Übungen zur Vorlesung Wavelets

http://www.tu-chemnitz.de/~potts/lehre.php

Übungsblatt 4

Aufgabe 1:

Zeigen Sie $L^1(\mathbb{R}) \not\subset L^2(\mathbb{R})$ und $L^2(\mathbb{R}) \not\subset L^1(\mathbb{R})$ anhand von geeigneten Beispielen.

Aufgabe 2:

Berechnen Sie die Fourier-Transformierte \hat{h} der Haar Funktion

$$h(x) = \begin{cases} 1 & 0 \le x < \frac{1}{2}, \\ -1 & \frac{1}{2} \le x < 1, \\ 0 & \text{sonst.} \end{cases}$$

Ist $\hat{h} \in L^1(\mathbb{R})$?

Aufgabe 3:

Zeigen Sie für die Haar Funktion h die Momente Eigenschaften

$$\int_0^1 h(x) \mathrm{d}x = 0, \quad \int_0^1 x h(x) \mathrm{d}x \neq 0.$$

Aufgabe 4:

Sei

$$f(x) = \begin{cases} 1 & 0 \le x < \frac{2}{3}, \\ 0 & \text{sonst.} \end{cases}$$

Berechnen Sie $\langle f, p_{0,0} \rangle$ und $\langle f, h_{j,k} \rangle$ für $j=0,1,2,3; k=0,\dots,2^j-1.$

Aufgabe 5 (Diskrete Haar Transformation):

Ein Schritt der diskreten Haar Transformation ist durch

$$\tilde{W}_N := \begin{pmatrix} H_N \\ G_N \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & \dots & 0 \\ & & \ddots & & \\ 0 & \dots & 0 & 1 & 1 \\ 1 & -1 & 0 & \dots & 0 \\ & & \ddots & & \\ 0 & \dots & 0 & 1 & -1 \end{pmatrix} \in \mathbb{R}^{N \times N}$$

gegeben.

- a) Zeigen Sie, dass \tilde{W}_N orthogonal ist.
- b) Zeigen Sie für die diskrete Haar Transformation die Darstellung

$$W_N = \begin{pmatrix} W_{N/2} & \otimes & \begin{pmatrix} 1 & 1 \end{pmatrix} / \sqrt{2} \\ I_{N/2} & \otimes & \begin{pmatrix} 1 & -1 \end{pmatrix} / \sqrt{2} \end{pmatrix}, \qquad W_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

- c) Faktorisieren Sie W_N in ein Produkt schwachbesetzter Matrizen.
- d) Wieviele Gleitkommaoperationen sind notwendig um das Matrix Vektor Produkt $W_N x$ zu berechnen?
- e) Berechnen Sie W_N^{-1} , siehe a).