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Fourier coefficients and Fourier series

A complex-valued function f : R → C is 2π-periodic or periodic with period 2π, if
f (x + 2π) = f (x) for all x ∈ R.
In the following, we identify any 2π-periodic function f : R → C with the
corresponding function f : T → C defined on the torus T of length 2π.
The torus T can be considered as quotient space R/(2πZ) or its representatives, e.g.
the interval [0, 2π] with identified endpoints 0 and 2π. For short, one can also
geometrically think of the unit circle with circumference 2π.
Typical examples of 2π-periodic functions are 1, cos(n·), sin(n·) for each angular
frequency n ∈ N and the complex exponentials eik· for each k ∈ Z.
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By C (T) we denote the Banach space of all continuous functions f : T → C with the
norm

∥f ∥C(T) := max
x∈T

|f (x)|

and by C r (T), r ∈ N the Banach space of r -times continuously differentiable functions
f : T → C with the norm

∥f ∥C r (T) := ∥f ∥C(T) + ∥f (r)∥C(T) .

Clearly, we have C r (T) ⊂ C s(T) for r > s.
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Let Lp(T), 1 ≤ p ≤ ∞ be the Banach space of (equivalence classes of) measurable
functions f : T → C with finite norm

∥f ∥Lp(T) :=
(

1

2π

∫ π

−π
|f (x)|p dx

)1/p

, 1 ≤ p <∞ ,

∥f ∥L∞(T) := ess sup{|f (x)| : x ∈ T} .

If a 2π-periodic function f is integrable on [−π, π], then we have∫ π

−π
f (x) dx =

∫ π+a

−π+a
f (x)dx

for all a ∈ R so that we can integrate over any interval of length 2π.
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Using Hölder’s inequality it can be shown that the spaces Lp(T) for 1 ≤ p ≤ ∞ are
continuously embedded as

L1(T) ⊃ L2(T) ⊃ . . . ⊃ L∞(T).

In the following we are mainly interested in the Hilbert space L2(T) consisting of all
absolutely square-integrable functions f : T → C with inner product and norm

⟨f , g⟩L2(T) :=
1

2π

∫ π

−π
f (x) g(x) dx ,

∥f ∥L2(T) :=
( 1

2π

∫ π

−π
|f (x)|2 dx

)1/2
.

If it is clear from the context which inner product or norm is addressed, we abbreviate
⟨f , g⟩ := ⟨f , g⟩L2(T) and ∥f ∥ := ∥f ∥L2(T). For all f , g ∈ L2(T) it holds the
Cauchy–Schwarz inequality

|⟨f , g⟩L2(T)| ≤ ∥f ∥L2(T) ∥g∥L2(T) .
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Theorem 1

The set of complex exponentials{
eik· = cos(k ·) + i sin(k ·) : k ∈ Z

}
(1)

forms an orthonormal basis of L2(T).
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Proof: By definition, an orthonormal basis is a complete orthonormal system. First we
show the orthonormality of the complex exponentials in (1). We have

⟨eik·, eij ·⟩ = 1

2π

∫ π

−π
ei(k−j)x dx ,

which implies for integers k = j

⟨eik·, eik·⟩ = 1

2π

∫ π

−π
1 dx = 1.

On the other hand we obtain for distinct integers j , k

⟨eik·, eij ·⟩ = 1

2πi(k − j)

(
eπi(k−j) − e−πi(k−j)

)
=

2i sinπ(k − j)

2πi(k − j)
= 0 .
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Now we prove the completeness of the set (1). We have to show that
〈
f , eik·

〉
= 0 for

all k ∈ Z implies f = 0.
First we consider a continuous function f ∈ C (T) having ⟨f , eik·⟩ = 0 for all k ∈ Z.
Let us denote by

Tn :=
{ n∑
k=−n

cke
ik· : ck ∈ C

}
(2)

the space of all trigonometric polynomials of degree ≤ n. By the approximation
theorem of Weierstrass there exists for any function f ∈ C (T) a sequence

{
pn
}∞
n=1

of
trigonometric polynomials pn ∈ Tn, which converges uniformly to f , i.e.

max
x∈T

∣∣f (x)− pn(x)
∣∣→ 0 for n → ∞.
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By assumption we have

⟨f , pn⟩ =
〈
f ,

n∑
k=−n

ck e
ik·
〉
=

n∑
k=−n

ck
〈
f , eik·

〉
= 0.

Hence we conclude

∥f ∥2 = ⟨f , f ⟩ − ⟨f , pn⟩ = ⟨f , f − pn⟩ → 0 (3)

as n → ∞, so that f = 0.
Now let f ∈ L2(T) with ⟨f , eik·⟩ = 0 for all k ∈ Z be given. Then

h(x) :=

∫ x

0
f (t) dt, x ∈ [0, 2π),

is an absolutely continuous function satisfying h′(x) = f (x) almost everywhere.
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We have further h(0) = h(2π) = 0. For k ∈ Z\{0} we obtain

⟨h, eik·⟩ = 1

2π

∫ 2π

0
h(x) e−ikx dx

= − 1

2πik
h(x) e−ikx

∣∣∣2π
0
+

1

2πik

∫ 2π

0
h′(x)︸ ︷︷ ︸
=f (x)

e−ikx dx

=
1

2πik
⟨f , eik·⟩ = 0 .

Hence the 2π-periodically continued continuous function h − ⟨h, 1⟩ fulfills〈
h − ⟨h, 1⟩, eik·

〉
= 0 for all k ∈ Z. Using the first part of this proof, we obtain

h = ⟨h, 1⟩ = const. Since f (x) = h′(x) = 0 almost everywhere, this yields the
assertion.
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Once we have an orthonormal basis of a Hilbert space, we can represent its elements
with respect to this basis. Let us consider the finite sum

Snf :=
n∑

k=−n

ck(f ) e
ik· ∈ Tn ,

ck(f ) :=
〈
f , eik·

〉
=

1

2π

∫ π

−π
f (x) e−ikx dx ,

called nth Fourier partial sum of f with the Fourier coefficients ck(f ). By definition
Sn : L2(T) → L2(T) is a linear operator which possesses the following important
approximation property.
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Lemma 2

The Fourier partial sum operator Sn : L2(T) → L2(T) is an orthogonal projector onto
Tn, i.e.

∥f − Snf ∥ = min {∥f − p∥ : p ∈ Tn}
for arbitrary f ∈ L2(T). In particular, it holds

∥f − Snf ∥2 = ∥f ∥2 −
n∑

k=−n

|ck(f )|2. (4)
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Proof: For each trigonometric polynomial

p =
n∑

k=−n

ck e
ik· (5)

with arbitrary ck ∈ C and all f ∈ L2(T) we have

∥f − p∥2 = ∥f ∥2 − ⟨f , p⟩ − ⟨p, f ⟩+ ∥p∥2

= ∥f ∥2 +
n∑

k=−n

(
− ck ck(f )− ck ck(f ) + |ck |2

)
= ∥f ∥2 −

n∑
k=−n

|ck(f )|2 +
n∑

k=−n

|ck − ck(f )|2.
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Thus,

∥f − p∥2 ≥ ∥f ∥2 −
n∑

k=−n

|ck(f )|2,

where equality holds only in the case ck = ck(f ), k = −n, . . . , n, i.e. if and only if
p = Snf .
For p ∈ Tn of the form (5), the corresponding Fourier coefficients are ck(p) = ck for
k = −n, . . . , n and ck(p) = 0 for all |k| > n.
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Thus we have Snp = p and Sn(Snf ) = Snf for arbitrary f ∈ L2(T). Hence
Sn : L2(T) → L2(T) is a projection onto Tn. By

⟨Snf , g⟩ =
n∑

k=−n

ck(f ) ck(g) = ⟨f , Sng⟩

for all f , g ∈ L2(T), the Fourier partial sum operator Sn is selfadjoint, i.e., Sn is an
orthogonal projection. Moreover, Sn has the operator norm ∥Sn∥L2(T)→L2(T) = 1.
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As an immediate consequence of Lemma 2 we obtain the following

Theorem 3

Every function f ∈ L2(T) has a unique representation of the form

f =
∑
k∈Z

ck(f ) e
ik·, ck(f ) :=

〈
f , eik·

〉
=

1

2π

∫ π

−π
f (x) e−ikx dx , (6)

where the series (Snf )
∞
n=0 converges in L2(T) to f , i.e.

lim
n→∞

∥Snf − f ∥ = 0 .

Further the Parseval equation is fulfilled

∥f ∥2 =
∑
k∈Z

∣∣〈f , eik·〉∣∣2 =∑
k∈Z

|ck(f )|2 <∞ . (7)
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Proof: By Lemma 2, we know that for each n ∈ N0

∥Snf ∥2 =
n∑

k=−n

|ck(f )|2 ≤ ∥f ∥2 <∞ .

For n → ∞, we obtain Bessel’s inequality

∞∑
k=−∞

|ck(f )|2 ≤ ∥f ∥2 .

Consequently, for arbitrary ε > 0, there exists an index N(ε) ∈ N such that∑
|k|>N(ε)

|ck(f )|2 < ε .
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For m > n ≥ N(ε) we obtain

∥Smf − Snf ∥2 =
(−n−1∑

k=−m

+
m∑

k=n+1

)
|ck(f )|2 ≤

∑
|k|>N(ε)

|ck(f )|2 < ε .

Hence (Snf )
∞
n=0 is a Cauchy sequence. In the Hilbert space L2(T), each Cauchy

sequence is convergent. Assume that limn→∞ Snf = g with g ∈ L2(T). Since

⟨g , eik·⟩ = lim
n→∞

⟨Snf , eik·⟩ = lim
n→∞

⟨f , Sneik·⟩ = ⟨f , eik·⟩

for all k ∈ Z, we conclude by Theorem 1 that f = g . Letting n → ∞ in (4) we obtain
the Parseval equation (7).
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The representation (6) is the so-called Fourier series of f . Figure 1 shows 2π-periodic
functions as superposition of two 2π-periodic functions.
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Figure 1: Two 2π-periodic functions sin x + 1
2 cos(2x) (left) and sin x − 1

10 sin(4x) as
superpositions of sine and cosine functions.

Clearly, the partial sums of the Fourier series are the Fourier partial sums. The
constant term c0(f ) =

1
2π

∫ π
−π f (x)dx in the Fourier series of f is the mean value of f .
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Remark 4

For fixed L > 0, a function f : R → C is called L-periodic, if f (x + L) = f (x) for all
x ∈ R. By substitution we see that the Fourier series of an L-periodic function f reads
as follows

f =
∑
k∈Z

c
(L)
k (f ) e2πik·/L , c

(L)
k (f ) :=

1

L

∫ L/2

−L/2
f (x) e−2πikx/L dx . (8)
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In polar coordinates we can represent the Fourier coefficients in the form

ck(f ) =
1

2
rk e

iφk , rk := 2|ck(f )|, φk := atan2
(
Im ck(f ), Re ck(f )

)
, (9)

where

atan2(y , x) :=



arctan y
x if x > 0 ,

arctan y
x + π if x < 0, y ≥ 0 ,

arctan y
x − π if x < 0, y < 0 ,

π
2 if x = 0, y > 0 ,

−π
2 if x = 0, y < 0 ,

0 if x = y = 0 .

Then
(
|ck(f )|

)
k∈Z = 1

2(rk)k∈Z is called the spectrum or modulus of f and
(
φk

)
k∈Z the

phase of f .
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For fixed a ∈ R, the 2π-periodic extension of a function f : [−π + a, π + a) → C to
the whole line R is given by f (x + 2πn) := f (x) for all x ∈ [−π + a, π + a) and all
n ∈ Z. Often we have a = 0 or a = π.

Example 5

Consider the 2π-periodic extension of the real-valued function f (x) = e−x , x ∈ (−π, π)
with f (±π) = coshπ = 1

2(e
−π + eπ). Then the Fourier coefficients ck(f ) are given by

ck(f ) =
1

2π

∫ π

−π
e−(1+ik)x dx

= − 1

2π (1 + ik)

(
e−(1+ik)π − e(1+ik)π

)
=

(−1)k sinhπ

(1 + i k)π
.

