observation is that an one-dimensional block decomposition of a two-
dimensional array can be interpreted as a block decomposed one-dimensional array
with suitably chosen block size. More precisely, let a size M0 ×M1 array be block

32 2 Parallel fast Fourier transforms

decomposed on P processes with block size B. Then,

[M0
P

]B ×M1 = [M0×M1
P

]BM1 . (2.15)

Recall that [(M0 ×M1)/P]BM1 means the block decomposition of the one-dimensional
array that is generated by the linearization ofM0×M1 in row-major order. Thereby,
the block size is chosen as a multiple of M1 in order to avoid fragmentation along
the second dimension. Figure 2.6 gives a graphical illustration of (2.15). Note

0 1
2 3
4 5

0 1 2 3 4 5

0 1
2 3

4 5

0 1 2 3 4 5

M0 × M1
[

M0
P

]B
0 × M1

[
M0
P

]B
1 × M1

row-major

blocksize
B = 2

blocksize
BM1 = 4

Process 0 Process 1

row-major

M0 × M1 [
M0×M1

P

]BM1

0

[
M0×M1

P

]BM1

1

Figure 2.6: A two-dimensional array of size M0 ×M1 = 3 × 2 is block decomposed
along the first dimension on P = 2 processes with default block size
B = dM0/Pe = 2. Afterward, the local blocks are stored in row-major
order. This is equivalent to the block decomposition of the linearized
array with block size BM1 = 4.

that the row-major memory layout implies that this relation is only valid for block
decompositions along the first dimension. In general we have

M0 × [M1
P

]B 6= [M0×M1
P

]BM0 (2.16)

as illustrated in Figure 2.7. However, if we used column-major memory order for
linearization of multidimensional arrays, the validity of (2.16) and (2.15) would be
the other way around.

2.4.6 Parallel matrix transposition
In the following, we introduce the algorithms for parallel transposition of a bunch of
h ∈ N block decomposed matrices. A generalization to higher-dimensional settings
is given in the next section. Assume a three-dimensional array of M0 × M1 × h
complex numbers. This can be interpreted as the a bunch of h interleaved matrices

2.4 Basic modules for multidimensional array transformation 33

0 1
2 3
4 5

0 1 2 3 4 5

0
2
4

1
3
5

0 1 2 3 4 5

M0 × M1 M0 ×
[

M1
P

]B
0 M0 ×

[
M1
P

]B
1

row-major

blocksize
B = 1

blocksize
BM0 = 3

Process 0 Process 1

row-major

M0 × M1

[
M0×M1

P

]BM0

0

[
M0×M1

P

]BM0

1

Figure 2.7: A two-dimensional array of size M0 ×M1 = 3 × 2 is block decomposed
along the second dimension on P = 2 processes with default block size
B = dM1/Pe = 1. Afterward, the local blocks are stored in row-major
order. In contrast to Figure 2.6 this is not equivalent to the block de-
composition of the linearized array with block size BM0 = 3.

each of size M0 ×M1. A parallel matrix transposition on P processes is defined as
the transfer between the two following block decompositions

[
M0
P

]B0 ×M1 × h T→
[
M1
P

]B1 ×M0 × h, (2.17)

with some integer block sizes B0 ≥ M0/P and B1 ≥ M1/P . Note that h matrices of size
M0×M1 are transposed at once and the block decomposition switches to the second
matrix dimension. Furthermore, we define so-called parallel matrix transpositions
with transposed input as

M1 ×
[
M0
P

]B0 × h T→
TI

[
M1
P

]B1 ×M0 × h, (2.18)

and with transposed output as
[
M0
P

]B0 ×M1 × h T→
TO

M0 ×
[
M1
P

]B1 × h. (2.19)

The FFTW library provides a variety of algorithms that are suitable to perform
the parallel matrix transpositions (2.17), (2.18), and (2.19). These algorithms are
also used for the one-dimensional decomposed parallel FFT implementations within
FFTW. We stress that this collection of algorithms also includes in-place matrix
transpositions, which means that per process only one additional data buffer of size

34 2 Parallel fast Fourier transforms

(M0 ×M1 × h)/P 2 is necessary. Again, a planner searches for the fastest, applicable
algorithm at runtime. Although it is not obvious, we will show that it is possible
to reduce all the global communication of a parallel multidimensional FFT to the
aforementioned parallel matrix transposition. Therefore, the high performance and
flexibility of the FFTW matrix transposition is elementary for our parallel FFT.
This provides us with portable and hardware adaptive communication functions.

2.4.7 The parallel multidimensional transposition module
Now, we show that the parallel matrix transpositions defined in Section 2.4.6 can be
used to perform even more sophisticated parallel multidimensional array transposi-
tions. Therefore, we will be able to perform more complex array transformations
but still benefit from the high performance matrix transpositions. Assume a five
dimensional array of size L0 × h0 × L1 × h1 × h2 that is block distributed on P
processes along the first dimension with block size B0, i.e.,

[
L0
P

]B0 × h0 × L1 × h1 × h2.

By using (2.15) we can fold this array into a three-dimensional array of size
[
M0
P

]B0h0 ×M1 × h.

with M0 = L0 × h0, M1 = L1 × h1, h = h2. Note that the block size must be a
multiple of h0 in order to fit to the row-major memory order; cf. Figures 2.6 and
2.7. Application of the parallel matrix transposition algorithms given in (2.17) with
block size B1h1 for the output decomposition yields

[
M0
P

]B0h0 ×M1 × h T→
[
M1
P

]B1h1 ×M0 × h.

Using (2.15) again, we can unfold the output array into
[
L1
P

]B1 × h1 × L0 × h0 × h2.

In summary, we have shown that an implementation of the parallel matrix transpo-
sition is sufficient to perform the following more general parallel multidimensional
array transposition

([
L0
P

]B0 × h0
)
×
(
L1 × h1

)
× h2

T→
([

L1
P

]B1 × h1
)
×
(
L0 × h0

)
× h2.

Analogously, we can derive the parallel multidimensional array transposition with
transposed input

(
L1 × h1

)
×
([

L0
P

]B0 × h0
)
× h2

T→
TI

([
L1
P

]B1 × h1
)
×
(
L0 × h0

)
× h2, (2.20)

2.5 Parallel FFT with multidimensional data decomposition 35

and with transposed output
([

L0
P

]B0 × h0
)
×
(
L1 × h1

)
× h2

T→
TO

(
L0 × h0

)
×
([

L1
P

]B1 × h1
)
× h2 (2.21)

from the parallel matrix transpositions (2.18) and (2.19), respectively. Later on, we
will see that (2.20) and (2.21) are sufficient to handle all the global communication
within our parallel FFT frameworks.

2.5 Parallel FFT with multidimensional data
decomposition

Now, we have collected all the ingredients to formulate the parallel FFT framework
that allow us to calculate a bunch of h ∈ N multidimensional pruned FFTs of size

m̂0 × · · · × m̂d−1 × h FFT→ m0 × · · · ×md−1 × h
in parallel on a process mesh of size P0×· · ·×Pr−1 with r < d. Let a r-dimensional
block decomposition of the input array be given by

[
m̂0
P0

]
× · · · ×

[
m̂r−1
Pr−1

]
× m̂r × m̂r+1 × · · · × m̂d−1 × h.

We see that the last d− r+ 1 dimensions of the input array are locally available on
each process. Therefore, the first step of our framework consists of the computation
of all pruned FFTs corresponding to dimensions r + 1 until d − 1 which results in
the partially transformed multidimensional array

[
m̂0
P0

]
× · · · ×

[
m̂r−1
Pr−1

]
× m̂r ×mr+1 × · · · ×md−1 × h.

After this step, only one non-transformed dimension remains locally available on
each process. In the following, we compute the serial pruned FFT along this dimen-
sion and transpose it to the front, i.e.,

([
m̂0
P0

]
× · · · ×

[
m̂r−1
Pr−1

])
× m̂r × (mr+1 × · · · ×md−1 × h)

FFT→
TO
mr ×

([
m̂0
P0

]
× · · · ×

[
m̂r−1
Pr−1

])
× (mr+1 × · · · ×md−1 × h) .

Hereby, the extra brackets denote that we call the three-dimensional array transfor-
mation (2.14) with the substitutions h0 ← [m̂0/P0]× · · · × [m̂r−1/Pr−1], m̂← m̂r, and
h1 ← mr+1×· · ·×md−1×h. Next, we apply a parallel transposition with transposed
input

mr ×
([

m̂0
P0

]
× · · · ×

[
m̂r−2
Pr−2

])
×
[
m̂r−1
Pr−1

]
× (mr+1 × · · · ×md−1 × h)

T→
TI

[
mr
Pr−1

]
×
([

m̂0
P0

]
× · · · ×

[
m̂r−2
Pr−2

])
× m̂r−1 × (mr+1 × · · · ×md−1 × h)

36 2 Parallel fast Fourier transforms

according to (2.20) with the substitutions L1 ← mr, h1 ← [m̂0/P0]× · · · × [m̂r−2/Pr−2],
L0 ← m̂r−1, h0 ← 1, h2 ← mr+1 × · · · × md−1 × h, and P ← Pr−1. The last two
steps are repeated analogously for another r− 1 times to end up with the following
partially transformed array

[
m1
P0

]
× · · · ×

[
mr
Pr−1

]
× m̂0 ×mr+1 × · · · ×md−1 × h.

Finally, a non-transposed, serial pruned FFT (2.11) with the substitutions h0 ←
[m1/P0] × · · · × [mr/Pr−1], m̂ ← m̂0, and h1 ← mr+1 × · · · × md−1 × h finishes the
d-dimensional FFTs

[
m1
P0

]
× · · · ×

[
mr
Pr−1

]
× m̂0 ×mr+1 × · · · ×md−1 × h

FFT→
[
m1
P0

]
× · · · ×

[
mr
Pr−1

]
×m0 ×mr+1 × · · · ×md−1 × h. (2.22)

Note that the first r dimensions of the output array are transposed. For convenience,
we introduce the notation

u×
s=l

ms :=
{
ml × · · · ×mu : l ≤ u,

1 : l > u.

In summary, we get the Parallel Fast Fourier Transform (PFFT) Framework 2.5
for computing a parallel multidimensional, pruned FFT with multidimensional data
decomposition. For the sake of completeness, we also present the Parallel Adjoint
Fast Fourier Transform (PFFTH) Framework 2.6 for computing multidimensional,
pruned FFTH. Note that the latter Framework is simply the adjoint of Frame-
work 2.6, cf. Remark 2.5. Consequently, the adjoint Framework starts with the
output decomposition of the PFFT Framework

[
m1
P0

]
× · · · ×

[
mr−2
Pr−1

]
×m0 ×mr × · · · ×md−1 × h

and ends with the initial data decomposition of PFFT
[
m̂0
P0

]
× · · · ×

[
m̂r−1
Pr−1

]
× m̂r × · · · × m̂d−1 × h.

In the following, we present the most important special cases that are included
in our parallel FFT Frameworks 2.5 and 2.6, i.e., one-, two-, and three-dimensional
parallel data decomposition.

2.5 Parallel FFT with multidimensional data decomposition 37

Framework 2.5 PFFT – Parallel, multidimensional, pruned FFT
Input: ĝ ∈ Cm̂0×···×m̂d−1×h block decomposed as

[m̂0/P0]× · · · × [m̂r−1/Pr−1]× m̂r × · · · × m̂d−1 × h
. .
1: for t← 0, . . . , d− r − 2 do
2: . Initiate serial FFT module
3: h0 ←×r−1

s=0[m̂s/Ps]××d−2−t
s=r m̂s

4: m̂← m̂d−1−t
5: h1 ←×d−1

s=d−tms × h
6: h0 × m̂× h1

FFT→ h0 ×m× h1
7: end for
8: for t← 0, . . . , r − 1 do
9: . Initiate serial FFT module

10: h0 ←×r−1
s=r−t[ms+1/Ps]××r−t−1

s=0 [m̂s/Ps]
11: m̂← m̂r−t
12: h1 ←×d−1

s=r+1 ms × h
13: h0 × m̂× h1

FFT→
TO

m× h0 × h1

14: . Initiate global transposition module
15: L1 ← mr−t
16: h1 ←×r−1

s=r−t[ms+1/Ps]××r−t−2
s=0 [m̂s/Ps]

17: L0 ← m̂r−t−1
18: h0 ← 1
19: h2 ←×d−1

s=r+1 ms × h
20: P ← Pr−t−1

21: L1 × h1 × [L0/P]× h0 × h2
T→
TI

[L1/P]× h1 × L0 × h0 × h2

22: end for
23: . Initiate serial FFT module
24: h0 ←×r−1

s=0[ms+1/Ps]
25: m̂← m̂0
26: h1 ←×d−1

s=r+1 ms × h
27: h0 × m̂× h1

FFT→ h0 ×m× h1
. .
Output: g = PT

M ,mFMPM ,m̂ĝ ∈ Cm0×···×md−1×h block decomposed as
[m1/P0]× · · · × [mr−2/Pr−1]×m0 ×mr × · · · ×md−1 × h

38 2 Parallel fast Fourier transforms

Framework 2.6 PFFTH – Parallel, multidimensional, pruned FFTH

Input: g ∈ Cm0×···×md−1×h block decomposed as
[m1/P0]× · · · × [mr−2/Pr−1]×m0 ×mr × · · · ×md−1 × h

. .
1: . Initiate serial FFT module
2: h0 ←×r−1

s=0[ms+1/Ps]
3: m← m0
4: h1 ←×d−1

s=r+1 ms × h
5: h0 ×m× h1

FFT→ h0 × m̂× h1
6: for t← r − 1, . . . , 0 do
7: . Initiate global transposition module
8: L0 ← mr−t
9: h0 ←×r−1

s=r−t[ms+1/Ps]××r−t−2
s=0 [m̂s/Ps]

10: L1 ← m̂r−t−1
11: h1 ← 1
12: h2 ←×d−1

s=r+1 ms × h
13: P ← Pr−t−1

14: [L0/P]× h0 × L1 × h1 × h2
T→

TO
L0 × h0 × [L1/P]× h1 × h2

15: . Initiate serial FFT module
16: h0 ←×r−1

s=r−t[ms+1/Ps]××r−t−1
s=0 [m̂s/Ps]

17: m← mr−t
18: h1 ←×d−1

s=r+1 ms × h
19: m× h0 × h1

FFT→
TI
h0 × m̂× h1

20: end for
21: for t← d− r − 2, . . . , 0 do
22: . Initiate serial FFT module
23: h0 ←×r−1

s=0[m̂s/Ps]××d−2−t
s=r m̂s

24: m← md−1−t
25: h1 ←×d−1

s=d−tms × h
26: h0 ×m× h1

FFT→ h0 × m̂× h1
27: end for
. .
Output: ĝ = PT

M ,m̂FH
MPM ,mg ∈ Cm̂0×···×m̂d−1×h block decomposed as

[m̂0/P0]× · · · × [m̂r−1/Pr−1]× m̂r × · · · × m̂d−1 × h

2.5 Parallel FFT with multidimensional data decomposition 39

Example 2.8. At first we present the PFFT Framework 2.5 for a three-dimensional
FFT with one-dimensional data decomposition. Note that for this setting we essen-
tially yield the framework that is implemented within the FFTW software library.
Assume a three-dimensional array of size m̂0 × m̂1 × m̂2 that is distributed on a
one-dimensional process mesh of size P0. For this setting the PFFT Framework 2.5
becomes

[
m̂0
P0

]
× m̂1 × m̂2

FFT→
[
m̂0
P0

]
× m̂1 ×m2

FFT→
TO

m1 ×
[
m̂0
P0

]
×m2

T→
TI

[
m1
P0

]
× m̂0 ×m2

FFT→
[
m1
P0

]
×m0 ×m2.

The PFFTH Framework 2.6 starts with the transposed input data and returns to
the initial data distribution by simply reverting all steps of the PFFT Framework
as follows

[
m1
P0

]
×m0 ×m2

FFT→
[
m1
P0

]
× m̂0 ×m2

T→
TO

m1 ×
[
m̂0
P0

]
×m2

FFT→
TI

[
m̂0
P0

]
× m̂1 ×m2

FFT→
[
m̂0
P0

]
× m̂1 × m̂2.

�

Example 2.9. This examples shows the work flow of our parallel FFT frameworks
with two-dimensional data decomposition. In order to use two-dimensional data
decomposition, the FFT of interest must be at least three-dimensional. However,
note that this framework works analogously with four- or higher-dimensional FFTs.
Assume a three-dimensional array of size m̂0×m̂1×m̂2 that is distributed on a two-
dimensional process mesh of size P0×P1. For this setting the PFFT Framework 2.5
becomes [

m̂0
P0

]
×
[
m̂1
P1

]
× m̂2

FFT→
TO

m2 ×
[
m̂0
P0

]
×
[
m̂1
P1

]

T→
TI

[
m2
P1

]
×
[
m̂0
P0

]
× m̂1

FFT→
TO

m1 ×
[
m2
P1

]
×
[
m̂0
P0

]

T→
TI

[
m1
P0

]
×
[
m2
P1

]
× m̂0

FFT→
[
m1
P0

]
×
[
m2
P1

]
×m0.

The PFFTH Framework 2.6 starts with the transposed input data and returns to
the initial data distribution by simply reverting all steps of the PFFT Framework.

�

Example 2.10. Now, we show the work flow of our parallel FFT framework with
three-dimensional domain decomposition. In order to use three-dimensional data
decomposition, the FFT of interest must be at least four-dimensional. However, note
that this framework works analogously with higher-dimensional FFTs. As far as we
know, our implementation of Framework 2.5 and Framework 2.6 is the only publicly
available parallel FFT software that allows three-dimensional data decomposition at

40 2 Parallel fast Fourier transforms

all. Assume a four-dimensional array of size m̂0× m̂1× m̂2× m̂3 that is distributed
on a three-dimensional process mesh of size P0×P1×P2. For this setting the PFFT
Framework 2.5 becomes

[
m̂0
P0

]
×
[
m̂1
P1

]
×
[
m̂2
P2

]
× m̂3

FFT→
TO

m3 ×
[
m̂0
P0

]
×
[
m̂1
P1

]
×
[
m̂2
P2

]

T→
TI

[
m3
P2

]
×
[
m̂0
P0

]
×
[
m̂1
P1

]
× m̂2

FFT→
TO

m2 ×
[
m3
P2

]
×
[
m̂0
P0

]
×
[
m̂1
P1

]

T→
TI

[
m2
P1

]
×
[
m3
P2

]
×
[
m0
P0

]
× m̂1

FFT→
TO

m1 ×
[
m2
P1

]
×
[
m3
P2

]
×
[
m̂0
P0

]

T→
TI

[
m1
P0

]
×
[
m2
P1

]
×
[
m3
P2

]
× m̂0

FFT→
[
m1
P0

]
×
[
m2
P1

]
×
[
m3
P2

]
×m0.

The PFFTH Framework 2.6 starts with the transposed input data and returns to
the initial data distribution by simply reverting all steps of the PFFT Framework.

�

Remark 2.11. The PFFT Framework 2.5 ends up with a transposed data decom-
position (2.22). Using the same transposed data layout as input for the PFFTH

Framework 2.6 returns to the initial data layout after one FFT and FFTH. For
most applications it is acceptable to deal with this transposed data layout between
the two FFT executions. For example, a common use case for parallel FFT is the
fast convolution of two signals. Thereby, we compute the FFT of both signals,
multiply both results point-wise, and compute the FFTH. The point-wise multipli-
cation can be trivially performed as long as both arrays share the same data layout
in Fourier space. However, if transposed data layout is not acceptable we are able
to reorder the data with a framework very similar to the PFFTH Framework 2.6.
Thereby, we simply skip the computation of all local FFTs but remain the local and
global transpositions in Framework 2.6. Obviously, the non-transposed data layout
comes at the cost of doubling the amount of communication and should be avoided
whenever possible. �

2.6 Parallel pruned FFT
We have seen that the PFFT Framework 2.5 incorporates the computation of pruned
FFTs in the flavor of the serial Algorithm 2.2, i.e., array dimensions are zero padded
and truncated whenever they are locally available. An alternative would have been
to combine the serial Algorithm 2.1 with a parallel block decomposition. This would
have meant that we called the PFFT Framework on the zero padded input array
and truncated its outputs all at once. However, this second approach yields several
drawbacks for parallel execution as the following example will illustrate.

2.6 Parallel pruned FFT 41

0 0
0 0

0 0 0 0 0 0

0
0

0 x

x x
x x

x x

T

I M
0

⊗
F M

1

I M
1

⊗
F M

0

P
M

,m̂

P
T M

,m

[
m̂0
P

]
× m̂1

[
M̂0
P

]
× M̂1

[
M̂0
P

]
× M1

[
M1
P

]
× M̂0

[
M1
P

]
× M0

[
m1
P

]
× m0

Pr
oc

es
s

0
Pr

oc
es

s
1

Figure 2.8: Parallel workflow of a two-dimensional pruned FFT on P = 2 processes
with pruned input size m̂ = (2, 1)T, FFT size M = (3, 3)T, and pruned
output size m = (1, 2)T based on the serial Algorithm 2.1.

Example 2.12. In the following, we compare two parallel approaches for com-
puting the parallel pruned FFT (2.6). Therefore, assume a two-dimensional input
array of size m̂ = (2, 1)T. We are interested in the parallel computation of the
size m = (1, 2)T output sub-array of a size M = (3, 3)T FFT on P = 2 processes.
Note that although this example looks superficially small it already reveals all the
important differences of the algorithms. At first, we discuss the parallel compu-
tation in correspondence to the serial pruned FFT Algorithm 2.1, see Figure 2.8.
Algorithm 2.1 starts with an input array of size [m̂0/P] × m̂1. First, it applies zero
padding of both dimensions at once. Especially, this includes the first dimension
that is parallel block decomposed at this stage. Therefore, the parallel block de-
composition must be adjusted in order to fit the block sizes [M̂0/P]× M̂1, where the
notations M̂0 := M0 and M̂1 := M1 are introduced in order to symbolize the non-
transformed array size before the FFT. In general, this data rearrangement implies a
global communication as can be seen in Figure 2.8. Next, M̂0 one-dimensional FFTs
of size M̂1 along the second dimension are computed. However, M̂0 − m̂0 of these
FFTs can be skipped since they have zero inputs. Unfortunately, the redistribution
of the first dimension implied that process 1 gets all of these unnecessary FFTs.
Therefore, we have a 50% drop of computational efficiency at this stage. After the
parallel matrix transposition, we want to compute M1 one-dimensional FFTs of size
M̂0 along the second dimension. In fact, only the first m1 FFTs produce relevant
outputs since the lastM1−m1 columns of the output array will be truncated due to
the pruning sizem. In the picture above, truncated elements are symbolized with a
cross. Again, we see that process 1 does not take part in the relevant computations.
Finally, we redistribute the block decomposed FFT output array [M1/P] × M0 in
order to fulfill the block decomposition [m1/P] ×m0 of the truncated output array.
In general, this implies another global communication. In summary, we lost 50% of

42 2 Parallel fast Fourier transforms

[
m̂0
P

]
× m̂1

[
m̂0
P

]
× m1

[
m1
P

]
× m̂0

[
m1
P

]
× m0

P
T M

1,
m

1
F M

1
P

M
1,

m̂
1

I m̂
0
⊗ T

P
T M

0,
m

0
F M

0
P

M
0,

m̂
0

I m
1
⊗Pr

oc
es

s
0

Pr
oc

es
s

1

Figure 2.9: Parallel workflow of a two-dimensional pruned FFT on P = 2 processes
with pruned input size m̂ = (2, 1)T, FFT size M = (3, 3)T, and pruned
output size m = (1, 2)T based on the serial Algorithm 2.2.

the overall computational efficiency and got two additional global communications.
In contrast, Figure 2.9 illustrates the parallel approach that is part of our parallel

FFT Frameworks 2.5 and 2.6. This approach is based on the serial Algorithm 2.2. At
a glance we can see that the second approach looks more ordered and yields better
load balancing. In fact the computational workload is perfectly balanced between
the two processes and we do not have the two additional global communication
steps of the first approach. Furthermore, we see that the memory consumption of
the second approach is lower due to the partially pruned arrays and the perfect load
balancing. Especially, the parallel matrix transposition of the first approach works
on a larger array of size M̂0×M1 while the second approach requires only a parallel
matrix transposition of size m̂0 ×m1. This means that the pruned PFFT approach
is also superior in terms of data amount that must be communicated. All in all, we
have seen that the second approach offers much more parallel scalability than the
naive first approach for computing pruned FFTs in parallel. However, the preferable
approach must be implemented at the library level, i.e., pruning has to be part of
the parallel FFT algorithm and can not be added as a simple wrapper of an existing
parallel FFT library. �

2.7 Parallel FFT with shifted index sets
We already pointed out in Remark 2.4 that we can use (2.9) in order to extend our
parallel pruned FFT frameworks to shifted index sets. Now, we present an example
that illustrates the differences of the two representations given in (2.9) when they
are combined with parallel block decomposition.

Example 2.13. For the sake of simplicity we restrict ourselves to a two-dimensional
FFT of size m̂ = m = M = (2, 4)T, i.e., no pruning is applied and the size of the

2.7 Parallel FFT with shifted index sets 43

f̂−1,−2

f̂−1,−1

f̂−1,0

f̂−1,1

f̂0,−2

f̂0,−1

f̂0,0

f̂0,1

Pr
oc

es
s

0
Pr

oc
es

s
1

f̂0,0

f̂0,1

f̂0,−2

f̂0,−1

f̂−1,0

f̂−1,1

f̂−1,−2

f̂−1,−1

f0,0

f0,1

f−1,0

f−1,1

f0,−2

f0,−1

f−1,−2

f−1,−1

f−1,−2

f−1,−1

f0,−2

f0,−1

f−1,0

f−1,1

f0,0

f0,1

SM FM SM

Figure 2.10: Parallel workflow of a two-dimensional FFT with shifted index sets on
P = 2 processes with FFT size M = (2, 4)T based on the factorization
SMFMSM .

input array f̂ ∈ C2×4 and output array f ∈ C2×4 are equal to the FFT size. In this
setting (2.9) can be simplified to

SMFMSM = (−1)TMFMTM . (2.23)

We now apply a one-dimensional parallel block decomposition on P = 2 processes to
both sides of this equation and compare the resulting parallel algorithms. Starting
with the left hand side we get the algorithmic workflow presented in Figure 2.10.
Thereby, we track the data movement of the one-dimensional decomposed array
during each of the three steps. Note that the application of the shift matrix SM
requires the two processes to exchange all their data before and after the parallel FFT
framework is applied. This stands for two additional global communication steps.
In contrast the right hand side of (2.23) only incorporates the diagonal matrices TM

that do not change the parallel data decomposition. Mapping this representation
to parallel data decomposition results in the parallel counterpart of Algorithm 2.3.
Figure 2.11 shows an example of the parallel workflow for this approach. Note
that the application of the twiddle matrix TM does not change the data order and,
therefore, avoids any additional communication. The extra amount of computation
due to the multiplications with (−1) will be more than compensated by the savings
in communication, especially if we scale to large numbers of parallel processes. At
this point it is clear why we choose Algorithm 2.3 as starting point for our parallel
FFT frameworks with shifted index sets. �

44 2 Parallel fast Fourier transforms

f̂−1,−2

f̂−1,−1

f̂−1,0

f̂−1,1

f̂0,−2

f̂0,−1

f̂0,0

f̂0,1

Pr
oc

es
s

0
Pr

oc
es

s
1

−f̂−1,−2

f̂−1,−1

−f̂−1,0

f̂−1,1

f̂0,−2

−f̂0,−1

f̂0,0

−f̂0,1

f−1,−2

−f−1,−1

−f0,−2

f0,−1

f−1,0

−f−1,1

−f0,0

f0,1

f−1,−2

f−1,−1

f0,−2

f0,−1

f−1,0

f−1,1

f0,0

f0,1

TM FM (−1)TM

Figure 2.11: Parallel workflow of a two-dimensional FFT with shifted index sets on
P = 2 processes with FFT size M = (2, 4)T based on the factorization
(−1)TMFMTM .

2.8 The ghost cell communication modules
The data arrays of our parallel FFT are distributed about the processes in distinct
blocks. However, in many application one wants to perform calculations with a
small set of data points that are direct neighbors, e.g., in the calculation of finite
differences or the computation of interpolation values as we will need in Section 3.3.
This becomes problematic when the border of the local data blocks is exceeded
and the data is not locally available. Therefore, it is common practice to generate
a thin layer of duplicated data around the local blocks. This operation is well
known as ghost cell creation [64, Chap. 5.6.1]. Figure 2.12 gives an example of the
corresponding matrix-vector operation for a one-dimensional block decomposition
of M = 4 data points on P = 2 processes with default block size.
Closely related to this operation is the transposed ghost cell creation, also known

as ghost cell reduction. The ghost cell reduction computes the sums of each original
data element with all of its ghost cells. This operation is needed whenever one data
point is computed as the sum of operations that must be performed on distinct
processes due to data locality. Figure 2.13 shows the transposed counterpart of the
ghost cell send example that was given in Figure 2.12.
We implemented several algorithms to perform the parallel ghost cell creation

and reduction. Similar to FFTW a planner decides at runtime which algorithm is
preferable. Note that our implementation also suits the case in which the number of

2.8 The ghost cell communication modules 45

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

a

b
c

d

 =

d
a

b
c

b
c

d
a

Process 0

Process 1

Figure 2.12: Matrix-vector notation of the ghost cell send operation for a one-
dimensional block decomposition of M = 4 data points on P = 2
processes with default block size B = 2 and one ghost cell at each side.
Thereby, matrix and vector entries corresponding to ghost cell values
are highlighted in gray.

0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0

Process 0 Process 1

a

b
c

d
e

f

g

h

=

b + h

c + e

f + d

g + a

Process 0

Process 1

Figure 2.13: The transposed ghost cell send for a one-dimensional block decomposi-
tion of M = 4 data points on P = 2 processes with default block size
B = 2 and one ghost cell at each side. Thereby, matrix and vector
entries corresponding to ghost cell values are highlighted in gray.

46 2 Parallel fast Fourier transforms

ghost cells exceeds the block size of the next neighboring process. This is especially
important for unequal block sizes, where some processes get less data then others.

2.9 The PFFT software library
We implemented the parallel multidimensional FFT Frameworks 2.5 and 2.6 as
part of a publicly available software library called Parallel Fast Fourier Transform
(PFFT). The development code is distributed under a GNU General Public License
and is freely available within the Git repository [11]. Parallelism has been incor-
porated by the Message Passing Interface (MPI) standard. PFFT was designed as
an extension of FFTW to multidimensional data decompositions. Therefore, the
user interface is very similar to the FFTW-MPI interface and PFFT inherits most
of FFTWs features. In the following, we list the most important features of our
parallel FFT implementation in order to give an impression of its flexibility:

• We employ fast O(M logM) algorithms of FFTW to compute arbitrary-size
discrete Fourier transforms of complex data, real data, and even- or odd-
symmetric real data. This also includes prime size FFTs.

• The dimension of the FFT can be arbitrary. Note that other publicly avail-
able, parallel FFT implementations based on two-dimensional data decompo-
sition [123, 106, 90, 43] are restricted to three-dimensional FFTs.

• PFFT supports r-dimensional data decomposition of d-dimensional FFTs for
any r < d. Especially, PFFT includes three-dimensional data decomposition
of four-dimensional FFTs. We are not aware of any other publicly available
parallel FFT implementation based on three- or higher-dimensional data de-
composition.

• The application of PFFT is split into a time consuming planning step and
a high performance execution step. Thereby, the amount of planning can be
adjusted via flags.

• Because of the hardware adaptive planning phase PFFT offers portable per-
formance; i.e., it will perform well on most platforms. This also includes the
MPI based communication of parallel FFT – a feature not available in any
other parallel FFT implementations based on two-dimensional data decompo-
sition [123, 106, 90, 43].

• Instal of the library is easy. It is based on the Autotools and follows the
common sequence of configure, make, and make install.

• The interface of PFFT is very close to the MPI interface of FFTW. In fact, we
tried to add as few extra parameters as possible. Porting code from FFTW-
MPI to PFFT is straightforward, i.e., there is no need for complicated code
refactoring in order to switch from one-dimensional to multidimensional data
decomposition.

• PFFT is written in C but also offers a Fortran 2003 interface.

2.9 The PFFT software library 47

• Since FFTW offers shared memory parallelism, we can run PFFT in a hybrid
parallel environment as a mix of distributed and shared memory parallelism.

• All steps of our parallel FFT can be performed completely in-place. This is
especially remarkable for the global transposition routines. Note that all other
parallel FFT implementation based on multidimensional data decomposition
need at least twice the memory amount of the input array.

• The block distribution of PFFT does not require the FFT size to be divisible
by the number of processes. However, unequal block distributions naturally
lead to load balancing problems that should be avoided if possible.

• PFFT includes a very flexible ghost cell exchange module, cf. Section 2.8.
It includes ghost cell operations that exceed nearest neighbor communication
and supports unequal block decompositions. Moreover, the transposed ghost
cell send module turns out to be a unique feature of PFFT.

• PFFT allows three-dimensional data decomposition even for three-dimensional
FFTs. In this case the three-dimensional data decomposition is redistributed
into a two-dimensional data decomposition and the underlying parallel FFT
framework is still based on two-dimensional decomposition. A more detailed
description of this module was published in [4].

• PFFT has been the first publicly available library that introduced support for
the parallel calculation of pruned FFTs at the library level; see Section 2.6.
Later on, this feature has been added up to some extend to the P3DFFT
library [106], i.e., P3DFFT allows pruning in the inputs of the forward trans-
forms and the outputs of the backward transforms only. Moreover, pruned
FFTs are not supported by any other freely available parallel FFT implemen-
tation. In Section 2.10.4 we present some performance results of PFFTs pruned
FFTs.

• PFFT supports FFTs with shifted index sets, cf. Section 2.7. We are not
aware of any other parallel FFT software library that supports this feature at
the moment.

• All performance relevant computation and communication steps are automat-
ically timed throughout the execution of PFFT. The user can access these
runtime measurements through the PFFT timer interface. This is especially
helpful for benchmark and runtime tuning purposes. If timing of each PFFT
step is considered to be waste of performance, the user has the possibility to
switch off the PFFT timer interface during configuration of the library instal.

• PFFT supports parallel FFT with transposed input and output, cf. Sec-
tion 2.5. This saves half of the communication amount in comparison to a
parallel FFT that restores the initial data ordering after each FFT.

48 2 Parallel fast Fourier transforms

2.10 Numerical results

In [4] we published extensive numerical tests that give numerical evidence for the
high scalability of our parallel FFT frameworks. We compared our PFFT software
library with the MPI-parallel algorithms of the FFTW software library as well as
P3DFFT [107, 106]. In the following, we present selected results from [8] and [4].
We refer the reader to these references for more elaborate performance tests.

2.10.1 Description of the parallel computing architectures
The following three large scale, high performance platforms have been taken into
consideration.

1. JUGENE – Blue Gene/P in Research Center Jülich [14]: One node of a Blue
Gene/P consists of 4 IBM PowerPC 450 cores that run at 850 MHz. These
4 cores share 2 GB of main memory. Therefore, we have 0.5 GB RAM per
core, whenever all the cores per node are used. The nodes are connected by a
three-dimensional torus network with 425 MB/s bandwidth per link. In total
JUGENE consisted of 73 728 nodes, i.e., 294 912 cores. This system went out
of production in August, 2012.