Figure 2 shows both the 8-th and 16-th Fourier partial sum S8f and S16f .
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Figure 2: The 2π-periodic function f given by f (x) := e−x , x ∈ (−π, π), with
f (±π) = cosh(π) and its Fourier partial sums S8f (left) and S16f (right).
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For f ∈ L2(T) we have (7). Thus the Fourier coefficients ck(f ) converge to zero as
|k| → ∞. Since

|ck(f )| ≤
1

2π

∫ π

−π
|f (x)|dx = ∥f ∥L1(T) ,

the integrals

ck(f ) =
1

2π

∫ π

−π
f (x) e−ikx dx , k ∈ Z

also exist for all functions f ∈ L1(T), i.e., the Fourier coefficients are well-defined for
any function of L1(T). The next lemma contains simple properties of Fourier
coefficients.
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Lemma 6

The Fourier coefficients of f , g ∈ L1(T) have the following properties for all k ∈ Z:

1 Linearity: For all α, β ∈ C,

ck(αf + βg) = α ck(f ) + β ck(g) .

2 Translation – Modulation: For all x0 ∈ [0, 2π) and k0 ∈ Z,

ck(f (· − x0)) = e−ikx0 ck(f ) ,

ck(e
−ik0· f ) = ck+k0(f ) .

In particular |ck(f (· − x0))| = |ck(f )|, i.e., translation does not change the
spectrum of f .

3 Differentiation – Multiplication: For absolute continuous functions f ∈ L1(T) with
f ′ ∈ L1(T) we have

ck(f
′) = i k ck(f ) .
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Proof: The first property follows directly from the linearity of the integral.
The translation–modulation property can be seen as

ck(f (· − x0)) =
1

2π

∫ π

−π
f (x − x0) e

−ikx dx

=
1

2π

∫ π

−π
f (y) e−ik(y+x0) dy = e−ikx0 ck(f ),

and similarly for the modulation–translation property.
For the differentiation property recall that an absolute continuous function has a
derivative almost everywhere. Then we obtain by integration by parts

1

2π

∫ π

−π
ik f (x) e−ikx dx =

1

2π

∫ π

−π
f ′(x) e−ikx dx = ck(f

′).
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The complex Fourier series

f =
∑
k∈Z

ck(f ) e
ik·

can be rewritten using Euler’s formula eik· = cos(k·) + i sin(k·) as

f =
1

2
a0(f ) +

∞∑
k=1

(
ak(f ) cos(k·) + bk(f ) sin(k ·)

)
, (10)

where

ak(f ) = ck(f ) + c−k(f ) = 2 ⟨f , cos(k·)⟩ , k ∈ N0 ,

bk(f ) = i
(
ck(f )− c−k(f )

)
= 2 ⟨f , sin(k·)⟩ , k ∈ N .

Consequently
{
1,
√
2 cos(k ·) : k ∈ N

}
∪
{√

2 sin(k·) : k ∈ N
}
form also an

orthonormal basis of L2(T). If f : T → R is a real-valued function, then
ck(f ) = c−k(f ) and (10) is the real Fourier series of f .
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Using polar coordinates (9), the Fourier series of a real-valued function f ∈ L2(T) can
be written in the form

f =
1

2
a0(f ) +

∞∑
k=1

rk sin(k ·+φk).

with sine oscillations of amplitudes rk = 2|ck |, angular frequencies k and phase shifts
φk . For even and odd functions the Fourier series simplify to pure cosine resp. sine
series.
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Lemma 7

If f ∈ L2(T) is even, i.e. f (x) = f (−x) for all x ∈ T, then ck(f ) = c−k(f ) for all k ∈ Z
and f can be represented as a Fourier cosine series

f = c0(f ) + 2
∞∑
k=1

ck(f ) cos(k ·) =
1

2
a0(f ) +

∞∑
k=1

ak(f ) cos(k ·) .

If f ∈ L2(T) is odd, i.e. f (x) = −f (−x) for all x ∈ T, then ck(f ) = −c−k(f ) for all
k ∈ Z and f can be represented as a Fourier sine series

f = 2i
∞∑
k=1

ck(f ) sin(k ·) =
∞∑
k=1

bk(f ) sin(k ·).

The simple proof of Lemma 7 is left as an exercise.
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Example 8

The 2π-periodic extension of the function f (x) = x2, x ∈ [−π, π) is even and has the
Fourier cosine series

π2

3
+ 4

∞∑
k=1

(−1)k

k2
cos(k ·) .
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Example 9

The 2π-periodic extension of the function s(x) = π−x
2π , x ∈ (0, 2π), with s(0) = 0 is

odd and has jump discontinuities at 2πk , k ∈ Z, of unit height. This so-called
sawtooth function has the Fourier sine series

∞∑
k=1

1

π k
sin(k ·) .

Applying the Parseval equation (7) we obtain

∞∑
k=1

1

2π2k2
= ∥s∥2 = 1

12
.

This implies
∑∞

k=1
1
k2 = π2

6 . The last equation can be also obtained from the Fourier
series in Example 8 by setting x := π and assuming that the series converges in this
point.
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Figure 3: The Fourier partial sums S8f of the even 2π-periodic function f given by
f (x) := x2, x ∈ [−π, π) (left) and of the odd 2π-periodic function f given by f (x) = 1

2 − x
2π ,

x ∈ (0, 2π), with f (0) = f (2π) = 0 (right).
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Example 10

We consider the 2π-periodic extension of the rectangular pulse function
f : [−π, π) → R given by

f (x) =

{
0 if x ∈ (−π, 0),
1 if x ∈ (0, π)

and f (−π) = f (0) = 1
2 . The function f − 1

2 is odd and the Fourier series of f reads

1

2
+

∞∑
n=1

2

(2n − 1)π
sin
(
(2n − 1) ·

)
.
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Convolution of periodic functions

The convolution of two 2π-periodic functions f , g ∈ L1(T) is the function h = f ∗ g
given by

h(x) := (f ∗ g)(x) = 1

2π

∫ π

−π
f (y) g(x − y)dy .

Using the substitution y = x − t, we see

(f ∗ g)(x) = 1

2π

∫ π

−π
f (x − t) g(t) dt = (g ∗ f )(x)

so that the convolution is commutative. It is easy to check that it is also associative
and distributive. Furthermore, the convolution is translation invariant

(f (· − t) ∗ g)(x) = (f ∗ g)(x − t) .

If g is an even function, i.e. g(x) = g(−x) for all x ∈ R, then

(f ∗ g)(x) = 1

2π

∫ π

−π
f (y) g(y − x)dy .
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Figure 4: Top: Two 2π-periodic functions f (red) and g (green). Down: The corresponding
convolution f ∗ g .

The following theorem shows that the convolution is well defined for certain functions.
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Theorem 11

1 Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and g ∈ L1(T) be given. Then f ∗ g exists almost
everywhere and f ∗ g ∈ Lp(T). Further we have the Young inequality

∥f ∗ g∥Lp(T) ≤ ∥f ∥Lp(T)∥g∥L1(T).

2 Let f ∈ Lp(T) and g ∈ Lq(T), where 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. Then f ∗ g
exists for every x ∈ T and f ∗ g ∈ C (T). It holds

∥f ∗ g∥C(T)≤ ∥f ∥Lp(T)∥g∥Lq(T).

3 Let f ∈ Lp(T) and g ∈ Lq(T) , where 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q = 1
r + 1. Then

f ∗ g ∈ Lr (T) and we have the generalized Young inequality

∥f ∗ g∥Lr (T) ≤ ∥f ∥Lp(T)∥g∥Lq(T).
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Proof: 1. For f ∈ Lp(T) and g ∈ L1(T) we obtain by generalized Minkowski’s
inequality

∥f ∗ g∥Lp(T) =
1

2π
∥
∫ π

−π
g(y) f (· − y)dy∥Lp(T)

≤ 1

2π

∫ π

−π
∥g(y) f (· − y)∥Lp(T) dy

=
1

2π

∫ π

−π
|g(y)| ∥f (· − y)∥Lp(T) dy

= ∥g∥L1(T)∥f ∥Lp(T).
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2. Let f ∈ Lp(T) and g ∈ Lq(T) with 1
p + 1

q = 1 and p > 1 be given. By Hölder’s
inequality it follows

|(f ∗ g)(x)| ≤
( 1

2π

π∫
−π

|f (x − y)|p dy
)1/p( 1

2π

π∫
−π

|g(y)|q dy
)1/q

≤ ∥f ∥Lp(T) ∥g∥Lq(T)

and consequently

|(f ∗ g)(x + t)− (f ∗ g)(x)| ≤ ∥f (·+ t)− f ∥Lp(T)∥g∥Lq(T).

Now the second assertion follows, since the translation is continuous in the Lp(T)
norm (see [5, Proposition 8.5]), i.e. ∥f (·+ t)− f ∥Lp(T) → 0 as t → 0.
The case p = 1 is straightforward.
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3. Finally, let f ∈ Lp(T) and g ∈ Lq(T) with 1
p + 1

q = 1
r + 1 for 1 ≤ p, q, r ≤ ∞ be

given. The case r = ∞ is described in Part 2 so that it remains to consider
1 ≤ r <∞. Then p ≤ r and q ≤ r , since otherwise we would get the contradiction

q < 1 resp. p < 1. Set s := p
(
1− 1

q

)
= 1− p

r ∈ [0, 1) and t := r
q ∈ [1,∞). Define q′

by 1
q + 1

q′ = 1. Then we obtain by Hölder’s inequality

h(x) :=
1

2π

∫ π

−π
|f (x − y)g(y)| dy =

1

2π

∫ π

−π
|f (x − y)|1−s |g(y)| |f (x − y)|s dy

≤
( 1

2π

∫ π

−π
|f (x − y)|(1−s)q |g(y)|q dy

)1/q( 1

2π

∫ π

−π
|f (x − y)|sq

′
dy

)1/q′

.

40 / 373



Using that by definition sq′ = p and q/q′ = (sq)/p, this implies

hq(x) ≤
1

2π

∫ π

−π
|f (x − y)|(1−s)q |g(y)|q dy

( 1

2π

∫ π

−π
|f (x − y)|p dy

)q/q′

=
1

2π

∫ π

−π
|f (x − y)|(1−s)q |g(y)|q dy

( 1

2π

∫ π

−π
|f (x − y)|p dy

)(sq)/p

=
1

2π

∫ π

−π
|f (x − y)|(1−s)q |g(y)|q dy ∥f ∥sq

Lp(T)

such that

∥h∥q
Lr (T)

=
( 1

2π

∫ π

−π
|h(x)|qt dx

)q/(qt)
=

( 1

2π

∫ π

−π
|hq(x)|t dx

)1/t
= ∥hq∥Lt (T)

≤ ∥f ∥sq
Lp(T)

( 1

2π

∫ π

−π

( 1

2π

∫ π

−π
|f (x − y)|(1−s)q |g(y)|q dy

)t
dx

)1/t

and further by (1− s)qt = p and generalized Minkowski’s inequality

∥h∥q
Lr (T)

≤ ∥f ∥sq
Lp(T)

1

2π

∫ π

−π

( 1

2π

∫ π

−π
|f (x − y)|(1−s)qt |g(y)|qt dx

)1/t
dy

= ∥f ∥sq
Lp(T)

1

2π

∫ π

−π
|g(y)|q

( 1

2π

∫ π

−π
|f (x − y)|(1−s)qt dx

)1/t
dy

= ∥f ∥sq
Lp(T)

∥f ∥(1−s)q
L(1−s)qt

1

2π

∫ π

−π
|g(y)|q dy = ∥f ∥q

Lp(T)
∥g∥q

Lq(T)
.