2. JUQUEEN – Blue Gene/Q in Research Center Jülich [15]: One node of a Blue
Gene/Q consists of 16 IBM PowerPC A2 cores that run at 1.6 GHz. These
16 cores share 16 GB SDRAM-DDR3. Therefore, we have 1 GB RAM per
core, whenever all the cores per node are used. The nodes are connected by
a five-dimensional torus network. In total JUGENE consists of 24 576 nodes,
i.e., 393 216 cores.

3. JUROPA – Jülich Research on Petaflop Architectures [16]: One node of JU-
ROPA consists of 2 Intel Xeon X5570 (Nehalem-EP) quad-core processors that
run at 2.93 GHz. These 8 cores share 24 GB DDR3 main memory. There-
fore, we have 3 GB RAM per core whenever all the cores per node are used.
The nodes are connected by an Infiniband QDR with non-blocking fat tree
topology. In total JUROPA consists of 2208 nodes, i.e., 17 664 cores.

2.10.2 Strong scaling behavior of PFFT on JUGENE
We investigated the strong scaling behavior of PFFT [11] and P3DFFT [106] on the
JUGENE machine in Research Center Jülich. A complex to complex FFT of size
5123 has been run out-of-place with 64 of the available 72 racks, i.e., 262 144 cores.
Since P3DFFT supports only real to complex FFTs, we applied P3DFFT to the
real and imaginary parts of a complex input array to get times comparable to those
of the complex to complex FFTs of the PFFT package. The test runs consisted of
10 alternate calculations of FFT and FFTH. Since these two transforms are inverse

2.10 Numerical results 49

26 28 210 212 214 216 218

101

100

10−1

10−2

10−3

10−4

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s Perfect
PFFT

P3DFFT

26 28 210 212 214 216 218

26
28

210
212
214
216
218

number of cores of JUGENE

sp
ee

du
p

Perfect
PFFT

P3DFFT

Figure 2.14: Required wall clock time (left) and speedup (right) for FFT of size 5123

up to 262 144 cores on JUGENE.

except for a constant factor, it is easy to check the results after each run. The
average wall clock time and the average speedup of one FFT and FFTH can be seen
in Figure 2.14 for an FFT of size 5123. Memory restrictions force P3DFFT to utilize
at least 32 cores on JUGENE. Therefore, we chose the associated wall clock times
as references for speedup and efficiency calculations. Note that PFFT can perform
these FFTs on half the cores because of less memory consumption. However, we
only recorded times on core counts which both algorithms were able to utilize to
get comparable results. It turns out that both libraries are comparable in speed.
However, from our point of view the flexibility of PFFT is a great advantage over
P3DFFT.

2.10.3 Comparison of PFFT and FFTW on JUROPA
We tested our PFFT library on JUROPA and compared the scaling behavior with
a one-dimensional decomposed parallel FFTW. The runtime of a three-dimensional
FFT of size 2563 given in Figure 2.15 shows a good scaling behavior of our two-
dimensional decomposed PFFT up to 2048 cores, while the one-dimensional data
decomposition of FFTW cannot make use of more than 256 cores.

2.10.4 Parallel pruned FFT on JUGENE
We have seen in Section 2.6 that the naive computation of parallel pruned FFTs via
zero padded FFTs may lead to serious load imbalance since some processes calculate
one-dimensional FFTs on vectors that are full of zeros. In addition, the data has
to be redistributed before and after the FFT in order to match the parallel domain
decomposition. Our parallel FFT Frameworks 2.5 and 2.6 completely avoid the data

50 2 Parallel fast Fourier transforms

21 23 25 27 29 211

101

100

10−1

10−2

10−3

10−4

number of cores of JUROPA

wa
ll

cl
oc

k
tim

e
in

s
PFFT PFFTH Perfect
FFTW FFTWH

21 23 25 27 29 211

21

23

25

27

29

211

number of cores of JUROPA
sp

ee
du

p

PFFT PFFTH Perfect
FFTW FFTWH

Figure 2.15: Required wall clock time (left) and speedup (right) for FFT of size 2563

up to 2048 cores on JUROPA.

redistribution and the load imbalances, since they apply one-dimensional pruned
FFTs row-wise whenever the corresponding data dimension is locally available on
the processes.
We want to illustrate the possible performance gain with an example. Therefore,

we compute a three-dimensional pruned FFT of size M ×M ×M = 2563 on 256
cores of a Blue Gene/P architecture. The data decomposition scheme is based on
a two-dimensional process mesh of size 16 × 16. We alter the pruned input size
m×m×m and the pruned output size m̂× m̂× m̂ between 32 and 256. Figure 2.16
shows the runtime of pruned PFFT for different values of m and m̂. We observe
an increasing performance benefit for decreasing input array size m and also for
decreasing output array size m̂. Without the pruned FFT support, we would have
to pad the input array of size m ×m ×m with zeros to the full three-dimensional
FFT size M ×M ×M and calculate this FFT in parallel. The time for computing
an FFT of size 2563 corresponds to the time in Figure 2.16 for m = m̂ = 256.

2.10.5 Weak scaling behavior of PFFT on JUQUEEN and
JUROPA

In order to investigate the weak scaling behavior on a Blue Gene/Q we performed
parallel FFTs of size 5123, 10243, 20483, 40963, and 81923 on 8, 64, 512, 4096, and
32 768 cores, respectively. This gives a constant local array size of 2563 per process.
We measured the average time over 10 loops of FFT and FFTH with transposed
input/output on each process and plotted the maximum over all processes in Fig-

2.10 Numerical results 51

64 128 192 2560

1

2

3

4

5

·10−2

pruned input size m

wa
ll

cl
oc

k
tim

e
in

s

m̂ = 256
m̂ = 128
m̂ = 64
m̂ = 32

Figure 2.16: Required wall clock time of pruned FFT with FFT size M3 = 2563 and
varying FFT input size m3 and FFT output size m̂3. All test have been
computed with P = 162 cores on JUGENE.

ure 2.17. We used exactly the same setting on JUROPA but stopped at 4096 cores.
The results are also given in Figure 2.17. In addition, we show the time that is
spent for communication and computation. Note that the computational part also
includes the local transposes of our serial FFT module.

2.10.6 Strong scaling behavior of PFFT on JUQUEEN and
JUROPA

Finally, we compare the strong scaling behavior of our parallel in-place and out-
of-place FFTs for different FFT sizes on JUQUEEN and JUROPA. Again, we per-
formed 10 loops of a FFT and FFTH with transposed input/output. The maximum
average time for FFTs of size 5123 and 10243 with up to 32 768 cores on JUQUEEN
are given in Figure 2.18, and Figure 2.19, respectively. In addition, we show the
time that is spent for communication and computation. Note that the computational
part also includes the local transposes of our serial FFT module. For every test run
we chose the minimal possible core count to start the benchmark. We observe that
the in-place transforms are indeed more memory efficient, since they allow us to run
the benchmarks with smaller core counts. The out-of-place transforms are slightly
faster for large core counts. However, the in-place transforms are most important for
small numbers of cores, where less memory is available. There is no difference in the
performance of in-place and out-of-place FFTs for small core counts. Our parallel
FFT framework provides an overall good scaling behavior. For large numbers of
cores we observe some jumps of the runtime due to the communication part.
The maximum average time of 10 FFT and FFTH of size 5123, and 10243 with up

52 2 Parallel fast Fourier transforms

23 26 29 212 2150

5

10

15

20

25

30

5123

10243 20483

40963
81923

number of cores of JUQUEEN

wa
ll

cl
oc

k
tim

e
in

s
PFFT, PFFTH Comm Comp

23 26 29 2120

5

10

15

5123
10243

20483

40963

number of cores of JUROPA
wa

ll
cl

oc
k

tim
e

in
s

PFFT, PFFTH Comm Comp

Figure 2.17: Required wall clock time for FFT of constant local array size 2563

per core up to P = 32 768 cores on JUQUEEN (left) and up to P =
2048 cores on JUROPA (right). The figures include the whole runtime
of one pair of PFFT and PFFTH that splits into the time spent for
communication (Comm) and computation (Comp). The numbers next
to data points indicate the total FFT size.

23 25 27 29 211 213 215

102

101

100

10−1

10−2

10−3

number of cores of JUQUEEN

wa
ll

cl
oc

k
tim

e
in

s

PFFT in-place PFFT out-of-place

23 25 27 29 211 213 215

102

101

100

10−1

10−2

10−3

number of cores of JUQUEEN

wa
ll

cl
oc

k
tim

e
in

s

Comm in-place Comm out-of-place
Comp in-place Comp out-of-place

Figure 2.18: Required wall clock time for in-place and out-of-place FFT of size 5123

up to P = 32 768 cores on JUQUEEN. The figure includes the whole
runtime of one PFFT and its adjoint. This time splits into the time
spent for communication (Comm) and computation (Comp).

2.10 Numerical results 53

25 27 29 211 213 215

102

101

100

10−1

10−2

number of cores of JUQUEEN

wa
ll

cl
oc

k
tim

e
in

s

PFFT in-place PFFT out-of-place

25 27 29 211 213 215

102

101

100

10−1

10−2

number of cores of JUQUEEN
wa

ll
cl

oc
k

tim
e

in
s

Comm in-place Comm out-of-place
Comp in-place Comp out-of-place

Figure 2.19: Required wall clock time for in-place and out-of-place FFT of size 10243

up to P = 32 768 cores on JUQUEEN. The figure includes the whole
runtime of one PFFT and its adjoint. This time splits into the time
spent for communication (Comm) and computation (Comp).

to 2048 cores on JUROPA are given in Figure 2.20, and Figure 2.21, respectively.
Here we see nearly the same behavior. There is even less difference in the perfor-
mance of in-place and out-of-place FFTs on JUROPA. The big jump in Figure 2.20
results from the fact that an in-place transposition with one single core can be to-
tally omitted, while the out-of-place transposition needs at least one copy of the
local memory.

54 2 Parallel fast Fourier transforms

21 23 25 27 29 211

102

101

100

10−1

10−2

number of cores of JUROPA

wa
ll

cl
oc

k
tim

e
in

s

PFFT in-place PFFT out-of-place

21 23 25 27 29 211

102

101

100

10−1

10−2

10−3

10−4

number of cores of JUROPA
wa

ll
cl

oc
k

tim
e

in
s

Comm in-place Comm out-of-place
Comp in-place Comp out-of-place

Figure 2.20: Required wall clock time for in-place and out-of-place FFT of size 5123

up to P = 2048 cores on JUROPA. The figure includes the whole
runtime of one PFFT and its adjoint. This time splits into the time
spent for communication (Comm) and computation (Comp).

24 25 26 27 28 29 210 211

102

101

100

10−1

number of cores of JUROPA

wa
ll

cl
oc

k
tim

e
in

s

PFFT in-place PFFT out-of-place

24 25 26 27 28 29 210 211

102

101

100

10−1

number of cores of JUROPA

wa
ll

cl
oc

k
tim

e
in

s

Comm in-place Comm out-of-place
Comp in-place Comp out-of-place

Figure 2.21: Required wall clock time for in-place and out-of-place FFT of size 10243

up to P = 2048 cores on JUROPA. The figure includes the whole
runtime of one PFFT and its adjoint. This time splits into the time
spent for communication (Comm) and computation (Comp).

3 Parallel nonequispaced fast Fourier
transforms

The equispaced sampling of a trigonometric polynomial at N points can be per-
formed in a computational efficient way by the fast Fourier transform (FFT) within
O(N logN) operations. However, many applications such as computerized tomogra-
phy [53, 45] and particle simulation [112, 68] require a nonequispaced sampling and,
therefore, the FFT is not applicable anymore. This shortcoming led to the devel-
opment of several generalizations to nonequispaced sampling [42, 26, 121, 130, 114,
61, 84]. In the following, we denote this class of algorithms as Nonequispaced Fast
Fourier Transform (NFFT) and focus on the notation and modularized approach
used in [121, 114, 84]. Loosely speaking, the NFFT consists of the following three
steps. First, it applies a deconvolution in Fourier space that can be performed by
a simple point-wise product. Second, an FFT is computed and, finally, a discrete
convolution in spatial domain is performed in the form of a sparse matrix-vector
product. The deconvolution in Fourier space and the discrete convolution in real
space are performed with a window function that is well localized in both domains.
Therefore, the overall complexity of the NFFT with N nonequispaced samples and
the total number of frequencies M is given by O(N + M logM). This is a tremen-
dous improvement in comparison to the O(NM) scaling of the naive computation.
In this sense the NFFT is a fast algorithm with a modularized structure. A publicly
available implementation is given by the NFFT software library [84, 83], which also
offers support of shared memory parallelism [128] and a parallel implementation for
graphic processing units [87, 134]. In contrast, distributed memory parallelism of
NFFT has not been considered for a long time and to our knowledge the PNFFT
library presented in this chapter is the only publicly available NFFT implemen-
tation that combines the fast approximate NFFT algorithm with high scalability
on distributed memory architectures. We emphasize that a highly scalable butter-
fly algorithm for the computation of Fourier integral operators has been presented
in [115]. The Fourier integral operator contains the NFFT as a special case. How-
ever, the runtime of this algorithm is rather high due to its generality and can not
compete with the NFFT algorithms presented in this thesis.
In this chapter we derive a highly scalable framework for computing the NFFT

on massively parallel architectures called PNFFT [5]. Since the FFT plays a central
role in the modular structure of NFFT, we will exploit the parallel FFT frameworks
that were presented in the previous chapter.

55

56 3 Parallel nonequispaced fast Fourier transforms

Furthermore, we derive various new advancements of the NFFT algorithm itself.
More precisely, we introduce the concepts of pruned NFFT, fast NFFT gradient
computation, shifted NFFT, interlaced NFFT and optimized NFFT deconvolution
with respect to the mean square aliasing error. Most of these concepts have their
origin in particle-mesh methods but have never been considered as individual mod-
ules of the NFFT. Altogether, these algorithmic enhancements will bridge the gap
between NFFT and particle-mesh methods in Chapter 4.

3.1 Definitions
In this section we introduce the new notation, basic definitions and assumptions
that are related to nonequispaced Fourier transforms. Assume a mesh size m̂ =
(m̂0, m̂1, m̂2)T ∈ 2N3. We define the shifted multi-index set of frequencies Im̂ :=
{−m̂0/2, . . . , m̂0/2− 1} × {−m̂1/2, . . . , m̂1/2− 1} × {−m̂2/2, . . . , m̂2/2− 1}, and the total
number of frequencies |Im̂| = m̂0 · m̂1 · m̂2. For |Im̂| complex numbers f̂k, k ∈ Im̂,
the trigonometric polynomial f : R3 → C is given by

f(x) :=
∑

k∈Im̂

f̂ke−2πikTx. (3.1)

Note that this function is 1-periodic in each dimension of space. Furthermore, we
introduce the node scaling matrix S = diag(S0, S1, S2) with entries St ∈ (0, 1] and
define the truncated unit cube S

[
− 1/2, 1/2

)3 :=
[
− S0/2, S0/2

)
×
[
− S1/2, S1/2

)
×
[
−

S2/2, S2/2
)
. The evaluation of f at N ∈ N arbitrarily chosen nodes xj ∈ S

[
−1/2, 1/2

)3,
j ∈ N := {1, 2, . . . , N} can be written as

fj := f(xj) =
∑

k∈Im̂

f̂ke−2πikTxj , xj ∈ S
[
−1

2 ,
1
2
)3
, j ∈ N , (3.2)

and is denoted as three-dimensional, pruned Nonequispaced Discrete Fourier Trans-
form (NDFT). Note that most authors define the NDFT without pruning, i.e., they
use a fixed node scaling matrix S = diag(1, 1, 1) and allow the nodes to fill the
whole unit cube xj ∈

[
− 1/2, 1/2

)3. The most important difference is that for
S 6= diag(1, 1, 1) the box lengths of S

[
− 1/2, 1/2

)3 do not match the period lengths
of the trigonometric polynomial (3.1). We will see that this fact offers some oppor-
tunities for adapted algorithm design and requires special attention when it comes
to parallelization. For example, the pruned NDFT naturally appears when we want
to evaluate Fourier approximations of non-periodic functions, cf. Section 4.4.7.
The NDFT (3.2) can be written as a matrix-vector product

f = AN,m̂f̂ ,

3.2 The three-dimensional NFFT algorithm 57

with the vectors f := (fj)j∈N ∈ CN , f̂ := (f̂k)k∈Im̂
∈ C|Im̂|, and the nonequispaced

Fourier matrix AN,m̂ := (e−2πikTxj)j∈N ; k∈Im̂
∈ CN×|Im̂|. For the sake of simplicity,

we write the multi-index k in order to address elements of vectors and matrices at
the linearized index k2 + m̂2k1 + m̂2m̂1k0, i.e., the multi-indexes k are ordered in
row-major format. In general, the matrix AN,m̂ is not square. Even for the square
case, it is usually not orthogonal and |Im̂|−1AH

N,m̂AN,m̂ does not yields the identity
matrix in contrast to the equispaced case. Therefore, the definition of an inverse
NFFT is not canonical, but can be realized, e.g., by an iterative conjugate gradient
method; cf. [88]. Nevertheless, it is customary to define the Adjoint Nonequispaced
Discrete Fourier Transform (NDFTH) by the matrix-vector product

ĥ = AH
N,m̂f ,

that is equivalent to the sums

ĥk =
N∑

j=1
fje+2πikTxj , k ∈ Im̂, (3.3)

with the vector ĥ := (ĥk)k∈Im̂
. Furthermore, applications of the NDFT in particle

simulation motivate the calculation of the gradients

∇fj := ∇f(xj) =
∑

k∈Im̂

f̂k∇e−2πikTxj = −2πi
∑

k∈Im̂

f̂kke−2πikTxj , j ∈ N . (3.4)

This can be written as the matrix-vector product

∇f = ∇AN,m̂f̂ ,

with the formal definition of the vector ∇f := (∇fj)j∈N ∈ C3N , and the matrix
∇A3N,m̂ :=

(
∇e−2πikTxj

)
j∈N ; k∈Im̂

∈ C3N×|Im̂|. Hereby, each gradient spans over
three successive rows of the vector ∇f and the matrix ∇A3N,m̂, respectively.
In the following, we give a brief overview of fast approximate algorithms for com-

puting the NDFT (3.2), its adjoint (3.3), and the gradient NDFT (3.4). We denote
the class of fast algorithms for computing the NDFT as Nonequispaced Fast Fourier
Transforms (NFFT). Analogously, fast algorithms for computing the NDFTH will
be called Adjoint Nonequispaced Fast Fourier Transform (NFFTH).

3.2 The three-dimensional NFFT algorithm
In this section we give a brief overview of mathematical theory and ideas behind the
NFFT based on [121, 114, 84]. This will also be the starting point of our parallel

58 3 Parallel nonequispaced fast Fourier transforms

algorithms in Section 3.3. For alternative NFFT approaches we refer to the nice
overview in [84, Appendix D].
Assume an FFT mesh sizeM = (M0,M1,M2)T ∈ 2N3 that fulfills the component-

wise inequalityM ≥ m̂ in comparison to the NDFT mesh size m̂ in (3.2). We define
the shifted multi-index set of possible frequencies as IM := {−M0/2, . . . ,M0/2− 1}×
{−M1/2, . . . ,M1/2− 1}×{−M2/2, . . . ,M2/2− 1} and the total number of frequencies is
given by |IM | = M0 ·M1 ·M2. Let ψ : R→ R be a smooth window function, i.e., a
function that is well localized in spatial domain and in frequency domain. Moreover,
its continuous Fourier transform ψ̂(v) :=

∫
R ψ(x)e+2πivxdx, v ∈ Rmay exist and its 1-

periodic version ψ̃ : R→ R, ψ̃(x) :=
∑

r∈Z ψ(x+r) may have a uniformly convergent
Fourier series. Then, we define a multivariate window function ϕ : R3 → R by the
tensor product ϕ (x) := ψ̃ (x0) ψ̃ (x1) ψ̃ (x2). Therefore, the Fourier coefficients of ϕ
are given by

ϕ̂k :=
∫
[
−1/2,1/2

)3 ϕ(x)e+2πikTxdx = ψ̂(k0)ψ̂(k1)ψ̂(k2), k = (k0, k1, k2)T ∈ Z3,

and the gradient ∇ϕ can be easily computed by

∇ϕ(x0, x1, x2) =
(
ψ̃′(x0)ψ̃(x1)ψ̃(x2), ψ̃(x0)ψ̃′(x1)ψ̃(x2), ψ̃(x0)ψ̃(x1)ψ̃′(x2)

)T
. (3.5)

A selection of possible window functions will be given later on in Section 3.2.1.
We follow the general approach of [121, 114] and approximate the trigonometric

polynomial f by a linear combination of translated window functions

f(x) ≈ s̆(x) :=
∑

l∈IM

glϕ(x− l�M−1). (3.6)

Hereby, we used the reciprocal M−1 :=
(
M−1

0 ,M−1
1 ,M−1

2
)T of a vector M with

nonzero components and l�M−1 :=
(
l0M

−1
0 , l1M

−1
1 , l2M

−1
2
)T denotes a component-

wise vector product. A straightforward Fourier series expansion yields

s̆(x) =
∑

k∈IM

ĝkϕ̂ke−2πikTx +
∑

k∈IM

∑

r∈Z3\{0}
ĝkϕ̂k+r�Me−2πi(k+r�M)Tx, (3.7)

with the M -periodic discrete Fourier coefficients

ĝk =
∑

l∈IM

gle+2πikT(l�M−1), k ∈ Z3. (3.8)

At a first glance, a comparison of coefficients in (3.1) and (3.7) suggests to set ĝk in
compliance to [121, 114, 84] as

ĝk :=
{
f̂kϕ̂

−1
k for k ∈ Im̂,

0 for k ∈ IM \ Im̂.
(3.9)

3.2 The three-dimensional NFFT algorithm 59

Thereby, we assume a fast decay of ϕ̂k such that the terms for k /∈ IM in (3.7) are
negligible. However, this is not the only possibility for setting ĝk. In Section 3.2.4 we
will return to the question of how to choose ĝk in an optimal way. For the moment
we remain with this simple scheme and define the first step of our NFFT algorithm,
namely the deconvolution in Fourier space

ĝk = f̂kd̂k, k ∈ Im̂, with d̂k := ϕ̂−1
k (3.10)

and we implicitly assume ĝk = 0, for k ∈ IM \ Im̂. Obviously, this step consists of
|Im̂| multiplications.
Once the coefficients ĝk, k ∈ Im̂, are given, we can recover the coefficients gl,

l ∈ IM , from (3.8) by a three-dimensional pruned FFT with shifted index sets

gl = 1
|IM |

∑

k∈Im̂

ĝke−2πikT(l�M−1), l ∈ IM , (3.11)

cf. Algorithm 2.3. Thereby, the pruned FFT input size is given by m̂ and the FFT
mesh size is equal to M . This will be the second step of our NFFT algorithm. It
requires O(|IM | log |IM |) arithmetic operations.
Finally, we want to truncate the sums in (3.6) due to the fast decay of the window

function ϕ in real space. Therefore, we introduce the multi-index set

IM ,cϕ (x) :=
{
l ∈ IM : ∃z ∈ Z3 with − cϕ1 ≤ l + z −M � x ≤ cϕ1

}

that collects all the indexes where the 1-periodic window function ϕ(· −M � x)
is mostly concentrated. Note that we abbreviate the vector 1 := (1, 1, 1)T, all
inequalities between vectors are understood component-wise, and cϕ ∈ N is a small
window cutoff parameter, which depends on the particular choice of the window
function. Now, we can write an approximation of (3.6) in terms of the discrete
convolution sum

f(xj) ≈ sj :=
∑

l∈IM,cϕ (xj)

gl ϕ
(
xj − l�M−1) , j ∈ N . (3.12)

Each sum in (3.12) has at most (2cϕ + 1)3 terms since the window function ϕ
is sampled only in the neighborhood of each node xj. The discrete convolution
step (3.12) represents the last step of our NFFT algorithm and requires O((2cϕ +
1)3N) arithmetic operations. In summary, the three NFFT approximation steps
(3.10), (3.11) and (3.12) can be written altogether as

f(x) ≈
∑

l∈Im,cϕ (xj)

(∑

k∈Im̂

f̂kd̂k
|IM |

e−2πikT(l�M−1)
)
ϕ
(
xj − l�M−1) . (3.13)

60 3 Parallel nonequispaced fast Fourier transforms

We point out that the approximation error introduced by the NFFT decomposes
into an aliasing error due to (3.10) and a truncation error due to (3.12); see [114,
84] for details. Most important, for appropriate choice of window functions ϕ the
approximation error decays exponentially which makes the NFFT a computational
efficient algorithm. Error estimates for the multivariate NFFT were presented in
[46]; see also [84, Appendix C].

Remark 3.1. An alternative viewpoint on the derivation of the NFFT is used in
the context of particle-mesh Ewald methods [37, 48]. Thereby, the authors start
with an approximation of the complex exponential in the form

e−2πikTx ≈ 1
|IM |ϕ̂k

∑

l∈IM,cϕ (x)

ϕ
(
x− l�M−1) e−2πikT(l�M−1). (3.14)

Plugging (3.14) into the trigonometric polynomial (3.1) directly leads to (3.13). �

There are also several fast ways for computing the gradients (3.4). Here we con-
centrate on the two most common ones. The first approach is to apply one NFFT for
each component of the vector sum (3.4). This is also known as ik-derivative in the
community of particle-mesh algorithms, cf. [70, 38]. The resulting approximation is
denoted as gradient NFFT with derivative in Fourier space (ik-NFFT) and reads as

∇f(x) ≈ −2πi
∑

l∈Im,cϕ (xj)

(∑

k∈Im̂

k
f̂kd̂k
|IM |

e−2πikT(l�M−1)
)
ϕ
(
xj − l�M−1) . (3.15)

Note that this approach triples the number of Fourier transforms and discrete con-
volutions in comparison to the computation of the function values by (3.13).
Alternatively, one can substitute the discrete convolution step (3.12) of the NFFT

by
∇f(xj) ≈ ∇sj :=

∑

l∈IM,cϕ (xj)

gl∇ϕ
(
xj − l�M−1) , j ∈ N . (3.16)

This approximation is also known as analytic differentiation [48]. Therefore, we
denote the resulting approximation of the gradient NDFT

∇f(x) ≈
∑

l∈Im,cϕ (xj)

(∑

k∈Im̂

f̂kd̂k
|IM |

e−2πikT(l�M−1)
)
∇ϕ

(
xj − l�M−1) . (3.17)

as gradient NFFT with analytic derivative (ad-NFFT). The main advantage of this
approach is that it only requires one FFT for evaluating the trigonometric polyno-
mial and its gradient, while the ik-NFFT requires 3 additional FFTs for computing
the gradient.

3.2 The three-dimensional NFFT algorithm 61

So far we did not take into account that the nodes are located in the possibly
truncated unit cube S

[
− 1/2, 1/2

)3. In the following, we present an adaption of the
NFFT algorithm that offers reduced memory consumption and arithmetic operations
whenever the truncation is sufficiently large. In general, the computation of the
convolution sums (3.12) and (3.16) requires all FFT outputs gl, l ∈ IM . However,
the index set of necessary FFT outputs can be substantially reduced, if we have the
more restrictive assumption x ∈ S

[
− 1/2, 1/2

)3 ⊂
[
− 1/2, 1/2

)3. Therefore, we define
a grid size m = (m0,m1,m2)T ∈ 2N with

mt := min
{
Mt, 2

⌈1
2StMt + cϕ

⌉}
, t = 0, 1, 2. (3.18)

Then, one can easily verify that the FFT outputs gl, l ∈ Im, are sufficient to
compute any convolution sum appearing in (3.12) and (3.16). This fact is illustrated
in Figure 3.1. Therefore, we can state the FFT step (3.11) more precisely by the
following pruned FFT with shifted index sets

gl = 1
|IM |

∑

k∈Im̂

ĝke−2πikT(l�M−1), l ∈ Im. (3.19)

By definition of m this becomes equal to (3.11) whenever the node scaling matrix
S ≈ I3 is close to the identity matrix. The additional pruning of the FFT outputs
can already give a noticeable speedup. Even more, it is a mandatory prerequi-
site for parallel scalability as we will discuss in Section 3.3. Figure 3.1 shows a
two-dimensional illustration of the additional condition xj ∈ S

[
− 1/2, 1/2

)3 and its
implications on the serial computation of the convolution sums (3.12). Furthermore,
we present a two-dimensional illustration of the adapted serial NFFT algorithm in
Figure 3.2.
In matrix-vector notation, the NFFT approximation idea can be summarized as

AN,m̂f̂ ≈ CN,mF̃m,m̂Dm̂f̂ , (3.20)

where AN,m̂ denotes a nonequispaced Fourier matrix and the matrix factors are
defined as following. The deconvolution step (3.10) corresponds to the real valued
|Im̂| × |Im̂| diagonal matrix

Dm̂ := diag
(
|IM |−1d̂k

)
k∈Im̂

with d̂k = ϕ̂−1
k . (3.21)

The matrix representation of the pruned FFT with shifted index sets (3.11) is given
by F̃m,m̂ := (e−2πik(l�M−1))l∈Im;k∈Im̂

, i.e., a Fourier matrix of original size M that
was shifted and truncated to size |Im| × |Im̂|. Note that the prefactor |IM |−1

from (3.19) moved into the definition of the diagonal matrix Dm̂. Furthermore,
CN,m denotes the sparse, real valued N × |Im| matrix

CN,m := (cj,l)j∈N ; l∈Im
, cj,l :=

{
ϕ
(
xj − l�M−1) : l ∈ IM ,cϕ(xj)

0 : l /∈ IM ,cϕ(xj)
(3.22)

62 3 Parallel nonequispaced fast Fourier transforms

[−0.5, 0.5)[−0.5, 0.5)

s j

x 0

g l

M 1
M 0

M
� x 0

convo-
lution

[−0.5, 0.5)[−0.5, 0.5)

s j
S 0 S 1

x 0

g l

M 1
M 0

m 1m 0

M
� x 0

convo-
lution

Figure 3.1: Two-dimensional illustration of the serial convolution workflow according
to (3.12) for node scaling matrix S = diag(1, 1) on the left and node
scaling matrix S = diag (3/8, 3/8) on the right. For both illustrations we
chose N = 50 nonequispaced nodes, FFT size M = (16, 16)T, pruned
FFT output sizem = (8, 8)T, and window cutoff parameter cϕ = 1. The
computation of the convolution sums (3.12) is illustrated at the example
of a single black colored node x0 = (−2/16,−3/16)T. A red rectangle
indicates the support of the truncated window function centered at node
x0. Note that each sum sj depends on at most (2cϕ + 1)2 grid values gl.
In general, for every grid value gl there may exist a node xj that depends
on gl for the computation of the convolution sum sj. On the right hand
side, no grid value gl outside the gray colored border takes part in the
computation of the convolution sums sj. Therefore, it is sufficient to
compute the innermost m0 × m1 grid values gl. Note that the gray
border of width cϕ results from the support of the window function that
may exceed the range of nodes.

3.2 The three-dimensional NFFT algorithm 63

s j

[−0.5, 0.5)[−0.5, 0.5)

S 0 S 1

x 0

g l

M 1
M 0

m 1m 0

M
� x 0

0
0

0
0

0
0

0
0

00
00M 1

M 0

f̂ k̂d
k

|I M
|

m̂ 1m̂ 0

f̂ k over-
sampling

deconvo-
lution

FFT

convo-
lution

Figure 3.2: Two-dimensional illustration of the serial NFFT workflow for m̂ =
(8, 8)T given Fourier coefficients, FFT size M = (16, 16)T, pruned FFT
output size m = (8, 8)T, node scaling matrix S = diag(3/8, 3/8), N = 50
nonequispaced nodes, and window cutoff parameter cϕ = 1. At the
beginning, the given Fourier coefficients f̂k are point-wise multiplied ac-
cording to the deconvolution formula (3.10) and mapped into an FFT
array of size M . Afterward, an FFT of size M is performed according
to (3.11). The computation of the convolution sums (3.12) is illustrated
at the example of a single black colored node x0 = (−2/16,−3/16)T. A
red rectangle indicates the support of the truncated window function
centered at node x0. Note that (2cϕ + 1)2 grid points are sufficient to
compute each convolution sum sj.

64 3 Parallel nonequispaced fast Fourier transforms

that represents the discrete convolution step (3.12). From this matrix representation
we get immediately an approximate adjoint NFFT by

AH
N,m̂f ≈ Dm̂F̃H

m,m̂CT
N,mf . (3.23)

Analogously, the ad-NFFT (3.17) is given by

∇A3N,m̂f̂ ≈ ∇C3N,mF̃m,m̂Dm̂f̂ (3.24)

with the sparse, real valued 3N × |Im| matrix ∇C3N,m := (∇cj,l)j∈N ; l∈Im
,

∇cj,l :=
{
∇ϕ

(
xj − l�M−1) : l ∈ IM ,cϕ(xj),

0 : l /∈ IM ,cϕ(xj).
(3.25)

Note that this matrix representation differs from the NFFT only in the multiplication
with the last matrix CN,m or ∇C3N,m, respectively. Since the window function ϕ
is defined as a tensor product, the evaluation of function values for both matrices
can be easily combined. As we can see in (3.5) for a given node x = (x0, x1, x2)T ∈[
− 1/2, 1/2

)3 it is sufficient to evaluate the one-dimensional window function ψ̃ and
its derivative ψ̃′ at the three coordinates x0, x1, x2.
The ik-NFFT (3.15) can be written as

∇A3N,m̂f̂ ≈
(

CN,mF̃m,m̂ ⊗ I3

)
K3m̂,m̂Dm̂f̂ (3.26)

with the block-diagonal matrix

K3m̂,m̂ := (−2πikδk−l)k∈Im̂; l∈Im̂
.

Hereby, δk denotes the Kronecker symbol that equals 1 for k = 0 and becomes zero
otherwise.

3.2.1 Window functions
To keep the approximation error small, several window functions ϕ with good lo-
calization in spatial and frequency domain have been proposed in the literature. In
the following, we give an overview of five univariate window functions together with
their first derivative and their continuous Fourier transform. Thereby, cϕ ∈ N is a
given window cutoff parameter and Wp denotes the centered cardinal B-Spline of
order p. The cardinal sine function is defined by sinc(x) := sin(x)/x for x 6= 0 and
sinc(0) := 1. For the sake of simplicity, we also introduce the analogue definition
sinhc(x) := sinh(x)/x for x 6= 0 and sinhc(0) := 1. I0 and I1 denote the zeroth and
first order modified Bessel function of the first kind, respectively. Furthermore, for
a given number of Fourier coefficients m̂t and FFT mesh size Mt along dimension
t = 0, 1, 2, we define the oversampling factors σt := Mt/m̂t ∈ R.

3.2 The three-dimensional NFFT algorithm 65

1. For a shape parameter bt = 2σt
2σt−1

cϕ
π

the dilated Gaussian window [42, 121, 41]
is given by

ψt(x) = (πbt)−1/2 exp
(
−(Mtx)2/bt

)
, (3.27)

ψ′t(x) = −2M2
t xψt(x)/bt,

ψ̂t(k) = M−1
t exp

(
−(πk/Mt)2bt

)
.

2. The dilated B-Spline window [26, 121] is given by

ψt(x) = W2cϕ(Mtx), (3.28)
ψ′t(x) = Mt

(
W2cϕ−1(Mtx+ 1/2)−W2cϕ−1(Mtx− 1/2)

)
,

ψ̂t(k) = M−1
t sinc2cϕ (kπ/Mt) .

3. For a shape parameter bt = 2σt−1
2σt

π
cϕ
Mt the dilated Sinc window is given by

ψt(x) = bt
π

sinc2cϕ (btx) , (3.29)

ψ′t(x) = bt
π

{
0 for x = 0,
2cϕ
x

(cos(btx)− sinc(btx)) sinc2cϕ−1 (btx) otherwise,

ψ̂t(k) = W2cϕ (kπ/bt) .

4. For a shape parameter bt = π(2− 1
σt

) the dilated Bessel-I0 window [76] is given
by

ψt(x) = 1
2

{
I0

(
bt

√
c2
ϕ −M2

t x
2
)

for |Mtx| ≤ cϕ,

0 otherwise,
(3.30)

ψ′t(x) = −1
2

btM
2
t x
(
c2
ϕ −M2

t x
2)−1/2 I1

(
bt

√
c2
ϕ −M2

t x
2
)

for |Mtx| < cϕ,

1
2b

2
tMtcϕ for |Mtx| = cϕ,

0 otherwise,

ψ̂t(k) = cϕ
Mt

sinhc
(
cϕ
√
b2
t − (2πk/Mt)2

)
for |k| < Mt

(
1− 1

2σt

)
,

sinc
(
cϕ
√

(2πk/Mt)2 − b2
t

)
otherwise.

5. For a shape parameter bt = π(2− 1
σt

), and the definitions u1(x) := cosh(x)−
sinhc(x), u2(x) := cos(x)− sinc(x) the dilated Kaiser-Bessel window [56, 112,

66 3 Parallel nonequispaced fast Fourier transforms

96] is given by

ψt(x) = bt
π

sinhc
(
bt

√
c2
ϕ −M2

t x
2
)

for |Mtx| < cϕ,

sinc
(
bt

√
M2

t x
2 − c2

ϕ

)
otherwise,

(3.31)

ψ′t(x) = bt
π

M2
t x

M2
t x

2 − c2
ϕ

u1

(
bt

√
c2
ϕ −M2

t x
2
)

for |Mtx| < cϕ,

0 for |Mtx| = cϕ,

u2

(
bt

√
M2

t x
2 − c2

ϕ

)
otherwise,

ψ̂t(k) = 1
Mt

{
I0

(
cϕ
√
b2
t − (2πk/Mt)2

)
for |k| ≤Mt

(
1− 1

2σt

)
,

0 otherwise.

Note that (3.28) and (3.29) as well as (3.30) and (3.31) are closely related due to
an interchange of time and frequency domain. Furthermore, we see that (3.28) and
(3.30) have compact support in time domain while (3.29) and (3.31) have compact
support in frequency domain. Note that the choice of the shape parameter b is
nontrivial and can be further optimized if the input Fourier coefficients f̂k in (3.2)
provide fast decay [102].
In the case of the Gaussian window function (3.27), the evaluations of the ex-

ponential function exp() can be reduced substantially by fast Gaussian gridding;
see [61] and [84, Appendix C]. However, our numerical experiments showed that the
evaluation of the Gaussian window can be realized even more efficiently by inter-
polation from short precomputed interpolation tables as described in the following.
Another benefit of the interpolation approach is that it is not restricted to the
Gaussian window. This means, beside a short precomputation of one-dimensional
function value tables, all window functions can be evaluated with the same efficiency
that even competes with fast Gaussian gridding.
In order to reduce the computational cost of the evaluation of the window func-

tions, we use tensor structure based precomputation and interpolation from look-up
tables [84]. Therefore, we reduce the computation of the (2cϕ+ 1)3 window function
values per node in (3.12) to 3(2cϕ+1) interpolations of the one-dimensional window
function ψ̃ and (2cϕ + 1)3 multiplications in order to compute the tensor products
ϕ(x− l �M−1) = ψ̃(x0 − l0/M0)ψ̃(x1 − l1/M1)ψ̃(x2 − l2/M2). Note that the comput-
ing time of the window function with tensor product based interpolation does not
depend on the particular choice of the window function. In our implementation we
support constant, linear, quadratic, and cubic interpolation of the one-dimensional
window function ψ(x).
Additionally, it may be advantageous to precompute the Fourier coefficients ϕ̂k,

k ∈ Im̂. Hereby, we do not store the full set of |Im̂| Fourier coefficients. In-
stead, we exploit the tensor structure of the three-dimensional window function
ϕ̂k = ψ̂(k0)ψ̂(k1)ψ̂(k2), k = (k0, k1, k2)T ∈ Im̂ and store the precomputed m̂0 +

3.2 The three-dimensional NFFT algorithm 67

m̂1 + m̂2 Fourier coefficients of the one-dimensional window functions ψ̂t(kt), kt =
−m̂t/2, . . . , m̂t/2 − 1, t = 0, 1, 2. Therefore, the evaluation of the three-dimensional
Fourier coefficients requires 2|Im̂| multiplications.

3.2.2 Shifted NFFT
In this section we introduce a slightly modified NFFT approximation that we de-
note as shifted NFFT. This idea is closely connected to interlaced particle-mesh
algorithms, as we will see in Section 4.6. The starting point is the following substi-
tution in the definition (3.2) of the NDFT. The NDFT can be reinterpreted as the
evaluation of a trigonometric polynomial f s : R3 → C,

f s(y) :=
∑

k∈Im̂

f̂ s
ke−2πikTy, f̂ s

k := f̂keπikTM−1
, (3.32)

at the nonequispaced nodes yj := xj + 1/2M−1. Note that we are free to wrap
the nodes yj periodically into

[
− 1/2, 1/2

)3. The alternative formulation (3.32) is
of the exactly the same structure as (3.2). Therefore, we simply apply the same
approximation scheme as for the NFFT and, afterward, invert the substitutions.
This directly leads to the matrix notation of the shifted NFFT

AN,m̂ ≈ C̃N,mF̃m,m̂D̃m̂ (3.33)

with the following definitions of the matrix factors. Due to the substitution f̂ s
k =

eπikTM−1
f̂k, the deconvolution matrix (3.21) turns into the complex valued |Im̂| ×

|Im̂| diagonal matrix

D̃m̂ := diag
(
|IM |−1d̂keπikTM−1

)
k∈Im̂

with d̂k = ϕ̂−1
k .

The matrix representation F̃m,m̂ := (e−2πikT(l�M−1))l∈Im;k∈Im̂
of the pruned FFT

with shifted index sets is exactly the same as for the non-shifted NFFT. Furthermore,
C̃N,m := (c̃j,l)j∈N ; l∈Im

denotes a sparse, real valued N × |Im| matrix with

c̃j,l :=
{
ϕ
(
xj − l�M−1 + 1

2M
−1) : l ∈ IM ,cϕ(xj),

0 : l /∈ IM ,cϕ(xj)
(3.34)

that represents the discrete convolution step (3.12) with a window function ϕ shifted
by half the inverse mesh size 1/2M−1. From this matrix representation we get
immediately an adjoint shifted NFFT by

AH
N,m̂ ≈ D̃H

m̂F̃H
m,m̂C̃T

N,m.

68 3 Parallel nonequispaced fast Fourier transforms

Analogously, the shifted version of ik-NFFT reads as

∇A3N,m̂ ≈
(

C̃N,mF̃m,m̂ ⊗ I3

)
K3m̂,m̂D̃m̂

and shifted ad-NFFT can be written as

∇A3N,m̂ ≈ ∇C̃3N,mF̃m,m̂D̃m̂

with the sparse, real valued 3N × |Im| matrix ∇C̃3N,m := (∇c̃j,l)j∈N ; l∈Im
,

∇c̃j,l :=
{
∇ϕ

(
xj − l�M−1 + 1

2M
−1) : l ∈ IM ,cϕ(xj),

0 : l /∈ IM ,cϕ(xj).
(3.35)

It is instructive to have a look at the following alternative derivation of the shifted
NFFT. This time, we start with an ansatz similar to (3.6)

f(x) =
∑

k∈Im̂

f̂ke−2πikTx

≈ t̆(x) :=
∑

l∈IM

hlϕ(x− l�M−1 + 1
2M

−1) (3.36)

=
∑

k∈Im̂

ĥke−πikTM−1 ∑

r∈Z3

(−1)|r|ϕ̂k+r�Me−2πi(k+r�M)Tx. (3.37)

Hereby, |r| := r0 + r1 + r2 denotes the sum over all components of the vector r ∈ Z3

and ĥk :=
∑

l∈IM
hle+2πikT(l�M−1), k ∈ IM , are the M -periodic discrete Fourier

coefficients of hl. Note that the important difference between (3.6) and (3.36) is
the shift of all window functions by half the inverse mesh size 1/2M−1. Now, one
can repeat the derivation of the NFFT in an analogous manner to the non-shifted
case, cf. (3.7)–(3.12). Again, this leads to matrix representation (3.33) and we skip
the details. Our main benefit of this equivalent formulation (3.36) comes from the
Fourier series (3.37) of t̆(x). We will use it later on for the investigation of the
aliasing error.
On its own the shifted NFFT will not give any advantage over the non-shifted

NFFT. In the average case both algorithms will give the same approximation error,
see Section 3.2.4. This is not very surprising since for an arbitrary trigonometric
polynomial f(x) and nodes xj there is no reason to favor one of the two methods.
However, we will see in the next section that both methods can be coupled in a way
that indeed reduces the NFFT approximation error.

3.2.3 Interlaced NFFT
In the following, we couple the shifted and non-shifted NFFT in order to reduce the
approximation error significantly. The main idea comes from the fact that largest

3.2 The three-dimensional NFFT algorithm 69

approximation errors of the NFFT can be observed at nodes that maximize the
distance to their nearest mesh points. However, these nodes will be very close to a
mesh shifted by 1/2M−1 and the approximation error will be smaller with a shifted
NFFT for these nodes. Therefore, we conjecture that an average of the NFFT and
shifted NFFT results will give an improved approximation. We start with an ansatz

f(x) ≈ 1
2
(
s̆(x) + t̆(x)

)
,

that is an average of the NFFT ansatz (3.6) and the shifted NFFT ansatz (3.36).
The derivation of the corresponding NFFT algorithm is straightforward and we only
summarize its matrix notation

AN,m̂ ≈ 1
2

(
CN,mF̃m,m̂Dm̂ + C̃N,mF̃m,m̂D̃m̂

)
. (3.38)

Similar matrix factorizations result for the ik-NFFT and ad-NFFT. Again, the ad-
joint transform is derived by taking the adjoint of (3.38) and results in

AH
N,m̂ ≈ 1

2

(
Dm̂F̃H

m,m̂CT
N,m + D̃H

m̂F̃H
m,m̂C̃T

N,m

)
.

We call these algorithms interlaced NFFT and interlaced NFFTH, respectively. This
name is a tribute to [70, page 260 ff.], where interlacing was presented in the context
of particle-mesh methods. Thereby, a specialized version of interlacing was presented
under the name harmonic averaging. It turns out that this algorithm has a close
connection to the interlaced NFFTH. Details on this connection will be given in
Section 4.6. However, to the best of our knowledge this is the first time that inter-
lacing is applied in the context of the standalone NFFT modules. Furthermore, we
stress that [70, page 260 ff.] did not include some kind of (non-adjoint) interlaced
NFFT, ik-NFFT or ad-NFFT.

3.2.4 Optimized deconvolution
As already mentioned, the choice (3.10) of deconvolution d̂k = ϕ̂−1

k for the NFFT is
not unique. In the following, we derive distinct optimal choices of d̂k in the sense
that certain mean square aliasing errors are minimized.

Minimizing the mean square aliasing error of the NFFT

One may look for those coefficients ĝk that minimize the mean square aliasing error
of the NFFT approximation given by

‖f − s̆‖2
2 =

∫
[
−1/2,1/2

)3 |f(x)− s̆(x)|2dx

=
∑

k∈Im̂

|f̂k − ĝkϕ̂k|2 +
∑

k∈IM\Im̂

|ĝkϕ̂k|2 +
∑

k∈IM

∑

r∈Z3\{0}
|ĝkϕ̂k+r�M |2.

70 3 Parallel nonequispaced fast Fourier transforms

Note that this minimization does not include the truncation error that arises in the
NFFT approximation for window functions that miss compact support in real space.
Obviously, the choice ĝk = 0 is optimal for k ∈ IM \ Im̂. Furthermore, we assume
a linear dependency ĝk = d̂kf̂k with d̂k ∈ R and get

∑

k∈Im̂

|f̂k|2
(

1− 2d̂kϕ̂k + d̂2
k

∑

r∈Z3

ϕ̂2
k+r�M

)
.

Now computing the derivative with respect to d̂k gives the optimal values

d̂k = ϕ̂k

(∑

r∈Z3

ϕ̂2
k+r�M

)−1
, k ∈ Im̂. (3.39)

The same formula was also found in [41, Equation (A-7)] using a randomized ap-
proach. There the authors already mentioned that the approximation error resulting
from (3.10) and (3.39) are practically equivalent, since for typical window functions
the r = 0 terms dominate the aliasing sum in (3.39). These finding are supported
by recent numerical examples in [102, 103]. By the choice (3.39) the optimal mean
square aliasing error becomes

∑

k∈Im̂

|f̂k|2
(

1− ϕ̂2
k

(∑

r∈Z3

ϕ̂2
k+r�M

)−1
)
. (3.40)

Exactly the same results (3.39) and (3.40) apply for the shifted NFFT. Furthermore,
note that the same choice of optimal deconvolution (3.39) results for the NFFTH.

Minimizing the mean square aliasing error of the ad-NFFT

The ad-NFFT approximation can be written as

∇f(x) = −2πi
∑

k∈Im̂

f̂kke−2πikTx ≈ ∇s̆(x) =
∑

l∈IM

gl∇ϕ(x− l�M−1).

and its Fourier series is given by

∇s̆(x) = −2πi
∑

k∈Z3

kĝkϕ̂ke−2πikTx

with the M -periodic discrete Fourier coefficients ĝk =
∑

l∈IM
gle+2πikT(l�M−1), k ∈

Z3. This time, we want to compute those coefficients ĝk that minimize the mean
square aliasing error of the ad-NFFT approximation given by

∫
[
−1/2,1/2

)3 ‖∇f(x)−∇s̆(x)‖2dx

= 4π2
∑

k∈Im̂

‖k‖2|f̂k − ĝkϕ̂k|2 + 4π2
∑

k∈Im̂

∑

r∈Z3\{0}
‖k + r �M‖2|ĝkϕ̂k+r�M |2.

3.2 The three-dimensional NFFT algorithm 71

Hereby, we already set ĝk = 0 for k ∈ IM \ Im̂. Assuming a linear dependency
ĝk = d̂kf̂k with d̂k ∈ R for all k ∈ Im̂ we get

4π2
∑

k∈Im̂

|f̂k|2
(
‖k‖2 − 2d̂kϕ̂k‖k‖2 + d̂2

k

∑

r∈Z3

ϕ̂2
k+r�M‖k + r �M‖2

)
,

which becomes optimal for

d̂k = ϕ̂k‖k‖2
(∑

r∈Z3

ϕ̂2
k+r�M‖k + r �M‖2

)−1
. (3.41)

In the case of a fast decreasing window function the optimal value (3.41) is dominated
by the r = 0 terms and will be close to the simpler deconvolution (3.10). With the
optimal choice (3.41) the mean square ad-NFFT aliasing error becomes

4π2
∑

k∈Im̂

|f̂k|2‖k‖2

(
1− ϕ̂2

k‖k‖2
(∑

r∈Z3

ϕ̂2
k+r�M‖k + r �M‖2

)−1
)
. (3.42)

Exactly the same results (3.41) and (3.42) apply for the shifted ad-NFFT.

Minimizing the mean square aliasing error of the ik-NFFT

For t = 0, 1, 2 we can write the ik-NFFT approximation in the t-th vector component
as

fxt(x) := ∂

∂xt
f(x) = −2πi

∑

k∈Im̂

f̂kkte−2πikTx ≈ s̆t(x) = −2πi
∑

l∈IM

gl,tϕ(x−l�M−1).

Thereby, the Fourier series of s̆t(x) is given by

s̆t(x) = −2πi
∑

k∈Z3

ĝk,tϕ̂ke−2πikTx

with the M -periodic discrete Fourier coefficients ĝk,t :=
∑

l∈IM
gl,te+2πikT(l�M−1),

k ∈ Z3. In the following, we want to minimize the mean square aliasing error of the
ik-NFFT approximation for each component t = 0, 1, 2

∫
[
−1/2,1/2

)3 |fxt(x)− s̆t(x)|2dx

= 4π2
∑

k∈Im̂

|ktf̂k − ĝk,tϕ̂k|2 + 4π2
∑

k∈IM

∑

r∈Z3\{0}
|ĝk,tϕ̂k+r�M |2.

72 3 Parallel nonequispaced fast Fourier transforms

Again, we already set ĝk,t = 0 for k ∈ IM \ Im̂ and assume a linear dependency
ĝk,t = d̂kktf̂k with d̂k ∈ R for all k ∈ Im̂. Then, we get

4π2
∑

k∈Im̂

k2
t |f̂k|2

(
1− 2d̂kϕ̂k + d̂2

k

∑

r∈Z3

ϕ̂2
k+r�M

)

which becomes optimal for

d̂k = ϕ̂k

(∑

r∈Z3

ϕ̂2
k+r�M

)−1
. (3.43)

Note that the optimal value d̂k is equal for all dimensions t = 0, 1, 2. Especially, it
is equal to the optimal deconvolution coefficients (3.39) of the plain NFFT. In the
case of a fast decreasing window function the optimal value (3.43) is dominated by
the r = 0 terms and will be close to the simpler deconvolution (3.10). With the
optimal choice (3.43) the minimal mean square ik-NFFT aliasing error becomes

4π2
2∑

t=0

∑

k∈Im̂

k2
t |f̂k|2

(
1− ϕ̂2

k

(∑

r∈Z3

ϕ̂2
k+r�M

)−1
)
. (3.44)

Exactly the same results (3.43) and (3.44) apply for the shifted ik-NFFT.

Minimizing the mean square aliasing error of the interlaced NFFT

We start with the Fourier series of the NFFT and shifted NFFT approximations
given in (3.7) and (3.37) as

s̆(x) =
∑

k∈Im̂

ĝk
∑

r∈Z3

ϕ̂k+r�Me−2πi(k+r�M)Tx,

t̆(x) =
∑

k∈Im̂

ĥke−πikTM−1 ∑

r∈Z3

(−1)|r|ϕ̂k+r�Me−2πi(k+r�M)Tx.

Hereby, |r| := r0 + r1 + r2 denotes the sum over all component of the vector r ∈ Z3.
Motivated by the structure of the optimal NFFT deconvolution (3.39) we make the
ansatz ĝk = d̂kf̂k, ĥk = d̂keπikTM−1

f̂k with a real coefficient d̂k. Then, the mean

3.2 The three-dimensional NFFT algorithm 73

square aliasing error of the interlaced NFFT is given by
∫
[
−1/2,1/2

)3 |f(x)− 1
2 s̆(x)− 1

2 t̆(x)|2dx

=
∑

k∈Im̂

|f̂k − 1
2(ĝk + ĥke−πikTM−1)ϕ̂k|2

+
∑

k∈Im̂

∑

r∈Z3\{0}
|12(ĝk + ĥke−πikTM−1(−1)|r|)ϕ̂k+r�M |2

=
∑

k∈Im̂

|f̂k|2
(

1− d̂kϕ̂k
)2

+
∑

k∈Im̂

|f̂k|2d̂2
k

∑

r∈Z3\{0}

1
4
[
(1 + (−1)|r|)

]2
ϕ̂2
k+r�M

=
∑

k∈Im̂

|f̂k|2
(

1− 2ϕ̂kd̂k + d̂2
k

∑

r∈Z3

1
2
[
1 + (−1)|r|

]
ϕ̂2
k+r�M

)
.

Hereby, we set ĝk = 0 for all k ∈ IM \Im̂ in the second line and used
[
1 + (−1)|r|

]2 =
2
[
1 + (−1)|r|

]
in the last line. Now, optimization of d̂k for each k ∈ Im̂ results in

d̂k = ϕ̂k
(∑

r∈Z3

1
2
[
1 + (−1)|r|

]
ϕ̂2
k+r�M

)−1
. (3.45)

With this choice of deconvolution the aliasing error reaches its minimal value

∑

k∈Im̂

|f̂k|2
(

1− ϕ̂2
k

(∑

r∈Z3

1
2
[
1 + (−1)|r|

]
ϕ̂2
k+r�M

)−1
)
.

By comparison to the optimal aliasing error (3.40) of the NFFT we see that only the
aliasing sum in the denominator changed. While the terms for even |r| = r0 +r1 +r2
coincide for both cases, the terms for odd |r| vanish in the interlaced case. Therefore,
the term ϕ̂2

k

(∑
r∈Z3 1/2

[
1 + (−1)|r|

]
ϕ̂2
k+r�M

)−1 is closer to 1 and the approximation
error is smaller for the interlaced NFFT. Again, for fast decreasing windows the
r = 0 term will dominate the aliasing sum and a good approximation of the optimal
deconvolution coefficients (3.45) is given by the simpler choice (3.10).
Analogously, we can derive the optimal deconvolution coefficients for the comput-

ing the gradients with interlaced NFFT. As we have already seen before, the optimal
deconvolution of the NFFT and ik-NFFT are the same. This is also the case for
the interlaced NFFT and interlaced ik-NFFT. In contrast, the mean square aliasing
error of the interlaced ad-NFFT is minimized for

d̂k = ϕ̂k‖k‖2
(∑

r∈Z3

1
2
[
1 + (−1)|r|

]
ϕ̂2
k+r�M‖k + r �M‖2

)−1
. (3.46)

74 3 Parallel nonequispaced fast Fourier transforms

3.3 The parallel three-dimensional NFFT
In this section we describe a parallel algorithm for computing the three-dimensional
NFFT on massively parallel, distributed memory architectures. The parallel imple-
mentation of this algorithm is based on the massage passing interface (MPI) [100].
In principle, our Parallel Nonequispaced Fast Fourier Transform (PNFFT) frame-
work combines the serial three-dimensional NFFT algorithm from Section 3.2 with
a three-dimensional block domain decomposition, cf. Section 2.4.4.

3.3.1 Parallel data decomposition
In the following, we describe parallel algorithms for computing the NDFT and
NFFT. Thereby, we assume a parallel hardware architecture that can be described
as a three-dimensional process mesh PP := {0, . . . , P0 − 1} × {0, . . . , P1 − 1} ×
{0, . . . , P2 − 1} of size P = (P0, P1, P2)T ∈ N3. Each parallel process will be iden-
tified with its corresponding multi-index r = (r0, r1, r2)T ∈ PP. For every process
r ∈ PP we define the multi-index set

I rm̂,P =
{

(k0, k1, k2)T ∈ Im̂ : 0 ≤ kt − rt
⌈
m̂t
Pt

⌉
+ m̂t

2 <
⌈
m̂t
Pt

⌉
, t = 0, 1, 2

}
.

At the beginning of our parallel algorithm, we assume the NFFT input array of
|Im̂| complex numbers to be distributed among the three-dimensional process mesh
PP such that every process r ∈ PP holds the input data f̂k, k ∈ Irm̂,P , in its local
memory. Note that this corresponds to the three-dimensional block decomposition
[m̂0/P0]× [m̂1/P1]× [m̂2/P2] with default block sizes dm̂t/Pte as described in Section 2.4.4.

3.3.2 Description of the algorithm
The serial NFFT algorithm starts with the deconvolution step (3.10) that consists
of |Im̂| independent point-wise multiplications. These operations can be distributed
over all processes according to the parallel block decomposition, i.e., every process
r ∈ PP computes

ĝk = |IM |−1d̂kf̂k, k ∈ Irm̂,P . (3.47)

Figure 3.3 shows a two-dimensional illustration of the serial deconvolution workflow
according to (3.10) and the parallel deconvolution workflow according to (3.47).
The second stage (3.19) of the serial NFFT consists of a three-dimensional pruned

FFT with shifted index sets. Thereby, the FFT size equals M , the FFT inputs
are pruned to size m̂ ≤ M , and the FFT outputs are pruned to size m ≤ M .
Obviously, this stage can be performed in parallel with the PFFT Framework 2.5
that we derived in Section 2.5. The parallel pruned FFT with shifted index sets can

3.3 The parallel three-dimensional NFFT 75

0
0

0
0

0
0

0
0

00
00M 1

M 0

f̂ k̂d
k

|I M
|

m̂ 1m̂ 0

f̂ k over-
sampling

deconvo-
lution

m̂ 1
m̂ 0

f̂ k̂d
k

|I M
|

m̂ 1
m̂ 0

f̂ k
deconvo-
lution

Figure 3.3: Two-dimensional illustration of the serial deconvolution workflow accord-
ing to (3.10) on the left and the parallel deconvolution workflow accord-
ing to (3.47) on the right. We chose m̂ = (8, 8)T given Fourier coeffi-
cients, FFT sizeM = (16, 16)T, and a process mesh of size P = (4, 2)T.
The serial algorithm uses explicit mapping of the incoming Fourier coef-
ficients f̂k into an FFT array of sizeM filled with zeros. In contrast, our
parallel data distribution avoids the distribution of zeros and, therefore,
does not depend on the FFT size M .

be formally written as

gl =
∑

s∈PP

∑

k∈Is
m̂,P

ĝk e−2πikT(l�M−1), l ∈ Irm,P . (3.48)

Thereby, the formal order of summation was chosen to symbolize the parallel data
decomposition of our block distributed PFFT. The inner sum reflects that every
process s ∈ PP starts with calculations on its locally available input data block of
size [m̂0/P0]×[m̂1/P1]×[m̂2/P2]. The outer sum stands for the global communication that
must be performed somehow within the parallel FFT algorithm. After the parallel
FFT the output data gl, l ∈ Im, is distributed on the process mesh in a similar way
as the input data set, i.e., every process owns a block of [m0/P0] × [m1/P1] × [m2/P2]
complex numbers. Again, for every process r ∈ PP the multi-index set

I rm,P :=
{

(k0, k1, k2)T ∈ IM : 0 ≤ kt − rt
⌈
mt
Pt

⌉
+ mt

2 <
⌈
mt
Pt

⌉
, t = 0, 1, 2

}

collects all the multi-indexes of locally available data. At this point we see that
the ability of PFFT to handle pruned FFT with shifted index sets in a scalable
manner is mandatory for parallel NFFT. This feature is crucial in order to assure
a good load balancing of our parallel NFFT framework. It is important to recall
that PFFT is based on a two-dimensional domain decomposition, i.e., the three-
dimensional decomposed FFT input ĝk, k ∈ Irm̂,P , and output gl, l ∈ Irm,P is
redistributed before and after every parallel FFT. Therefore, an upper limit for the

76 3 Parallel nonequispaced fast Fourier transforms

g l

M 1
M 0

m 1m 0
0

0
0

0
0

0
0

0

00
00M 1

M 0

f̂ k̂d
k

|I M
|

FFT

≈ m1 + 2P1 cϕ

≈ m 0+ 2P 0c ϕ

gr l

m 1
m 0

g l

m̂ 1
m̂ 0

f̂ k̂d
k

|I M
|

pruned
PFFT

ghost
cells

Figure 3.4: Two-dimensional illustration of the serial FFT workflow according to
(3.11) on the left and the parallel pruned FFT workflow according to
(3.48) on the right. We chose m̂ = (8, 8)T given Fourier coefficients,
FFT size M = (16, 16)T, pruned FFT output size m = (8, 8)T, window
cutoff parameter cϕ = 1, and a process mesh of size P = (4, 2)T. A
naive block decomposition of the FFT on the left would lead to several
processes that own input blocks full of zeros before the FFT and output
blocks full with unnecessary data gl outside the gray colored border after
the FFT. Instead, our algorithm uses a parallel pruned FFT that works
with a block distribution of the necessary input and output data. Note
that the parallel NFFT needs to communicate a border of cϕ (green
colored) ghost cells according to (3.50) in order to prepare the parallel
convolution according to (3.51).

number of processes is given by the two-dimensional decomposition of the parallel
FFT. Figure 3.4 shows a two-dimensional illustration of the serial FFT workflow
according to (3.19) and the parallel pruned FFT workflow according to (3.48). Note
that the parallel ghost cell duplication step (3.50) within this illustration will be
explained in the next paragraphs.
The block data distribution of the FFT output gl, l ∈ Im, naturally implies a

block decomposition of the truncated unit cube S
[
− 1/2, 1/2

)3. This motivates the
definition of the index sets

N r
P :=

{
j ∈ N : ∃l ∈ Irm,P with l ≤M � xj < l + 1

}
(3.49)

for every process r ∈ PP. We assign all nodes xj, j ∈ N r
P , to process r ∈ PP. As

one can already see, heterogeneous distributions of the nodes xj, j ∈ N , may lead

3.3 The parallel three-dimensional NFFT 77

to imbalances in memory consumption and workload between the processes, which
is a typical problem of mesh based domain decompositions.
According to the discrete convolution step of the serial NFFT, we compute the

sums (3.12), which run over the local multi-index sets IM ,cϕ (xj), j ∈ N r
P . Our

choice (3.18) of parameter m assures IM ,cϕ (xj) ⊂ Im for every j ∈ N r
P , i.e., the

output of the pruned FFT is sufficient. But in general, not all sufficient data gl, l ∈
IM ,cϕ (xj), is located on a single process r. Therefore, we perform a communication
step in order to gather all the additionally needed data. This step equals a ghost cell
communication that was described in Section 2.8 and only involves nearest neighbor
communication. We introduce the multi-index sets

Irm,P ,cϕ := Irm,P + {−cϕ, . . . , cϕ}3

for all processes r ∈ PP. Thereby, the sum is understood as the common set oper-
ation A + B := {a + b : a ∈ A, b ∈ B}. However, we declare that all additions are
performed modulusM such that we never leave IM . Then, we symbolize the ghost
cell communication for every parallel process r ∈ PP by

grl = gl, l ∈ Irm,P ,cϕ . (3.50)

Note that every process must gather the data gl, l ∈ Irm,P ,cϕ \Irm,P , from its nearest
neighbors. In our implementation we use the ghost cell support of the PFFT software
library; cf. Section 2.8. Figure 3.4 also includes a two-dimensional illustration of
the parallel ghost cell communication according to (3.50). Finally, the sums

sj =
∑

l∈IM,cϕ (xj)

grl ϕ(xj − l�M−1), j ∈ N r
P , (3.51)

are calculated locally on all processes r ∈ PP. Figure 3.5 shows a two-dimensional
illustration of the serial convolution workflow according to (3.12) and the parallel
convolution workflow according to (3.51). Framework 3.1 summarizes the PNFFT
Framework in pseudo code and Figure 3.6 gives a summarizing two-dimensional
illustration of the serial and parallel NFFT workflow.
The Parallel Adjoint Nonequispaced Fast Fourier Transform (PNFFTH) can be

derived analogously from the serial NFFTH algorithm (3.23). Note that the trans-
posed counterpart of the ghost cell communication (3.50) is a sum over all ghost
cells, i.e.,

gl =
∑

s∈PP

gsl , l ∈ Irm,P .

The resulting pseudo code of the PNFFTH is given by Framework 3.2.

78 3 Parallel nonequispaced fast Fourier transforms

[−0.5, 0.5)[−0.5, 0.5)

s j
S 0 S 1

x j

g l

M 1
M 0

m 1m 0

M
� x j

convo-
lution

[−S 0 2,
S 0 2
)[− S12 , S12)

s j

≈ m1 + 2P1 cϕ

≈ m 0+ 2P 0c ϕ

gr l

convo-
lution

Figure 3.5: Two-dimensional illustration of the serial convolution workflow according
to (3.12) on the left and the parallel convolution workflow according
to (3.51) on the right. We chose FFT size M = (16, 16)T, pruned
FFT output size m = (8, 8)T, node scaling matrix S = diag (3/8, 3/8),
N = 50 nonequispaced nodes, window cutoff parameter cϕ = 1, and
a process mesh of size P = (4, 2)T. In both cases the computation
of the convolution sums (3.12) is illustrated at the example of a single
black circled node xj. The support of the truncated window function
centered at node xj is given by the red rectangle. Again, a small number
of (2cϕ + 1)2 (red circled) grid points is sufficient in order to compute
the convolution sum (3.12) corresponding to this node. In the parallel
case, the nonequispaced nodes have been block distributed according to
the block distribution of the FFT outputs gl. Every process is able to
compute the convolution sums sj for all locally available nodes xj from
the locally available data grl .

3.3 The parallel three-dimensional NFFT 79

Framework 3.1 PNFFT – Parallel NFFT for each process r ∈ PP

Input: xj ∈ S
[
− 1/2, 1/2

)3, j ∈ N r
P , and f̂k ∈ C, k ∈ Irm̂,P

. .
1: For k ∈ Irm̂,P compute ĝk ← |IM |−1d̂kf̂k.
2: For l ∈ Irm,P compute gl ←

∑
s∈PP

∑
k∈Is

m̂,P

ĝk e−2πikT(l�M−1) by a parallel, three-

dimensional, pruned FFT with shifted index sets.
3: For l ∈ Irm,P ,cϕ gather grl ← gl by a ghost cell communication.
4: For j ∈ N r

P compute sj ←
∑

l∈IM,cϕ (xj)
grl ϕ(xj − l�M−1).

5: For j ∈ N r
P compute ∇sj ←

∑
l∈IM,cϕ (xj)

grl ∇ϕ(xj − l�M−1).
. .
Output: Approximate function values sj ≈ fj and gradients ∇sj ≈ ∇fj, j ∈ N r

P

Arithmetic cost: O (|IM | log |IM |+ (2cϕ + 1)3N) + evaluations of window func-
tion

Framework 3.2 PNFFTH – Parallel NFFTH for each process r ∈ PP

Input: xj ∈ S
[
− 1/2, 1/2

)3, and fj ∈ C, j ∈ N r
P

. .
1: For l ∈ Irm,P ,cϕ compute grl ←

∑
{j∈N r

P :
l∈IM,cϕ

(xj)}

fj ϕ(xj − l�M−1).

2: For l ∈ Irm,P accumulate gl ←
∑
s∈PP

gsl by a transposed ghost cell communication.