Taking the q-th root finishes the proof. Alternatively Part 3 can be proved using the
Riesz–Thorin theorem.
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The convolution of an L1(T) function and an Lp(T) function with 1 ≤ p <∞ is in
general not defined pointwise as the following example shows.

Example 12

We consider the 2π-periodic extension of f : [−π, π) → R given by

f (y) :=

{
|y |−3/4 y ∈ [−π, π) \ {0} ,
0 y = 0 .

(11)

The extension denoted by f is even and belongs to L1(T). The convolution (f ∗ f )(x)
is finite for all x ∈ [−π, π) \ {0}. However, for x = 0, this does not hold true, since∫ π

−π
f (y) f (−y) dy =

∫ π

−π
|y |−3/2 dy = ∞.
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The following lemma describes the convolution property of Fourier series.

Lemma 13

For f , g ∈ L1(T) it holds

ck(f ∗ g) = ck(f ) ck(g) , k ∈ Z.

Proof.

Using the 2π-periodicity of g we obtain

ck(f ∗ g) =
1

(2π)2

∫ π

−π

(∫ π

−π
f (y) g(x − y) dy

)
e−ikx dx

=
1

(2π)2

∫ π

−π

∫ π

−π
f (y) e−iky g(x − y) e−ik(x−y) dy dx

=
1

(2π)2

∫ π

−π
f (y) e−iky dy

∫ π

−π
g(t) e−ikt dt = ck(f ) ck(g) .
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The convolution of functions with certain functions, so-called kernels, is of particular
interest.

Example 14

The nth Dirichlet kernel for n ∈ N0 is defined by

Dn(x) :=
n∑

k=−n

eikx , x ∈ R . (12)

By Euler’s formula it follows

Dn(x) = 1 + 2
n∑

k=1

cos(kx) .

44 / 373



Obviously, Dn ∈ Tn is real-valued and even. For x ∈ (0, π] and n ∈ N, we can express
sin x

2 Dn(x) as telescope sum

(
sin

x

2

)
Dn(x) = sin

x

2
+

n∑
k=1

2 cos(kx) sin
x

2

= sin
x

2
+

n∑
k=1

(
sin

(2k + 1)x

2
− sin

(2k − 1)x

2

)
= sin

(2n + 1)x

2
.

Thus, the nth Dirichlet kernel can be represented as a fraction

Dn(x) =
sin (2n+1)x

2

sin x
2

, x ∈ [−π, π)\{0} (13)

with Dn(0) = 2n + 1.
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Figure 5 depicts the Dirichlet kernel D8. The Fourier coefficients of Dn are

ck(Dn) =

{
1 k = −n, . . . , n,
0 |k | > n .

For f ∈ L1(T) with Fourier coefficients ck(f ), k ∈ Z, we obtain by Lemma 13 that

f ∗ Dn =
n∑

k=−n

ck(f ) e
ik· = Snf ,

which is just the nth Fourier partial sum of f and hence its orthogonal projection onto
the space of trigonometric polynomials Tn.
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By the following calculations, the Dirichlet kernel fulfills

∥Dn∥L1(T) =
1

2π

∫ π

−π
|Dn(x)|dx ≥ 4

π2
ln n . (14)

Note that ∥Dn∥L1(T) are called Lebesgue constants. Since sin x ≤ x for x ∈ [0, π2 ) we
get by (13) that

∥Dn∥L1(T) =
1

π

∫ π

0

| sin((2n + 1)x/2)|
sin(x/2)

dx ≥ 2

π

∫ π

0

| sin((2n + 1)x/2)|
x

dx .
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Substituting y = 2n+1
2 x results in

∥Dn∥L1(T) ≥
2

π

∫ (n+ 1
2
)π

0

| sin y |
y

dy

≥ 2

π

n∑
k=1

∫ kπ

(k−1)π

| sin y |
y

dy ≥ 2

π

n∑
k=1

∫ kπ

(k−1)π

| sin y |
kπ

dy

=
4

π2

n∑
k=1

1

k
≥ 4

π2

∫ n+1

1

1

x
dx ≥ 4

π2
ln n.

The Lebesgue constants fulfill

∥Dn∥L1(T) =
4

π2
ln n +O(1) , n → ∞ .

48 / 373



Example 15

The nth Fejér kernel for n ∈ N0 is defined by

Fn :=
1

n + 1

n∑
j=0

Dj ∈ Tn . (15)

By (13) and (15) we obtain Fn(0) = n + 1 and for x ∈ [−π, π) \ {0}

Fn(x) =
1

n + 1

n∑
j=0

sin
(
(j + 1

2)x
)

sin x
2

.
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Multiplying the numerator and denominator of each right-hand fraction by 2 sin x
2 and

replacing the product of sines in the numerator by the differences
cos(jx)− cos

(
(j + 1)x

)
, we find by cascade summation that Fn can be represented in

the form

Fn(x) =
1

2(n + 1)

1− cos
(
(n + 1)x

)(
sin x

2

)2 =
1

n + 1

(sin (n+1)x
2

sin x
2

)2
. (16)

In contrast to the Dirichlet kernel the Fejér kernel is non-negative. Figure 6 shows the
Fejér kernel F8. The Fourier coefficients of Fn are

ck(Fn) =

{
1− |k|

n+1 k = −n, . . . , n ,

0 |k | > n .
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Using the convolution property, the convolution f ∗ Fn for arbitrary f ∈ L1(T) is given
by

σnf := f ∗ Fn =
n∑

k=−n

(
1− |k|

n + 1

)
ck(f ) e

ik· . (17)

Then σnf is called the nth Fejér sum or nth Cesàro sum of f . Further, we have

∥Fn∥L1(T) =
1

2π

∫ π

−π
Fn(x) dx = 1.

51 / 373



Example 16

The nth de la Vallée Poussin kernel V2n for n ∈ N is defined by

V2n =
1

n

2n−1∑
j=n

Dj = 2F2n−1 − Fn−1 =
2n∑

k=−2n

ck(V2n) e
ik·

with the Fourier coefficients

ck(V2n) =


2− |k|

n k = −2n, . . . ,−(n + 1), n + 1, . . . , 2n ,

1 k = −n, . . . , n ,

0 |k | > 2n .
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Figure 5: The Dirichlet kernel D8 (left) and its Fourier coefficients ck(D8) (right).
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Figure 6: The Fejér kernel F8 (left) and its Fourier coefficients ck(F8) (right).
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Figure 7: The convolution f ∗ D32 of the 2π-periodic sawtooth function f and the Dirichlet
kernel D32 approximates f quite good except at the jump discontinuities (left). The
convolution f ∗ F32 of f and the Fejér kernel F32 approximates f not as good as f ∗ D32, but it
does not oscillates near the jump discontinuities (right).
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By Theorem 11 the convolution of two L1(T) functions is again a function in L1(T).
The space L1(T) forms together with the addition and the convolution a so-called
Banach algebra. Unfortunately, there does not exist an identity element with respect
to ∗, i.e., there is no function g ∈ L1(T) such that f ∗ g = f for all f ∈ L1(T). As a
remedy we can define approximate identities.
A sequence (Kn)n∈N of functions Kn ∈ L1(T) is called an approximate identity or a
summation kernel , if it satisfies the following properties:

1
1
2π

π∫
−π

Kn(x)dx = 1 for all n ∈ N,

2 ∥Kn∥L1(T) = 1
2π

π∫
−π

|Kn(x)|dx ≤ C <∞ for all n ∈ N,

3 lim
n→∞

(∫ −δ
−π +

∫ π
δ

)
|Kn(x)|dx = 0 for each 0 < δ < π.
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Theorem 17

For an approximate identity (Kn)n∈N it holds

lim
n→∞

∥Kn ∗ f − f ∥C(T) = 0

for all f ∈ C (T).
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Proof: Since a continuous function is uniformly continuous on a compact interval, for
all ε > 0 there exists a number δ > 0 so that for all |u| < δ

∥f (· − u)− f ∥C(T) < ε . (18)

Using the first property of an approximate identity, we obtain

∥Kn ∗ f − f ∥C(T)

= sup
x∈T

∣∣ 1
2π

∫ π

−π
f (x − u)Kn(u) du − f (x)

∣∣
= sup

x∈T

∣∣ 1
2π

∫ π

−π

(
f (x − u)− f (x)

)
Kn(u) du|

≤ 1

2π
sup
x∈T

∫ π

−π
|f (x − u)− f (x)| |Kn(u)| du

=
1

2π
sup
x∈T

(∫ −δ

−π
+

∫ δ

−δ
+

∫ π

δ

)
|f (x − u)− f (x)| |Kn(u)|du .
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By (18) the right-hand side can be estimated as

ε

2π

∫ δ

−δ
|Kn(u)| du +

1

2π
sup
x∈T

(∫ −δ

−π
+

∫ π

δ

)
|f (x − u)− f (x)| |Kn(u)|du .

By the Properties 2. and 3. of the reproducing kernel Kn, we obtain for sufficiently
large n ∈ N that

∥Kn ∗ f − f ∥C(T) ≤ εC +
1

π
∥f ∥C(T) ε.

Since ε > 0 can be chosen arbitrarily small, this yields the assertion.
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Example 18

The sequence (Dn)n∈N of Dirichlet kernels defined in Example 14 is not an
approximate identity, since ∥Dn∥L1(T) is not uniformly bounded for all n ∈ N by (14).
Indeed we will see in the next section that Snf = Dn ∗ f does in general not converge
uniformly to f ∈ C (T) for n → ∞. A general remedy in such cases consists in
considering the Cesàro mean as shown in the next example.

59 / 373



Example 19

The sequence (Fn)n∈N of Fejér kernels defined in Example 15 possesses by definition
the first two properties of an approximate identity and also fulfills the third one by (16)
and (∫ −δ

−π
+

∫ π

δ

)
Fn(x) dx = 2

∫ π

δ
Fn(x)dx

=
2

n + 1

∫ π

δ

(sin((n + 1)x/2)

sin(x/2)

)2
dx

≤ 2

n + 1

∫ π

δ

π2

x2
dx =

2π

n + 1

(π
δ
− 1
)
.

The right-hand side tends to zero as n → ∞ so that (Fn)n∈N is an approximate identity.
It is not hard to verify that the sequence (V2n)n∈N of de la Vallée Poussin kernels
defined in Example 16 is also an approximate identity.
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From Theorem 17 and Example 19 it follows immediately

Theorem 20 (Approximation Theorem of Fejér)

If f ∈ C (T), then the Fejér sums σnf converge uniformly to f as n → ∞. If
m ≤ f (x) ≤ M for all x ∈ T with m, M ∈ R, then m ≤ (σnf )(x) ≤ M for all n ∈ N.
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Proof: Since (Fn)n∈N is an approximate identity, the Fejér sums σnf converge
uniformly to f as n → ∞. If a real-valued function f : T → R fulfills the estimate
m ≤ f (x) ≤ M for all x ∈ T with certain constants m, M ∈ R, then

(σnf )(x) =
1

2π

∫ π

−π
Fn(y) f (x − y) dy

fulfills also m ≤ (σnf )(x) ≤ M for all x ∈ T, since Fn(y) ≥ 0 and
1
2π

∫ π
−π Fn(y) dy = c0(Fn) = 1.
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The Theorem 20 of Fejér has many important consequences such as

Theorem 21 (Approximation Theorem of Weierstrass)

If f ∈ C (T), then for each ε > 0 there exists a trigonometric polynomial p = σnf ∈ Tn
of sufficiently large degree n such that ∥f − p∥C(T) < ε. Further this trigonometric
polynomial p is a weighted Fourier partial sum given by (17).
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Pointwise and uniform convergence of Fourier series

It was shown that a Fourier series of an arbitrary function f ∈ L2(T) converges in the
norm of L2(T), i.e.

lim
n→∞

∥Snf − f ∥L2(T) = lim
n→∞

∥f ∗ Dn − f ∥L2(T) = 0 .

In general convergence of a sequence a.e. does not result in Lp, p ∈ [1,∞]
convergence. Conversely, Lp convergence only implies convergence a.e. of a
subsequence. In 1966, L. Carleson proved the fundamental result that the Fourier
series of an arbitrary function f ∈ Lp(T), 1 < p <∞ converges almost everywhere.
Kolmogorov (1923) showed that the analogue of Carlson’s result for L1(T) is false. A
natural question is whether the Fourier series of every function f ∈ C (T) converges
uniformly or at least pointwise to f .
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In fact, many mathematicians like Riemann, Weierstrass and Dedekind conjectured
over long time that the Fourier series of a function f ∈ C (T) converges pointwise to f .
Unfortunately, we have in general neither pointwise nor uniform convergence of the
Fourier series of a function f ∈ C (T). A concrete counterexample was constructed by
Du Bois–Reymond in 1876 and was a quite remarkable surprise. It was shown that
there exists a (real-valued) function f ∈ C (T) such that

lim
n→∞

sup |Snf (0)| = ∞.
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To see that pointwise convergence fails in general we need the following principle of
uniform boundedness of sequences of linear operators, see e.g. [20, Kor.2.4].

Theorem 22 (Theorem of Banach–Steinhaus)

Let X be a Banach space with a dense subset D ⊂ X and Y a normed space. Further
let Tn : X → Y for n ∈ N, and T : X → Y be linear bounded operators. Then it holds

Tf := lim
n→∞

Tnf (19)

for all f ∈ X if and only if

1 ∥Tn∥X→Y ≤ const <∞ for all n ∈ N, and
2 limn→∞ Tnp = Tp for all p ∈ D.
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Theorem 23

There exists a function f ∈ C (T) whose Fourier series does not converge pointwise.

Proof: Applying Theorem 22 of Banach–Steinhaus, we choose X = C (T), Y = C and
D =

⋃∞
n=0 Tn. By the Approximation Theorem 21 of Weierstrass, the set D of all

trigonometric polynomials is dense in C (T). Then we consider the linear bounded
functionals Tnf := (Snf )(0) for n ∈ N and Tf := f (0) for f ∈ C (T). Note that
instead of 0 we can choose any fixed x0 ∈ T.
By Snp = p for each p ∈ D and sufficiently large n, in particular we have
limn→∞ Snp(0) = p(0). But the norms ∥Tn∥C(T)→C are not uniformly bounded with
respect to n, because ∥Tn∥C(T)→C = ∥Dn∥L1(T) are not uniformly bounded by (14).
Thus by the Banach–Steinhaus Theorem 22 there exists a function f ∈ C (T) whose
Fourier series does not converge in the point 0.
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Finally we determine the norm ∥Tn∥C(T)→C. From

|Tnf | = |Snf (0)| = |(Dn ∗ f )(0)|

= | 1
2π

∫ π

−π
Dn(x) f (x) dx |

≤ ∥f ∥C(T)∥Dn∥L1(T)

for arbitrary f ∈ C (T) it follows ∥Tn∥C(T)→C ≤ ∥Dn∥L1(T). To verify the opposite
direction consider for an arbitrary ε > 0 the function

fε :=
Dn

|Dn|+ ε
∈ C (T),

which has C (T) norm smaller than 1.
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Then

|Tnfε| = (Dn ∗ fε)(0) =
1

2π

∫ π

−π

|Dn(x)|2
|Dn(x)|+ ε

dx

≥ 1

2π

∫ π

−π

|Dn(x)|2 − ε2

|Dn(x)|+ ε
dx

≥
( 1

2π

∫ π

−π
|Dn(x)| dx − ε

)
∥fε∥C(T)

implies ∥Tn∥C(T)→C ≥ ∥Dn∥L1(T) − ε. For ε→ 0 we obtain the assertion.
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In the following we will see that for frequently appearing classes of functions stronger
convergence results can be proved. A function f : T → C is called piecewise
continuously differentiable, if there exist finitely many points
0 ≤ x0 < x1 < . . . < xn−1 < 2π such that f is continuously differentiable on each
subinterval (xj , xj+1), j = 0, . . . , n − 1 with xn = x0 + 2π, and the left and right limits
f (xj ± 0), f ′(xj ± 0) for j = 0, . . . , n exist and are finite. In the case
f (xj − 0) ̸= f (xj + 0), the piecewise continuously differentiable function f : T → C has
a jump discontinuity at xj with jump height |f (xj +0)− f (xj − 0)|. Simple examples of
piecewise continuously differentiable functions f : T → C are the the sawtooth
function and the rectangular pulse function (see Examples 9 and 10). This definition is
illustrated in Figure 8.
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Figure 8: A piecewise continuously differentiable function (left) and a function that is not
piecewise continuously differentiable (right).
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The next convergence statements will use the following result of Riemann–Lebesgue.

Lemma 24 (Lemma of Riemann–Lebesgue)

Let f ∈ L1
(
(a, b)

)
with −∞ ≤ a < b ≤ ∞ be given. Then the following relations hold

lim
|v |→∞

∫ b

a
f (x) e−ixv dx = 0 ,

lim
|v |→∞

∫ b

a
f (x) sin(xv) dx = 0 , lim

|v |→∞

∫ b

a
f (x) cos(xv)dx = 0 .

Especially, for f ∈ L1(T) we have

lim
|k|→∞

ck(f ) =
1

2π
lim

|k|→∞

∫ π

−π
f (x) e−ixk dx = 0 .
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Proof: We prove only

lim
|v |→∞

∫ b

a
f (x) p(vx) dx = 0 (20)

for p(t) = e−it . The other cases p(t) = sin t and p(t) = cos t can be shown
analogously.
For the characteristic function χ[α,β] of a finite interval [α, β] ⊆ [a, b] it follows for
v ̸= 0 that

∣∣ ∫ b

a
χ[α,β](x) e

−ixv dx
∣∣ = ∣∣− 1

iv
(e−ivβ − e−ivα)

∣∣ ≤ 2

|v | .

This becomes arbitrarily small as |v | → ∞ so that characteristic functions and also all
linear combinations of characteristic functions (i.e. step functions) fulfill the assertion.
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The set of all step functions is dense in L1([a, b]), i.e. for any ε > 0 and f ∈ L1([a, b])
there exists a step function φ such that

∥f − φ∥L1([a,b]) =
∫ b

a
|f (x)− φ(x)| dx < ε.

By

∣∣ ∫ b

a
f (x) e−ixv dx

∣∣ ≤ ∣∣ ∫ b

a
(f (x)− φ(x)) e−ixv dx

∣∣+ ∣∣ ∫ b

a
φ(x) e−ixv dx

∣∣
≤ ε+

∣∣ ∫ b

a
φ(x) e−ixv dx

∣∣
we obtain the assertion.
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Next we formulate a localization principle, which states that the convergence behavior
of a Fourier series of a function f ∈ L1(T) at a point x0 depends merely on the values
of f in some arbitrarily small neighborhood – despite the fact that the Fourier
coefficients are determined by all function values on T.

Theorem 25 (Riemann’s Localization Principle)

Let f ∈ L1(T) and x0 ∈ R be given. Then we have

lim
n→∞

Snf (x0) = c

for some c ∈ R if and only if for some δ ∈ (0, π]

lim
n→∞

∫ δ

0

(
f (x0 − t) + f (x0 + t)− 2 c

)
Dn(t) dt = 0 .
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Proof: Since Dn ∈ C (T) is even, we get

Snf (x0) =
1

2π

(∫ 0

−π
+

∫ π

0

)
f (x0 − t)Dn(t) dt

=
1

2π

∫ π

0

(
f (x0 − t) + f (x0 + t)

)
Dn(t)dt .

Using π =
∫ π
0 Dn(t) dt , we conclude further

Snf (x0)− c =
1

2π

∫ π

0

(
f (x0 − t) + f (x0 + t)− 2 c

)
Dn(t) dt.

By Example 14, we have Dn(t) = sin
(
(n + 1

2)t
)
/ sin t

2 for t ∈ (0, π]. By the
Lemma 24 of Riemann–Lebesgue we obtain

lim
n→∞

∫ π

δ

f (x0 − t) + f (x0 + t)− 2 c

sin t
2

sin
(
(n +

1

2
)t
)
dt = 0

and hence

lim
n→∞

Snf (x0)− c = lim
n→∞

1

2π

∫ δ

0

(
f (x0 − t) + f (x0 + t)− 2 c

)
Dn(t)dt ,
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For a complete proof of the main result on the convergence of Fourier series, we need
some additional preliminaries. Here we follow mainly the ideas of [11, p. 137 and
pp. 144-148].
Let a compact interval [a, b] ⊂ R with −∞ < a < b <∞ be given. Then a function
φ : [a, b] → C is called a function of bounded variation, if

V b
a (φ) := sup

n∑
j=1

|φ(xj)− φ(xj−1)| <∞ ,

where the supremum is taken over all partitions a = x0 < x1 < . . . < xn = b of [a, b].
The nonnegative number V b

a (φ) is the total variation of φ on [a, b]. We set
V a
a (φ) := 0. For instance, each monotone function φ : [a, b] → R is a function of

bounded variation with V b
a (φ) = |φ(b)− φ(a)|. Because

|φ(x)| ≤ |φ(a)|+ |φ(x)− φ(a)| ≤ |φ(a)|+ V x
a (φ) ≤ |φ(a)|+ V b

a (φ) <∞

for all x ∈ [a, b], each function of bounded variation is bounded on [a, b].
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Lemma 26

Let φ : [a, b] → C and ψ : [a, b] → C be functions of bounded variation. Then for
arbitrary α ∈ C and c ∈ [a, b] it holds

V b
a (αφ) = |α|V b

a (φ) ,

V b
a (φ+ ψ) ≤ V b

a (φ) + V b
a (ψ) ,

V b
a (φ) = V c

a (φ) + V b
c (φ) , (21)

max{V b
a (Reφ), V

b
a (Imφ)} ≤ V b

a (φ) ≤ V b
a (Reφ) + V b

a (Imφ) . (22)

The simple proof is omitted here. For details see e.g. [18, pp. 159–162].
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Theorem 27 (Jordan Decomposition Theorem)

Let φ : [a, b] → C be a given function of bounded variation. Then there exist four
nondecreasing functions φj : [a, b] → R, j = 1, . . . , 4, such that φ possesses the
Jordan decomposition

φ = (φ1 − φ2) + i (φ3 − φ4) ,

where Reφ = φ1 − φ2 and Imφ = φ3 − φ4 are functions of bounded variation. If φ is
continuous, then φj , j = 1, . . . , 4, are continuous too.
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Proof: From (22) it follows that Reφ and Imφ are functions of bounded variation. We
decompose Reφ. Obviously,

φ1(x) := V x
a (Reφ) , x ∈ [a, b] ,

is nondecreasing by (21). Then

φ2(x) := φ1 − Reφ(x) , x ∈ [a, b] ,

is nondecreasing too, since for a ≤ x < y ≤ b it holds∣∣Reφ(y)− Reφ(x)
∣∣ ≤ V y

x (Reφ) = φ1(y)− φ1(x)

and hence

φ2(y)− φ2(x) =
(
φ1(y)− φ1(x)

)
−
(
Reφ(y)− Reφ(x)

)
≥ 0 .

Thus we obtain Reφ = φ1 − φ2. Analogously, we can decompose Imφ = φ3 − φ4.
Using φ = Reφ+ i Imφ, we receive the above Jordan decomposition of φ. If φ is
continuous at x ∈ [a, b], then, by definition, each φj is continuous at x .
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A 2π-periodic function f : T → C with V 2π
0 (f ) <∞ is called a 2π-periodic function of

bounded variation. By (21) a 2π-periodic function of bounded variation has the
property V b

a (f ) <∞ for each compact interval [a, b] ⊂ R.