3: For k ∈ Irm̂,P compute ĝk ←
∑
s∈PP

∑
l∈Is

m,P

gl e+2πikT(l�M−1) by an parallel, three-

dimensional, pruned FFTH with shifted index sets.
4: For k ∈ Irm̂,P compute ŝk ← |IM |−1d̂kĝk.
. .
Output: Approximate coefficients ŝk ≈ ĥk, k ∈ Irm̂,P
Arithmetic cost: O (|IM | log |IM |+ (2cϕ + 1)3N) + evaluations of window func-

tion

80 3 Parallel nonequispaced fast Fourier transforms

[−0.5, 0.5)[−0.5, 0.5)

s j
S 0 S 1

x j

g l

M 1
M 0

m 1m 0

M
� x j

0
0

0
0

0
0

0
0

00
00M 1

M 0

f̂ k̂d
k

|I M
|

m̂ 1m̂ 0

f̂ k over-
sampling

deconvo-
lution

FFT

convo-
lution

[−S 0 2,
S 0 2
)[− S12 , S12)

s j

≈ m1 + 2P1 cϕ

≈ m 0+ 2P 0c ϕ

gr l

m 1
m 0

g l

m̂ 1
m̂ 0

f̂ k̂d
k

|I M
|

m̂ 1
m̂ 0

f̂ k
deconvo-
lution

pruned
PFFT

ghost
cells

convo-
lution

Figure 3.6: Two-dimensional illustration of the serial NFFT workflow without
pruned FFT on the left and the parallel NFFT workflow of the PNFFT
Framework 3.1 on the right. We chose m̂ = (8, 8)T given Fourier coeffi-
cients, FFT size M = (16, 16)T, pruned FFT output size m = (8, 8)T,
node scaling matrix S = diag (3/8, 3/8), N = 50 nonequispaced nodes,
window cutoff parameter cϕ = 1, and a process mesh of size P = (4, 2)T.
For detailed explanations of the separate steps, see Figures 3.3, 3.4, and
3.5.

3.4 The parallel three-dimensional NDFT 81

3.4 The parallel three-dimensional NDFT
In Section 3.3.1 we defined a block domain decomposition that led to the PNFFT
Framework. Based on the same decomposition it is very simple to construct a paral-
lel algorithm for the direct computation of the NDFT. Although the NDFT yields a
worse complexity, it is still useful for comparison reasons and can be used to investi-
gate the approximation error of the NFFT for small problem sizes. Furthermore, the
NDFT will recur as a module of plain Ewald summation in Section 4.7.2. Therefore,
it comes handy to have algorithmic modules for the computation of the Parallel
Nonequispaced Discrete Fourier Transform (PNDFT) and its adjoint (PNDFTH).
Later on, these modules will be the main ingredient for parallel Ewald summation.
In principle, our parallel NDFT algorithm starts with a block decomposition of the

Fourier mesh and a partition of the nodes xj into |PP| disjoint subsetsN r
P ⊂ N . One

possibility to construct the subsets N r
P was given in (3.49) by a block decomposition

of the unit cube. However, the following two algorithms will not depend on this
particular choice of decomposition. The pseudo code of the parallel computation of
the NDFT is given by Module 3.3 and it operates as follows. After an initialization
the algorithm iterates over all |PP | processes. In each step, one process broadcasts
its local block of Fourier coefficients to all the other processes. Thereby, we denote
the locally buffered copy of coefficient f̂k on process r by f̂ rk . Afterward, each
process can locally compute the subtotal that belongs to this block of coefficients.
Note that this algorithm is perfectly scalable in terms of memory requirements and
arithmetic operations as long as |N r

P | is almost equal over all processes r ∈ PP .
However, the number of expensive broadcast communications increases with |PP |.
A similar parallel algorithm for computing the NDFTH is given by Module 3.4.

Loosely speaking it evolves from taking the adjoint of all the steps in the PNDFT
module. Thereby, the adjoint of a broadcast is a reduce summation. The parallel
scalability is exactly the same as for the PNDFT module.

3.5 The PNFFT software library
We implemented the Frameworks 3.1 and 3.2 for computing the parallel NFFT and
its adjoint as part of a publicly available software library called PNFFT. The de-
velopment code is distributed under a GNU General Public License and is freely
available within the Git repository [12]. As far as we know this is the first publicly
available implementation of nonequispaced fast Fourier transforms for massively par-
allel, distributed memory architectures. Note that a highly scalable butterfly algo-
rithm for the computation of Fourier integral operators has been presented in [115].
Although this algorithm contains the NFFT as a special case, its runtime is much
higher due to its generality. In the following, we highlight selected features of our
parallel NFFT implementation in order to give an impression of its flexibility.

82 3 Parallel nonequispaced fast Fourier transforms

Module 3.3 PNDFT – Parallel NDFT for each process r ∈ PP

Input: xj ∈
[
− 1/2, 1/2

)3, j ∈ N r
P , and f̂k ∈ C, k ∈ Irm̂,P

. .
1: for j ∈ N r

P do
2: sj ← 0
3: end for
4: for p ∈ PP do
5: Receive f̂ rk ← f̂k, k ∈ Ipm̂,P , from process p by a parallel broadcast.
6: for j ∈ N r

P do
7: sj ← sj +

∑
k∈Ip

m̂,P
f̂ rke−2πikTxj

8: ∇sj ← ∇sj − 2πi
∑

k∈Ip
m̂,P

f̂ rkke−2πikTxj

9: end for
10: end for
. .
Output: Function values sj ≈ fj and gradients ∇sj ≈ ∇fj, j ∈ N r

P

Arithmetic cost: O (|Im̂|N)

Module 3.4 PNDFTH – Parallel NDFTH for each process r ∈ PP

Input: xj ∈
[
− 1/2, 1/2

)3, and fj ∈ C, j ∈ N r
P

. .
1: for p ∈ PP do
2: for k ∈ Ipm̂,P do
3: ĥrk ←

∑
j∈N r

P
fje+2πikxj

4: end for
5: Compute ŝk ←

∑
s∈PP

ĥsk, k ∈ Ipm̂,P , on process p by a parallel reduce.
6: end for
. .
Output: Fourier coefficients ŝk ≈ ĥk,k ∈ Irm̂,P
Arithmetic cost: O (|Im̂|N)

3.6 Numerical results 83

• The application of PNFFT is split into a time consuming planning step and
a high performance execution step. Thereby, the amount of planning can be
adjusted via flags.

• Installing the library is easy. It is based on the common sequence of configure,
make, and make install.

• The interface of PNFFT is a mixture between the MPI interface of FFTW
and the NFFT [83] interface. Porting code from NFFT to PNFFT is straight-
forward.

• PNFFT is written in C but also offers a Fortran 2003 interface.
• PNFFT supports 5 different window functions that can be chosen at the plan-

ing step via flags, see Section 3.2.1 for details about the available windows.
All window functions can be evaluated at the same efficiency via interpolation
from precomputed look-up tables. The user can choose between interpolation
of degree 0, 1, 2, and 3. However, also direct evaluation of the windows and
fast Gaussian gridding is available.

• PNFFT supports the parallel computation of interlaced NFFTs. To the best
knowledge of the authors there is no other publicly available NFFT implemen-
tation that supports interlacing at all.

• PNFFT supports fast gradient computation via analytic and ik-differentiation,
cf. (3.24) and (3.26).

• An adapted algorithm design ensures that PNFFT can efficiently compute
pruned NFFTs in parallel. This is especially important when NFFT is applied
to non-periodic functions as we will see in Chapter 4.

• We integrated a timer interface into PNFFT. This means that all performance
relevant computation and communication is automatically timed throughout
the execution of PNFFT. For example, the user can easily access the runtime
of the NFFT matrix factors in (3.20) separately. This is especially helpful for
benchmark and tuning purposes. If the timer interface is not needed, the user
has the possibility to switch it off during the configuration of the library.

• The amount of global communication can be halved, if the underlying parallel
FFT is allowed to end up with transposed data layout (2.22), cf. Remark 2.11.
In this case PNFFT starts with a transposed data layout in Fourier space.

3.6 Numerical results
In the following, we present selected performance results of our PNFFT library that
have been published in [5]. We refer the reader to this reference for more elaborate
performance tests. All runtime measurements have been performed on JUGENE
– a Blue Gene/P architecture that has been explained in detail in Section 2.10.1.
For our numerical experiments we chose the Kaiser-Bessel window function (3.31)
with cubic interpolation from precomputed look-up tables, cf. Section 3.2.1. Note

84 3 Parallel nonequispaced fast Fourier transforms

25 27 29 211 213

10−3

10−2

10−1

100

101

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s
PNFFT Perfect CN,m, ∇C3N,m

Ghost F̃m,m̂ Dm̂

25 27 29 211 213

10−3

10−2

10−1

100

101

number of cores of JUGENE
wa

ll
cl

oc
k

tim
e

in
s

PNFFTH Perfect CT
N,m

Tr. Ghost F̃H
m,m̂

Dm̂

Figure 3.7: Required wall clock time of PNFFT Framework 3.1 (left) and PNFFTH

Framework 3.2 (right) on up to 16 384 cores of JUGENE with
N = 829 440 nonequispaced nodes, pruned FFT input size m̂ =
(512, 512, 512)T, oversampled FFT size M = (576, 576, 576)T, pruned
FFT output size m = (174, 174, 174)T, and window cutoff parameter
cϕ = 4. Timing of PNFFT includes the calculation of the gradient.

that the following results are connected with the numerical results in Section 4.11.4,
where PNFFT is executed as part of an application in particle simulation.

3.6.1 Strong scaling of pruned PNFFT on JUGENE
In Figure 3.7 we show the wall clock time measurements of the PNFFT Frame-
work 3.1 and the PNFFTH Framework 3.2 for 5123 Fourier coefficients and 829 440
nonequispaced nodes up to 16 384 cores of a Blue Gene/P architecture. For com-
parison purposes we show the perfect strong scaling times of the first recorded time.
In addition, we add the wall clock time of the most time consuming parts of these
algorithms. These are the deconvolution step 1 (Dm̂), the pruned FFT step 2 with
shifted index sets (F̃m,m̂) , the ghost cell communication step 3 (ghost), and the
convolution steps 4, 5 (CN,m,∇C3N,m) of Framework 3.1 and their adjoint counter-
parts of Framework 3.2. Both plots are scaled equally such that a direct comparison
of the time measurement is possible.
The deconvolution steps (Dm̂) scale perfectly and only represent a small amount

of the overall runtime. The FFT steps (F̃m,m̂, F̃H
m,m̂) show good strong scaling up to

4096 cores, which corresponds to one rack of JUGENE. We observe a performance
penalty for computing the parallel FFT on more than one rack. Moreover, note

3.6 Numerical results 85

that the pruned FFT output is only of size 1743. The FFT-internal two-dimensional
distribution of 1743 complex numbers on 1282 processes results in very small work-
load per process. We stress that the pruned FFT output size m = (174, 174, 174)T

is significantly smaller than the oversampled FFT size M = (576, 576, 576)T for
this test case, i.e., only 2.8% of the FFT output needs to be computed. However,
the adapted algorithm design of our parallel NFFT Frameworks takes care of this
fact since we apply a parallel pruned FFT and use the data decomposition of the
truncated unit cube S

[
− 1/2, 1/2

)3 instead of the full unit cube
[
− 1/2, 1/2

)3; see also
Figure 3.1 for details. Without the availability of pruned parallel FFT there would
be no chance to scale this test on such a massively parallel environment. Note that
this test case arises from an application of PNFFT for particle simulation that will
be described in more detail in Section 4.11.4. This means that the considered test
case is not artificial but demonstrates the real problems of parallel FFT and NFFT
load balancing.
The discrete convolution of the PNFFT Framework 3.1 include the calculation of

the function values (CN,m) and the gradients (∇C3N,m), while the discrete convolu-
tion of PNFFTH (CT

N,m) only deals with function values. Therefore, the runtime of
PNFFT convolution is larger than for PNFFTH. However, both show good strong
scaling behavior. Note that every process gets only 51 nodes xj in average, if we
use 16 384 processes in total.
In contrast, the ghost cell communication shows bad strong scaling for more than

512 processes. The transposed ghost cell communication is more expensive than
plain ghost cell communication since it additionally involves the computation and
synchronization of the partial sums of ghost cells. For 16 384 processes the trans-
posed ghost cell communication turns out to be the most time consuming part of the
PNFFTH. We observe that the ghost cell communication is the most limiting factor
for strong scaling. This improves for larger test cases, where the ratio between the
ghost cell communication and the overall computing time decreases.
In Figure 3.8 we show the wall clock time measurements of PNFFT Framework 3.1

and PNFFTH Framework 3.2 for a medium sized test case with 10243 Fourier coef-
ficients and 9 447 840 nonequispaced nodes. Furthermore, we present in Figure 3.9
the wall clock time measurements of the same Frameworks 3.1 and 3.2 for a large
test case with 20483 Fourier coefficients and 103 680 000 nonequispaced nodes.
There, the computing time of the discrete convolution step, the FFTH, and the

transposed ghost cell communication are nearly the same. Also the strong scaling
behavior of all three steps is good. Although the ghost cell communication on
PNFFT does not provide good scaling behavior, it only takes 4% of the overall
PNFFT runtime with 65 536 processes. Once more, the deconvolution steps show
perfect strong scaling. The parallel pruned FFT shows a performance penalty at
8192 and 16 384 processes. Presumably this comes from the fact, that the underlying
two-dimensional process grid exceeds the physical dimensions of one rack along the

86 3 Parallel nonequispaced fast Fourier transforms

211 212 213 214 215 216

10−3

10−2

10−1

100

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s
PNFFT Perfect CN,m, ∇C3N,m

Ghost F̃m,m̂ Dm̂

211 212 213 214 215 216

10−3

10−2

10−1

100

number of cores of JUGENE
wa

ll
cl

oc
k

tim
e

in
s

PNFFTH Perfect CT
N,m

Tr. Ghost F̃H
m,m̂

Dm̂

Figure 3.8: Required wall clock time of PNFFT Framework 3.1 (left) and PNFFTH

Framework 3.2 (right) on up to 65 536 cores of JUGENE with
N = 9 447 840 nonequispaced nodes, pruned FFT input size m̂ =
(1024, 1024, 1024)T, oversampled FFT size M = (1152, 1152, 1152)T,
pruned FFT output sizem = (340, 340, 340)T, and window cutoff param-
eter cϕ = 4. Timing of PNFFT includes the calculation of the gradient.

first dimension for 8192 processes and along the first and second dimension for more
than 8192 processes. We observe a good scaling of the overall wall clock time of
PNFFT and PNFFTH that reflects the good scaling of all their most time consuming
steps.
Note that the pruned FFT output sizes used in these examples are not divisible

by the number of processes. Therefore, the block decomposition of the parallel FFT
does not result in equal blocks and gives rise to load imbalances. These load im-
balances become especially obvious for small FFT output sizesm and large process
counts. Therefore, the parallel FFTs of the medium sized 9 447 840 particle test
case presented in Figure 3.8 show underwhelming strong scaling behavior, whereas
the parallel FFTs corresponding to the 103 680 000 particle test case presented in
Figure 3.9 show a nearly perfect scaling behavior.

3.6 Numerical results 87

211 212 213 214 215 216

10−2

10−1

100

101

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s

PNFFT Perfect CN,m, ∇C3N,m

Ghost F̃m,m̂ Dm̂

211 212 213 214 215 216

10−2

10−1

100

101

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s

PNFFTH Perfect CT
N,m

Tr. Ghost F̃H
m,m̂

Dm̂

Figure 3.9: Required wall clock time of PNFFT Framework 3.1 (left) and PNFFTH

Framework 3.2 (right) on up to 65 536 cores of JUGENE with
N = 103 680 000 nonequispaced nodes, pruned FFT input size m̂ =
(2048, 2048, 2048)T, oversampled FFT size M = (2304, 2304, 2304)T,
pruned FFT output sizem = (674, 674, 674)T, and window cutoff param-
eter cϕ = 4. Timing of PNFFT includes the calculation of the gradient.

4 Parallel particle-mesh methods
based on nonequispaced fast
Fourier transforms

The computation of electrostatic interactions is an important task in molecular dy-
namics. Because of the long-range character of the Coulomb potential this becomes
a computational demanding task. Simple truncation schemes can not be applied
since they produce artifacts [73]. Therefore, the interactions between all N parti-
cles have to be considered, which results in a asymptotic complexity of O(N2) for
open boundary conditions. The situation gets even worse if some kind of periodic
boundary conditions are applied. Then, the sum over all infinitely many interactions
yields conditional and very slow convergence. Fully 3d-periodic boundary conditions
are often assumed in simulations of bulk systems with small particle numbers in or-
der suppress boundary effects that stem from the limited system size. Periodicity
in one or two dimension of the three-dimensional space occur in the simulation of
nanotubes or thin films, respectively.
A traditional way to sum up the infinite terms under 3d-periodic boundary con-

ditions is known as Ewald summation [49]. This method splits the total interaction
into a short-range and a long-range part. Summing up the short-range part in real
space and the long-range part in Fourier space leads to two rapidly converging sums.
These sums can be truncated and the error can be estimated very well [85]. For op-
timal choice of parameters, Ewald summation result in O(N3/2) complexity [108, 55]
for computing the forces. The same splitting is also the basis for a variety of fast
algorithms including P3M [70, 38], PME [37], SPME [48], NFFT-based fast Ewald
summation [68] and the spectrally accurate Ewald method [92]. These methods
compute the Fourier space sum with FFTs and result in O(N logN) scaling.
Similar Ewald formulas also exist for 2d- and 1d-periodic geometries [65, 111].

However, these formulas do not separate the particle coordinates in the non-periodic
dimensions and, therefore, do not straightforwardly lead to fast methods. Therefore,
many algorithms with higher complexity than O(N logN) have been proposed in
the past [131, 133, 18, 30, 29, 19]. Two remarkable exceptions are given by the Elec-
trostatic Layer Correction [20] and the spectrally accurate Ewald summation [93].
Both have complexity O(N logN) for 2d-periodic boundary conditions. We empha-
size that a common FFT-based framework was presented in [126] that is able to

89

90 4 Parallel particle-mesh methods based on NFFT

handle 2d-periodic [99], 1d-periodic [97], and 0d-periodic [98] boundary conditions.
However, the approximation idea used in [126] is based on a Fourier approxima-
tion of a function that is only continuous. Therefore, the resulting precision of
this method is not very high. Last but not least, the NFFT-based fast summation
method [112, 113] uses an alternative splitting into a short-range and long-range
part that yields O(N logN) complexity for 0d-periodic boundary conditions.
It is not obvious which of these methods should be preferred. A closer look shows

that most of these methods have a very similar structure, which can be expressed in
terms of NFFTs. Indeed, in [9] we pointed out that the building blocks of the fast
summation for non-periodic boundary conditions and the NFFT-based fast Ewald
summation [68] for periodic boundary conditions are very similar. However, at this
point the splitting functions of the two approaches did not match. Later on, we ap-
plied the approximation ideas of fast NFFT-based summation to the Ewald splittings
for 2d- and 1d-periodic boundary conditions [3] and got fast O(N logN) methods
for these cases. Finally, the same approximation idea resulted in a fast method in
0d-periodic boundary conditions [6]. All of these methods can be summarized within
a common framework called P2NFFT that we are going to describe in this chapter.
The main advantage of P2NFFT is its modularized structure that strongly depends
on NFFTs. Beside the easy parallelization of the short-range part we only need to
apply our highly scalable PNFFT framework from the previous chapter in order to
get a parallel version of the whole P2NFFT framework at once. This includes all
types of boundary conditions and other algorithmic variations that come with the
various interchangeable NFFT modules presented in Chapter 3. Furthermore, we
will see that a lot of the above-mentioned fast methods can be interpreted as special
cases of P2NFFT. This is especially true for the P3M method, as we discuss in detail
in Section 4.6.
Finally, we emphasize that there are a lot of other fast methods for computing

the Coulomb interactions, including the Fast Multipole Method [62], multigrid-based
methods [125, 28], and the Barnes-Hut tree method [24]. A comparison of P2NFFT
with these methods has been published in [1] and some selected results will be
presented in Section 4.11.5.

4.1 Definitions

We start with a formal definition of the Coulomb problem subject to mixed periodic
boundary conditions. Assume an invertible matrix L ∈ R3×3 whose columns span
the primary box L

[
− 1/2, 1/2

)3 := {Lr : r ∈
[
− 1/2, 1/2

)3}. Furthermore, let N
charges qj ∈ R be located within the primary box at positions rj ∈ L

[
− 1/2, 1/2

)3,
j = 1, . . . , N . Now, the total Coulomb energy of the particle system can be written

4.1 Definitions 91

L

Figure 4.1: In the 0d-periodic case the particles are distributed within a finite box
in R3 (left). For 1d-periodic boundary conditions the simulation box is
duplicated with period L along the first dimension (right).

L L L L

L

Figure 4.2: In the 2d-periodic case the simulation box is duplicated with period L
along two of three dimensions (left). For the 3d-periodic case the sim-
ulation box with edge length L is duplicated along all three dimensions
(right).

as

USp := 1
2

N∑

j=1
qjφSp(rj),

where for each particle rj the potential φSp(rj) is formally given by

φSp(rj) =
∑

n∈Sp

N∑′

i=1

qi
‖rnij‖

. (4.1)

Thereby, we use ‖ · ‖ to denote the Euclidean norm and introduce the replicated
difference vectors rnij := ri − rj + Ln. For the sake of convenience we use Gaussian
units, i.e., we skip the prefactor (4πε0)−1 in definition (4.1). The set of translation
vectors Sp ⊆ Z3 is defined according to the given boundary conditions as follows.
For fixed p ∈ {0, 1, 2, 3} we assume periodic boundary conditions in the first p
dimensions and non-periodic (open) boundary conditions in the remaining 3 − p
dimensions. Then, we set Sp := Zp × {0}3−p, i.e., the sum over Sp in (4.1) can
be interpreted as a replication of the primary box along all dimensions subject to
periodic boundary conditions; see also Figures 4.1 and 4.2 for graphical illustrations.
Note that the prime on the inner sum in (4.1) indicates that all terms with zero

denominator are omitted. In many applications we are also interested in the forces

92 4 Parallel particle-mesh methods based on NFFT

01 1

1

1

2

2

2

2

4 4

4

4 t = 4

5

5

5

5

5

5

5

5 1

1

Figure 4.3: Illustration of the spherical summation order (4.3) up to the 4th partial
sum of a 2d-periodic unit box. The interactions with a box at distance√
t from the primary box are introduced in the t-th partial sum. Box

distances are computed between the centers of the boxes that are illus-
trated as black crosses. Note that the 3rd partial sum is only apparent
with 3d-periodic boundary conditions.

acting on the particles, which are given by

F Sp(rj) := qjESp(rj) with the fields ESp(rj) := −∇φSp(rj). (4.2)

If periodic boundary conditions are apparent in at least one dimension, we claim
charge neutrality

∑N
j=1 qj = 0 in order to assure convergence of the potential (4.1).

However, it is important to note that also for charge neutral systems the sums
in (4.1) are conditionally convergent, i.e., the values of the potentials φSp(rj) depend
on the order of summation. We follow [89] to sum up the interactions box wise in a
spherically increasing order, i.e., the precise definition of (4.1) is given by

φSp(rj) :=
∞∑

t=0

∑

n∈Sp:
‖n‖2=t

N∑′

i=1

qi
‖rnij‖

. (4.3)

This order of summation is illustrated for the 2d-periodic case in Figure 4.3.

4.2 The Ewald splitting
As the starting point we take the function splitting

1
r

= erfc(αr)
r

+ erf(αr)
r

(4.4)

that was proposed by Ewald [49] for the 3d-periodic setting. Hereby, we use the
well known error function erf(r) := 2π−1/2 ∫ r

0 e−t2dt and the complementary error

4.2 The Ewald splitting 93

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

r

1/r

erfc(13r)/r

erf(13r)/r

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

r

1/r

erfc(5r)/r

erf(5r)/r

Figure 4.4: Illustration of the Ewald splitting r−1 = r−1 erfc(αr) + r−1 erf(αr) for
two different values of the splitting parameter α. For α = 13 (left) the
erfc part converges faster to zero for r → ∞, while for α = 5 the peak
of the erf part decreases, i.e., it gets less high frequency components.

function erfc(r) := 1− erf(r). The splitting parameter α > 0 can be used to balance
the speed of convergence between the erf and erfc parts. As one can already see, for
increasing α the erfc-part converges faster to zero for r →∞ while the erf-part gets
closer to the original kernel function 1/r, see also Figure 4.4 for two illustrations of
the Ewald splitting at different values of α. Note that the erf-term does not have a
singularity anymore. Instead it yields the finite limit

lim
r→0

erf(αr)
r

= 2α√
π
. (4.5)

Moreover, the erf part is indefinitely often differentiable, which makes it a good
candidate for Fourier approximations – as we will confirm later on.
Now, plugging the Ewald splitting (4.4) into the spherical summation (4.3) yields

the decomposition φSp = φsr
Sp + φlr

Sp + φself with the short-range part

φsr
Sp(rj) :=

∑

n∈Sp

N∑′

i=1
qi

erfc(α‖rnij‖)
‖rnij‖

, (4.6)

the long-range part

φlr
Sp(rj) :=

∞∑

t=0

∑

n∈Sp:
‖n‖2=t

N∑

i=1
qi

erf(α‖rnij‖)
‖rnij‖

, (4.7)

and the self interaction

φself(rj) := − 2α√
π
qj. (4.8)

94 4 Parallel particle-mesh methods based on NFFT

Thereby, we define erf(α‖0‖)/‖0‖ := 2απ−1/2 by the limit (4.5). Note that the
short-range part converges exponentially. Therefore, it does not depend on the
order of summation. Analogously, we can use

∇ 1
‖r‖ = ∇erfc(α‖r‖)

‖r‖ +∇erf(α‖r‖)
‖r‖

to split the field ESp(rj) = Esr
Sp(rj) + E lr

Sp(rj) into the exponentially convergent,
short-range part

Esr
Sp(rj) := −

∑

n∈Sp

N∑′

i=1
qi∇

erfc(α‖rnij‖)
‖rnij‖

(4.9)

and the conditionally convergent, long-range part

E lr
Sp(rj) := −

∞∑

t=0

∑

n∈Sp:
‖n‖2=t

N∑

i=1
qi∇

erf(α‖rnij‖)
‖rnij‖

. (4.10)

In the next section we explain the fast computation of the fast converging short-
range parts and the self interactions. The conditionally convergent, long-range parts
will be subject to further investigations in Section 4.4.

4.3 The short-range and self interaction modules
Since the short-range part (4.6) converges exponentially, we can use a simple finite
radius cutoff scheme for its computation. This means we choose a small short-range
cutoff rc > 0 and compute the approximation

φsr
Sp(rj) ≈

N∑

i=1
qi
∑′

n∈Sp:
‖rn
ij‖≤rc

ψsr(rnij) (4.11)

with the short-range potential ψsr : R3 → R given by ψsr(r) := ‖r‖−1 erfc(α‖r‖).
Similarly, the short-range part (4.9) of the field can be approximated by a simple
radial cutoff scheme

Esr
Sp(rj) ≈ −

N∑

i=1
qi
∑′

n∈Sp:
‖rn
ij‖≤rc

∇ψsr(rnij) (4.12)

with the short-range field

∇ψsr(r) = − r

‖r‖2

(
2α√
π

e−α2‖r‖2 + erfc(α‖r‖)
‖r‖

)
.

4.3 The short-range and self interaction modules 95

Module 4.1 Short-range interactions
Input:
- number of particles N ∈ N
- primary box shape L ∈ R3×3, det(L) 6= 0
- particle positions rj ∈ L

[
− 1/2, 1/2

)3 and sources qj ∈ R, j = 1, . . . , N
- number of periodic dimensions p
- short-range cutoff rc > 0
- short-range potential ψsr : R3 → R

Assumptions: homogenous particle distribution
. .
1: For all particle positions rj compute

φj ←
N∑

i=1
qi
∑′

n∈Sp:
‖rn
ij‖≤rc

ψsr(rnij), Ej ← −
N∑

i=1
qi
∑′

n∈Sp:
‖rn
ij‖≤rc

∇ψsr(rnij),

by a linked cell algorithm; see [70, Chap. 8.4] or [63, Chap. 3].
. .
Output:
- approximated short-range potential φj ≈ φsr

Sp(rj) ∈ R, j = 1, . . . , N
- approximated short-range field Ej ≈ Esr

Sp(rj) ∈ R3, j = 1, . . . , N
Arithmetic cost: O (N)

If we assume a sufficiently homogenous particle distribution, the number of terms
in the short-range approximations (4.11) and (4.12) will be bounded by a constant.
Therefore, we can compute these approximations for all particle positions rj within
O(N) arithmetic operations. However, a naive search for all neighboring particles
would still require the computation of all particle-to-particle distances and is of
order O(N2). Instead we use a linked cell algorithm to perform the search for next
neighboring particles within O(N) operations; see [70, Chap. 8.4] or [63, Chap.
3]. We summarize the computation of the short-range parts in the algorithmic
Module 4.1.
The computation of the short-range module 4.1 requires the repetitive evaluation

of the short-range potential ψsr and its derivative d
drψ

sr(r) for 0 ≤ r ≤ rc. Since
these two functions are smooth, we can use interpolation from precomputed look-
up tables to speed up their evaluation. Once the look-up tables are generated,
the evaluations of the short-range interaction become independent from the precise
choice of short-range potential ψsr. This offers an easy way to interchange the short-
range potential ψsr without effecting performance. Note that the same approach was
used for the implementation of NFFT window functions; cf. Section 3.2.1. In our

96 4 Parallel particle-mesh methods based on NFFT

Module 4.2 Self interactions
Input:
- number of particles N ∈ N
- sources qj ∈ R, j = 1, . . . , N
- self potential ψself ∈ R

. .
1: For all j = 1, . . . , N compute

φself
j ← ψselfqj.

. .
Output:
- self potential φself

j = φself(rj) ∈ R, j = 1, . . . , N
Arithmetic cost: O (N)

implementation the user is free to chose between direct evaluation and interpolation
of degree 0, 1, 2, or 3.
As we can easily see, all self interactions (4.8) can be computed directly within

the optimal complexity of O(N) operations. In order to define a more general
algorithmic module we rewrite (4.8) as

φself(rj) = ψselfqj,

with ψself := −2απ−1/2. Then, Module 4.2 summarizes the computation of the self
interactions for all particle positions rj.

4.4 The long-range interaction module
In this section we present different approximation ideas that lead to fast algorithms
for computing the long-range potential (4.7). Obviously, the number p of periodic
dimensions will have a great impact on the precise definition of the approximations.
However, we will see that it is possible to summarize the most important ideas within
a common approximation framework. In order to emphasize this fact, we start
with the presentation of this framework and show that it yields a fast algorithm.
Afterward, we give the precise definition of the approximations for all kinds of mixed
periodic boundary conditions and show that they fit into the common framework.

4.4.1 The common approximation framework and fast algorithm
We call a matrix H ∈ R3×3 an extended box shape matrix if it fulfills det(H) 6= 0
and L

[
− 1/2, 1/2

)3 ⊂ H
[
− 1/2, 1/2

)3, i.e., the columns of H span a box that includes

4.4 The long-range interaction module 97

the primary box L. Assume that we can find such an extended box shape matrix
H ∈ R3×3, a finite mesh size m̂ ∈ 2N3 and Fourier coefficients R̂k ∈ C, k ∈ Im̂,
such that

φlr
Sp(rj) =

∞∑

t=0

∑

n∈Sp:
‖n‖2=t

N∑

i=1
qi

erf(α‖rnij‖)
‖rnij‖

≈
N∑

i=1
qi
∑

k∈Im̂

R̂ke+2πikTH−1rij (4.13)

yields a sufficiently small approximation error. Then, a simple change in the order
of summation yields

φlr
Sp(rj) ≈

∑

k∈Im̂

R̂k

(
N∑

i=1
qie+2πikTH−1ri

)
e−2πikTH−1rj . (4.14)

The expression in the inner brackets can be approximated by a three-dimensional
NFFTH with nodes xi := H−1ri ∈

[
− 1/2, 1/2

)3 and total number of frequencies
|Im̂|. Afterward, |Im̂| point-wise multiplications with the Fourier coefficients R̂k
are performed. Finally, a three-dimensional NFFT with nodes xj := H−1rj ∈[
−1/2, 1/2

)3 and total number of frequencies |Im̂| gives an approximation of the outer
sum. If cϕ is the NFFT window cutoff parameter, then the proposed evaluation at
all nodes rj, j = 1, . . . , N , requires O(c3

ϕN + |Im̂| log |Im̂|) arithmetic operations.
Analogously, (4.13) yields an fast way to approximate the long-range part (4.10)

of the field as

E lr
Sp(rj) = −∇φlr

Sp(rj) ≈ −
∑

k∈Im̂

R̂k

(
N∑

i=1
qie+2πikTH−1ri

)
∇e−2πikTH−1rj .

Thereby, the only difference to (4.14) is the outer vector sum that can be com-
puted by a gradient NFFT with nodes xj := H−1rj ∈

[
− 1/2, 1/2

)3. Note that the
substitution xj = H−1rj results in a rescaling of the gradient due to the formula

∇re−2πikTH−1r = H−T∇xe−2πikTx.

Module 4.3 summarizes the fast algorithm for computing the long-range potential
and field that result from approximation (4.13). In the following, we show the precise
parameter settings of the common approximation framework for the different kinds
of mixed periodic boundary conditions.

4.4.2 Periodicity in three dimensions
The limit of the conditionally convergent, long-range part with 3d-periodic boundary
conditions was given in [49]. A rigorous and elegant proof can be given using con-
vergence factors, see [89]. Furthermore, we point on [72] were most of the notational

98 4 Parallel particle-mesh methods based on NFFT

Module 4.3 Long-range interactions
Input:

- number of particles N ∈ N
- primary box shape L ∈ R3×3, det(L) 6= 0
- particle positions rj ∈ L

[
− 1/2, 1/2

)3 and sources qj ∈ R, j = 1, . . . , N
- mesh size m̂ ∈ 2N3

- Fourier coefficients R̂k ∈ C, k ∈ Im̂
- extended box shape H ∈ R3×3, det(H) 6= 0

. .
1: For all particle positions rj compute the rescaled coordinates

xj ← H−1rj ∈
[
− 1/2, 1/2

)3
.

2: For all mesh points k ∈ Im̂ compute

Ŝk ←
N∑

i=1
qie+2πikTxi

by a three-dimensional NFFTH; cf. (3.23).
3: For all mesh points k ∈ Im̂ compute the point-wise products

âk ← R̂kŜk.

4: For all rescaled particle positions xj compute

φj ←
∑

k∈Im̂

âke−2πikTxj , Ej ← −H−T
∑

k∈Im̂

âk∇e−2πikTxj ,

by a three-dimensional (gradient) NFFT; cf. (3.20), (3.24), (3.26).
. .
Output:

- approximated long-range potential φj ≈ φlr
Sp(rj) ∈ R, j = 1, . . . , N

- approximated long-range field Ej ≈ E lr
Sp(rj) ∈ R3, j = 1, . . . , N

Arithmetic cost: O (N + |Im̂| log |Im̂|)

4.4 The long-range interaction module 99

convenience comes from. For an arbitrary tricline box shape L ∈ R3×3, det(L) 6= 0,
the long-range part becomes

φlr
S3(rj) = 1

| det(L)|
N∑

i=1
qi
∑

k∈Z3

R̂ke+2πikTL−1rij

with R̂0 := 0 and

R̂k := 1
π‖L−Tk‖2 e−π2‖L−Tk‖2/α2

, k 6= 0. (4.15)

Because of the exponential decay of R̂k it is nearby to choose a finite mesh size
m̂ ∈ 2N2 and truncate the infinite sum as

φlr
S3(rj) ≈

1
| det(L)|

N∑

i=1
qi
∑

k∈Im̂

R̂ke+2πikTL−1rij .

If we set H ← L, this approximation is exactly of the form (4.11). Therefore, we
can use Module 4.3 for its fast evaluation with O(N + |Im̂| log |Im̂|) operations.