Example 28

Let f : T → C be a piecewise continuously differentiable function with jump
discontinuities at distinct points xj ∈ (0, 2π), j = 1, . . . , n − 1. Assume that it holds
f (x) = 1

2

(
f (x + 0) + f (x − 0)

)
for all x ∈ [0, 2π). Then f is a 2π-periodic function of

bounded variation, since

V 2π
0 (f ) =

∣∣f (0 + 0)− f (0− 0)
∣∣+ n−1∑

j=1

|f (xj + 0)− f (xj − 0)|

+

∫ 2π

0
|f ′(t)| dt <∞ .

The functions given in Examples 5, 8, 9, and 10 are 2π-periodic functions of bounded
variation.
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Lemma 29

There exists a constant c0 > 0 such that for all α, β ∈ [0, π] and all n ∈ N it holds

∣∣ ∫ β

α
Dn(t)dt

∣∣ ≤ c0 . (23)

Proof: We introduce the function h ∈ C [0, π] by

h(t) :=
1

sin t
2

− 2

t
, t ∈ (0, π] ,

and h(0) := 0. This continuous function h is increasing, i.e., we have
0 ≤ h(t) ≤ h(π) < 1

2 for all t ∈ [0, π]. Using (13), for arbitrary α, β ∈ [0, π] we
estimate∣∣ ∫ β

α
Dn(t) dt

∣∣ ≤
∣∣ ∫ β

α
h(t) sin

(
n +

1

2

)
t dt

∣∣+ 2
∣∣ ∫ β

α

sin
(
n + 1

2

)
t

t
dt
∣∣

≤ π

2
+ 2

∣∣ ∫ β

α

sin
(
n + 1

2

)
t

t
dt
∣∣ .
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By the sine integral

Si(x) :=

∫ x

0

sin t

t
dt , x ∈ R ,

it holds for all γ ≥ 0 (see Lemma 37)

∣∣ ∫ γ

0

sin x

x
dx
∣∣ ≤ Si(π) < 2 .

From ∫ β

α

sin
(
n + 1

2

)
t

t
dt =

∫ (n+ 1
2
)β

0

sin x

x
dx −

∫ (n+ 1
2
)α

0

sin x

x
dx

it follows that ∣∣ ∫ β

α

sin
(
n + 1

2

)
t

t
dt
∣∣ ≤ 4 ,

i.e., (23) is fulfilled for the constant c0 =
π
2 + 8.
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Lemma 30

Assume that 0 < a < b < 2π, δ > 0 and b − a+ 2δ < 2π be given. Let
φ : [a− δ − π, b + δ + π] → R be nondecreasing, piecewise continuous function which
is continuous on [a− δ, b + δ].
Then for each ε > 0 there exists an index n0(ε) such that for all n > n0(ε) and all
x ∈ [a, b] ∣∣ ∫ π

0

(
φ(x + t) + φ(x − t)− 2φ(x)

)
Dn(t) dt

∣∣ < ε .
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Proof: 1. For (x , t) ∈ [a− δ, b + δ]× [0, π] we introduce the functions

g(x , t) := φ(x + t) + φ(x − t)− 2φ(x) ,

h1(x , t) := φ(x + t)− φ(x) ≥ 0 ,

h2(x , t) := φ(x)− φ(x − t) ≥ 0

such that g = h1 − h2. For fixed x ∈ [a, b], both functions hj(x , ·), j = 1, 2, are
nondecreasing on [0, π]. Since hj(·, π), j = 1, 2, are piecewise continuous on [a, b],
there exists a constant c1 > 0 such that for all (x , t) ∈ [a, b]× [0, π]∣∣hj(x , t)∣∣ ≤ c1 . (24)

Since φ is continuous on the compact interval [a− δ, b + δ], the function φ is
uniformly continuous on [a− δ, b + δ], i.e., for each ε > 0 there exists β ∈ (0, δ) such
that for all y , z ∈ [a− δ, b + δ] with |y − z | ≤ β we have∣∣φ(y)− φ(z)

∣∣ < ε

4 c0
.
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By the proof of Lemma 29 we can choose c0 =
π
2 + 8. Hence we obtain for all

(x , t) ∈ [a, b]× [0, β] and j = 1, 2

0 ≤ hj(x , t) <
ε

4 c0
. (25)

2. Now we split the integral∫ π

0
g(x , t)Dn(t)dt =

∫ β

0
g(x , t)Dn(t) dt +

∫ π

β
g(x , t)Dn(t)dt (26)

into a sum of two integrals, where the first integral can be written in the form∫ β

0
g(x , t)Dn(t) dt =

∫ β

0
h1(x , t)Dn(t)dt −

∫ β

0
h2(x , t)Dn(t)dt . (27)
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Observing that hj(x , ·), j = 1, 2, are nondecreasing for fixed x ∈ [a, b], we obtain by
the second mean value theorem for integrals, see e.g. [18, pp. 328–329], that for
certain αj(x) ∈ [0, β]∫ β

0
hj(x , t)Dn(t)dt = hj(x , 0)

∫ αj (x)

0
Dn(t) dt

+ hj(x , β)

∫ β

αj (x)
Dn(t)dt

= 0 + hj(x , β)

∫ β

αj (x)
Dn(t) dt , j = 1, 2 .

By (23) and (25) this integral can be estimated for all x ∈ [a, b] by∣∣ ∫ β

0
hj(x , t)Dn(t)dt

∣∣ ≤ ε

4 c0
c0 =

ε

4

such that by (27) for all x ∈ [a, b]∣∣ ∫ β

0
g(x , t)Dn(t) dt

∣∣ ≤ ε

4
+
ε

4
=
ε

2
. (28)

87 / 373



3. Next we consider the second integral in (26) which can be written as∫ π

β
g(x , t)Dn(t)dt =

∫ π

β
h1(x , t)Dn(t) dt −

∫ π

β
h2(x , t)Dn(t) dt. (29)

Since hj(x , ·), j = 1, 2, are nondecreasing for fixed x ∈ [a, b], the second mean value
theorem for integrals provides the existence of certain γj(x) ∈ [β, π] such that∫ π

β
hj(x , t)Dn(t)dt = hj(x , β)

∫ γj (x)

β
Dn(t)dt + hj(x , π)

∫ π

γj (x)
Dn(t)dt. (30)

From (13) it follows∫ γj (x)

β
Dn(t) dt =

∫ γj (x)

β

1

sin t
2

sin
(
n +

1

2

)
t dt .
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Since
(
sin t

2

)−1
is monotone on [β, γj(x)], again by the second mean value theorem

for integrals there exist ηj(x) ∈ [β, γj(x)] with∫ γj (x)

β
Dn(t) dt =

1

sin β
2

∫ ηj (x)

β
sin
(
n +

1

2

)
t dt

+
1

sin
γj (x)
2

∫ γj (x)

ηj (x)
sin
(
n +

1

2

)
t dt . (31)

Now we estimate both integral in (31) such that∣∣ ∫ ηj (x)

β
sin
(
n +

1

2

)
t dt

∣∣ ≤ 4

2n + 1
,

∣∣ ∫ γj (x)

ηj (x)
sin
(
n +

1

2

)
t dt

∣∣ ≤ 4

2n + 1
.

Applying the above inequalities, we see by (31) for all x ∈ [a, b] and j = 1, 2 that∣∣ ∫ γj (x)

β
Dn(t)dt

∣∣ ≤ 8

(2n + 1) sin β
2

. (32)
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Analogously, one can show for all x ∈ [a, b] and j = 1, 2 that∣∣ ∫ π

γj (x)
Dn(t) dt

∣∣ ≤ 8

(2n + 1) sin β
2

. (33)

Using (24) and (30), the inequalities (32) and (33) yield for all x ∈ [a, b] and j = 1, 2,∣∣ ∫ π

β
hj(x , t)Dn(t)dt

∣∣ ≤ 16 c1

(2n + 1) sin β
2

and hence by (29) ∣∣ ∫ π

β
g(x , t)Dn(t) dt

∣∣ ≤ 32 c1

(2n + 1) sin β
2

.

Therefore for the chosen ε > 0 there exists an index n0(ε) ∈ N such that for all
n > n0(ε) and all x ∈ [a, b], ∣∣ ∫ π

β
g(x , t)Dn(t) dt

∣∣ < ε

2
. (34)
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Together with (26), (28), and (34) it follows for all n > n0(ε) and all x ∈ [a, b] that

∣∣ ∫ π

0
g(x , t)Dn(t) dt

∣∣ < ε .

This completes the proof.
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Based on Riemann’s Localization Principle and these preliminaries, we can prove the
following important theorem concerning pointwise convergence of the Fourier series of
a piecewise continuously differentiable function f .

Theorem 31 (Convergence Theorem of Dirichlet–Jordan)

Let f : T → C be a piecewise continuously differentiable function. Then at every point
x0 ∈ R, the Fourier series of f converges as

lim
n→∞

Snf (x0) =
1

2

(
f (x0 + 0) + f (x0 − 0)

)
.

In particular, if f is continuous at x0, then

lim
n→∞

Snf (x0) = f (x0).

Further the Fourier series of f converges uniformly on any closed interval
[a, b] ⊂ (0, 2π), if f is continuous on [a− δ, b + δ] with certain δ > 0. Especially, if
f ∈ C (T) is piecewise continuously differentiable, then the Fourier series of f
converges uniformly to f on R.
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Proof: 1. By assumption there exists δ ∈ (0, π), such that f is continuously
differentiable in [x0 − δ, x0 + δ]\{x0}. Let

M := max
t∈[−π, π]

{|f ′(t + 0)|, |f ′(t − 0)|} .

By the mean value theorem we conclude

|f (x0 + t)− f (x0 + 0)| ≤ t M , |f (x0 − t)− f (x0 − 0)| ≤ t M

for all t ∈ (0, δ]. This implies∫ δ

0

|f (x0 − t) + f (x0 + t)− f (x0 + 0)− f (x0 − 0)|
t

dt ≤ 2Mδ <∞ .

By t
π ≤ sin t

2 for t ∈ [0, π] the function

h(t) :=
f (x0 − t) + f (x0 + t)− f (x0 + 0)− f (x0 − 0)

t

t

sin t
2

, t ∈ (0, δ],

is absolutely integrable on [0, δ]. By Lemma 24 of Riemann–Lebesgue we get

lim
n→∞

∫ δ

0
h(t) sin((n +

1

2
)t)dt = 0 .
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Using Riemann’s Localization Principle, Theorem 25, we obtain the assertion with
2 c = f (x0 + 0) + f (x0 − 0).
2. By assumption and Example 28, the given function f is a 2π-periodic function of
bounded variation. Then it follows that V b+δ+π

a−δ−π (f ) <∞. By the Jordan
Decomposition Theorem 27 the function f restricted on [a− δ − π, b + δ + π] can be
represented in the form

f = (φ1 − φ2) + i (φ3 − φ4) ,

where φj : [a− δ − π, b + δ + π] → R, j = 1, . . . , 4, are nondecreasing and piecewise
continuous. Since f is continuous on [a, b], each φj , j = 1, . . . , 4, is continuous on
[a, b] too. Applying Lemma 30, we obtain that for each ε > 0 there exists an index
N(ε) ∈ N such that for n > N(ε) and all x ∈ [a, b],

|Snf (x)− f (x)| = 1

2π

∣∣ ∫ π

0

(
f (x + t) + f (x − t)− 2 f (x)

)
Dn(t)dt

∣∣ < ε .

This completes the proof.
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Example 32

The functions f : T → C given in Examples 5, 8, 9, and 10 are piecewise continuously
differentiable. If x0 ∈ R is a jump discontinuity of f , then the value f (x0) is equal to
the mean 1

2

(
f (x0 + 0) + f (x0 − 0)

)
of right and left limits. By the Convergence

Theorem 31 of Dirichlet–Jordan, the Fourier series of f converges to f in each point of
R. On each closed interval, which does not contain any discontinuity of f , the Fourier
series converges uniformly. Since the piecewise continuously differentiable function of
Example 8 is contained in C (T), its Fourier series converges uniformly on R.