4.4.3 Periodicity in two dimensions
In the following, we briefly present the approximation ideas of [3] that lead to a
fast algorithm for 2d-periodic boundary conditions. Note that the definition of our
problem (4.1) used the more general case of a tricline box shape L. However, without
loss of generality we may assume a box shape of type

L =

L00 L01 0
L10 L11 0
0 0 L22

 ∈ R3×3, det(L) 6= 0, L22 > 0.

This means, the two periodic dimensions can always be rotated into the x-y-plane
and we have the freedom to choose the non-periodic dimension along the z-axis. For
the case of an orthogonal box shape L (L01 = L10 = 0) the limit of the conditionally
convergent, long-range part with 2d-periodic boundary conditions can be found in
[65]. We gave a rigorous proof of the corresponding formulas using convergence
factors in [3]. A generalization to arbitrary L01, L10 is straightforward and yields

φlr
S2(rj) = 1

|L00L11 − L01L10|
∑

k∈S2

N∑

i=1
qiΘS2

(
‖L−Tk‖, zij

)
e+2πikTL−1rij , (4.16)

where zij is the last coordinate of rij ∈ 2L
[
−1/2, 1/2

)3. Thereby, ΘS2 : [0,+∞)2 → R
is defined for the k = 0 term by

ΘS2(0, r) :=− 2
√
π

[
1
α

e−α2r2 +
√
πr erf(αr)

]

100 4 Parallel particle-mesh methods based on NFFT

and otherwise as

ΘS2(k, r) := 1
2k

[
e+2πkr erfc

(
πk

α
+ αr

)
+ e−2πkr erfc

(
πk

α
− αr

)]
.

The main problem of (4.16) is its dependency on zij = zi−zj within ΘS2 . Computing
all of these distances for all particle pairs would require O(N2) operations. There-
fore, we introduce another approximation in the flavor of fast summation algorithms
[112, 113]. Let H > 2L22. For any (k0, k1)T ∈ Z2 we introduce a regularization
Rk0,k1 : R→ R by the H-periodic continuation of

Rk0,k1(z) :=
{

ΘS2

(∥∥∥
(
L00 L01
L10 L11

)−T (k0
k1

)∥∥∥ , r
)

if |z| ≤ L22,

Tk0,k1(r) if L22 < |z| ≤ H
2 .

(4.17)

The transition Tk0,k1 is chosen such that Rk0,k1 is s times differentiable for an ap-
propriately chosen degree of smoothness s ∈ N. One can think of several transition
function types, e.g., algebraic polynomials, splines, trigonometric polynomials, or
two point Taylor interpolation; see [52]. Here, we construct T as the unique poly-
nomial of degree 2s+ 1 that fulfills the 2s+ 2 interpolation conditions

T
(j)
k0,k1

(L22) = (−1)jT (j)
k0,k1

(H − L22) = Θ(j)
S2

(∥∥∥
(
L00 L01
L10 L11

)−T (k0
k1

)∥∥∥ , L22

)
,

for j = 0, . . . , s. The construction and evaluation of such interpolating polynomials
Tk0,k1 can be performed with a recursive scheme of divided differences [122, Sec-
tion 2.1] and requires O(s2) operations per evaluation, see also Section 4.4.6 for
details. Since Rk0,k1 is periodic and smooth of order s, we expect a good approxi-
mation by the finite Fourier series

Rk0,k1(z) ≈ 1
H

∑

k2∈Im̂2

R̂k0,k1,k2e+2πik2z/H , (4.18)

where m̂2 ∈ 2N is an appropriately chosen finite mesh size and

R̂k0,k1,k2 := H

m̂2

∑

l2∈Im̂2

Rk0,k1

(
H
l2
m̂2

)
e−2πik2l2/m̂2 , k2 ∈ Im̂2 ,

are the discrete Fourier coefficients that can be precomputed by a one-dimensional
FFT.
Note that ΘS2(k, z) decays exponentially with |k| → ∞. Therefore, we may

truncate the infinite sum in (4.16) and plug in the approximations (4.18). Then, we
get

φlr
S2(rj) ≈

1
det(H)

∑

k∈Im̂

N∑

i=1
qiR̂k0,k1,k2e+2πikTH−1rij ,

4.4 The long-range interaction module 101

with the extended box shape H ∈ R3×3 given by

H←

L00 L01 0
L10 L11 0
0 0 H

 ∈ R3×3.

Again, this approximation is exactly of the form (4.11). Therefore, we can use
Module 4.3 for its fast evaluation with O(N + |Im̂| log |Im̂|) operations.

4.4.4 Periodicity in one dimension
Without loss of generality we assume an orthogonal box shape L = diag(L0, L2, L2),
L0, L2 > 0. This means, the periodic dimension can be rotated onto the x-axis and
we are free to chose the box vectors of both non-periodic dimensions orthogonal and
of equal length L2. A rigorous proof for the limit of the conditionally convergent,
long-range part with 1d-periodic boundary conditions is given in [3]. Therein, the
1d-periodic long-range parts are presented as

φlr
S1(rj) = 1

L0

∑

k∈S1

N∑

i=1
qiΘS1

(
k0

L0
,
√
y2
ij + z2

ij

)
e+2πik0xij/L0 , (4.19)

where rij = (xij, yij, zij)T ∈ 2L
[
− 1/2, 1/2

)3. Furthermore, ΘS1 : [0,+∞)2 → R is
defined for the k = 0 term by

ΘS1(0, r) := − 1
L0

[
γ + Γ(0, α2r2) + ln(α2r2)

]
,

and otherwise as

ΘS1(k, r) := 1
L0
K0

(
π2k2

x

α2L2
0
, α2r2

)
.

Thereby, γ ≈ 0.5772 . . . is the Euler-Mascheroni constant, Γ(s, x) :=
∫∞
x
ts−1e−tdt is

the upper incomplete gamma function and

Kν(x, y) :=
∫ ∞

1
t−ν−1e−xt−y/tdt, ν ∈ R, x ≥ 0, y ≥ 0,

denotes the ν-th order incomplete modified Bessel function of the second kind [67].
Obviously, direct evaluation of all the distances yij, zij within (4.19) would re-

quire O(N2) operations. Again, we introduce an approximation in the flavor of fast
summation algorithms [112, 113]. Let H > 2

√
2L2. For any k0 ∈ Z we introduce a

regularization Rk0 : R2 → R by the two-dimensional H-periodic continuation of

Rk0(y, z) :=

ΘS1

(
k0
L0
,
√
y2 + z2

)
if
√
y2 + z2 ≤

√
2L2,

Tk0(
√
y2 + z2) if

√
2L2 <

√
y2 + z2 ≤ H

2 ,

Tk0(H2) if H
2 <

√
y2 + z2.

(4.20)

102 4 Parallel particle-mesh methods based on NFFT

Again, the transition Tk0 is chosen such that R(k0, ·, ·) is s times differentiable for
an appropriately chosen degree of smoothness s ∈ N. This time we construct Tk0 as
the unique polynomial of degree 2s that fulfills the 2s+ 1 interpolation conditions

T
(j)
k0

(√
2L
)

= Θ(j)
S1

(
k0
L0
,
√

2L
)
, j = 0, . . . , s,

T
(j)
k0

(
H
2
)

= 0, j = 1, . . . , s.

Note that the classical recursive scheme of divided differences [122, Section 2.1] is
no more applicable, since the function value Tk0(H/2) is not part of the interpolation
conditions. However, in Section 4.4.6 we present an adapted scheme for the con-
struction and evaluation of Tk0 that preserves the O(s2) complexity per evaluation.
Note that the construction by Lagrangian basis polynomials given in [3] requires
O(s3) operations. Since Rk0 is periodic and smooth of order s, we expect a good
approximation by the finite Fourier series

Rk0(y, z) ≈ 1
H2

∑

k1∈Im̂1

∑

k2∈Im̂2

R̂k0,k1,k2e+2πik1y/He+2πik2z/H , (4.21)

where m̂1, m̂2 ∈ 2N are appropriately chosen finite mesh sizes and for (k1, k2)T ∈
Im̂1 × Im̂2 the discrete Fourier coefficients

R̂k0,k1,k2 := H2

m̂1m̂2

∑

l1∈Im̂1

∑

l2∈Im̂2

Rk0

(
H
l1
m̂1

, H
l2
m̂2

)
e−2πik1l1/m̂1e−2πik2l2/m̂2 ,

can be precomputed by a two-dimensional FFT. Note that function ΘS1 asymptot-
ically tends to zero as k−2e−k2 for k →∞, which justifies truncation of the Fourier
series (4.19) at a finite mesh size m̂0 ∈ 2N along the periodic dimension, cf. [3].
Then, plugging in approximation (4.21) yields

φlr
S1(rj) ≈

1
det(H)

∑

k∈Im̂

N∑

i=1
qiR̂k0,k1,k2e+2πikTH−1rij ,

with the extended box shape H ← diag(L0, H,H) ∈ R3×3. Again, this approxi-
mation is exactly of the form (4.11). Therefore, we can use Module 4.3 for its fast
evaluation with O(N + |Im̂| log |Im̂|) operations.

4.4.5 Periodicity in no dimension
Finally, we give the analogous approximation for the Ewald splitting with open
boundary conditions, i.e., the 0d-periodic case in (4.4). Without loss of generality

4.4 The long-range interaction module 103

we assume a cubic box shape L = diag(L,L, L), L 6= 0. In the 0d-periodic case the
long-range potential (4.7) reads as

φlr
S0(rj) =

N∑

i=1
qiΘS0(‖rij‖). (4.22)

where rij := ri − rj ∈ 2L
[
− 1/2, 1/2

)3 and ΘS0(t) := t−1 erf(αt). Assume H >

2
√

3L. A suitable smooth regularization R : R3 → R is constructed by by the three-
dimensional H-periodic continuation of

R(r) :=

ΘS0(‖r‖) if ‖r‖ ≤
√

3L,
T (‖r‖) if

√
3L < ‖r‖ ≤ H

2 ,

T (H2) if H
2 < ‖r‖.

(4.23)

The transition T is chosen such that R is s times differentiable for an appropriately
chosen degree of smoothness s ∈ N. Analogously to the 1d-periodic case we construct
T as the unique algebraic polynomial of degree 2s that fulfills the 2s+1 interpolation
conditions

T (j)
(√

3L
)

= Θ(j)
S0

(√
3L
)
, j = 0, . . . , s,

T (j) (H
2
)

= 0, j = 1, . . . , s.

Evaluation of T is performed with the adapted scheme of divided differences pre-
sented in Section 4.4.6 an takes O(s2) operations per evaluation. Since R is periodic
and smooth of order s we expect a good approximation by the finite Fourier series

R(r) ≈ 1
H3

∑

k∈Im̂

R̂ke+2πikTr/H , (4.24)

where m̂ ∈ 2N3 is an appropriately chosen finite mesh size and

R̂k := H3

|Im̂|
∑

l∈Im̂

R(Hl� m̂−1)e−2πikT(l�m̂−1), k ∈ Im̂,

are the discrete Fourier coefficients that can be precomputed by a three-dimensional
FFT. Again, plugging approximation (4.24) into (4.22) yields an approximation of
the form (4.13) with H := diag(H,H,H). Therefore, we can use Module 4.3 for its
fast evaluation with O(N + |Im̂| log |Im̂|) operations.

4.4.6 Two-point Taylor interpolation using Newton basis
polynomials

We have seen that the construction of smooth regularizations for 1d- and 0d-periodic
boundary conditions requires the evaluation of a special class of interpolating poly-
nomials. In the following, we present an adapted scheme of divided differences that

104 4 Parallel particle-mesh methods based on NFFT

realizes the evaluation in an efficient way. More precisely, we want to construct an
algebraic polynomial Q : R→ R of degree 2s that fulfills the 2s+1 Hermite-Birkhoff
interpolation conditions

Q(x0) = a0 and Q(j)(x0) = aj, Q(j)(x1) = bj for j = 1, . . . , s. (4.25)

Thereby, aj, bj ∈ R are arbitrary given numbers. In [3, Appendix C] we presented
a representation of Q based on integrated Lagrangian basis polynomials. However,
a direct evaluation of this construction requires O(s3) operations. This stays in
contrast to the O(s2) operations that would be sufficient if the function value Q(x1)
was interpolated too, see [17, Corollary 2.2.6] or [3, Appendix C]. In the following, we
present an alternative construction based on Newton basis polynomials that enables
us to construct the coefficients of Q with O(s2) operations. At first, we assume that
Q is given in terms of a Newton basis as

Q(x) =
s+1∑

k=0
qk(x− x0)k + (x− x0)s+1

2s∑

k=s+2
qk(x− x1)k−s−1.

Furthermore, we consider the unique polynomial

P (x) =
s∑

k=0
pk(x− x0)k + (x− x0)s

2s−1∑

k=s+1
pk(x− x1)k−s

of degree 2s− 1 satisfying the Hermite interpolation conditions P (j)(x0) = aj+1 and
P (j)(x1) = bj+1 for all j = 0, . . . , s− 1. It is well known that the coefficients pk can
be computed with a recursive scheme of divided differences within O(s2) operations,
see [122, Section 2.1] for details. Therefore, the ansatz P (x) = Q′(x) may yield all
coefficients qk, k = 1, . . . , 2s. Together with q0 := a0 this will solve the interpolation
problem (4.25).
The derivative of Q can be written as Q′(x) = Q′1(x) +Q′2(x) with

Q′1(x) :=
s+1∑

k=1
kqk(x− x0)k−1

=
s∑

k=1
kqk(x− x0)k−1 + (x− x0)s

s+1∑

k=s+1
kqk(x− x1)k−s−1,

Q′2(x) :=
2s∑

k=s+2
qk

d
dx(x− x0)s+1(x− x1)k−s−1.

For the second part we apply the identity
d
dx(x− x0)s+1(x− x1)k−s−1

= (x− x0)s
[
k(x− x1)k−s−1 + (k − s− 1)(x1 − x0)(x− x1)k−s−2]

4.4 The long-range interaction module 105

and obtain

Q′2(x) = 2sq2s(x− x0)s(x− x1)s−1 + (x− x0)s
2s−1∑

k=s+2
kqk(x− x1)k−s−1

+ (x− x0)s
2s−1∑

k=s+1
qk+1(k − s)(x1 − x0)(x− x1)k−s−1.

Thereby, we extracted the term for k = 2s out of the first sum and shifted the index
k → k − 1 in the second sum. Now, we can add Q′1 and yield

Q′(x) =
s∑

k=1
kqk(x− x0)k + (x− x0)s

2s−1∑

k=s+1
[kqk + (k − s)(x1 − x0)qk+1] (x− x1)k−s−1

+ 2sq2s(x− x0)s(x− x1)s−1.

Finally, comparison of the coefficients between P (x) and Q′(x) yields the recursion

q2s := 1
2sp2s−1,

qk := 1
k

[pk−1 − (k − s)(x1 − x0)qk+1] , k = 2s− 1, . . . , s+ 1,

qk := 1
k
pk−1, k = s, . . . , 1,

q0 := a0.

Note that this recursion can be computed with O(s) operations. Together with the
complexity of the divided differences scheme for computing the coefficients pk we end
up with O(s2) operation for computing all coefficients qk. Afterward, the evaluation
of Q(x) can be performed in O(s) operations with a Horner scheme.

4.4.7 Some notes on Fourier approximations of non-periodic
functions

The long-range interaction Module 4.3 incorporates non-periodic boundary condi-
tions in the Ewald long-range part using a regularization technique that results in
fast convergent Fourier approximations; cf. (4.17), (4.20), (4.23). However, a lot of
other fast O(N logN) algorithms for computing the Ewald sum with non-periodic
boundary conditions have been proposed earlier. For example, an algorithm for
computing the non-periodic Ewald sum has already been proposed in [70]. Later
on, 0d-periodic [98], 1d-periodic [97], and 2d-periodic [99] boundary conditions have
been handled within one common framework [126]. More recently, a spectrally con-
vergent approach [93] for the 2d-periodic Ewald sum was published. Essentially,

106 4 Parallel particle-mesh methods based on NFFT

the above mentioned algorithms only differ in the approach for constructing Fourier
approximations of non-periodic functions. Thereby, the applied approximation ap-
proaches fall into three categories that will be compared in the following. For the
sake on convenience we restrict the discussion to non-periodic functions Θ: R→ R
of one variable. Then, we can choose one of the following Variants I-III in order to
construct a Fourier approximation on the interval [−L,L].

Variant I (Truncation):

We take a sufficiently large cutoff H ≥ 2L and approximate the function Θ on the
interval [−H/2,H/2] by a finite Fourier series Θ(x) ≈ ∑M/2−1

k=M/2 cke−2πikx/h, where we
compute the coefficients ck by

ck := 1
H

∫ H/2

−H/2
Θ(x)e+2πilx/Hdx.

This means, we compute the Fourier coefficients of a H-periodic function that is
equal to Θ on the interval [−H/2,H/2], see Figure 4.5 for an illustration. Note that
the approximated H-periodic function is only smooth of order zero in x = H/2, which
results in a rather slow second order convergence in Fourier space. Thus, one may
have to choose a very large mesh size M in order to achieve a good approximation.
This approach was used in [99] for the 2d-periodic Ewald sum. There, the co-

efficients ck are known analytically; cf. equation (2.9) in [99]. A generalization to
non-periodic functions Θ of two or three variables is straightforward and yields the
0d- and 1d-periodic algorithms published in [98, 126, 97].

Variant II (Periodization):

The continuous Fourier transform of a function Θ ∈ L1(R) is given by

Θ̂(ξ) =
∫

R
Θ(x)e+2πixξdx.

If Θ is sufficiently small outside the interval [−L,L], we may approximate Θ by its
H-periodic version

∑
n∈Z Θ(· + Hn), where H ≥ 2L, apply the Poisson summation

formula and truncate the resulting infinite sum in order to obtain an approximation
of the form

Θ(x) ≈
∞∑

n=−∞
Θ(x+Hn) = 1

H

∞∑

k=−∞
Θ̂(k

H
)e−2πikx/H

≈ 1
H

M/2−1∑

k=−M/2

Θ̂(k
H

)e−2πikr/H , (4.26)

4.4 The long-range interaction module 107

where the mesh size M ∈ 2N has to be chosen sufficiently large. Alternatively, some
authors argue as follows. First, we truncate the Fourier integral and, second, we
approximate the resulting finite integral via the trapezoidal quadrature rule

Θ(x) =
∫

R
Θ̂(ξ)e−2πixξdξ ≈

∫ A/2

−A/2
Θ̂(ξ)e−2πixξdξ

≈ A

M

M/2−1∑

k=−M/2

Θ̂(kA
M

)e−2πixkA/M . (4.27)

Comparison of (4.26) and (4.27) shows that the latter approach is equivalent to
considering a H = M

A
periodization of Θ, as described above.

Note that Variant II is limited to functions that decay sufficiently fast in the
interval [−H/2,H/2). In other words, whenever Θ is not sufficiently small we need to
choose a relatively large period H � 2L, which results in the choice of a large mesh
size M . We give a graphical illustration of Variant II in Figure 4.5. Hereby, the
approximation error due to the periodization can be seen as the difference between
the dashed function Θ and its blue colored periodic version. The main advantage
of Variant II is that the periodic function

∑
n∈Z Θ(· + Hn) is indefinitely often

differentiable and, therefore, its Fourier series yields spectral convergence.
In the context of fast Ewald summation this approach was first mentioned in [70,

Equation (6-113)] in combination with 0d-periodic boundary conditions. Therein,
the authors simply doubled the extend of the primary box in each dimension and
used the Fourier coefficients of the 3d-periodic Ewald sum. This can be interpreted
as a straightforward generalization of Variant II to three dimensions and setting
H = 2L.
More recently, Variant II was used in [93] for constructing a spectrally convergent

2d-periodic fast Ewald summation. In contrast to Variant I, this approximation
approach can not be used for the non-decreasing function ΘS2(0, r) in the 2d-periodic
Ewald. Therefore, another non-FFT based approximation of this term was proposed
in [93].

Variant III (Regularization):

In [3] we presented a third approach for the approximation of the function Θ(x) ≈∑M/2−1
k=−M/2 cke−2πikx/H by a finite Fourier series. The key idea is to cutoff Θ outside

the interval [−L,L] but use a Fourier approximation on the slightly larger inter-
val [−H/2,H/2]. In the resulting gap [L,H − L] we construct a transition function
T : [L,H − L]→ R that interpolates the derivatives of Θ at x = L and x = H − L
up to order s ∈ N, see Figure 4.6 for a graphical illustration. Therefore, we get a
Fourier approximation of a s-times differentiable function which yields convergence
order (s+ 2) in Fourier space. Note that we are free to choose an arbitrary order of

108 4 Parallel particle-mesh methods based on NFFT

−H
2

−L L H
2

H − L 3H
2

Θ(x) Θ(x + H)

C0

−H
2

−L L H
2

H − L 3H
2

Θ(x) Θ(x + H)

C0

−H
2

−L L H
2

H − L 3H
2

Θ(x) Θ(x + H)

C0

−H
2

−L L H
2

H − L 3H
2

∑
n∈Z

Θ(x + Hn)

C∞

−H
2

−L L H
2

H − L 3H
2

∑
n∈Z

Θ(x + Hn)

C∞

−H
2

−L L H
2

H − L 3H
2

∑
n∈Z

Θ(x + Hn)

C∞

Figure 4.5: Variant I (truncation) on the left and Variant II (periodization) on the
right side. While the truncation approach results in a kink at x = H/2,
the approximation error of the periodization mainly depends on the fast
decay of Θ.

−H
2

−L L H
2

H − L 3H
2

Θ(x) Θ(x + H)T (x)

Cs

−H
2

−L L H
2

H − L 3H
2

Θ(x) Θ(x + H)T (x)

Cs

−H
2

−L L H
2

H − L 3H
2

Θ(x) Θ(x + H)T (x)

Cs

Figure 4.6: Variant III (regularization). The smooth transition function T interpo-
lates the derivatives of Θ at x = L and x = H − L up to order s ∈ N.

convergence s ∈ N within this approach. In general, the Fourier coefficients ck are
computed approximately by a fast Fourier transform from the equispaced samples
of the regularized function at x = lHM−1, l = −M/2, . . . ,M/2− 1.
The main advantage of Variant III is that we are able construct a function of

arbitrary smoothness s ∈ N while the period H can be chosen relatively small
compared to the doubled interval length 2L. In contrast, when applying Variant I
the functions are only continuous and of no higher smoothness. Thus, the Fourier
coefficients decrease rather slow, which results in the choice of a relatively large mesh
size M . On the other hand, using Variant II often implies a very large extension
interval [−H/2,H/2] in order to ensure sufficient decay of Θ(H/2). Again, this has to
be compensated by a large number of sampling nodes M .
Loosely speaking, Variant III can be understood as a compromise between the

fixed second order convergence of Variant I and the spectral convergence of Vari-
ant II. The benefit of this compromise is that Variant III can be applied to non-
decreasing functions Θ, while Variant II was restricted to fast decreasing functions.
Thereby, the degree of smoothness s ∈ N can be understood as a parameter that
adjusts the balance between Variant I and Variant II.
We remark that in our application we always know the function values and the

4.5 The P2NFFT framework 109

Framework 4.4 P2NFFT – Particle-Particle–NFFT
Input:

- short-range potential ψsr : R3 → R
- self potential ψself ∈ R
- precomputed Fourier coefficients R̂k, k ∈ Im̂

. .
1: Apply the short-range interaction Module 4.1.
2: Apply the self interaction Module 4.2.
3: Apply the long-range interaction Module 4.3.
. .
Output:

- approximated potential φSp(rj), j = 1, . . . , N
- approximated field ESp(rj), j = 1, . . . , N

derivatives in the boundary points. Methods without this knowledge are known as
Fourier extensions [74] or Fourier continuations [94].

4.5 The P2NFFT framework
The Particle-Particle–NFFT (P2NFFT) framework is a composition of the short-
range interaction Module 4.1, the self interaction Module 4.2, and the long-range
interaction Module 4.3. We give a brief summary of P2NFFT in Framework 4.4.
Thereby, we only concentrate on the input parameters that depend on the particular
choice of splitting function. In the case of the Ewald splitting we were able to derive
fast algorithms for all kinds of mixed periodic boundary conditions. However, it is
also possible to use other splitting functions. For example, we show in Section 4.7.1
that the modularized structure allows us to include the NFFT-based fast summation
algorithm [112, 113] within the P2NFFT framework.
Even more, we are able to construct a broad variety of particle-mesh algorithms

by considering all the possible combinations of algorithmic modules that are part
of P2NFFT. Especially, we are free to choose any of the available PNFFT modules
that were presented in Section 3.5. In the following, we discuss the relation of the
P2NFFT to a selection of well known particle-mesh algorithms. Special emphasize
will be given to the strong connection of P2NFFT and P3M.

4.6 The relation of P2NFFT and P3M
The Particle-Particle–Particle-Mesh method (P3M) [70, 38, 39] is the oldest exam-
ple of a mesh-based Ewald summation. In the following, we show that the P3M can

110 4 Parallel particle-mesh methods based on NFFT

be essentially interpreted as a special case of P2NFFT with 3d-periodic boundary
conditions. However, we will also see that P2NFFT profits a lot from the expe-
riences of the P3M community. Both methods are based on the Ewald splitting
and share exactly the same short-range evaluations. Therefore, we only concentrate
on the long-range interactions of these two methods. For the sake of notational
convenience, we assume a unit box shape L = I3. We emphasize that all of the fol-
lowing comparisons apply analogously for tricline box shapes. The P3M long-range
part for computing the potentials is given in our notation by the following matrix
decomposition

CN,m̂F̃m̂ diag
(
Ĝopt(k)

)
k∈Im̂

F̃H
m̂C>N,m̂, (4.28)

where CN,m̂ denotes a discrete convolution with the B-Spline window function (3.28)
as given in (3.22) and F̃m̂ = (e−2πikT(l�m̂−1))l,k∈Im̂

denotes the (non-pruned) Fourier
matrix of size m̂ with shifted index sets. The function Ĝopt : R3 → R is often called
optimal influence function in the P3M terminology and will be defined later on. For
the sake of convenience we abbreviate the vector Ĝ :=

(
Ĝopt(k)

)
k∈Im̂

in all what
follows. Note that the matrix decomposition (4.28) already shares a lot of matrix
factors with the matrix representations (3.20), (3.23) of the NFFT and its adjoint.
The P3M with analytic differentiation can be written as

∇C3N,m̂F̃m̂ diag(Ĝ)F̃H
m̂C>N,m̂, (4.29)

where ∇C3N,m̂ denotes a discrete convolution with the gradient of the B-Spline
window function as given in (3.25). The ik-derivative is given by

(
CN,mF̃m̂ ⊗ I3

)
K3m̂,m̂ diag(Ĝ)F̃H

m̂C>N,m̂. (4.30)

Hereby, K3m̂,m̂ := (−2πikδk−l)k∈Im̂; l∈Im̂
accomplishes the derivative in Fourier

space. In compliance to the NFFT naming scheme we denote by ad-P3M and ik-
P3M the P3M method in combination with the corresponding differentiation scheme.
Analogously, we denote the P2NFFT with analytic derivative (ad-P2NFFT) and

with derivative in Fourier space (ik-P2NFFT).
In general, the optimal influence function Ĝopt will differ for all of the above

mentioned P3M algorithms. The values Ĝopt(k) are interpreted as parameters of
the method that can be freely chosen. The philosophy of P3M is to choose these
values such that the mean square aliasing error of the whole method is minimized.
Formulas of the optimal influence functions have been derived for many types of
P3M methods. We refer to [23, Equations (4.10), (4.11)] for a nice overview. In the
following, we summarize these formulas in our notation and compare them with the
NFFT deconvolution. In order to keep notation short, we abbreviate kr := k+r�m̂
in all what follows. Then, the numerator B(k) and denominator A(k) of the optimal

4.6 The relation of P2NFFT and P3M 111

influence function Ĝopt(k) = B(k)/A(k) are given by

A(k) :=

|Im̂|4
(∑
r∈Z3

ϕ̂2
kr

)2
for opt. potential,

|Im̂|4
(∑
r∈Z3

ϕ̂2
kr

)2
‖k‖2 for opt. ik-field,

|Im̂|4
(∑
r∈Z3

ϕ̂2
kr

)(∑
r∈Z3

ϕ̂2
kr
‖kr‖2

)
for opt. ad-field,

(4.31)

and

B(k) :=

|Im̂|2
∑
r∈Z3

R̂kr ϕ̂
2
kr

for opt. potential,

|Im̂|2
∑
r∈Z3

R̂kr ϕ̂
2
kr
kTkr for opt. ik-field,

|Im̂|2
∑
r∈Z3

R̂kr ϕ̂
2
kr
‖kr‖2 for opt. ad-field.

(4.32)

Thereby, the coefficients R̂k = π−1‖k‖−2e−π2‖k‖2/α2 are given by the long-range
part (4.15) of the Ewald splitting. Because of the fast decay of R̂k we get a very
good approximation of B(k) by only considering the r = 0 terms of the sums, i.e.,

B(k) ≈ R̂k

{
|Im̂|2ϕ̂2

k for opt. potential,
|Im̂|2ϕ̂2

k‖k‖2 for opt. ad- and ik-field.
(4.33)

Then, the optimal influence functions for computing the potential and the fields via
ik-derivative simplify to the same expression

Ĝik
opt(k) = B(k)

A(k) ≈
ϕ̂k

|Im̂|
∑

r∈Z3 ϕ̂2
kr

R̂k
ϕ̂k

|Im̂|
∑

r∈Z3 ϕ̂2
kr

. (4.34)

This expression exhibits a remarkable agreement with the NFFT deconvolution
steps. The factors on the right hand side of (4.34) can be interpreted from right
to left as follows. First, the optimal deconvolution (3.39) of the NFFTH is applied.
Next, the Fourier coefficients of the Ewald splitting are multiplied. Finally, the
optimal deconvolution (3.39) of the NFFT is applied. Thereby, the last step can
also be interpreted as the optimal deconvolution (3.43) of the ik-NFFT. Note that
these are exactly the deconvolutions that are applied in the long-range interaction
Module 4.3 due to the NFFTH in Step 2 and the NFFT in Step 4. Analogously, the
optimal P3M influence function for computing the ad-derivative simplifies to

Ĝad
opt(k) = B(k)

A(k) ≈
ϕ̂k‖k‖2

|Im̂|
∑

r∈Z3 ϕ̂2
kr
‖kr‖2 R̂k

ϕ̂k
|Im̂|

∑
r∈Z3 ϕ̂2

kr

.

Hereby, the only difference to (4.34) is the leftmost factor, which can be interpreted
as the optimal deconvolution (3.41) of the ad-NFFT.

112 4 Parallel particle-mesh methods based on NFFT

CN,m̂ F̃m̂ Dm̂ diag(R̂) Dm̂ F̃H
m̂ C>

N,m̂

optimal influence function

NFFT NFFTH

P3M:

P2NFFT:

Figure 4.7: For 3d-periodic boundary conditions P3M and P2NFFT differ only in
the viewpoint on the same algorithm.

Now, the matrix representation (4.28) of the P3M long-range part becomes by
application of (4.34)

CN,m̂F̃m̂Dm̂ diag(R̂)Dm̂F̃H
m̂C>N,m̂,

where we abbreviate R̂ := (R̂k)k∈Im̂
∈ C|Im̂|. This representation reveals the matrix

factorization of the non-pruned NFFT AN,m̂ ≈ CN,m̂F̃m̂Dm̂ and its adjoint. This
means, that 3d-periodic P2NFFT and P3M can be understood as two different view-
points on the same algorithm as shown in Figure 4.7. We have also seen that an
analogous connection exists between ik-P3M (4.30) and ik-P2NFFT as well as be-
tween ad-P3M (4.29) and ad-P2NFFT. This means that the only difference between
P2NFFT and P3M is approximation (4.33) in the numerator of the optimal P3M
influence function. Since P2NFFT looks at the NFFT steps as uncoupled modules,
it implicitly applies this additional approximation. In contrast, P3M looks at the
whole algorithm at once and gets the exact influence function. However, we also
see that the denominators, which give the main contribution of the P3M influence
function, are completely recovered by the NFFT based splitting.
This means, as long as the Ewald coefficients R̂k decay fast enough such that

the r = 0 alias term dominates the numerator (4.32), P3M can be interpreted as a
special case of P2NFFT. However, if this requirement is not fulfilled we can turn the
3d-periodic P2NFFT efficiently into P3M by a simple rescale in Fourier space. The
main advantages of P2NFFT are the free choice of window function, the possibility
to use oversampling and the generalization to mixed- and non-periodic boundary
conditions.

Remark 4.1. Within this thesis we only investigated the aliasing error of the NFFT
and optimized the deconvolution steps for this error. As long as NFFT applies a
window function that exhibits compact support in real space this will be the only
source of NFFT approximation error. Especially, this is valid for the B-Spline (3.28)
and the Bessel-I0 window (3.30). For these windows it is correct that the P3M influ-
ence function is the best choice in the sense that it optimizes the overall mean square
approximation error. However, for all the other windows introduced in Section 3.2.1
we have an additional truncation error that is not considered in P3M and also not in

4.6 The relation of P2NFFT and P3M 113

the optimal NFFT deconvolution presented in this thesis. For a more general view
on the optimal influence function of P2NFFT with aliasing and truncation error we
refer to the recent work [103]. �

4.6.1 Interlaced P2NFFT and P3M
Interlacing in the context of P3M has been introduced in [70]. Thereby, the authors
distinguished two forms of interlacing, namely the force averaging scheme [70, Sec. 7-
8-1] and the harmonic average [70, Sec. 7-8-2]. The key idea of the force averaging
approach is to shift the whole particle system by half the inverse mesh size 1/2m̂−1,
compute the Coulomb field, and average with the field resulting from the non-shifted
particle system. Analogously, this can be done for the Coulomb potential, energy
and force. This scheme applied to the Coulomb field can be written in matrix form
as

1
2

[
∇C3N,m̂F̃m̂ diag(Ĝ)F̃H

m̂C>N,m̂ +∇C̃3N,m̂F̃m̂ diag(Ĝ)F̃H
m̂C̃>N,m̂

]
, (4.35)

where C̃N,m̂ and ∇C̃3N,m̂ stand for the discrete convolution steps with shifted parti-
cle positions that were defined in (3.34) and (3.35). The optimal influence functions
Ĝopt(k) = B(k)/A(k) for interlaced P3M, ad-P3M, and ik-P3M are given in [101]
as follows. While the numerator B(k) remains the same as in the non-interlaced
case, the denominator is given by A(k) = 1

2 [A1(k) + A2(k)]. Hereby, A1(k) is the
denominator (4.31) from the non-interlaced case and A2(k) is defined as

A2(k) :=

|Im̂|4
(∑
r∈Z3

(−1)|r|ϕ̂2
kr

)2
for opt. potential,

|Im̂|4
(∑
r∈Z3

(−1)|r|ϕ̂2
kr

)2
‖k‖2 for opt. ik-field,

|Im̂|4
(∑
r∈Z3

(−1)|r|ϕ̂2
kr

)(∑
r∈Z3

(−1)|r|ϕ̂2
kr
‖kr‖2

)
for opt. ad-field.