Remark 33

The Convergence Theorem 31 of Dirichlet–Jordan is also valid for each 2π-periodic
function f : T → C of bounded variation (see e.g. [18, pp. 546–547]).
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A useful criterion for uniform convergence of the Fourier series of a function f ∈ C (T)
is given in the following theorem.

Theorem 34

If f ∈ C (T) fulfills the condition ∑
k∈Z

|ck(f )| <∞ , (35)

then the Fourier series of f converges uniformly to f . Each function f ∈ C 1(T) has the
property (35).
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Proof: By the assumption (35) and

|ck(f ) eik·| = |ck(f )| ,

the assertion follows from the Weierstrass criterion of uniform convergence.
Assume that f ∈ C 1(T). By the Convergence Theorem 31 of Dirichlet–Jordan we
know already that the Fourier series of f converges uniformly to f . This could be also
seen as follows: By the differentiation property of the Fourier coefficients in Lemma 6,
we have ck(f ) = (ik)−1 ck(f

′) for all k ̸= 0 and c0(f
′) = 0. By Parseval’s identity of

f ′ ∈ L2(T) it follows
∥f ′∥2 =

∑
k∈Z

|ck(f ′)|2 <∞ .
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Using Cauchy–Schwarz inequality, we get finally∑
k∈Z

|ck(f )| = |c0(f )|+
∑
k ̸=0

1

k
|ck(f ′)|

≤ |c0(f )|+
(∑

k ̸=0

1

k2

)1/2 (∑
k ̸=0

|ck(f ′)|2
)1/2

<∞.

This completes the proof.
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Remark 35

If f ∈ C 1(T), then by the mean value theorem it follows that

|f (x + h)− f (x)| ≤ |h| max
t∈T

|f ′(t)|

for all x , x + h ∈ T, that means f is Lipschitz continuous on T. More generally, a
function f ∈ C (T) is called Hölder continuous of order α ∈ (0, 1] on T, if

|f (x + h)− f (x)| ≤ c |h|α

for all x , x + h ∈ T with certain constant c ≥ 0 which depends on f . One can show
that the Fourier series of a function f ∈ C (T) which is Hölder continuous of order
α ∈ (0, 1] converges uniformly to f and it holds

∥Snf − f ∥C(T) = O(n−α ln n) , n → ∞

(see [22, Vol. I, p. 64]).
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In practice, the following convergence result of Fourier series for a sufficiently smooth,
2π–periodic function is very useful.

Theorem 36 (Theorem of Bernstein)

Let f ∈ C r (T) with fixed r ∈ N be given. Then the Fourier coefficients ck(f ) have the
form

ck(f ) =
1

(ik)r
ck(f

(r)) , k ∈ Z \ {0} . (36)

Further the approximation error f − Snf can be estimated for all n ∈ N \ {1} by

∥f − Snf ∥∞ ≤ c ∥f (r)∥∞
ln n

nr
, (37)

where the constant c > 0 is independent of f and n.
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Proof: 1. Repeated integration by parts provides (36). By Lemma 24 of
Riemann–Lebesgue we known

lim
|k|→∞

ck(f
(r)) = 0

such that
lim

|k|→∞
k r ck(f ) = 0 .

2. The nth partial sum of the Fourier series of f (r) ∈ C (T) can be written in the form

(
Snf

(r)
)
(x) =

1

π

∫ π

0

(
f (r)(x + y) + f (r)(x − y)

) sin(n + 1
2)y

2 sin y
2

dy .
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Then we estimate∣∣(Snf (r))(x)∣∣ ≤ 2

π
∥f (r)∥∞

∫ π

0

| sin(n + 1
2)y |

2 sin y
2

dy

< ∥f (r)∥∞
∫ π

0

| sin(n + 1
2)y |

y
dy

= ∥f (r)∥∞
∫ (n+ 1

2
)π

0

| sin u|
u

du

< ∥f (r)∥∞
(
1 +

∫ (n+ 1
2
)π

1

1

u
du
)

= ∥f (r)∥∞
(
1 + ln

(
n +

1

2

)
π
)
.

For a convenient constant c > 0, we obtain for all n ∈ N \ {1} that

∥Snf (r)∥∞ ≤ c ∥f (r)∥∞ ln n . (38)
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By Theorem 34 the Fourier series of f converges uniformly to f such that by (36)

f − Snf =
∞∑

k=n+1

(
ck(f ) e

ik· + c−k(f ) e
−ik·)

=
∞∑

k=n+1

1

(ik)r
(
ck(f

(r))eik· + (−1)rc−k(f
(r)) e−ik·). (39)

3. For even smoothness r = 2s, s ∈ N, we obtain by (39) that

f − Snf = (−1)s
∞∑

k=n+1

1

k r
(
ck(f

(r)) eik· + c−k(f
(r)) e−ik·)

= (−1)s
∞∑

k=n+1

1

k r
(
Sk f

(r) − Sk−1f
(r)
)
.
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Obviously, for N > n it holds the identity

N∑
k=n+1

ak (bk − bk−1) = aN bN − an+1 bn +
N−1∑

k=n+1

(ak − ak+1) bk (40)

for arbitrary complex numbers ak and bk . We apply (40) to ak = k−r and bk = Sk f
(r).

Then for N → ∞ we receive

f − Snf = (−1)s+1 1

(n + 1)r
Snf

(r) + (−1)s
∞∑

k=n+1

( 1
k r

− 1

(k + 1)r
)
Sk f

(r) , (41)

since by (38)

1

N r
∥SN f (r)∥∞ ≤ c ∥f (r)∥∞

lnN

N r
→ 0 as N → ∞ .

Thus we can estimate the approximation error (41) by

∥f − Snf ∥∞ ≤ c ∥f (r)∥∞
( ln n

(n + 1)r
+

∞∑
k=n+1

( 1
k r

− 1

(k + 1)r
)
ln k
)
.
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Using the identity (40) for ak = ln k and bk = −(k + 1)−r , we see that

∞∑
k=n+1

( 1
k r

− 1

(k + 1)r
)
ln k =

ln(n + 1)

(n + 1)r
+

∞∑
k=n+1

1

(k + 1)r
ln
(
1 +

1

k

)
,

since (N + 1)−k lnN → 0 as N → ∞. From ln(1 + 1
k ) <

1
k it follows that

∞∑
k=n+1

1

(k + 1)r
ln
(
1 +

1

k

)
<

∞∑
k=n+1

1

k (k + 1)r
<

∞∑
k=n+1

1

k r+1

<

∫ ∞

n

1

x r+1
dx =

1

r nr
.

Hence for convenient constant c1 > 0 we have

∥f − Snf ∥∞ ≤ c1 ∥f (r)∥∞
1

nr
(1 + ln n) .

This inequality implies (37) for even r .
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4. The case of odd smoothness r = 2s + 1, s ∈ N0, can be handled similarly as the
case of even r . By (39) we obtain

f − Snf = (−1)s i
∞∑

k=n+1

1

k r
(
c−k(f

(r)) e−ik· − ck(f
(r)) eik·

)
= (−1)s

∞∑
k=n+1

1

k r
(
S̃k f

(r) − S̃k−1f
(r)
)

(42)

with the nth partial sum of the conjugate Fourier series of f (r)

S̃nf
(r) := i

n∑
j=1

(
c−j(f

(r)) e−ij · − cj(f
(r)) eij ·

)
.
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From

i
(
c−j(f

(r)) e−ijx − cj(f
(r)) eijx

)
= − 1

π

∫ π

−π
f (r)(y) sin j(y − x)dy

= − 1

π

∫ π

−π
f (r)(x + y) sin(jy)dy

= − 1

π

∫ π

0

(
f (r)(x + y)− f (r)(x − y)

)
sin(jy)dy

and
n∑

j=1

sin(jy) =
cos y

2 − cos(n + 1
2)y

2 sin y
2

, y ∈ R \ 2π Z ,

it follows that

(S̃nf
(r))(x) = − 1

π

∫ π

0

(
f (r)(x + y)− f (r)(x − y)

) cos y
2 − cos(n + 1

2)y

2 sin y
2

dy
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and hence

|(S̃nf (r))(x)| ≤ 2

π
∥f (r)∥∞

∫ π

0

| cos y
2 − cos(n + 1

2)y |
2 sin y

2

dy

=
4

π
∥f (r)∥∞

∫ π

0

| sin ny
2 sin (n+1)y

2 |
2 sin y

2

dy

<
4

π
∥f (r)∥∞

∫ π

0

| sin (n+1)y
2 |

2 sin y
2

dy .

Similarly as in step 2, we obtain for any n ∈ N \ {1}

∥S̃nf (r)∥∞ ≤ c ∥f (r)∥∞ ln n

with some constant c > 0.
Now we apply the identity (40) to ak = k−r and bk = S̃k f

(r).
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For N → ∞ it follows from (42) that

f − Snf = (−1)s+1 1

(n + 1)r
S̃nf

(r) + (−1)s
∞∑

k=n+1

( 1
k r

− 1

(k + 1)r
)
S̃k f

(r) .

Thus we obtain the estimate

∥f − Snf ∥∞ ≤ c ∥f (r)∥∞
( ln n

(n + 1)r
+

∞∑
k=n+1

( 1
k r

− 1

(k + 1)r
)
ln k
)
.

We proceed as in step 3 and show the estimate (37) for odd r .

Roughly speaking we can say by Theorem 36 of Bernstein:
The smoother a function f : T → C is, the faster its Fourier coefficients ck(f ) tend to
zero as |k | → ∞ and the faster its Fourier series converges uniformly to f .
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Gibbs phenomenon

Let f : T → C be a piecewise continuously differentiable function with a jump
discontinuity at x0 ∈ R. Then Theorem 31 of Dirichlet–Jordan implies

lim
n→∞

(Snf )(x0) =
f (x0 − 0) + f (x0 + 0)

2
.

Clearly, the Fourier series of f cannot converge uniformly in any small neighborhood of
x0, because the uniform limit of the continuous functions Snf would be continuous.
The Gibbs phenomenon describes the bad convergence behavior of the Fourier sums
Snf in a small neighborhood of x0. If n → ∞, then Snf overshoot and undershoot f
near the jump discontinuity at x0, see the right Figure 3.
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First we analyze the convergence of the Fourier partial sums Sns of the sawtooth
function s from Example 9 which is piecewise linear with s(0) = 0 and therefore
piecewise continuously differentiable. The nth Fourier partial sum Sns reads as

(Sns)(x) =
n∑

k=1

1

πk
sin(kx).

By the Theorem 31 of Dirichlet–Jordan, (Sns)(x) converges to s(x) as n → ∞ at each
point x ∈ R \ {2kπ : k ∈ Z} such that

s(x) =
∞∑
k=1

1

πk
sin(kx) .
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Now we compute Sns in a neighborhood of the jump discontinuity at x0 = 0. By
Example 14 we have

1

2
+

n∑
k=1

cos(kx) =
1

2
Dn(t) , t ∈ R ,

and hence by integration

x

2π
+ (Sns)(x) =

1

2π

∫ x

0
Dn(t) dt =

1

π

∫ x/2

0

sin((2n + 1)t)

t
dt

+
1

π

∫ x/2

0
h(t) sin((2n + 1)t) dt , (43)

where the function

h(t) :=

{
(sin t)−1 − t−1 t ∈ [−π, π]\{0},
0 t = 0

is continuously differentiable in (−π, π).
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Integration by parts yields

1

π

∫ x/2

0
h(t) sin((2n + 1)t)dt = O(n−1) , n → ∞ .

Using the sine integral

Si(y) :=

∫ y

0

sin t

t
dt , y ∈ R ,

we obtain

(Sns)(x) =
1

π
Si
(
(n +

1

2
)x
)
− x

2π
+O(n−1) , n → ∞ . (44)
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Lemma 37

The sine integral has the property

lim
y→∞

Si(y) =

∫ ∞

0

sin t

t
dt =

π

2
.

Further Si(π) is the maximum value of the sine integral.

Proof: Introducing

ak :=

∫ (k+1)π

kπ

sin t

t
dt , k ∈ N0 ,

we see that sgn ak = (−1)k , |ak | > |ak+1| and limk→∞|ak | = 0. By the Leibniz
criterion for alternating series we obtain that∫ ∞

0

sin t

t
dt =

∞∑
k=0

ak <∞ ,

i.e., limy→∞ Si(y) exists.
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From equation (43) with x = π it follows that

π

2
=

∫ π/2

0

sin((2n + 1)t)

t
dt +

∫ π/2

0
h(t) sin((2n + 1)t)dt .

By the Lemma 24 of Riemann–Lebesgue we conclude for k → ∞ that

π

2
= lim

k→∞

∫ π/2

0

sin((2k + 1)t)

t
dt = lim

k→∞

∫ (k+ 1
2
)π

0

sin x

x
dx .

Consequently,
∞∑
k=0

ak =
π

2
, Si(nπ) =

n−1∑
k=0

ak , n ∈ N .

The function Si defined on [0, ∞) is continuous, bounded and non-negative. Further
Si increases monotonously on [2kπ, (2k + 1)π] and decreases monotonously on
[(2k + 1)π, (2k + 2)π] for all k ∈ N0. Thus we have

max{Si(y) : y ∈ [0, ∞)} = Si(π) ≈ 1.8519 .
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For x = 2π
2n+1 , we obtain by (44) and Lemma 37 that

(Sns)
( 2π

2n + 1

)
=

1

π
Si(π)− 1

2n + 1
+O(n−1) , n → ∞ ,

where 1
π Si(π) is the maximum value of 1

π Si
(
(n + 1

2)x) for all x > 0.
Ignoring the term − 1

2n+1 +O(n−1) for large n, we conclude that

lim
n→∞

(Sns)
( 2π

2n + 1

)
=

1

π
Si(π)

= s(0 + 0) +
( 1
π
Si(π)− 1

2

)(
s(0 + 0)− s(0− 0)

)
,

where 1
π Si(π)− 1

2 ≈ 0.08949. Since the sawtooth function s : T → C is odd, we
obtain that

lim
n→∞

(Sns)
(
− 2π

2n + 1

)
= − 1

π
Si(π)

= s(0− 0)−
( 1
π
Si(π)− 1

2

) (
s(0 + 0)− s(0− 0)

)
.
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Thus for large n, we observe an overshooting and undershooting of Sns at both sides
of the jump discontinuity of approximately 9% of the jump height s(0 + 0)− s(0− 0).
This behavior does not change with growing n und is typical for the convergence of
Sns near a jump discontinuity. Figure 9 illustrates this behavior.

−2π −π π 2π

−0.5

0.5

x

y

−2π −π π 2π

−0.5

0.5

x

y

Figure 9: Gibbs phenomenon for the Fourier partial sums S8s (blue, left) and S16s
(blue,right), where s is the 2π-periodic sawtooth function (red).
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A general description of the Gibbs phenomenon is given by the following

Theorem 38 (Gibbs phenomenon)

Let f : T → C be a piecewise continuously differentiable function with a jump
discontinuity at x0 ∈ R. Assume that f (x0) =

1
2

(
f (x0 − 0) + f (x0 + 0)

)
. Then it holds

lim
n→∞

(Snf )(x0 +
2π

2n + 1
)

= f (x0 + 0) + (
1

π
Si(π)− 1

2
) (f (x0 + 0)− f (x0 − 0))

lim
n→∞

(Snf )(x0 −
2π

2n + 1
)

= f (x0 − 0)− (
1

π
Si(π)− 1

2
) (f (x0 + 0)− f (x0 − 0)) .
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Proof: Let s : T → C denote the sawtooth function of Example 9. We consider the
function

g := f − (f (x0 + 0)− f (x0 − 0)
)
s(· − x0) .

Then g : T → C is also piecewise continuously differentiable and continuous in an
interval [x0 − δ, x0 + δ] with δ > 0. Further we have
g(x0) = f (x0) =

1
2 (f (x0 − 0) + f (x0 + 0). By the Theorem 31 of Dirichlet–Jordan, the

Fourier series of g converges uniformly to g in [x0 − δ, x0 + δ]. By

(Snf )(x) = (Sng)(x) +
(
f (x0 + 0)− f (x0 − 0)

) n∑
k=1

1

πk
sin(k(x − x0))

it follows for x = x0 ± 2π
2n+1 and n → ∞ that

lim
n→∞

(Snf )(x0 +
2π

2n + 1
) = g(x0) +

1

π
Si(π) (f (x0 + 0)− f (x0 − 0))

lim
n→∞

(Snf )(x0 −
2π

2n + 1
) = g(x0)−

1

π
Si(π) (f (x0 + 0)− f (x0 − 0)) .

This completes the proof.
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For large n, the Fourier partial sum Snf of a piecewise continuously differentiable
function f : T → C exhibits the overshoot and undershoot at each point of
discontinuity. If f is continuous at x0, then Snf converges uniformly to f as n → ∞ in
a certain neighborhood of x0 and the Gibbs phenomenon is absent.
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Remark 39

Assume that f : T → C is a piecewise continuously differentiable function. By the
Gibbs phenomenon, the truncation of Fourier series to Snf causes ripples in a
neighborhood of each point of jump discontinuity. These ripples can be removed by
the use of properly weighted Fourier coefficients such as by Fejér summation or
Lanczos smoothing.
By the Fejér summation , we take the arithmetic mean σnf of all Fourier partial sums
Sk f , k = 0, . . . , n, i.e.

σnf =
1

n + 1

n∑
k=0

Sk f ∈ Tn .

Then σnf is the nth Fejér sum of f .
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With the Fejér kernel

Fn =
1

n + 1

n∑
k=0

Dk ∈ Tn

of Example 15 and by Sk f = f ∗ Dk , k = 0, . . . , n, we obtain the representation
σnf = f ∗ Fn. Since

Sk f =
k∑

j=−k

cj(f ) e
ij · ,

then it follows that

σnf =
1

n + 1

n∑
k=0

k∑
j=−k

cj(f ) e
ij ·

=
n∑

ℓ=−n

(
1− |ℓ|

n + 1

)
cℓ(f ) e

iℓ· .
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Note that the positive weights

ωℓ := 1− |ℓ|
n + 1

, ℓ = −n, . . . , n

decay linearly from ω0 = 1 to ωn = ω−n = (n + 1)−1 as |ℓ| increases from 0 to n.
In contrast to the Fejér summation, the Lanczos smoothing uses the means of the
function Snf over the intervals [x − π

n , x − π
n ] for each x ∈ T, i.e., we form

(Λnf )(x) :=
n

2π

∫ x+π/n

x−π/n
(Snf )(u) du .
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By

Snf =
n∑

k=−n

ck(f ) e
ik· ,

we obtain the weighted Fourier partial sum

(Λnf )(x) =
n

2π

n∑
k=−n

ck(f )

∫ x+π/n

x−π/n
eiku du

=
n∑

k=−n

(
sinc

kπ

n

)
ck(f ) e

ikx ,

where the non-negative weights ωk := sinc kπ
n , k = −n, . . . , n, decay from ω0 = 1 to

ωn = ω−n = 0 as |ℓ| increases from 0 to n. If we arrange that ωk := 0 for all k ∈ Z
with |k| > n, then we obtain a so-called window sequence which will be considered in
the next section.
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Fourier transform

Let C0(R) denote the Banach space of continuous functions vanishing as |x | → ∞
with norm

∥f ∥C0(R) := max
x∈R

|f (x)|

and let Cc(R) be the subspace of continuous functions with compact support. By
C r (R), r ∈ N, we denote the r -times continuously differentiable functions on R.
Accordingly C r

0 (R) and C r
c (R) are defined.
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For 1 ≤ p ≤ ∞, let Lp(R) denote the Banach space of all (equivalence classes of)
measurable functions f : R → C with finite norm

∥f ∥Lp(R) :=
{ ( ∫

R|f (x)|p dx
)1/p

1 ≤ p <∞ ,

ess sup{|f (x)| : x ∈ R} p = ∞ .

In particular, we are interested in the Hilbert space L2(R) with inner product and norm

⟨f , g⟩L2(R) :=
∫
R

f (x) g(x) dx , ∥f ∥L2(R) :=
( ∫
R

|f (x)|2 dx
)1/2

.

If it is clear from the context which inner product resp. norm is addressed, we
abbreviate ⟨f , g⟩ := ⟨f , g⟩L2(R) and ∥f ∥:= ∥f ∥L2(R).
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Note that in contrast to the periodic setting there is no continuous embedding of the
Lp(R) spaces. We neither have L1(R) ⊆ L2(R) nor L1(R) ⊇ L2(R). For example
f (x) := 1

x 1[1,∞)(x), where 1[1,∞) denotes the characteristic function of the interval

[1,∞), is in L2(R) but not in L1(R). On the other hand, f (x) := 1√
x
1(0,1](x) is in

L1(R) but not in L2(R).

Remark 40

Note that a continuous function in C0(R) is uniformly continuous by the following
reason: For an arbitrary fixed ε > 0 there exists L = L(ε) such that |f (x)| ≤ ε/3 if
|x | ≥ L. If x , y ∈ [−L, L], then there exists δ > 0 such that |f (x)− f (y)| ≤ ε/3
whenever |x − y | ≤ δ. If x , y ∈ R\[−L, L], then
|f (x)− f (y)| ≤ |f (x)|+ |f (y)| ≤ 2ε/3. If x ∈ [−L, L] and y ∈ R\[−L, L], say y > L
with |x − y | ≤ δ, then |f (x)− f (y)| ≤ |f (x)− f (L)|+ |f (L)− f (y)| ≤ ε. In summary
we have that |f (x)− f (y)| ≤ ε whenever |x − y | ≤ δ.
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Fourier transform in L1(R)

The (continuous) Fourier transform f̂ = F f of a function f ∈ L1(R) is defined by

f̂ (ω) = (F f )(ω) :=

∫
R

f (x) e−ixω dx , ω ∈ R . (45)

Since |f (x)e−ixω| = |f (x)| and f ∈ L1(R), the integral (45) is well defined. In practice,
the variable x denotes mostly the time or the space and the variable ω is the frequency.
Therefore the domain of the Fourier transform is called time domain or space domain.
The range of the Fourier transform is called frequency domain. Roughly spoken, the
Fourier transform (45) measures how much oscillations around the frequency ω are
contained f ∈ L1(R). The function f̂ = |f | eiargf is also called spectrum of f with
modulus |f̂ | and phase argf .
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Remark 41

In the literature, the Fourier transform is not consistently defined. For instance, other
frequently applied definitions are

1√
2π

∫
R
f (x) e−iωx dx ,

∫
R
f (x) e−2πiωx dx .
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Example 42

Let L > 0. The rectangle function

f (x) :=


1 x ∈ (−L, L) ,
1
2 x ∈ {−L, L} ,
0 otherwise ,

has the Fourier transform

f̂ (ω) =

L∫
−L

e−iωx dx =
−e−iωL + eiLω

iω
=

2iL sin(ωL)

iLω

=
2L sin(Lω)

Lω
= 2Lsinc(Lω)

with the cardinal sine function or sinc function

sinc(x) =

{
sin x
x x ∈ R \ {0} ,

1 x = 0 .
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Example 42 (continue)

While supp f = [−L, L] is bounded, this is not the case for f̂ . Even worse, f̂ ̸∈ L1(R),
since

nπ∫
0

|sinc(x)|dx =
n∑

k=1

kπ∫
(k−1)π

| sin(x)|
|x | dx

≥
n∑

k=1

1

kπ

kπ∫
(k−1)π

|sin(x)|dx

=
2

π

n∑
k=1

1

k

and the last sum becomes infinitely large as n → ∞. Thus the Fourier transform does
not map L1(R) into itself.
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Figure 10: The sinc function on [−20, 20].
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Example 43

For given L > 0, the hat function

f (x) :=

{
1− |x |

L x ∈ [−L, L] ,

0 otherwise ,

has the Fourier transform

f̂ (ω) = 2

L∫
0

(
1− x

L

)
cos(ωx)dx =

2

Lω

L∫
0

sin(ωx) dx

=
2

Lω2

(
1− cos(Lω)

)
= L

(
sinc

Lω

2

)2
for ω ∈ R \ {0}. In the case ω = 0, we obtain

f̂ (0) = 2

L∫
0

(
1− x

L

)
dx = L .
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Theorem 44 (Properties of the Fourier transform)

Let f ∈ L1(R). Then the following properties holds true:

1 Translation and modulation: For each x0, ω0 ∈ R,(
f (· − x0)

)̂
(ω) = e−ix0ω f̂ (ω),(

e−iω0·f
)̂
(ω) = f̂ (ω0 + ω) .