In the following, we are going to investigate the connection of interlaced ad-P3M
and ad-P2NFFT. We emphasize that it is straightforward to find similar results for
interlaced P3M and ik-P3M. In order to get a compact representation of the rather
long influence function denominators we introduce the following abbreviations

Apot
± (k) := |Im̂|2

∑

r∈Z3

(±1)|r|ϕ̂2
kr

for opt. potential,

Aik
±(k) := |Im̂|2

(∑

r∈Z3

(±1)|r|ϕ̂2
kr

)
‖k‖2 for opt. ik-field,

Aad
± (k) := |Im̂|2

(∑

r∈Z3

(±1)|r|ϕ̂2
kr
‖kr‖2

)
for opt. ad-field.

114 4 Parallel particle-mesh methods based on NFFT

Using the same approximation (4.33) of B(k) as above, the optimal influence func-
tion of interlaced ad-P3M can be written as

2B(k)
A1(k) + A2(k) ≈ R̂kϕ̂

2
k‖k‖2|Im̂|2

2
Aad

+A
pot
+ + Aad

−A
pot
−
. (4.36)

From the P2NFFT point of view it is more natural to incorporate interlacing in
the form of interlaced NFFT, cf. Section 3.2.3. In order to keep notation short, we
introduce the abbreviations

∇N3N,m̂ := ∇C3N,m̂F̃m̂Dad
m̂, NH

N,m̂ := Dm̂F̃H
m̂C>N,m̂,

for the matrix notation of the ad-NFFT and NFFTH from Section 3.2 as well as

∇Ñ3N,m̂ := ∇C̃3N,m̂F̃m̂D̃ad
m̂, ÑH

N,m̂ := D̃H
m̂F̃H

m̂C̃>N,m̂,

for the matrix representation of the shifted ad-NFFT and shifted NFFTH from
Section 3.2.2. Thereby, the entries of the diagonal matrices Dm̂ and Dad

m̂ are given
by the optimal deconvolution coefficients (3.39) and (3.41), respectively. Then, the
interlaced ad-NFFT reads as ∇A3N,m̂ ≈ (∇N3N,m̂ +∇Ñ3N,m̂)/2 and the interlaced
NFFTH can be written as AH

N,m̂ ≈ (NH
N,m̂ + ÑH

N,m̂)/2. Now, we have the freedom
to choose between three different schemes in order to incorporate interlacing in
P2NFFT.
As a first approach, we apply interlacing for ad-NFFT and NFFTH at once. This

results in the following matrix representation of P2NFFT
1
2

[
∇N3N,m̂ +∇Ñ3N,m̂

]
diag(R̂)1

2

[
NH
N,m̂ + ÑH

N,m̂

]
. (4.37)

Then, the P2NFFT influence function is given by the product Dad
m̂ diag(R̂)Dm̂, where

the entries of Dad
m̂ are given by the optimal deconvolution (3.45) for interlaced ad-

NFFT and the entries of Dm̂ are given by the optimal deconvolution (3.46) for
interlaced NFFTH. Altogether, this yields

4R̂kϕ̂2
k‖k‖2

|Im̂|2

[∑

r∈Z3

[1 + (−1)|r|]ϕ̂2
kr

∑

s∈Z3

[1 + (−1)|s|]ϕ̂2
ks
‖ks‖2

]−1

= R̂kϕ̂
2
k‖k‖2|Im̂|2

4
Aad

+A
pot
+ + Aad

−A
pot
+ + Aad

+A
pot
− + Aad

−A
pot
−
.

Again, this can be written in the form B(k)/A(k), where B(k) is given by approxi-
mation (4.33) and A(k) = [Aad

+A
pot
+ +Aad

−A
pot
+ +Aad

+A
pot
− +Aad

−A
pot
−]/4. On the other

hand, an expansion of (4.37) shows that it can be interpreted as an average over
four different types of shifted P2NFFT

1
4∇N3N,m̂ diag(R̂)NH

N,m̂ + 1
4∇N3N,m̂ diag(R̂)ÑH

N,m̂

+1
4∇Ñ3N,m̂ diag(R̂)NH

N,m̂ + 1
4∇Ñ3N,m̂ diag(R̂)ÑH

N,m̂.
(4.38)

4.6 The relation of P2NFFT and P3M 115

Note that the simple substitutions

∇N3N,m̂ diag(R̂)NH
N,m̂ → Aad

+A
pot
+ , ∇N3N,m̂ diag(R̂)ÑH

N,m̂ → Aad
+A

pot
− ,

∇Ñ3N,m̂ diag(R̂)NH
N,m̂ → Aad

−A
pot
+ , ∇Ñ3N,m̂ diag(R̂)ÑH

N,m̂ → Aad
−A

pot
−

(4.39)

turn (4.38) into the denominator A(k), which gives us a deep insight in the structure
of the influence function.
If we only apply interlacing to the NFFTH, P2NFFT turns into

∇N3N,m̂ diag(R̂)1
2

[
NH
N,m̂ + ÑH

N,m̂

]
. (4.40)

and its corresponding influence function is given by

R̂kϕ̂
2
k‖k‖2|Im̂|2

2
Aad

+ (Apot
+ + Apot

−)
≈ B(k)
A(k) ,

with A(k) = [Aad
+A

pot
+ + Aad

+A
pot
−)]/2. The latter results from the product of the

optimal deconvolution coefficients (3.41), (3.45) of the ad-NFFT and the interlaced
NFFTH. Again, we see that the structure of the denominator A(k) recapitulates
the structure of the algorithms’ matrix representation with the substitutions (4.39).
Note that (4.40) is exactly the so-called harmonic average P3M presented in [70,
Sec. 7-8-2]. However, within the P2NFFT framework we were also able to derive the
optimal influence function of this algorithm for the first time.
Numerical experiments show that the accuracy benefit of ad-P3M with interlacing

is much higher than for interlaced P3M and ik-P3M [101]. Therefore, the ad-NFFT
seems to be the main source of error. Following this line of argumentation it might
be better to avoid the interlacing in the NFFTH and incorporate only the interlaced
ad-NFFT as follows

1
2

[
∇N3N,m̂ +∇Ñ3N,m̂

]
diag(R̂)NH

N,m̂.

This scheme has the advantage that it saves one application of the NFFTH in com-
parison to the standard interlaced P3M (4.35) but still offers the interlacing during
the computation of the analytic derivatives. Therefore, the overall number of FFTs
is reduced from 4 to 3 in comparison to the interlaced ad-P3M. The corresponding
influence function is given by

R̂kϕ̂
2
k‖k‖2|Im̂|2

2
(Aad

+ + Aad
−)Apot

+
≈ B(k)
A(k) ,

with A(k) = [Aad
+A

pot
+ +Aad

−A
pot
+]/2. It can be derived from the product of the optimal

deconvolution coefficients (3.46), (3.39) of the interlaced ad-NFFT and the NFFTH.

116 4 Parallel particle-mesh methods based on NFFT

Again, the matrix decomposition directly leads to the structure of the denominator
A(k) with the substitutions (4.39).
So far none of the three interlaced P2NFFT algorithms got the same matrix de-

composition as the interlaced P3M. The NFFT based approach that is closest to
interlaced P3M would look like

1
2

[
∇N3N,m̂ diag(R̂)NH

N,m̂ +∇Ñ3N,m̂ diag(R̂)ÑH
N,m̂

]

=1
2

[
∇C3N,m̂F̃m̂Dad

m̂ diag(R̂)Dm̂F̃H
m̂C>N,m̂ +∇C̃3N,m̂F̃m̂D̃ad

m̂ diag(R̂)D̃m̂F̃H
m̂C̃>N,m̂

]
.

The resulting influence function R̂kϕ̂2
k‖k‖2|Im̂|2/(Aad

+A
pot
+) of this approach is given

by the entries of Dad
m̂ diag(R̂)Dm̂ = D̃ad

m̂ diag(R̂)D̃m̂, cf. (3.41) for Dad
m̂ and (3.39)

for Dm̂. Obviously, this does not match the exact version (4.36) and also was not
suspected if we used the substitutions (4.39) to derive the denominator A(k) directly
from the matrix representation of the algorithm. Once more, this is due to the fact
that P2NFFT does not look at the whole algorithm at once. The NFFT module
does not consider at all that there is another instance of NFFT with shifted mesh.
Loosely speaking, the P3M viewpoint adds the missing link that was invisible for
the modularized approach of NFFT. On the other hand, from the NFFT point of
view we were able to find three alternative algorithms that incorporate interlacing
in P3M and found the corresponding optimal influence functions. In this sense the
interlacing approaches of P3M and P2NFFT are complementary. Altogether, we
got four different schemes that incorporate interlacing in P2NFFT and derived the
corresponding optimal influence functions.

Remark 4.2. In this section we assumed a unit box shape L = I3 in order to get a
unified look at P3M and P2NFFT. Nevertheless, all of the above presented formulas
can be generalized to tricline box shapes. For P3M with tricline box geometry we
refer to [101, 23]. Loosely speaking, all vectors kr have to be replaced by L−Tkr in
order to get the tricline case. We emphasize, that the P2NFFT framework introduces
the substitution x = L−1r before it calls the NFFT. Together with the resulting
substitution in Fourier space k = LTkr this causes that the matrix representation
of the NFFT does not change at all for the tricline case. Therefore, all ingredients
of the influence function that originate from the NFFT deconvolution steps look
less complicated than the corresponding parts of the P3M formulas. This makes the
equivalence of the two methods harder to see, although it is still valid. �

4.7 The relation of P2NFFT to other particle-mesh
methods

Beside P3M, the P2NFFT Framework 4.4 additionally includes many other well
known particle-mesh algorithms. In the following, we present a selected list of

4.7 The relation of P2NFFT to other particle-mesh methods 117

algorithms that are part of the framework.

4.7.1 Fast summation with non-periodic boundary conditions
We start with an outline the NFFT-based fast summation algorithm [112, 113] for
the fast computation of (4.1) and (4.2) with non-periodic boundary conditions. It
requires O(N logN) arithmetic operations for uniformly distributed source nodes
rj. At the end, we will see that this method is part of the P2NFFT framework.
Assume H > 2

√
3L, H := diag(H,H,H) and non-periodic boundary conditions.

We construct a smooth regularization R : H
[
− 1/2, 1/2

)3 → R of the kernel function
‖r‖−1 as

R(r) :=

T sr(‖r‖) if ‖r‖ ≤ rc,

Θ̃S0(‖r‖) if rc < ‖r‖ ≤
√

3L,
T lr(‖r‖) if

√
3L < ‖r‖ ≤ H

2 ,

T lr(H2) if H
2 < ‖r‖,

where Θ̃S0(t) := t−1. The short-range transition T sr and the long-range transition T lr

are chosen such that the regularization R is s times differentiable for an appropriately
chosen degree of smoothness s ∈ N. In contrast to (4.23) an additional short-range
transition T sr is necessary since t−1 has a singularity at zero. We define T sr by the
unique polynomial of degree 2s+ 2 that fulfills the 2s interpolation conditions

d
dxjT

sr(rc) = (−1)j d
dxjT

sr(−rc) = Θ̃(j)
S0

(rc),

similar to the definition in Section 4.4.3. Furthermore, T lr can be defined by the
2s+ 1 interpolation conditions in the same way as for the Ewald splitting

d
dxjT

lr
(√

3L
)

= Θ̃(j)
S0

(√
3L
)
, j = 0, . . . , s,

d
dxjT

lr (H
2
)

= 0, j = 1, . . . , s,

cf. Section 4.4.5. Since R is periodic and smooth of order s we expect a good
approximation by the finite Fourier series

R(r) ≈ 1
H3

∑

k∈Im̂

R̂ke+2πikTH−1r, (4.41)

where m̂ ∈ 2N3 is an appropriately chosen finite mesh size and

R̂k := H3

|Im̂|
∑

l∈Im̂

R(Hl� m̂−1)e−2πikT(l�m̂−1), k ∈ Im̂,

118 4 Parallel particle-mesh methods based on NFFT

are the discrete Fourier coefficients that can be precomputed by a three-dimensional
FFT. Now, the initial problem of calculating φS0(rj) can be rewritten as

N∑′

i=1

qi
‖rij‖

=
N∑′

i=1
qi

(
1
‖rij‖

−R(rij)
)

+
N∑

i=1
qiR(rij)− qjR(0).

The first term on the right hand side can be computed with the short-range inter-
action Module 4.1. Thereby, we simply set ψsr(r) ← 1

‖r‖ − T sr(‖r‖). Furthermore,
approximation (4.41) turns the second term into

N∑

i=1
qiR(rij) ≈

N∑

i=1
qi

1
| det(H)|

∑

k∈Im̂

R̂ke+2πikTH−1rij ,

which can be computed by the long-range interaction Module 4.3. Finally, the third
term can be computed using the self interaction Module 4.2 with ψself ← T sr(0). In
summary, we see that the fast summation algorithm of [112, 113] is included in the
P2NFFT framework by a simple change of the splitting function.

4.7.2 Ewald summation
The P2NFFT framework offers the opportunity to compute all the NFFTs within
the long-range interaction Module 4.3 directly by the PNDFT Modules 3.3 and 3.4.
In this case we use the name P2NDFT to denote the direct computation of the
NFFT parts. Then, the complexity of Module 4.3 raises from O(N + |Im̂| log |Im̂|)
to O(N |Im̂|) for all kinds of mixed-periodic boundary conditions. In the case of
3d-periodic boundary conditions the P2NDFT is nothing else than the Ewald sum-
mation technique [49]. It is well known that the Ewald splitting parameter α can be
chosen in a way that leads to an optimal coupling between the number of particles
N and the mesh size m̂. For this optimal choice of the splitting parameter α(N) the
overall complexity for computing the Coulomb forces via Ewald summation results
in O(N3/2). We present a detailed discussion about the optimal choice of α in Sec-
tion 4.8.1. Thereby, we will also see that optimizing α for computing the potential
results in a slightly worse scaling of O((N logN)3/2).
However, P2NDFT also supports partially periodic and non-periodic boundary

conditions. Therefore, it can be seen as the natural generalization of Ewald summa-
tion to these kinds of periodicity. The most important step towards this generaliza-
tion was the approximation with fast convergent Fourier series along non-periodic
dimensions, cf. Section 4.4.7. We stress that a naive evaluation of the 2d-periodic
long-range part (4.16) would take O(N2m̂0m̂1) operations. Analogously, the 1d-
periodic long-range part (4.19) would require O(N2m̂0) operations. Note that in
both cases the computational work increases with N2 no matter how the Ewald
splitting parameter α is chosen. In contrast, the O(N |Im̂|) scaling of the P2NDFT

4.7 The relation of P2NFFT to other particle-mesh methods 119

long-range part makes it possible to derive an N3/2 algorithms by optimal coupling
of N and m̂. However, using NFFTs the P2NFFT yields a much better scaling also
for mixed-periodic boundary conditions at the price of the NFFT approximation
error and should be the method of choice for usual use cases.

4.7.3 Fast Ewald summation based on NFFT
The fast Ewald summation based on NFFT [68, 129] simply applies NFFTs for
the fast computation of the long-range part in the the 3d-periodic Ewald splitting.
Therefore, it can be interpreted as P2NFFT with 3d-periodic boundary conditions.
Indeed, [68] has been the starting point for the development of P2NFFT with pe-
riodic boundary conditions. However, we stress that the complete P2NFFT frame-
work includes many features that were not included in this previous work, especially
mixed-periodic boundary conditions. Furthermore, our versatile PNFFT implemen-
tation [12] includes many features that were not available at former times. This in-
cludes interlacing, adapted algorithmic design for scaled nodes x ∈ S

[
− 1/2, 1/2

)3 ⊂[
− 1/2, 1/2

)3, fast NFFT based computation of the gradient and parallelization.

4.7.4 Particle-mesh Ewald
The Particle-Mesh Ewald (PME) method [37] can be interpreted as P2NFFT with
3d-periodic boundary conditions. Thereby, a non-oversampled NFFT is computed
that uses Lagrangian interpolation instead of a window function. In addition, the
NFFT deconvolution step (3.10) is omitted completely. Note that the Lagrangian
interpolation can be interpreted as a non-smooth window function in the NFFT
setting. This results in relatively large errors, especially in the gradients. Lagrangian
interpolation is not part of the implemented windows in our PNFFT library [12].
Nowadays, particle-mesh Ewald is superseded by the smooth particle-mesh Ewald
method that shows better convergence, especially in the gradients.

4.7.5 Smooth particle-mesh Ewald
The Smooth Particle-Mesh Ewald (SPME) method [48] can be interpreted as 3d-
periodic P2NFFT with a special set of NFFT parameters. In their original paper [48]
a non-oversampled NFFT with a B-spline window function was proposed. Further-
more, they used the analytic differentiation scheme for computing the field. It can
be shown [23, Equation (4.1)] that the SPME influence function is equivalent to

R̂k
(
∑

r∈Z3 ϕ̂kr)2 ≈
R̂k
ϕ̂2
k

,

which shows its close connection to both P2NFFT and P3M. For the non-interlaced
case the differences in accuracy between P3M and SPME have been found to be

120 4 Parallel particle-mesh methods based on NFFT

practically irrelevant [117], see also [101, Figure 1]. Because of the very similar
structure of P3M and P2NFFT we suppose the same behavior for our method. A
combination of SPME and interlacing was presented in [31] and is called staggered
mesh Ewald. Numerical tests in [101] showed, that the specialized form of the inter-
laced P3M influence function gives rise to a remarkable accuracy gain in comparison
to SPME. The same can be expected for P2NFFT. A parallel version of SPME has
been described in [63, Section 7.5].

4.7.6 Gaussian split Ewald
The k-space Gaussian split Ewald method [118] splits the exponential of R̂k into
several factors and derives an algorithm that recapitulates exactly the steps of an
NFFT with Gaussian window function. In our notation Gaussian split Ewald can be
interpreted as an NFFT based fast Ewald summation with non-oversampled NFFT,
the Gaussian window function (3.27) and analytic differentiation. Furthermore, the
authors propose an adaption called real-space Gaussian split Ewald method that
shifts the deconvolution step of the NFFT into real space where it is performed on
the mesh. This variation of deconvolution is not yet included in the PNFFT module
and, therefore, not yet part of the P2NFFT framework.

4.7.7 Spectrally accurate Ewald
The Spectrally Accurate Ewald method [92, 93] can be interpreted as a P2NFFT
with oversampled NFFT and Gaussian window function. This method was proposed
for 3d-periodic and 2d-periodic boundary conditions. In the 2d-periodic case our
P2NFFT differs from [93] in the choice of the regularization (4.17), see also Sec-
tion 4.4.7 for a comparison of the different regularization approaches. Note that
the Spectrally Accurate Ewald method only supports 3d- and 2d-periodic bound-
ary conditions, whereas P2NFFT is a common framework for 3d-, 2d-, 1d- and
0d-periodic boundary conditions. In [3] we presented extensive numerical tests of
P2NFFT that recapitulate the high accuracy tests of the spectrally accurate Ewald
method in [92, 93]. In summary, P2NFFT reaches the same accuracy at smaller grid
sizes.

4.8 Complexity of Ewald summation and parameter
selection

It seems to be common knowledge that plain Ewald summation scales as O(N3/2) for
optimal choice of the Ewald splitting parameter α and particle-mesh methods scale
as O(N logN). In the following, we give a rigorous derivation of the asymptotic
runtime for plain Ewald summation and P2NFFT based on the error estimates of

4.8 Complexity of Ewald summation and parameter selection 121

[85]. Thereby, we strictly assure that the approximation errors of our algorithms
do not increase with the system size N . In addition, we find some easy rules for
P2NFFT parameter selection in order to fulfill a prescribed error bound.
We assume a uniform distribution of N particles with uncorrelated positions in a

cubic box of size L× L× L. It is natural to scale up the system size by increasing
the box length L. Then, the uniform particle distribution implies Q :=

∑N
i=1 q

2
i ∼

N ∼ L3 and, therefore, QL−3 is constant. Let ∆φi = φi,approx − φi,exact and ∆Ei =
Ei,approx − Ei,exact be the potential and field errors per particle position ri. Then,
we define the root mean square (rms) errors in the potentials and fields as

∆φ =

√√√√ 1
N

N∑

i=1
∆φ2

i , ∆E =

√√√√ 1
N

N∑

i=1
‖∆Ei‖2.

The rms errors of the energies and forces are defined analogously.
Let a prescribed rms potential accuracy ε > 0 given. In [85] the rms potential

error is decomposed as (∆φ)2 = (∆φsr)2 + (∆φlr)2 and estimates of the short-range
rms potential error ∆φsr and the long-range rms potential error ∆φlr are given as
follows

∆φsr ≈
√
Qrc

L3
exp(−α2r2

c)
α2r2

c
, ∆φlr ≈ α

π2

√
2Q
k3

c
exp

(
− π

2k2
c

α2L2

)
. (4.42)

Analogously, the rms field error is written as (∆E)2 = (∆Esr)2 +(∆E lr)2. Estimates
for the short- and long-range rms field errors are also given in [85] as

∆Esr ≈ 2
√

Q

L3rc
exp(−α2r2

c), ∆E lr ≈ α

π2L

√
32Q
kc

exp
(
− π

2k2
c

α2L2

)
. (4.43)

Remark 4.3. Error estimates for the energies and forces are due to [85] given by

∆U ≈
√
Q

N
∆φ, ∆F ≈

√
Q

N
∆E. (4.44)

Since we claim QN−1 to be constant, we get the same asymptotic behavior as for the
potentials and fields. Therefore, we restrict the following investigations to potentials
and fields. �

The above mentioned error estimates can be explicitly solved for α, rc or kc
using the Lambert-W function [33]. For our purposes it is enough to consider the
positive branch of the Lambert-W function restricted to the interval (0,∞), which
is given as the inverse function of f : (0,∞) → (0,∞), f(x) = xex. Note that the
function f and, therefore, its inverse W are strictly monotonically increasing. In
the following, we summarize some important properties of the Lambert-W function
that will become useful in the investigation of the error estimates afterward.

122 4 Parallel particle-mesh methods based on NFFT

Lemma 4.4. Let A,B, n > 0. The unique positive solution t > 0 of the equation
A = tn log(Bt) is given by

t =
(

nA

W[nABn]

)1/n

= 1
Bn

exp
(

1
n

W[nABn]
)

Proof. The equation A = tn log(Bt) can be transformed equivalently into

nAt−n exp(nAt−n) = nABn

which is equivalent to
nAt−n = W[nABn].

Then, the first representation of the solution t follows immediately. Now, for z =
nABn > 0 the implicit definition of the Lambert-W function W [z] exp(W [z]) = z
can be rearranged to z

W [z] = exp(W [z]), which implies the second representation.
Since we only used equivalent transformations, the solution t is unique. �

Lemma 4.5. For all a > 0 we have limx→∞W[ax](log x)−1 = 1.

Proof. Let f : (0,∞) → (0,∞), f(x) = xex. Note that f is strictly monotonically
increasing and its inverse function is given by the positive branch of the Lambert-W
function restricted to the interval (0,∞). For x ≥ 1 we have (1 − x−1 log x)ex ≤
ex ≤ xex which can be rewritten as

f(x− log x) ≤ ex ≤ f(x), for all x ≥ 1.

Application of the strictly increasing function W to the above inequality yields

x− log x ≤W[ex] ≤ x, for all x ≥ 1.

Since x is positive, we can divide this inequality by x and take the limit x → ∞.
Then, the upper and lower bound tend to 1 and we get limx→∞ x−1 W[ex] = 1. Now,
for arbitrary a > 0 we substitute y = log x+ log a and yield

lim
x→∞

W[ax]
log x = lim

y→∞
W[ey]
y − log a = lim

y→∞
W[ey]
y︸ ︷︷ ︸
→1

y

y − log a︸ ︷︷ ︸
→1

= 1.

�

4.8 Complexity of Ewald summation and parameter selection 123

Lemma 4.6. For all a > 0 we get the right-sided limit limx→0+ x
−1 W[ax] = a.

Proof. A simple rearrangement of the implicit definition W [ax]eW [ax] = ax ofW [ax]
yields limx→0+ x

−1 W[ax] = limx→0+ a exp(−W[ax]) = a. Thereby, the last step
follows from limx→0+ W[x] = 0 and the continuity of the exponential function. �

4.8.1 Runtime model

In the following, we are mainly interested in the asymptotic behavior of the Ewald
summation runtime for N → ∞. Therefore, we define for two positive functions
f : (0,∞)→ (0,∞) and g : (0,∞)→ (0,∞) the relations

f(x) ∼ g(x) for x→ 0+ :⇔ 0 < lim
x→0+

f(x)
g(x) <∞,

f(x) ∼ g(x) for x→ +∞ :⇔ 0 < lim
x→+∞

f(x)
g(x) <∞.

Hereby, the notation x → 0+ stands for the right-sided limit. Note that these two
conditions imply in Landau notation the less restrictive property f(x) ∈ Θ(g(x))
for x → 0+ or x → +∞, respectively. Our complexity estimates are based on the
commonly used runtime model of the Ewald summation [85, Appendix B]. Thereby,
we assume a homogenous particle distribution with a constant particle density ρ :=
NL−3. Then, the number of particles within a sphere of radius rc is given by 4

3πr
3
cρ.

This gives the number of terms that must be summed up for each particle in order
to compute the short-range interactions (4.11). This means, that the asymptotic
runtime of all the short-range interactions can be written as

tsrN ∼
4
3πr

3
cρN ∼ r3

cN for N →∞. (4.45)

Furthermore, for N → ∞ the asymptotic runtime of the long-range part with a
spherical Fourier space cutoff kc is given by

tlrN ∼
{
Nk3

c for plain Ewald summation,
N + k3

c log k3
c + k3

c for fast (NFFT-based) Ewald summation.
(4.46)

Note that the runtime of the fast Ewald summation results from the complexity of
the NFFT and its adjoint. Thereby, we assume that we can find a constant window
cutoff parameter cϕ and oversamplingM�m̂−1 such that the NFFT approximation
error is negligible in comparison to ∆φlr and ∆E lr for all N →∞.

124 4 Parallel particle-mesh methods based on NFFT

4.8.2 Potential computation via Ewald summation
Let ε be a prescribed error bound. Using the error estimates (4.42) we get ∆φsr ≤ ε
and ∆φlr ≤ ε for

rc ≥
√

3
2α

√√√√W
[

4
3

(
Q

L3

)2/3 1
ε4/3

1
α2/3

]
∼ 1
α

√
logα−1 for α→ 0+,

(4.47)

kc ≥
√

3
2
Lα

π

√√√√W
[

4
3

(
2πQ
L3

)2/3 1
ε4/3

1
α2/3

]
∼ N1/3α

√
logα−1 for α→ 0 + .

(4.48)

Hereby, we used that ε and QL−3 are constants. Furthermore, we substituted L ∼
N1/3 into the last relation. The limits for α → 0+ are given by Lemma 4.5. A
crucial point is that we assume α → 0+ for N → ∞. It can be easily verified that
constant α and α → ∞ result in a worse complexity at the end. Loosely speaking,
the additional factor L−2 in the exponential of the long-range error (4.42) causes the
Fourier space cutoff kc to increase faster with N → ∞ than the short-range cutoff
rc. Therefore, α has to decrease in order to compensate the growth of L. Plugging
the bounds (4.47), (4.48) into the runtime model (4.45), (4.46) yields the asymptotic
total runtime

tN = tsrN + tlrN ∼ α−3 (logα−1)3/2
N + α3N

(
logα−1)3/2

N for α→ 0 + .

Choosing tsrN ∼ tlrN gives the asymptotic optimal value if α ∼ N−1/6, for N → ∞.
Note that the optimal choice of α indeed fulfills α → 0+ for N → ∞. Finally,
plugging the asymptotic optimal α into the total runtime tsrN + tlrN gives a complexity
estimate of the Ewald summation at constant rms potential error

tN ∼ (N logN)3/2 for N →∞.

Note that this term scales worse than N3/2 as proposed in [55]. The additional
logarithmic factor originates from the prefactors of the exponential in (4.42) that
depend on rc and kc. These prefactors have not been taken into consideration in
[55].

4.8.3 Potential computation via P2NFFT
The total runtime of P2NFFT is given by (4.45), (4.46) as

tN = tsrN + tlrN ∼ r3
cN +N + k3

c log k3
c + k3

c .

4.8 Complexity of Ewald summation and parameter selection 125

Note that N does not depend on α and k3
c is of lower order in comparison to k3

c log k3
c .

Therefore, we need to set r3
cN ∼ k3

c log k3
c in order to get the minimal asymptotic

runtime in dependence on α. Using (4.47) and (4.48) this is equivalent to

1 ∼ α6 log
[
α3N

(
logα−1)3/2

]
∼ α6 log(α3N) + α6 log

(
logα−1)3/2

,

where the last term is of lower order as long as α does not decay exponentially with
N . Therefore, we use Lemma 4.4 to solve the equation 1 = α6 log(α3N) for α. This
results in the asymptotic optimal α as

α ∼
(

2
W[2N2]

)1/6

∼ 1
6
√

logN
for N →∞.

Hereby, the limit of the Lambert-W function was computed with Lemma 4.5. Fi-
nally, this choice of α gives the complexity estimates

tsrN ∼
√

logNN(log logN)3/2,

tlrN ∼
1√

logN
N(log logN)3/2

logN + log(logN)−1/2 + log(log logN)3/2

︸ ︷︷ ︸
lower order

 ,

for N → ∞. We see that the asymptotic runtime of the short-range and long-
range part is balanced and the complexity estimate of the total runtime is given
by tN ∼ N

√
logN(log logN)3/2. Note that this is better than the commonly cited

O(N logN) scaling of particle-mesh methods.

4.8.4 Field computation via Ewald summation
Let ε be a prescribed error bound. Using the error estimates (4.43) we get ∆Esr ≤ ε
and ∆E lr ≤ ε for

rc ≥
1

2α

√√√√W
[

64
(
Q

L3

)2 1
ε4α

2

]
∼ 1 for α→ 0+, (4.49)

kc ≥
Lα

2π

√√√√W
[

4096
(

Q

πL3

)2 1
ε4α

2

]
∼ N1/3α2 for α→ 0 + .

Again, we used that ε and QL−3 are constants and substituted L ∼ N1/3 into the
last relation. The limits for α → 0+ are given by Lemma 4.6. Therefore, the
complexity of the total runtime is given by

tN = tsrN + tlrN ∼ r3
cN + k3

cN ∼ N + α6N2 for α→ 0 + .

126 4 Parallel particle-mesh methods based on NFFT

Choosing tsrN ∼ tlrN yields the asymptotic optimal value for α ∼ N−1/6, N →∞. With
this choice of α we get the following complexity estimate of the Ewald summation

tsrN + tlrN ∼ N for N →∞.
This result is surprising since it seems to be much better than the well known
O(N3/2) scaling of the Ewald field computation. However, application of Lemma 4.6
to (4.49) reveals that

lim
α→0+

rc = 4QL−3ε−2. (4.50)

Although this limit is constant in N , it increases tremendously for higher accuracy.
We emphasize that the short-range computation time scales as tsrN ∼ r3

cN , i.e., this
part increases with ε−6 and is almost not computable also for modest accuracy ε. For
example, if we wanted to increase accuracy by one digit, we would have to multiply
the work of the short-range part by one million. Therefore, the theoretical O(N)
complexity of the Ewald summation is unreachable in practical computations.
In the following, we show that it is possible to obtain a smaller constant, if we are

willing to sacrifice the optimal O(N) complexity. At first, we introduce some less
strict bounds for rc and kc that are more focused on the exponential decay of the
errors. We assume that the argument in the exponential are at least 1 and get

∆Esr ≈ 2
√

Q

L3rc
exp(−α2r2

c)
αrc≥1
≤

√
Qmax{1, α}

L3 exp(−α2r2
c),

∆E lr ≈ α

π2L

√
32Q
kc

exp
(
− π

2k2
c

α2L2

) πkc
αL
≥1
≤

√
32Qmax{1, α}

π3L3 exp
(
− π

2k2
c

α2L2

)
.

Using these bounds we have ∆Esr ≤ ε and ∆E lr ≤ ε if we choose

rc(α) ≥ 1
α

max

1,

√√√√log
[

2
(
Q

L3

)1/2 1
ε

]
+ 1

2 log max{1, α}

 ∼ 1

α
, (4.51)

kc(α) ≥ αL

π
max

1,

√√√√log
[(

32
π3

Q

L3

)1/2 1
ε

]
+ 1

2 log max{1, α}

 ∼ N1/3α. (4.52)

Hereby, the asymptotics are considered for α→ 0+. Then, the asymptotic runtime
(4.45), (4.46) of the short-range and long-range interactions for α→ 0+ are given by
tsrN ∼ α−3N and tlrN ∼ α3N2, respectively. Choosing tsrN ∼ tlrN yields the asymptotic
optimal value with α ∼ N−1/6, N →∞, and we get the well known complexity [85,
Appendix B] of the Ewald field computations

tsrN + tlrN ∼ N3/2 for N →∞.
For this choice of α the short-range cutoff increases like rc ∼

√
log ε−1N1/6. Note the

important differences to (4.50). This time rc grows with N1/6 but the dependency
on the accuracy is dramatically reduced.

4.8 Complexity of Ewald summation and parameter selection 127

Plain Ewald Fast Ewald
Potential Field Potential Field

α ∼ N−1/6 N−1/6 (logN)−1/6 (logN)−1/6

rc ∼ N1/6√logN N1/6 (logN)1/6√log logN (logN)1/6

kc ∼ N1/6√logN N1/6 N1/3(logN)−1/6√log logN N1/3(logN)−1/6

tN ∼ (N logN)3/2 N3/2 N
√

logN(log logN)3/2 N
√

logN

Table 4.1: Comparison of the asymptotic optimal parameters for computing the
Ewald potential and field by plain Ewald summation and fast (NFFT-
based) Ewald summation. These parameters are the Ewald splitting pa-
rameter α, the short-range cutoff rc, the Fourier space cutoff kc and the
total runtime tN . For all cases we assume a homogenous particle distri-
bution with N ∼ Q ∼ L3 for N →∞.

4.8.5 Field compuation via P2NFFT
The runtime of P2NFFT is given by (4.45), (4.46) as

tN = tsrN + tlrN ∼ r3
cN +N + k3

c log k3
c + k3

c .

As in Section 4.8.3 we get the optimal complexity for r3
cN ∼ k3

c log k3
c . Using (4.51)

and (4.52) this is equivalent to 1 ∼ α6 log(α3N). This can be solved for α with
Lemma 4.4 and yields the asymptotic optimal α as

α ∼
(

2
W[2N2]

)1/6

∼ 1
6
√

logN
for N →∞.

Hereby, the limit of the Lambert-W function was calculated with Lemma 4.5. Fi-
nally, this choice of α gives the asymptotic runtime

tsrN ∼
√

logNN, tlrN ∼
1√

logN
N
(

logN − 1
2 log logN︸ ︷︷ ︸

lower order

)
.

We see that the asymptotic runtime of the short-range and long-range part is bal-
anced and the complexity estimate of the total runtime is given by tN ∼ tsrN + tlrN ∼
N
√

logN . Again, this is better than the commonly cited O(N logN) scaling of
particle-mesh methods.
Finally, Table 4.1 summarizes the asymptotic optimal parameters that we found

in Sections 4.8.2–4.8.5.

4.8.6 Selection of P2NFFT parameters
A crucial point for the success of a numerical algorithm is the determination of good
parameters. This means that we aim to fulfill some prescribed error bounds at the

128 4 Parallel particle-mesh methods based on NFFT

shortest runtime, which emphasizes the need for accurate error estimates. Error
estimates for the P3M have been derived in [39] and can also be used to determine
the parameters of the 3d-periodic P2NFFT. However, in this section we present
an alternative parameter tuning based on the Ewald summation error estimates
(4.42), (4.43) presented in Section 4.8. Our approach enables us to reach very high
accuracy and can be generalized to non-periodic boundary conditions. For the sake
of simplicity, we assume a cubic box of size L×L×L. The list of P2NFFT parameters
is given as follows:

• short-range cutoff rc > 0,
• Ewald splitting parameter α > 0,
• NFFT grid size m̂ ∈ 2N3,
• FFT grid size M = σ � m̂ ∈ 2N3,
• NFFT window cutoff cϕ ∈ N,
• extended box shape H ∈ R3×3, and
• degree of smoothness s ∈ N of the regularization.

Thereby, we introduced the vector valued oversampling factor σ := m̂ �M−1 ∈
[1,∞)3. We will see that tuning σ instead of M is more convenient since it stays
constant for N →∞.
In the following, we present our parameter tuning for 3d-periodic boundary condi-

tions. Afterward, we will extend this approach to non-periodic boundary conditions.
The starting point of our parameter tuning is some sensible choice of short-range
cutoff rc. Thereby, rc should be chosen such that the computation of the short-range
interaction part does not get overwhelming. Next, we compute α and kc from (4.42)
such that ∆φsr = ε/

√
2 and ∆φlr = ε/

√
2 is fulfilled with a prescribed rms potential

error bound ε. The resulting values of α and kc are given by

α = 1
rc

√√√√W
(√

Qrc

L3
1
ε̃

)
, kc =

√
3

2
αL

π

√√√√W
[

4
3

(
2
απ

Q

L3

)2/3 1
ε̃4/3

]
, (4.53)

where ε̃ := ε/
√

2. Note that (4.44) implies that the same formulas can be used with
ε̃ :=

√
NQ−1ε/

√
2 in order to ensure a rms energy bound ∆U ≤ ε. Alternatively, if

ε was the rms field error bound we would have computed α and kc from (4.43) such
that ∆Esr = ε/

√
2 and ∆E lr = ε/

√
2, i.e.,

α = 1
rc

√√√√ln
(√

Q

rcL3
2
ε̃

)
, kc = αL

2π

√√√√W
[(

64α
π3

Q

L3

)2 1
ε̃4

]
. (4.54)

Again by (4.44) the same formulas can be used with ε̃ :=
√
NQ−1ε/

√
2 to ensure

the rms field error bound ∆F ≤ ε. In [93, Figure 7] it was shown numerically
that these formulas also hold for the mixed-periodic case. Note that kc represents a
radial Fourier space cutoff while the NFFT grid size m̂ ∈ 2N3 represents the edge

4.8 Complexity of Ewald summation and parameter selection 129

lengths of a box shaped cutoff scheme. Therefore, we choose the components of
m̂ = (m̂0, m̂1, m̂2) as

m̂t = 2dkce, t = 0, 1, 2. (4.55)
Next, we need to tune the NFFT parameters such that the NFFT approximation

error is negligible in comparison to the prescribed approximation error ε of the
truncated Ewald sum. More precisely, these parameters are the FFT mesh size
M ∈ 2N3 and the window cutoff parameter cϕ. We claim that these two parameters
must be tuned only for a small test system. For larger particle numbers the same
accuracy can be achieved by keeping the oversampling factor σ = M � m̂−1 ∈
[1,∞)3 and the window cutoff cϕ constant. In Section 4.11.2 we give some numerical
evidence that this is true. At the moment the parameters of the NFFT are not
tuned automatically but the development of an automatic NFFT parameter tuning
is subject to recent research [102, 103]. Finally, the extended box shape can be
chosen as H = diag(L,L, L) and the degree of smoothness s is not present for the
3d-periodic case.
Once the parameters for the 3d-periodic P2NFFT are found, we can use the fol-

lowing heuristic to find a parameter set for 2d-, 1d-, and 0d-periodic boundary
conditions. This heuristic was proposed in [3] and we only give a short summary
of the approach. The key idea is to keep the NFFT parameters cϕ, σ from the 3d-
periodic case and define the grid size m̂ in such a way that the number of grid points
per volume in the extended box H

[
− 1/2, 1/2

)3 remains constant. More precisely, we
set

m̂t =
{

2dkce if the t-th dimension is periodic,
4
√

3− pdkce+ P if the t-th dimension is non-periodic.
(4.56)

Hereby, p denotes the number of periodic dimensions and the so-called transition
grid size P ∈ 2N denotes a small number of extra grid points that are introduced
within the support of the transitions Tk0,k1 , Tk0 , T in (4.17),(4.20), and (4.23). Note
that the additional factor 2

√
3− p in the non-periodic case results from the period

of the regularizations (4.17), (4.20), and (4.23). Thereby,
√

3− p reflects the scaling
of a (3 − p)-dimensional ball into a (3 − p)-dimensional cube. Next, the extended
box shape H = diag(H0, H1, H2) is given by

Ht = L m̂t
2dkce . (4.57)

Note that for a given transition grid size P the NFFT grid size m̂ and the extended
box shape H can be easily computed. Our numerical test in Section 4.11.3 confirm
the claim that P stays constant for N → ∞ and, therefore, does not effect the
complexity of the P2NFFT.
The parameter selection can be summarized in the following easy steps:
1. Choose the short-range cutoff rc.

130 4 Parallel particle-mesh methods based on NFFT

2. Calculate the Ewald splitting parameter α and the NFFT grid size m̂ by
(4.53)–(4.55).

3. Determine the NFFT oversampling factor σ, and the window cutoff cϕ numer-
ically for a small test system.

4. Set the degree of smoothness s := 10 and tune the regularization grid size P
numerically for a small test system.

5. Adjust the grid size m̂ according to (4.56) and set the extended box shape H
according to (4.57).

6. Apply the NFFT oversampling factor σ to the adjusted grid size m̂ to get the
adjusted FFT grid size M = σ � m̂.

Once all parameters have been determined we can execute P2NFFT for a small
test system and record the runtime tsrN ∼ r3

cN of the short-range computations and
the runtime tlrN ∼ k3

c log k3
c of the long-range computations. With these two times

we can easily extrapolate the value for rc that minimizes the total runtime tsrN + tlrN
for any particle number N .

Remark 4.7. The asymptotic runtime tlrN ∼ k3
c log k3

c of the long-range part is a
rather crude approximation for small kc. Indeed, the runtime of the long-range part
accumulates from many steps that have different asymptotic runtime. The most
time consuming parts are given by the matrix-decomposition (3.20) of the NFFT.
These are the deconvolution step, the FFT, and the discrete convolution step. In
order to get a good prediction, we must measure and extrapolate the runtime of these
steps individually. This is possible in our implementation, since all these times are
available by the PNFFT timer interface. �

4.9 Parallel P2NFFT
Because of the highly modularized structure of the P2NFFT framework it is easy to
substitute every module with its parallel counterpart. Again we assume a process
mesh PP of P0×P1×P2 processes and a parallel block decomposition as needed for
the PNFFT, see Section 3.3.1.
Our parallel P2NFFT framework starts with a parallel forward sort that assures

the following two conditions. First, we distribute the nodes rj according to a block
domain decomposition such that every process r ∈ PP holds the nodes rj, j ∈ N r

P .
Second, every process r ∈ PP needs local copies of all the nodes that are involved in
the calculation of the short-range Module 4.1. These are all the nodes ri that fulfill
‖rnij‖ ≤ rc for any n ∈ Sp. We perform these two tasks at once using a fine-grained
data distribution operation [71] that is implemented within the software library for
parallel sorting algorithms [36]. After this parallel forward sort, we can simply apply
the short-range interaction Module 4.1 locally on each process r ∈ PP as given in
the parallel short-range interaction Module 4.5.

4.9 Parallel P2NFFT 131

Module 4.5 Parallel short-range interactions for each process r ∈ PP
Input:
- local number of particles |N r

P |
- primary box shape L ∈ R3×3, det(L) 6= 0
- block of particle positions rj ∈ L3 and sources qj ∈ R, j ∈ N r

P

- number of periodic dimensions p
- short-range cutoff rc > 0
- short-range potential ψsr : R3 → R

. .
1: For all local particle positions rj, j ∈ N r

P , compute

φj ←
N∑

i=1
qi
∑′

n∈Sp:
‖rn
ij‖≤rc

ψsr(rnij), Ej ← −
N∑

i=1
qi
∑′

n∈Sp:
‖rn
ij‖≤rc

∇ψsr(rnij),

by a linked cell algorithm; see [70, Chap. 8.4] or [63, Chap. 3].
. .
Output:
- block of approximated short-range potential φj ≈ φsr

Sp(rj) ∈ R, j ∈ N r
P

- block of approximated short-range field Ej ≈ Esr
Sp(rj) ∈ R3, j ∈ N r

P

Arithmetic cost: O (|N r
P |)

Module 4.6 Parallel self interactions for each process r ∈ PP
Input:
- block of sources qj ∈ R, j ∈ N r

P

- self potential ψself ∈ R
. .
1: For all local j ∈ N r

P compute

φself
j ← ψselfqj.

. .
Output:
- block of self potential φself(rj) ∈ R, j ∈ N r

P

Arithmetic cost: O (|N r
P |)

132 4 Parallel particle-mesh methods based on NFFT

The combination of parallel domain decomposition with the serial self interac-
tion Module 4.2 is straightforward and directly leads to the parallel self interaction
Module 4.6.
Now, we present a parallel counterpart of the serial long-range interaction Mod-

ule 4.3. Therein, we introduced the extended box shape H ∈ R3×3 in order to
deal with long-range interactions subject to non-periodic boundary conditions. We
assumed that the extended box is at least a factor 2

√
3− p larger than the pri-

mary box shape L ∈ R3×3 in each non-periodic dimension. This leads to the
problem, that the NFFT input nodes fulfill xj := H−1rj ∈ H−1L

[
− 1/2, 1/2

)3 ⊂[
− 1/2, 1/2

)p × (3 − p)−1/2[−1/4, 1/4)3−p ⊂
[
− 1/2, 1/2

)3. This means, if our parallel
NFFT worked on a simple block decomposition of the whole unit cube

[
− 1/2, 1/2

)3,
many processes would end up without any nodes. For example, in the 0d-periodic
case more than seven eighth of the unit cube

[
− 1/2, 1/2

)3 remain empty. Paral-
lel decomposition of these empty regions would give raise to severe load balancing
problems. Fortunately, we already developed an algorithmic adaption for this case
in terms of the truncated unit cube S

[
− 1/2, 1/2

)3, see also (3.19) for the defini-
tion of the resulting pruned FFT. By the definition of H we get a diagonal matrix
S := H−1L. More precisely, depending on the number p of dimensions with periodic
boundary conditions we have

p = 3: S = diag (1, 1, 1) , p = 2: S = diag
(

1, 1, L22

H22

)
,

p = 1: S = diag
(

1, L11

H11
,
L22

H22

)
, p = 0: S = diag

(
L00

H00
,
L11

H11
,
L22

H22

)
.

In the following, the parallel NFFT frameworks operate on a three-dimensional block
decomposition of the truncated unit cube S

[
− 1/2, 1/2

)3.
At first, we compute the structure factors

Ŝk =
∑

s∈PP

∑

j∈N s
P

qje+2πikxj , k ∈ Irm̂,P ,

by the PNFFTH Framework 3.2 with a diagonal node scaling matrix S = H−1L.
Thereby, the formal order of summation was chosen in order to reflect the parallel
data decomposition. The convolution in frequency domain is a simple point-wise
multiplication and is performed locally for each process r ∈ PP, i.e.,

âk := ŜkR̂k , k ∈ Irm̂,P .

Hereby, the Fourier coefficients R̂k of the regularization R have been precomputed
corresponding to the number p of periodic dimensions, see Sections 4.4.2–4.4.5 for

4.9 Parallel P2NFFT 133

Module 4.7 Parallel long-range interactions for each process r ∈ PP
Input:

- primary box shape L ∈ R3×3, det(L) 6= 0
- block of particle positions rj ∈ L

[
− 1/2, 1/2

)3 and sources qj ∈ R, j ∈ N r
P

- mesh size m̂ ∈ 2N3

- block of Fourier coefficients R̂k ∈ C, k ∈ Irm̂,P
- extended box shape H ∈ R3×3, det(H) 6= 0

. .
1: For all particle positions rj compute the rescaled coordinates

xj ← H−1rj ∈ H−1L
[
− 1/2, 1/2

)3
.

2: For all mesh points k ∈ Irm̂,P compute

Ŝk ←
∑

s∈PP

∑

i∈N r
P

qie+2πikTxi

by a three-dimensional PNFFTH (Framework 3.2) with node scaling matrix S =
H−1L.

3: For all mesh points k ∈ Irm̂,P compute the point-wise products

âk ← R̂kŜk.

4: For all rescaled particle positions xj, compute

φj ←
∑

s∈PP

∑

k∈Ir
m̂,P

âke−2πikTxj , Ej ← −H−T
∑

s∈PP

∑

k∈Ir
m̂,P

âk∇e−2πikTxj ,

by a three-dimensional PNFFT (Framework 3.1) with node scaling matrix S =
H−1L.

. .
Output:

- block of approximated long-range potential φj ≈ φlr
Sp(rj) ∈ R, j ∈ N r

P

- block of approximated long-range field Ej ≈ E lr
Sp(rj) ∈ R3, j ∈ N r

P

Arithmetic cost: O
(
|N r

P |+ |Irm̂,P | log |Im̂|
)

134 4 Parallel particle-mesh methods based on NFFT

Framework 4.8 Parallel P2NFFT for each process r ∈ PP

Input:
- short-range potential ψsr : R3 → R
- self potential ψself ∈ R
- precomputed Fourier coefficients R̂k, k ∈ Irm̂,P

. .
1: Assign the local nodes rj, j ∈ N r

P , and the associated neighboring particles
within the short-range cutoff radius rc by a parallel forward sort.

2: Apply the parallel short-range interaction Module 4.5.
3: Apply the parallel long-range interaction Module 4.7.
4: Apply the parallel self interaction Module 4.6.
5: Restore the initial particle distribution by a parallel backward sort.
. .
Output:

- block of approximated potential φSp(rj), j ∈ N r
P

- block of approximated field ESp(rj), j ∈ N r
P

details. Afterward, the approximated long-range potential and field is computed by
the PNFFT Framework 3.1,

φlr
Sp(rj) ≈

∑

s∈PP

∑

k∈Is
m̂,P

âke−2πikxj , j ∈ N r
P ,

E lr
Sp(rj) ≈ −H−T

∑

s∈PP

∑

k∈Is
m̂,P

âk∇e−2πikxj , j ∈ N r
P .

In summary we obtain the parallel long-range interaction Module 4.7.
Finally, we use the fine-grained data distribution operation from the parallel sort-

ing library to revert the particle redistribution that was caused by the parallel
forward sort. Altogether, we obtain the parallel P2NFFT Framework 4.8 for the
massively parallel computation of the P2NFFT.

4.10 The parallel P2NFFT software library
We implemented the parallel P2NFFT Framework 4.8 as part of a publicly available
software library called ScaFaCoS (Scalable Fast Coulomb Solvers). The development
code is distributed under a GNU General Public License and is freely available
at [10]. In the following, we highlight selected features of our parallel P2NFFT
implementation in order to give an impression of its flexibility.

4.11 Numerical results 135

• Installing the library is easy. It is based on the common sequence of configure,
make, and make install.

• P2NFFT supports any kind of mixed-periodic boundary conditions.
• P2NFFT can handle arbitrary non-orthogonal grids in the periodic dimensions.
• P2NFFT supports interlacing, ik-differentiation and ad-differentiation.
• P2NFFT includes the NFFT-based fast summation method for 0d-periodic

boundary conditions.
• P2NFFT can be run with all the window functions that are available in

PNFFT.
• We have a well working heuristic for parameter selection.
• P2NFFT is build on top of the hardware adaptive libraries FFTW, PFFT and

PNFFT.
• P2NFFT is part of the ScaFaCoS library that offers a common interface to

various fast Coulomb solvers. This makes it easy to benchmark against alter-
native methods and to compute reference data.

4.11 Numerical results
In the following, we provide selected results from the numerical tests of P2NFFT
published in [5, 1, 3].

4.11.1 Description of test systems
Our numerical tests have been performed with three different particle systems.

1. Random distribution: This test system consists of N = 1000 uniformly ran-
domly distributed particles rj ∈ [0, 1]3 located in a cubic box of edge length
L = 1. The charges are chosen oppositely qj = (−1)j such that

∑N
j=1 qj = 0

and Q =
∑N

j=1 q
2
j = N . Larger test systems with similar distribution are gen-

erated in the steps N = 1000 + 11000n, n = 0, . . . , 9. Thereby, we increase the
box size at the rate L = 3

√
N , i.e., we keep the particle density ρ = NL3 at a

constant level. A similar test system was proposed in [93, Sect. IV.A.] with a
constant box size L = 1. However, using constant L only implies a rescaling
of the real space cutoff rc and the Ewald splitting parameter α at rate 3

√
N in

order to get equivalent numerical results. In order to get comparable results
we set the real space cutoff rcut = 0.62 as given in [93, Sect. IV.A.] for this
test case.

2. Cloud wall distribution: The cloud-wall model system, shown in Figure 4.8,
consists of 300 particles, which represent two oppositely charged walls centered
in a cubic box together with a diffuse cloud of charges. This ensures a strong
long-range contribution in the potential. The periodic box was replicated 7 and
15 times in every direction of space to yield cubic boxes filled with 102 900 and

136 4 Parallel particle-mesh methods based on NFFT

Figure 4.8: Left: The cloud-wall system (300 charges) consists of two oppositely
charged walls in the center of the box and a surrounding diffuse cloud.
The system was artificially created to contain a strong long-range field
component.
Right: A Silica melt (12 960 charges) is sufficiently homogeneous while
retaining a significant long-range contribution.

1 012 500 particles, respectively. Since these test cases represent periodically
replicated systems, high precision reference value for potentials and forces have
to be computed only for the smallest test case with N = 300 particles. Then,
the reference values for larger systems are obtained by periodic replication.

3. Silica melt: This test system consists of a cubic box filled with 12 960 particles
of a silica melt shown in Figure 4.8. It was taken from an MD simulation of a
melting silica crystal using the BKS force field [25]. The overall charge neutral
system consists of positively and negatively charged ions which are sufficiently
homogeneously distributed, while the electrostatic potential still has a signifi-
cant long-range contribution. For the scaling and benchmark runs the original
silica melt system was replicated 4, 9, and 20 times in every direction of space
to yield cubic boxes filled with 829 440, 9 447 840, and 103 680 000 particles,
respectively.

4.11.2 Parameter selection and accuracy of 3d-periodic P2NFFT
In this section we compute the parameters and achieved rms errors of 3d-periodic
P2NFFT for an prescribed rms potential error bound ∆φ = 10−9. We use the ran-
domly distributed particle system with a short-range cutoff rc = 0.62. In Table 4.2
we give numerical evidence that the parameter tuning presented in Section 4.8.6
works very well for the random particle distribution defined in Section 4.11.1. Note
that the achieved error is even better than the prescribed error bound of ∆φ = 10−9.

4.11 Numerical results 137

N L m̂ M ∆φ ∆E
1000 1.0 (26,26,26) (32,32,32) 4.63e-10 3.48e-08
12000 2.29 (54,54,54) (68,68,68) 4.81e-10 3.55e-08
23000 2.84 (66,66,66) (82,82,82) 4.87e-10 3.56e-08
34000 3.24 (74,74,74) (92,92,92) 4.92e-10 3.57e-08
45000 3.56 (82,82,82) (102,102,102) 4.88e-10 3.55e-08
56000 3.83 (88,88,88) (110,110,110) 4.89e-10 3.55e-08
67000 4.06 (92,92,92) (114,114,114) 5.02e-10 3.57e-08
78000 4.27 (98,98,98) (122,122,122) 4.91e-10 3.89e-08
89000 4.46 (102,102,102) (126,126,126) 4.98e-10 4.31e-08
100000 4.64 (106,106,106) (132,132,132) 4.94e-10 4.88e-08

Table 4.2: List of P2NFFT parameters and achieved accuracies for the computation
of Coulomb potentials φ and fields E between N randomly distributed
particles in a cubic box of size L×L×L subject to 3d-periodic boundary
conditions. Thereby, the parameters were tuned to absolute root mean
square potential error ∆φ = 10−9 and are given as real space cutoff rc =
0.62, Ewald splitting parameter α = 7.489225, B-spline window function,
and B-spline order 14 (cϕ = 7). The FFT grid size M and the order of
the B-Spline have been tuned only for the smallest test case N = 1000.
For the larger test cases we set M ≈ 1.23m̂ in correspondence to the
tuned value.

This is due to the fact that the error estimates [85] have been derived for a radial
cutoff scheme in Fourier space. In contrast, our FFT based fast solver uses a cubic
cutoff scheme and, therefore, takes into account slightly more Fourier coefficients
than necessary.

4.11.3 Parameter selection and accuracy for mixed periodicity
We repeated the tests from the previous Section with 2d-periodic boundary condi-
tions and summarized the results in Table 4.3. Note that a similar test was given
in [93, Figure 11] for the 2d-periodic spectral Ewald method. However, our results
improve the findings of [93] in several ways. First, we provide numerical evidence
that the error bound holds for all sets of parameters, while [93] only recorded the
runtime of their method with some theoretically chosen parameters. Second, our
grid size in the non-periodic dimension becomes smaller in comparison to [93] for
large N . This is due to the fact that the transition grid size P does not increase
with the number of particles N . However, our grid size in the periodic dimension is
slightly large due to oversampling. Note that [93] used an oversampling factor of 4
in the non-periodic dimension. The window cutoff cϕ is comparable between the two

138 4 Parallel particle-mesh methods based on NFFT

N L H m̂ M ∆φ ∆E
1000 1.0 3.0 (26,26,78) (32,32,96) 8.59e-10 6.05e-08
12000 2.29 5.68 (54,54,134) (68,68,166) 4.82e-10 3.45e-08
23000 2.84 6.81 (66,66,158) (82,82,196) 5.06e-10 3.62e-08
34000 3.24 7.62 (74,74,174) (92,92,216) 5.14e-10 3.63e-08
45000 3.56 8.15 (82,82,188) (102,102,232) 5.22e-10 3.69e-08
56000 3.83 8.7 (88,88,200) (110,110,246) 5.11e-10 3.59e-08
67000 4.06 9.27 (92,92,210) (114,114,260) 5.11e-10 3.57e-08
78000 4.27 9.5 (98,98,218) (122,122,270) 5.19e-10 3.95e-08
89000 4.46 9.98 (102,102,228) (126,126,282) 5.13e-10 4.33e-08
100000 4.64 10.2 (106,106,234) (132,132,288) 5.23e-10 4.92e-08

Table 4.3: List of P2NFFT parameters and achieved accuracies for the computation
of Coulomb potentials φ and fields E between N randomly distributed
particles in a cubic box of size L×L×L subject to 2d-periodic boundary
conditions. Thereby, the parameters were tuned to absolute root mean
square potential error ∆φ = 10−9 and are given as short-range cutoff
rc = 0.62, Ewald splitting parameter α = 7.489225, extended box size
L × L ×H, FFT grid size M ≈ 1.23m̂, B-Spline window function, and
B-spline order 14 (cϕ = 7), degree of smoothness s = 10, and transition
grid size P = 32. The FFT grid size M , the order of the B-Spline and
the transition grid size P have been tuned only for the smallest test case
N = 1000.

methods, which shows that the spectral convergence of the Gaussian window does
not outperform the B-Spline window. Last but not least, we were able to generate
similar results for 1d-periodic boundary conditions presented in Table 4.4. To the
best of our knowledge, this is the first time that a fast FFT based method is able
to reach such high accuracy with 1d-periodic boundary conditions.

4.11.4 Strong scaling of 0d-periodic P2NFFT on JUGENE
The following strong scaling tests have been performed with the two-point Taylor
regularization presented in Section 4.7.1. Note that the parameter selection approach
from Section 4.8.6 does not apply for this regularization. Instead, all parameters
have been tuned manually such that the error bounds are fulfilled at minimal run-
time. The tests presented in this Section have been performed on JUGENE – a
Blue Gene/P architecture that has been explained in detail at the beginning of Sec-
tion 2.10.1. Thereby, we use a relative error that is defined as follows. Let φi,approx
denote the potentials that are calculated by the P2NFFT Framework 4.8 and φi,exact
the potentials that are calculated by any high accuracy reference method. For small

4.11 Numerical results 139

N L H m̂ M ∆φ ∆E
1000 1.0 4.15 (26,108,108) (32,134,134) 8.41e-10 5.94e-08
12000 2.29 7.8 (54,184,184) (68,228,228) 6.11e-10 4.08e-08
23000 2.84 9.39 (66,218,218) (82,270,270) 5.72e-10 3.81e-08
34000 3.24 10.6 (74,242,242) (92,298,298) 5.95e-10 3.85e-08
45000 3.56 11.3 (82,260,260) (102,320,320) 6.48e-10 4.17e-08
56000 3.83 12.0 (88,276,276) (110,340,340) 6.59e-10 4.23e-08
67000 4.06 12.8 (92,290,290) (114,358,358) 6.52e-10 4.17e-08
78000 4.27 13.3 (98,304,304) (122,374,374) 6.30e-10 4.34e-08
89000 4.46 13.8 (102,316,316) (126,390,390) 6.24e-10 4.72e-08
100000 4.64 14.3 (106,326,326) (132,402,402) 6.32e-10 5.26e-08

Table 4.4: List of P2NFFT parameters and achieved accuracies for the computation
of Coulomb potentials φ and fields E between N randomly distributed
particles in a cubic box of size L×L×L subject to 1d-periodic boundary
conditions. Thereby, the parameters were tuned to absolute root mean
square potential error ∆φ = 10−9 and are given as short-range cutoff
rc = 0.62, Ewald splitting parameter α = 7.489225, extended box size
L × H × H, FFT grid size M ≈ 1.23m̂, B-Spline window function, B-
spline order 14 (cϕ = 7), degree of smoothness s = 10, and transition
grid size P = 44. The FFT grid size M , the order of the B-Spline and
the transition grid size P have been tuned only for the smallest test case
N = 1000.

140 4 Parallel particle-mesh methods based on NFFT

25 27 29 211 213

10−2

10−1

100

101

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s

P2NFFT
Perfect

Sort Forw
Short-range
Long-range
Sort Back

Figure 4.9: Runtime of the parallel P2NFFT Framework 4.8 for a silica melt with
N = 829 440 particles, relative rms potential error ∆φrel = 10−5, short-
range cutoff rc = 6.82, box length L = 248.24, and extended box
length H = 873.58, pruned FFT input size m̂ = (512, 512, 512)T,
oversampled FFT size M = (576, 576, 576)T, pruned FFT output size
m = (174, 174, 174)T, and window cutoff parameter cϕ = 4. Times have
been recorded on JUGENE up to 16 384 cores.

numbers of particles we chose the direct summation as reference method, while a
fast method with higher accuracy was used to calculate the reference potentials for
large systems. The relative rms potential error is given by

∆φrel :=
(N∑

i=1
|φi,approx − φi,exact|2

)1/2(N∑

i=1
|φi,exact|2

)−1/2
. (4.58)

For the following runtime measurements we manually tuned the parameters of the
0d-periodic P2NFFT in order to hold ∆φrel < 10−5.
In Figure 4.9 we show the wall clock time measurements of the parallel P2NFFT

Framework 4.8 for the silica melt test case with 829 440 particles on JUGENE using
up to 16 384 cores. For comparison purposes we show the perfect strong scaling
time (perfect) of the first recorded time. In addition, we add the wall clock time
of the most time consuming parts of Framework 4.8. These are the forward sorting
step 1 (Sort Forw), the short-range computation step 2 (Short-range), the long-range
computation step 3 (Long-range), and the backward sorting step 5 (Sort Back). Note
that the individual wall clock time measurements of the PNFFTH step 2 and the
PNFFT step 4 are given in Figure 3.7. We stress that the pruned FFT output
size m = (174, 174, 174)T is significantly smaller than the oversampled FFT size
M = (576, 576, 576)T for this test case, i.e., only 2.8% of the oversampled FFT
output is necessary to compute the convolution steps of the PNFFT and its adjoint.
This problem arises from the fact that the extended box length H is much larger

4.11 Numerical results 141

than the primary box length L and our parallel long-range interaction Module 4.7
scales all nodes as xj = H−1rj. However, our algorithm takes care of this fact since
we apply the parallel pruned NFFT Frameworks 3.1 and 3.2.
Although the near field and far field computations show good strong scaling, we

observe that the sorting steps are the most limiting factor for strong scaling of the
P2NFFT algorithm. Remember, that the parallel sorting assures the block domain
decomposition and generates the ghost cell particles that are necessary for the near
field computations. Since the parallel sorting algorithm calls MPI_Alltoallv we
see the typical linear increase of sorting time from 2048 to 16 384 processes. However,
we stress that using 16 384 cores for this test case implies a very small number of
51 local nodes for every process. Therefore, generating the ghost particles that are
necessary for the near field computation is rather costly in comparison to the actual
near field computations itself.
Note that typical molecular dynamics software packages already have a high per-

formance implementation of the near field part and use a block wise domain decom-
position that perfectly fits the three-dimensional data decomposition of our P2NFFT
Framework 4.8. In this case we could redirect the short-range interaction Module 4.5
and self interaction Module 4.6 to the molecular dynamics software package and omit
the whole sorting steps 1 and 5 of Framework 4.8. Then, we are left with the stand-
alone long-range interaction Module 4.7. The corresponding runtime behavior of the
long-range part is dominated by the parallel NFFTs, which were analyzed in detail
in Figures 3.7, 3.8, and 3.9.
In Figure 4.10 we show the wall clock time measurements of the P2NFFT Frame-

work 4.8 for the silica melt test case with 9 447 840 particles on JUGENE using up to
65 536 cores. Furthermore, in Figure 4.11 we see the wall clock time measurements
of P2NFFT for the silica melt test case with 103 680 000 particles on JUGENE using
up to 65 536 cores. A comparison of Figures 4.10 and 4.11 yields a better scaling of
the larger test case since the quota of sorting decreases. In both test cases the wall
clock time of the sorting steps increases almost linearly with the number of processes
and prevents a good scaling of the overall runtime. However, we stress again that
the number of local particles is rather small in comparison to the number of used
processes in these test cases and typical molecular dynamics software may omit the
sorting by using an appropriate domain decomposition.

4.11.5 Comparison of P2NFFT to other fast Coulomb solvers
The ScaFaCoS library [10] is a collection of fast Coulomb solvers that can be accessed
via a common interface. These solvers cover a broad range of different algorithmic
approaches for computing the Coulomb potential (4.1) and field (4.2). All of these
solvers are fast in the sense that the asymptotic runtime increases with the number
of particles N as O(N) or O(N logN). Without going too much into details we give
a brief overview of the supported fast methods. For more details we refer to the

142 4 Parallel particle-mesh methods based on NFFT

211 212 213 214 215 216

10−2

10−1

100

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s

P2NFFT
Perfect

Sort Forw
Short-range
Long-range
Sort Back

Figure 4.10: Runtime of the parallel P2NFFT Framework 4.8 for a silica melt with
N = 9 447 840 particles, relative rms potential error ∆φrel = 10−5,
short-range cutoff rc = 7.62, box length L = 558.44, and extended box
length H = 1949.73, pruned FFT input size m̂ = (1024, 1024, 1024)T,
oversampled FFT size M = (1152, 1152, 1152)T, pruned FFT output
sizem = (340, 340, 340)T, and window cutoff parameter cϕ = 4. Times
have been recorded on JUGENE up to 65 536 cores.

211 212 213 214 215 216

10−1

100

101

number of cores of JUGENE

wa
ll

cl
oc

k
tim

e
in

s

P2NFFT
Perfect

Sort Forw
Short-range
Long-range
Sort Back

Figure 4.11: Runtime of the parallel P2NFFT Framework 4.8 for a silica melt with
N = 103 680 000 particles, relative rms potential error ∆φrel = 10−5,
short-range cutoff rc = 8.43, box length L = 1241.2, and extended box
length H = 4316.5, pruned FFT input size m̂ = (2048, 2048, 2048)T,
oversampled FFT size M = (2304, 2304, 2304)T, pruned FFT output
sizem = (674, 674, 674)T, and window cutoff parameter cϕ = 4. Times
have been recorded on JUGENE up to 65 536 cores.

4.11 Numerical results 143

nice overview given in [1]. Beside P2NFFT the following methods are part of the
ScaFaCoS project:

1. P 3M: The Particle-Particle–Particle-Mesh method [70] is essentially a spe-
cial case of P2NFFT as pointed out in Section 4.6. However, ScaFaCoS also
includes a standalone implementation of the P3M that originates from the
ESPResSo [13, 21] software package. The parameter tuning is based on error
estimates presented in [38, 39]. Also interlacing is supported [101].

2. PP 3MG: The Parallel Particle-Particle–Particle-Multigrid method [28] uses a
splitting of the Coulomb interactions into a short-range and long-range part via
B-Splines. The short-range part part is computed directly, while fast multigrid
solvers [125] are applied for the computation of the long-range part. This
results in an overall complexity of O(N).

3. VMG: Versatile Multigrid is another multigrid based solver that yields an
asymptotic complexity of O(N).

4. FMM: The fast multipole method [62] replaces the individual interactions
between particles with interactions between particles and particle groups via
multipole expansions. This results in O(N) complexity. The FMM algorithm
presented in [35, 81, 80] and its massively parallel implementation [79, 82] are
part of the ScaFaCoS project. Note that this implementation of the FMM has
been extended to periodic boundary conditions pursuant to [86].

5. MEMD: The method called Maxwell Equations Molecular Dynamics has been
proposed in [95] and adapted for MD simulations in [105]. The implementation
within ScaFaCoS was provided by the authors of [50]. This method results in
O(N) complexity and provides the possibility for spatially varying dielectric
properties in the system.

6. PEPC: The Pretty Efficient Parallel Coulomb Solver [132, 78] is based on
the Barnes-Hut algorithm [24]. The recursive tree structure of the algorithm
results in O(N logN) complexity. Note that this method is not included in
the following numerical comparison.

An extensive comparison of these methods in terms of numerical complexity, effi-
ciency and parallel scalability has been published in [1] for 3d-periodic boundary
conditions. Thereby, the relative rms potential error given in (4.58) was taken as
common measure of accuracy. We want to highlight two results of the comparison
given in Figures 4.12 and 4.13.
In Figure 4.12 we see a comparison of the required runtime in order to achieve a

certain relative rms potential error bound. Note that most of the methods got into
problems for accuracies better than 10−5. The two noteworthy exceptions are FMM
and P2NFFT. Moreover, P2NFFT outperforms all the other methods in terms of
serial runtime. Note that the very different trend of P3M originates from restrictions
of the automatic P3M parameter tuning that does not tune the short-range cutoff
rc for optimal runtime. Otherwise, the curves of P2NFFT and P3M are assumed to
look similar.

144 4 Parallel particle-mesh methods based on NFFT

10−1310−11 10−9 10−7 10−5 10−3 10−110−6

10−5

10−4

10−3

10−2

relative rms potential error εpot

tim
e

pe
r

pa
rt

ic
le

in
s P2NFFT

FMM
P3M

MEMD
PP3MG
VMG

Figure 4.12: Required wall clock time per particle versus the relative rms potential
error ∆φrel. The runs were performed for a cloud wall system with
102 900 charges on a single core of JUROPA.

21 23 25 27 29 2110

0.2

0.4

0.6

0.8

1

number of cores P of JUROPA

re
l.
pa

ra
lle
le

ffi
ci
en
cy

e(
P

)

P2NFFT FMM ad-P3M
MEMD PP3MG VMG

t∗(1) = 7.25s

21 23 25 27 29 211 2130

0.2

0.4

0.6

0.8

1

number of cores P of JUGENE

re
l.
pa

ra
lle
le

ffi
ci
en
cy

e(
P

)

P2NFFT FMM ik-P3M
MEMD PP3MG VMG

t∗(1) = 106.7s

Figure 4.13: Relative parallel efficiency (4.59) for computing the cloud wall test case
with 1 012 500 charges versus the number of cores on JUROPA (left,
max. 4096 cores) and JUGENE (right, max. 16 384 cores). The relative
rms potential error was tuned to ∆φrel < 10−3 for all methods. Note
that P3M with analytic differentiation was used on the left, while ik-
differentiation was used on the right. In contrast, P2NFFT uses analytic
differentiation for all tests. The best runtime t∗(1) with a single process
have been achieved by P2NFFT on JUROPA and FMM on JUGENE.

4.11 Numerical results 145

Figure 4.13 summarizes the parallel scalability of the fast Coulomb solvers on two
different hardware architectures, see Section 2.10.1 for the description of JUROPA
and JUGENE. Let t(P) denote the runtime dependent on the number of cores P .
A good resolution of the wide plot range in Figure 4.13 is achieved by plotting the
relative parallel efficiency

e(P) := t∗(1)
t(P)

1
P
, (4.59)

where t∗(1) denotes the runtime of the fastest method with one process.
On the JUROPA architecture, P2NFFT and P3M outperform the other methods.

Both methods were used without interlacing and with analytic differentiation. Note
that the significant difference in performance and scaling seen in Figure 4.13 stems
solely from the different choice in the algorithms’ specific parameters. In these
simulations, P3M uses an automatic parameter tuning method, whereas P2NFFT
timings were done with manually tuned parameters. The automatic tuning results
in a larger short-range cutoff and, therefore, does not achieve the best single core
performance. In contrast, P2NFFT was optimized for best single core performance
only and no further optimization of the short-range cutoff was done for higher core
counts. Hence, the P2NFFT has more work to do in Fourier space via the fast Fourier
transforms, which is advantageous on small numbers of cores. On a large number
of cores, this situation is reversed and P3M as well as also other methods perform
better for the same reason: More Fourier space calculations demand more global
communication whereas in the case of P3M more interactions are calculated in real
space with a near field solver requiring less global communication. However, since
P2NFFT can use the same parameter set as P3M, it is possible to switch parameters
at the point of crossover. In this sense, the Fourier based solvers are the fastest ones
over the full range of measurements.
On the JUGENE architecture FMM is the method with highest single core perfor-

mance. In addition, due to its small memory footprint FMM was the only method
that was able to run the test case on a single node. This time P2NFFT used
the same automatic parameter tuning as P3M and, therefore, did not optimize the
short-range cutoff rc for minimal runtime. For large core counts P2NFFT and P3M
show better scaling and outperform the FMM. Note that P3M was invoked with
ik-differentiation, while P2NFFT used analytic differentiation. Both methods did
not use interlacing.

List of publications
Peer-reviewed articles
[1] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver,

I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig,
D. Potts, and G. Sutmann: Comparison of scalable fast methods for long-range
interactions. Phys. Rev. E, 88:063308, 2013.

[2] P. García-Risueño, J. Alberdi-Rodriguez, M.J.T. Oliveira, X. Andrade, M. Pip-
pig, J. Muguerza, A. Arruabarrena, and A. Rubio: A survey of the parallel per-
formance and accuracy of poisson solvers for electronic structure calculations. J.
Comput. Chem., 35(6):427–444, 2014.

[3] F. Nestler, M. Pippig, and D. Potts: Fast Ewald summation based on NFFT with
mixed periodicity. J. Comput. Phys., 285:280 – 315, 2015.

[4] M. Pippig: PFFT - An extension of FFTW to massively parallel architectures.
SIAM J. Sci. Comput., 35:C213 – C236, 2013.

[5] M. Pippig and D. Potts: Parallel three-dimensional nonequispaced fast Fourier
transforms and their application to particle simulation. SIAM J. Sci. Comput.,
35:C411 – C437, 2013.

Proceedings
[6] F. Nestler, M. Pippig, and D. Potts: NFFT based fast Ewald summation for

various types of periodic boundary conditions. In G. Sutmann, J. Grotendorst,
G. Gompper, and D. Marx (eds.): Computational Trends in Solvation and Trans-
port in Liquids, vol. 28 of IAS-Series, pp. 575 – 598, Jülich, 2015. Forschungszen-
trum Jülich GmbH.

[7] M. Pippig: Scaling parallel fast Fourier transform on BlueGene/P. In B. Mohr
and W. Frings (eds.): Jülich BlueGene/P Scaling Workshop 2010, pp. 27 – 30,
Jülich, 2010. Forschungszentrum Jülich. Technical Report.

[8] M. Pippig: An efficient and flexible parallel FFT implementation based on
FFTW. In C. Bischof, H.G. Hegering, W.E. Nagel, and G. Wittum (eds.):
Competence in High Performance Computing 2010, pp. 125–134. Springer Berlin
Heidelberg, 2012.

[9] M. Pippig and D. Potts: Particle simulation based on nonequispaced fast Fourier
transforms. In G. Sutmann, P. Gibbon, and T. Lippert (eds.): Fast Methods
for Long-Range Interactions in Complex Systems, vol. 6 of IAS-Series, pp. 131
– 158, Jülich, 2011. Forschungszentrum Jülich GmbH.

147

148 List of publications

Software libraries
[10] A. Arnold, M. Bolten, H. Dachsel, F. Fahrenberger, F. Gähler, R. Halver,

F. Heber, M. Hofmann, J. Iseringhausen, I. Kabadshow, O. Lenz, and M. Pip-
pig: ScaFaCoS - Scalable Fast Coloumb Solvers. http://www.scafacos.de.

[11] M. Pippig: PFFT - Parallel FFT software library. https://github.com/
mpip/pfft.

[12] M. Pippig: PNFFT - Parallel Nonequispaced FFT software library. https:
//github.com/mpip/pnfft.

http://www.scafacos.de
https://github.com/mpip/pfft
https://github.com/mpip/pfft
https://github.com/mpip/pnfft
https://github.com/mpip/pnfft

Bibliography
[13] ESPResSo – Extensible Simulation Package for Research on Soft Matter.

http://espressomd.org.
[14] JuGene: Jülich Blue Gene/P. http://www.fz-juelich.de/ias/jsc/

EN/Expertise/Supercomputers/JUGENE/JUGENE_node.html.
[15] JuQeen: Jülich Blue Gene/Q. http://www.fz-juelich.de/ias/jsc/

EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html.
[16] JuRoPA: Jülich Research on Petaflop Architectures. http://www.

fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUROPA/JUROPA_node.html.

[17] R.P. Agarwal and P.J.Y. Wong: Error inequalities in polynomial interpolation
and their applications, vol. 262 of Mathematics and its Applications. Kluwer
Academic Publishers Group, Dordrecht, 1993.

[18] A. Arnold and C. Holm: MMM2D: A fast and accurate summation method
for electrostatic interactions in 2D slab geometries. Comput. Phys. Commun.,
148:327 – 348, 2002.

[19] A. Arnold and C. Holm: MMM1D: A method for calculating electrostatic inter-
actions in one-dimensional periodic geometries. J. Chem. Phys., 123:144103,
2005.

[20] A. Arnold, J. de Joannis, and C. Holm: Electrostatics in periodic slab geome-
tries. I. J. Chem. Phys., 117:2496, 2002.

[21] A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm,
P. Košovan, and C. Holm: ESPResSo 3.1: Molecular dynamics software for
coarse-grained models. In M. Griebel and M.A. Schweitzer (eds.): Meshfree
Methods for Partial Differential Equations VI, vol. 89 of Lecture Notes in Com-
putational Science and Engineering, pp. 1 – 23. Springer Berlin Heidelberg,
2013, ISBN 978-3-642-32978-4.

[22] O. Ayala and L.P. Wang: Parallel implementation and scalability analysis of
3d fast Fourier transform using 2d domain decomposition. Parallel Comput.,
39:58 – 77, 2013.

[23] V. Ballenegger, J.J. Cerdà, and C. Holm: How to convert SPME to P3M:
Influence functions and error estimates. J. Chem. Theory Comput., 8(3):936–
947, 2012.

[24] J. Barnes and P. Hut: A hierarchical O(n log n) force-calculation algorithm.
Nature, 324(6096):446 – 449, 1986.

149

http://espressomd.org
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/JUGENE_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/JUGENE_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html

150 Bibliography

[25] B.W.H. van Beest and G.J. Kramer: Force fields for silicas and aluminophos-
phates based on ab initio calculations. Phys. Rev. Lett., 64(16):1955–1958,
1990.

[26] G. Beylkin:On the fast Fourier transform of functions with singularities. Appl.
Comput. Harmon. Anal., 2:363 – 381, 1995.

[27] L.I. Bluestein: A linear filtering approach to the computation of the discrete
Fourier transform. IEEE Trans AU, 18(4):451–455, 1970.

[28] M. Bolten: Multigrid methods for structured grids and their application in
particle simulation. PhD thesis, Bergische Universität Wuppertal, Wuppertal,
2008.

[29] A. Bródka: Ewald summation method with electrostatic layer correction for
interactions of point dipoles in slab geometry. Chem. Phys. Lett., 400:62 – 67,
2004.

[30] A. Bródka and P. Sliwinski: Three-dimensional Ewald method with correction
term for a system periodic in one direction. J. Chem. Phys., 120:5518 – 5523,
2004.

[31] D.S. Cerutti, R.E. Duke, T.a. Darden, and T.P. Lybrand: Staggered Mesh
Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great
versatility. J. Chem. Theory Comput., 5(9):2322, 2009.

[32] J.W. Cooley and J.W. Tukey: An algorithm for machine calculation of complex
Fourier series. Math. Comput., 19:297 – 301, 1965.

[33] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth: On
the LambertW function. Adv. Comput. Math., 5(1):329 – 359, 1996.

[34] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.K. Yeung, and
R. Vuduc: On the communication complexity of 3d FFTs and its implications
for exascale. In Proceedings of the 26th ACM International Conference on
Supercomputing, ICS ’12, pp. 205 – 214, New York, NY, USA, 2012. ACM.

[35] H. Dachsel: An error-controlled Fast Multipole Method. J. Chem. Phys.,
132(11):119901, 2010.

[36] H. Dachsel, M. Hofmann, and G. Rünger: Library support for parallel sort-
ing in scientific computations. In Proc. of the 13th International Euro-Par
Conference, vol. 4641 of LNCS, pp. 695–704. Springer, 2007.

[37] T. Darden, D. York, and L. Pedersen: Particle mesh Ewald: An n log(n)
method for Ewald sums in large systems. J. Chem. Phys., 98:10089–10092,
1993.

[38] M. Deserno and C. Holm: How to mesh up Ewald sums. I. A theoretical and
numerical comparison of various particle mesh routines. J. Chem. Phys.,
109:7678 – 7693, 1998.

[39] M. Deserno and C. Holm: How to mesh up Ewald sums. II. An accurate error
estimate for the Particle-Particle-Particle-Mesh algorithm. J. Chem. Phys.,
109:7694 – 7701, 1998.

Bibliography 151

[40] H.Q. Ding, R.D. Ferraro, and D.B. Gennery: A portable 3d FFT package for
distributed-memory parallel architectures. In Proceedings of the 7th SIAM Con-
ference on Parallel Processing, pp. 70 – 71, Philadelphia, 1995. SIAM.

[41] A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform.
Geophysics, 64:539 – 551, 1999.

[42] A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data.
SIAM J. Sci. Stat. Comput., 14:1368 – 1393, 1993.

[43] T.V.T. Duy and T. Ozaki: OpenFFT - Parallel 3d FFT software package.
http://www.openmx-square.org/openfft, 2013.

[44] T.V.T. Duy and T. Ozaki: A decomposition method with minimum communica-
tion amount for parallelization of multi-dimensional FFTs. Computer Physics
Communications, 185(1):153 – 164, 2014.

[45] H. Eggers, T. Knopp, and D. Potts: Field inhomogeneity correction based on
gridding reconstruction. IEEE Trans. Med. Imag., 26:374 – 384, 2007.

[46] B. Elbel and G. Steidl: Fast Fourier transform for nonequispaced data. In
C.K. Chui and L.L. Schumaker (eds.): Approximation Theory IX, pp. 39 – 46,
Nashville, 1998. Vanderbilt University Press.

[47] M. Eleftheriou, J.E. Moreira, B.G. Fitch, and R.S. Germain: A volumetric
FFT for BlueGene/L. In T.M. Pinkston and V.K. Prasanna (eds.): HiPC,
vol. 2913 of Lecture Notes in Computer Science, pp. 194 – 203, Berlin, 2003.
Springer.

[48] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen:
A smooth particle mesh Ewald method. J. Chem. Phys., 103:8577 – 8593, 1995.

[49] P.P. Ewald: Die Berechnung optischer und elektrostatischer Gitterpotentiale.
Ann. Phys., 369:253–287, 1921.

[50] F. Fahrenberger, Z. Xu, and C. Holm: Simulation of electric double layers
around charged colloids in aqueous solution of variable permittivity. J. Chem.
Phys., 141(6), 2014.

[51] B. Fang, Y. Deng, and G. Martyna: Performance of the 3d FFT on the 6d
network torus QCDOC parallel supercomputer. Comp. Phys. Comm., 176:531
– 538, 2007.

[52] M. Fenn and G. Steidl: Fast NFFT based summation of radial functions.
Sampl. Theory Signal Image Process., 3:1 – 28, 2004.

[53] J.A. Fessler and B.P. Sutton: Nonuniform fast Fourier transforms using min-
max interpolation. IEEE Trans. Signal Process., 51:560 – 574, 2003.

[54] S. Filippone: The IBM parallel engineering and scientific subroutine library.
In J. Dongarra, K. Madsen, and J. Wasniewski (eds.): PARA, vol. 1041 of
Lecture Notes in Computer Science, pp. 199 – 206. Springer, 1995.

[55] D. Fincham: Optimisation of the Ewald sum for large systems. Mol. Simul.,
13:1 – 9, 1994.

[56] K. Fourmont: Non equispaced fast Fourier transforms with applications to to-
mography. J. Fourier Anal. Appl., 9:431 – 450, 2003.

http://www.openmx-square.org/openfft

152 Bibliography

[57] M. Frigo and S.G. Johnson: The design and implementation of FFTW3. Proc.
IEEE, 93:216 – 231, 2005.

[58] M. Frigo and S.G. Johnson: FFTW, C subroutine library. http://www.
fftw.org, 2009.

[59] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran: Cache-oblivious
algorithms. In Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 285 – 297, Washington, DC, 1999. IEEE
Computer Society.

[60] A. Gholami and G. Biros: AccFFT - Parallel FFT subroutine library. http:
//accfft.org.

[61] L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier trans-
form. SIAM Rev., 46:443 – 454, 2004.

[62] L. Greengard and V. Rokhlin: A fast algorithm for particle simulations. J.
Comput. Phys., 73:325 – 348, 1987.

[63] M. Griebel, S. Knapek, and G. Zumbusch: Numerical simulation in molecular
dynamics, vol. 5 of Texts in Computational Science and Engineering. Springer,
Berlin, 2007.

[64] W. Gropp, E. Lusk, and R. Thakur: Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cambridge, MA, USA, 1999.

[65] A. Grzybowski, E. Gwóźdź, and A. Bródka: Ewald summation of electrostatic
interactions in molecular dynamics of a three-dimensional system with period-
icity in two directions. Phys. Rev. B, 61:6706–6712, 2000.

[66] A. Gupta and V. Kumar: The scalability of FFT on parallel computers. IEEE
Trans. Parallel Distributed Systems, 4:922 – 932, 1993.

[67] F.E. Harris: Incomplete Bessel, generalized incomplete gamma, or leaky aquifer
functions. J. Comput. Appl. Math., 215:260 – 269, 2008.

[68] F. Hedman and A. Laaksonen: Ewald summation based on nonuniform fast
Fourier transform. Chem. Phys. Lett., 425:142 – 147, 2006.

[69] M.T. Heideman, D.H. Johnson, and C.S. Burrus: Gauss and the history of the
fast Fourier transform. Arch. Hist. Exact Sci., 34:265 – 277, 1985.

[70] R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Tay-
lor & Francis, Inc., Bristol, PA, USA, 1988.

[71] M. Hofmann and G. Rünger: Fine-grained Data Distribution Operations for
Particle Codes. In M. Ropo, J. Westerholm, and J. Dongarra (eds.): Recent
Advances in Parallel Virtual Machine and Message Passing Interface, 16th
European PVM/MPI Users Group Meeting, vol. 5759 of LNCS, pp. 54–63.
Springer, 2009.

[72] P.H. Hünenberger: Lattice-sum methods for computing electrostatic interac-
tions in molecular simulations. In Simulation and theory of electrostatic in-
teractions in solution, vol. 17, pp. 17 – 83. ASCE, 1999.

http://www.fftw.org
http://www.fftw.org
http://accfft.org
http://accfft.org

Bibliography 153

[73] P.H. Hünenberger and J.A. McCammon: Ewald artifacts in computer simu-
lations of ionic solvation and ion–ion interaction: A continuum electrostatics
study. The Journal of Chemical Physics, 110(4):1856, 1999.

[74] D. Huybrechs: On the Fourier extension of nonperiodic functions. SIAM J.
Numer. Anal., 47(6):4326 – 4355, 2010.

[75] Intel Corporation: Intel math kernel library. http://software.intel.
com/en-us/intel-mkl/.

[76] J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a
convolution function for Fourier inversion using gridding. IEEE Trans. Med.
Imag., 10:473 – 478, 1991.

[77] H. Jagode: Fourier transforms for the BlueGene/L communication network.
Master’s thesis, The University of Edinburgh, 2006.

[78] F.J. Jülich Supercomputing Centre: PEPC – The Pretty Efficient Coulomb
Solver. http://www.fz-juelich.de/ias/jsc/pepc.

[79] I. Kabadshow: The Fast Multipole Method - Alternative gradient algorithm
and parallelization. Diplom (univ.), Technische Universität Chemnitz, Jülich,
2006.

[80] I. Kabadshow: Periodic Boundary Conditions and the Error-Controlled Fast
Multipole Method. PhD thesis, Bergische Universität Wuppertal, Jülich, 2012.

[81] I. Kabadshow and H. Dachsel: The error-controlled Fast Multipole Method for
open and periodic boundary conditions. In G. Sutmann, P. Gibbon, and T. Lip-
pert (eds.): Fast Methods for Long-Range Interactions in Complex Systems,
IAS-Series, pp. 85 – 113, Jülich, 2011. Forschungszentrum Jülich.

[82] I. Kabadshow and B. Lang: Latency-optimized parallelization of the FMM
near-field computations. In Computational Science - ICCS 2007, vol. 4487
of Lecture Notes in Computer Science, pp. 716 – 722. Springer, 2007.

[83] J. Keiner, S. Kunis, and D. Potts: NFFT 3.0, C subroutine library. http:
//www.tu-chemnitz.de/~potts/nfft.

[84] J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various
nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article
19, 1 – 30, 2009.

[85] J. Kolafa and J.W. Perram: Cutoff errors in the Ewald summation formulae
for point charge systems. Mol. Simul., 9(5):351 – 368, 1992.

[86] K.N. Kudin and G.E. Scuseria: Revisiting infinite lattice sums with the periodic
Fast Multipole Method. J. Chem. Phys., 121(7):2886 – 2890, 2004.

[87] S. Kunis and S. Kunis: The nonequispaced FFT on graphics processing units.
PAMM, Proc. Appl. Math. Mech., 12, 2012.

[88] S. Kunis and D. Potts: Stability results for scattered data interpolation by
trigonometric polynomials. SIAM J. Sci. Comput., 29:1403 – 1419, 2007.

[89] S.W. de Leeuw, J.W. Perram, and E.R. Smith: Simulation of electrostatic sys-
tems in periodic boundary conditions. I. Lattice sums and dielectric constants.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 373:27 – 56, 1980.

http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://www.fz-juelich.de/ias/jsc/pepc
http://www.tu-chemnitz.de/~potts/nfft
http://www.tu-chemnitz.de/~potts/nfft

154 Bibliography

[90] N. Li: 2DECOMP&FFT - Parallel FFT subroutine library. http://www.
2decomp.org.

[91] N. Li and S. Laizet: 2DECOMP & FFT - A highly scalable 2d decomposition
library and FFT interface. In Cray User Group 2010 conference, pp. 1 – 13,
Edinburgh, Scotland, 2010.

[92] D. Lindbo and A.K. Tornberg: Spectral accuracy in fast Ewald-based methods
for particle simulations. J. Comput. Phys., 230:8744 – 8761, 2011.

[93] D. Lindbo and A.K. Tornberg: Fast and spectrally accurate Ewald summation
for 2-periodic electrostatic systems. J. Chem. Phys., 136:164111, 2012.

[94] M. Lyon:Approximation error in regularized SVD-based Fourier continuations.
Appl. Numer. Math., 62(12):1790 – 1803, 2012.

[95] A.C. Maggs and V. Rosseto: Local simulation algorithms for Coulombic inter-
actions. Phys. Rev. Lett., 88:196402, 2002.

[96] S. Matej, J.A. Fessler, and I.G. Kazantsev: Iterative tomographic image recon-
struction using Fourier-based forward and back-projectors. IEEE Trans. Med.
Imag., 23:401 – 412, 2004.

[97] P. Minary, J.A. Morrone, D.A. Yarne, M.E. Tuckerman, and G.J. Martyna:
Long range interactions on wires: a reciprocal space based formalism. J. Chem.
Phys., 121:11949 – 11956, 2004.

[98] P. Minary and M.E. Tuckerman: A reciprocal space based method for treat-
ing long range interactions in ab initio and force-field-based calculations in
clusters. J. Chem. Phys., 110:2810 – 2821, 1999.

[99] P. Minary, M.E. Tuckerman, K.A. Pihakari, and G.J. Martyna: A new recip-
rocal space based treatment of long range interactions on surfaces. J. Chem.
Phys., 116:5351 – 5362, 2002.

[100] MPI Forum: MPI: A message-passing interface standard. Version 2.2. http:
//www.mpi-forum.org, 2009.

[101] A. Neelov and C. Holm: Interlaced P3M algorithm with analytical and ik-
differentiation. J. Chem. Phys., 132(23):234103, 2010.

[102] F. Nestler: Automated parameter tuning based on RMS errors for nonequi-
spaced FFTs. Preprint 2015-01, Faculty of Mathematics, Technische Univer-
sität Chemnitz, 2015.

[103] F. Nestler: Parameter tuning for the NFFT based fast Ewald summation.
Preprint 2015-05, Faculty of Mathematics, Technische Universität Chemnitz,
2015.

[104] M. Nikolić, A. Jović, J. Jakić, V. Slavnić, and A. Balaž: An analysis of FFTW
and FFTE performance. In M. Dulea, A. Karaivanova, A. Oulas, I. Liabotis,
D. Stojiljkovic, and O. Prnjat (eds.): High-Performance Computing Infras-
tructure for South East Europe’s Research Communities, vol. 2 of Modeling
and Optimization in Science and Technologies, pp. 163 – 170. Springer Inter-
national Publishing, 2014.

http://www.2decomp.org
http://www.2decomp.org
http://www.mpi-forum.org
http://www.mpi-forum.org

Bibliography 155

[105] I. Pasichnyk and B. Dünweg: Coulomb interactions via local dynamics: A
molecular-dynamics algorithm. J. Phys.: Condens. Mat., 16:3999 – 4020, 2004.

[106] D. Pekurovsky: P3DFFT - parallel FFT subroutine library. http://code.
google.com/p/p3dfft.

[107] D. Pekurovsky: P3DFFT: A framework for parallel computations of Fourier
transforms in three dimensions. SIAM J. Sci. Comput., 34:C192 – C209, 2012.

[108] J.W. Perram, H.G. Petersen, and S.W. De Leeuw: An algorithm for the sim-
ulation of condensed matter which grows as the 3/2 power of the number of
particles. Molecular Phys., 65:875 – 893, 1988.

[109] S.J. Plimpton: Parallel FFT subroutine library. http://www.sandia.
gov/~sjplimp/docs/fft/README.html.

[110] S.J. Plimpton, R. Pollock, and M. Stevens: Particle-Mesh Ewald and rRESPA
for parallel molecular dynamics simulations. In Proceedings of the 8th SIAM
Conference on Parallel Processing for Scientific Computing (Minneapolis,
1997), Philadelphia, 1997. SIAM.

[111] M. Porto: Ewald summation of electrostatic interactions of systems with finite
extent in two of three dimensions. J. Phys. A, 33:6211 – 6218, 2000.

[112] D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs.
SIAM J. Sci. Comput., 24:2013 – 2037, 2003.

[113] D. Potts, G. Steidl, and A. Nieslony: Fast convolution with radial kernels at
nonequispaced knots. Numer. Math., 98:329 – 351, 2004.

[114] D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced
data: A tutorial. In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern
Sampling Theory: Mathematics and Applications, pp. 247 – 270, Boston, MA,
USA, 2001. Birkhäuser.

[115] J. Poulson, L. Demanet, N. Maxwell, and L. Ying: A parallel butterfly algo-
rithm. SIAM J. Sci. Comput., 36(1):C49 – C65, 2014.

[116] C. Rader: Discrete Fourier transforms when the number of data samples is
prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

[117] C. Sagui and T.A. Darden: P3M and PME: A comparison of the two methods.
Simulation and theory of electrostatic interactions in solution, 104(1):104 –
113, 1999.

[118] Y. Shan, J.L. Klepeis, M.P. Eastwood, R.O. Dror, and D.E. Shaw: Gaussian
split Ewald: A fast Ewald mesh method for molecular simulation. The Journal
of chemical physics, 122(5):54101, 2005.

[119] S. Song and J.K. Hollingsworth: Designing and auto-tuning parallel 3-d FFT
for computation-communication overlap. In Proceedings of the 19th ACM
SIGPLAN symposium on Principles and practice of parallel programming -
PPoPP ’14, pp. 181 – 192, New York, New York, USA, 2014. ACM Press,
ISBN 9781450326568.

[120] W.H. Steeb: Kronecker Product of Matrices and Applications. BI-Wissen-
schaftsverlag, Mannheim; Wien; Zürich, ISBN 3-411-14811-X.

http://code.google.com/p/p3dfft
http://code.google.com/p/p3dfft
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.sandia.gov/~sjplimp/docs/fft/README.html

156 Bibliography

[121] G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv.
Comput. Math., 9:337 – 353, 1998.

[122] J. Stoer and R. Bulirsch: Introduction to Numerical Analysis. Springer, Berlin,
2nd ed., 1996.

[123] D. Takahashi: FFTE - a fast Fourier transform package. http://www.
ffte.jp, 2000.

[124] D. Takahashi: An implementation of parallel 3-d FFT with 2-d decomposition
on a massively parallel cluster of multi-core processors. In R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Wasniewski (eds.): Parallel Processing
and Applied Mathematics, vol. 6067 of Lecture Notes in Computer Science,
pp. 606 – 614. Springer, 2010.

[125] U. Trottenberg, C.W. Oosterlee, and A. Schuller: Multigrid. Academic Press,
Inc., Orlando, FL, USA, 2000, ISBN 0-12-701070-X.

[126] M.E. Tuckerman, P. Minary, K. Pihakari, and G.J. Martyna: A new reciprocal
space based method for treating long range interactions in ab initio and force-
field based calculations for surfaces, wires, and clusters. In Computational
methods for macromolecules: challenges and applications (New York, 2000),
vol. 24 of Lect. Notes Comput. Sci. Eng., pp. 381 – 410. Springer, Berlin, 2002.

[127] C.F. Van Loan: Computational Frameworks for the Fast Fourier Transform.
SIAM, Philadelphia, PA, USA, 1992.

[128] T. Volkmer: OpenMP parallelization in the NFFT software library. Preprint
2012-07, Faculty of Mathematics, Technische Universität Chemnitz, 2012.

[129] Y.l. Wang, F. Hedman, M. Porcu, F. Mocci, and A. Laaksonen: Non-uniform
FFT and its applications in particle simulations. Appl. Math., 05(03):520–541,
2014.

[130] A.F. Ware: Fast approximate Fourier transforms for irregularly spaced data.
SIAM Rev., 40:838 – 856, 1998.

[131] A.H. Widmann and D.B. Adolf: A comparison of Ewald summation techniques
for planar surfaces. Comput. Phys. Commun., 107:167 – 186, 1997.

[132] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, and P. Gibbon: A
massively parallel, multi-disciplinary Barnes–Hut tree code for extreme-scale
N-body simulations. Comput. Phys. Commun., 183(4):880 – 889, 2012.

[133] I.C. Yeh and M.L. Berkowitz: Ewald summation for systems with slab geome-
try. J. Chem. Phys., 111(7):3155 – 3162, 1999.

[134] Y. Zhang, J. Liu, E. Kultursay, M. Kandemir, N. Pitsianis, and X. Sun: Scal-
able parallelization strategies to accelerate NuFFT data translation on multi-
cores. In Proceedings of the 16th International Euro-Par Conference on Paral-
lel Processing: Part II, Euro-Par’10, pp. 125 – 136, Berlin, Heidelberg, 2010.
Springer-Verlag.

http://www.ffte.jp
http://www.ffte.jp

List of algorithms

2.1 Multidimensional pruned FFT - Variant A 25
2.2 Multidimensional pruned FFT - Variant B 25
2.3 Multidimensional pruned FFT with shifted index sets 27
2.4 Multidimensional pruned FFTH - Variant B 27
2.5 PFFT – Parallel, multidimensional, pruned FFT 37
2.6 PFFTH – Parallel, multidimensional, pruned FFTH 38

3.1 PNFFT – Parallel NFFT for each process r ∈ PP 79
3.2 PNFFTH – Parallel NFFTH for each process r ∈ PP 79
3.3 PNDFT – Parallel NDFT for each process r ∈ PP 82
3.4 PNDFTH – Parallel NDFTH for each process r ∈ PP 82

4.1 Short-range interactions . 95
4.2 Self interactions . 96
4.3 Long-range interactions . 98
4.4 P2NFFT – Particle-Particle–NFFT 109
4.5 Parallel short-range interactions for each process r ∈ PP 131
4.6 Parallel self interactions for each process r ∈ PP 131
4.7 Parallel long-range interactions for each process r ∈ PP 133
4.8 Parallel P2NFFT for each process r ∈ PP 134

157

Nomenclature
DFT Discrete Fourier Transform, page 21
DFTH Adjoint Discrete Fourier Transform, page 21
FFT Fast Fourier Transform, page 17
FFT Fast Fourier Transform, page 21
FFTH Adjoint Fast Fourier Transform, page 21
NDFT Nonequispaced Discrete Fourier Transform, page 56
NDFTH Adjoint Nonequispaced Discrete Fourier Transform, page 57
NFFT Nonequispaced Fast Fourier Transform, page 57
NFFTH Adjoint Nonequispaced Fast Fourier Transform, page 57
ad-NFFT gradient NFFT with analytic derivative, page 60
ik-NFFT gradient NFFT with derivative in Fourier space, page 60
PFFT Parallel FFT, page 36
PFFTH Parallel FFTH, page 36
PNDFTH Parallel NDFTH, page 81
PNDFT Parallel NDFT, page 81
PNFFT Parallel NFFT, page 74
PNFFTH Parallel NFFTH, page 77
P2NFFT Particle-Particle–NFFT, page 109
ad-P2NFFT . . . P2NFFT with derivative in Fourier space, page 110
ik-P2NFFT P2NFFT with analytic derivative, page 110
P3M Particle-Particle–Particle-Mesh, page 109
ad-P3M P3M with derivative in Fourier space, page 110
ik-P3M P3M with analytic derivative, page 110

159

	Introduction
	Parallel fast Fourier transforms
	Definitions
	One-dimensional fast Fourier transforms
	Pruned fast Fourier transform
	Fast Fourier transform with shifted index sets
	Pruned fast Fourier transform with shifted index sets

	Multidimensional fast Fourier transform
	Basic modules for multidimensional array transformation
	The serial FFT module
	The local transposition module
	Combination of serial FFT and local transposition
	Parallel block decomposition
	Folding multidimensional arrays in row-major order
	Parallel matrix transposition
	The parallel multidimensional transposition module

	Parallel FFT with multidimensional data decomposition
	Parallel pruned FFT
	Parallel FFT with shifted index sets
	The ghost cell communication modules
	The PFFT software library
	Numerical results
	Description of the parallel computing architectures
	Strong scaling behavior of PFFT on JUGENE
	Comparison of PFFT and FFTW on JUROPA
	Parallel pruned FFT on JUGENE
	Weak scaling behavior of PFFT on JUQUEEN and JUROPA
	Strong scaling behavior of PFFT on JUQUEEN and JUROPA

	Parallel nonequispaced fast Fourier transforms
	Definitions
	The three-dimensional NFFT algorithm
	Window functions
	Shifted NFFT
	Interlaced NFFT
	Optimized deconvolution

	The parallel three-dimensional NFFT
	Parallel data decomposition
	Description of the algorithm

	The parallel three-dimensional NDFT
	The PNFFT software library
	Numerical results
	Strong scaling of pruned PNFFT on JUGENE

	Parallel particle-mesh methods based on NFFT
	Definitions
	The Ewald splitting
	The short-range and self interaction modules
	The long-range interaction module
	The common approximation framework and fast algorithm
	Periodicity in three dimensions
	Periodicity in two dimensions
	Periodicity in one dimension
	Periodicity in no dimension
	Two-point Taylor interpolation using Newton basis polynomials
	Some notes on Fourier approximations of non-periodic functions

	The P²NFFT framework
	The relation of P²NFFT and P³M
	Interlaced P²NFFT and P³M

	The relation of P²NFFT to other particle-mesh methods
	Fast summation with non-periodic boundary conditions
	Ewald summation
	Fast Ewald summation based on NFFT
	Particle-mesh Ewald
	Smooth particle-mesh Ewald
	Gaussian split Ewald
	Spectrally accurate Ewald

	Complexity of Ewald summation and parameter selection
	Runtime model
	Potential computation via Ewald summation
	Potential computation via P²NFFT
	Field computation via Ewald summation
	Field compuation via P²NFFT
	Selection of P²NFFT parameters

	Parallel P²NFFT
	The parallel P²NFFT software library
	Numerical results
	Description of test systems
	Parameter selection and accuracy of 3d-periodic P²NFFT
	Parameter selection and accuracy for mixed periodicity
	Strong scaling of 0d-periodic P²NFFT on JUGENE
	Comparison of P²NFFT to other fast Coulomb solvers

	List of publications
	Bibliography
	List of algorithms
	Nomenclature