2 Differentiation and multiplication: For an absolutely continuous function
f ∈ L1(R) with f ′ ∈ L1(R),

(f ′)̂ (ω) = iω f̂ (ω) .

If g(x) := x f (x), x ∈ R, is absolutely integrable, then

ĝ(ω) = i (f̂ )′(ω) .

3 Scaling: For α ̸= 0,

(f (α·)) (̂ω) =
1

|α| f̂
(
α−1ω

)
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Applying these properties we can calculate the Fourier transforms of some special
functions.
We consider the normalized Gaussian function

f (x) :=
1√
2πσ2

e−
x2

2σ2 , x ∈ R , (46)

with standard deviation σ > 0. Note that
∫
R f (x) dx = 1, since for a > 0 we obtain

using polar coordinates r and φ that(∫
R
e−ax2 dx

)2
=

(∫
R
e−ax2 dx

)(∫
R
e−ay2

dy
)

=

∫
R

∫
R
e−a(x2+y2) dx dy

=

∫ 2π

0

(∫ ∞

0
r e−ar2 dr

)
dφ =

π

a
.
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Now we compute the Fourier transform

f̂ (ω) =
1√
2πσ2

∫
R

e−
x2

2σ2 e−iωx dx . (47)

This integral can be calculated by Cauchy’s integral theorem of complex function
theory. Here we use another technique. Obviously, the Gaussian function (46) satisfies
the differential equation

f ′(x) +
x

σ2
f (x) = 0 .

Applying Fourier transform to this differential equation, we obtain by the
differentiation–multiplication property of Theorem 44

iω f̂ (ω) +
i

σ2
(f̂ )′(ω) = 0 .
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This differential equation has the general solution

f̂ (ω) = C e−
1
2
σ2ω2

,

with an arbitrary constant C . From (47) it follows that

f̂ (0) = C =

∫
R
f (x)dx = 1

and hence
f̂ (ω) = e−

1
2
σ2ω2

(48)

is a non-normalized Gaussian function with standard deviation 1/σ. The smaller the
standard deviation is in the space domain the larger it is in the frequency domain. In
particular for σ = 1, the Gaussian function (46) coincides with its Fourier transform f̂
up to the factor 1/

√
2π. Note that the Gaussian function is the only function with this

behavior.
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Example 45

Let a > 0 and b ∈ R \ {0} be given. We consider the Gaussian chirp

f (x) := e−(a−ib)x2 . (49)

The Fourier transform of (49) reads as follows

f̂ (ω) =

√
π

a− ib
exp

−(a+ ib)ω2

4 (a2 + b2)
,

which can be calculated by a similar differential equation as above.

In Example 42 we have seen that the Fourier transformed function of an L1 functions is
not necessarily in L1. By the following theorem it is a continuous function which
vanishes at infinity.
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Theorem 46

The Fourier transform F defined by (45) is a linear, continuous operator from L1(R)
into C0(R) with operator norm ∥F∥L1(R)→C0(R) = 1.

More precisely F maps onto a dense subspace of C0(R).
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Proof: The linearity of F follows from those of the integral operator. Let f ∈ L1(R).
For any ω, h ∈ R we can estimate

|f̂ (ω + h)− f̂ (ω)| =
∣∣∫
R

f (x) e−iωx (e−ihx − 1)dx
∣∣ ≤ ∫

R

|f (x)| |e−ihx − 1| dx .

Since |f (x)| |e−ihx − 1| ≤ 2 |f (x)| ∈ L1(R) and

|e−ihx − 1| =
(
(cos(hx)− 1)2 + (sin(hx))2

) 1
2 =

(
2− 2 cos(hx)

) 1
2 → 0

as h → 0, we obtain by the convergence theorem of Lebesgue

lim
h→0

|f̂ (ω + h)− f̂ (ω)| ≤ lim
h→0

∫
R

|f (x)|
∣∣e−ihx − 1

∣∣ dx
=

∫
R

|f (x)|
(
lim
h→0

|e−ihx − 1|
)
dx = 0 .
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Hence f̂ is continuous. Further, we know by Lemma 24 of Riemann – Lebesgue that
lim

|ω|→∞
f̂ (ω) = 0. Thus f̂ = F f ∈ C0(R).

For f ∈ L1(R) we have

|f̂ (ω)| ≤
∫
R

|f (x)|dx = ∥f ∥L1(R) ,

so that
∥F f ∥C0(R) = ∥f̂ ∥C0(R) ≤ ∥f ∥L1(R)

and consequently ∥F∥L1(R)→C0(R) ≤ 1. In particular we obtain for g(x) := 1√
2π

e−x2/2,

x ∈ R, that ∥g∥L1(R) = 1 and ĝ(ω) = e−ω
2/2, ω ∈ R, see the Fourier transform of the

Gaussian.
Hence ∥ĝ∥C0(R) = 1 and ∥F∥L1(R)→C0(R) = 1.
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Using the Theorem 46 we obtain following result.

Lemma 47

Let f , g ∈ L1(R). Then we have f̂ g , ĝ f ∈ L1(R) and∫
R
f (x)ĝ(x) dx =

∫
R
f̂ (x)g(x) dx . (50)

Proof: By Theorem 46 we know that ĝ is bounded so that f ĝ ∈ L1(R). Taking into
account that f (x)g(y)e−ixy ∈ L1(R2), equality (50) follows as a direct application of
Fubini’s theorem ∫

R
f (x)ĝ(x) dx =

∫
R
f (x)

∫
R
g(y)e−ixy dy dx

=

∫
R
g(y)

∫
R
f (x)e−ixy dx dy

=

∫
R
g(y)f̂ (y) dy .
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Next we examine under which assumptions on f ∈ L1(R) the Fourier inversion formula

f (x) = (f̂ )̌ (x) :=
1

2π

∫
R

f̂ (ω) eiωx dω (51)

holds true. Note that this is the same formula as those for f̂ in terms of f , except of
the plus sign in the exponential and the factor 1

2π .

Theorem 48 (Fourier inversion formula for L1(R) functions))

Let f ∈ L1(R) and f̂ ∈ L1(R). Then the Fourier inversion formula (51) holds true for
almost every x ∈ R. If f is in addition continuous, then the inversion formula is
pointwise true for all x ∈ R.

In the following we give the proof for f ∈ L1(R) ∩ C0(R) with f̂ ∈ L1(R). For the
general setting we refer, e.g. to [2, p. 38–44].
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Proof: For any n > 0 we use the function gn(x) :=
1
2π e

−|x |/n which has by
straightforward computation the Fourier transform

ĝn(ω) =
n

π(1 + n2ω2)
.

Both functions gn and ĝn are in L1(R). By (50) and Theorem 44ii) we deduce for the
functions f and gne

ixy the relation∫
R
f̂ (x)gn(x)e

ixy dx =

∫
R
f (ω)ĝn(ω − y) dω.

We examine this equation as n → ∞. We have limn→∞ gn(x) =
1
2π . For the left-hand

side, since |f̂ (x)gn(x)eixy | ≤ |f̂ (x)| and f̂ ∈ L1(R), we can pass to the limit under the
integral

lim
n→∞

∫
R
f̂ (x)gn(x)e

ixy dx =
1

2π

∫
R
f̂ (x)eixy dx = f̂ (̌y).
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It remains to show that the limit on the right-hand side is
limn→∞

∫
R f (ω)ĝn(ω − y) dω = f (y). First we note that since ĝn ∈ L1(R) the relation∫

R
ĝn(ω) dω = lim

L→∞

∫ L

−L
ĝn(ω) dω =

2

π
lim
L→∞

arctan(nL) = 1

holds true. Then we get∫
R
f (ω)ĝn(ω − y) dω − f (y) =

∫
R
(f (ω + y)− f (y)) ĝn(ω)dω

=

∫
|ω|≤δ

(f (ω + y)− f (y)) |ĝn(ω)|dω

+

∫
|ω|>δ

(f (ω + y)− f (y)) |ĝn(ω)|dω.
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By assumption f ∈ L1(R) ∩ C0(R). Then f is also uniformly continuous, i.e., for every
ε > 0, there exists δ = δ(ε) > 0 such that |f (x)− f (y)| < ε if |x − y | ≤ δ. For all
n > 0, we obtain∫

|ω|≤δ
(f (ω + y)− f (y)) |ĝn(ω)| dω ≤ ε

∫
|ω|≤δ

|ĝn(ω)| dω ≤ ε.

Next we see

|f (y)
∫
|ω|>δ

ĝn(ω)dω| ≤ |f (y)|
(
1− 2

π
arctan(nδ)

)
, (52)

and since ĝn is decreasing on R≥0 further

|
∫
|ω|>δ

f (ω + y)ĝn(ω) dω| ≤ ĝn(δ) ∥f ∥L1(R). (53)

As n → ∞ the right-hand sides in (52) and (53) go to zero which finishes the proof.
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As a corollary we obtain that the Fourier transform is one-to-one.

Corollary 49

For f ∈ L1(R) let f̂ = 0. Then f = 0 almost everywhere on R.

We have seen that a 2π-periodic function can be reconstructed from its Fourier
coefficients by the Fourier series in the L2(T) sense and that pointwise and uniform
convergence requires additional assumptions on the function. Now we consider a
corresponding problem and ask for the convergence of Cauchy principal value (of an
improper integral)

lim
L→∞

1

2π

L∫
−L

f̂ (ω)eiωxdω .

Note that for Lebesgue integrable functions f on R Cauchy’s mean value coincides
with the integral of f over R.
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Similar to Riemann’s localization principle in Theorem 25 in the 2π-periodic setting we
have the following result.

Theorem 50 (Riemann’s localization principle)

Let f ∈ L1(R) and x0 ∈ R. Further let φ(t) := f (x0 + t) + f (x0 − t)− 2f (x0), t ∈ R.
Assume that for some δ > 0

δ∫
0

|φ(t)|
t

dt <∞ .

Then it holds

f (x0) = lim
L→∞

1

2π

L∫
−L

f̂ (ω)eiωx0dω.
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Proof: It follows

IL(x0) :=
1

2π

L∫
−L

f̂ (ω) eiωx0 dω =
1

2π

L∫
−L

∫
R

f (u) e−iωu du eiωx0 dω

=
1

2π

L∫
−L

∫
R

f (u) eiω(x0−u) du dω.

Since |f (u) eiω(x0−u)| = |f (u)| and f ∈ L1(R), we can change the order of integration
in IL by Fubini’s theorem which results in

IL(x0) =
1

2π

∫
R

f (u)

L∫
−L

eiω(x0−u) dω du =
1

π

∫
R

f (u)
sin(L(x0 − u))

x0 − u
du

=
1

π

∞∫
0

(
f (x0 + t) + f (x0 − t)

) sin(Lt)
t

dt.
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Since we have by Lemma 37 that
∞∫
0

sin t

t
dt =

∞∫
0

sin(Lt)

t
dt =

π

2
, (54)

we conclude

IL(x0)− f (x0) =
1

π

∞∫
0

φ(t)

t
sin(Lt) dt

=
1

π

δ∫
0

φ(t)

t
sin(Lt) dt

+
1

π

∞∫
δ

f (x0 + t) + f (x0 − t)

t
sin(Lt) dt

− 2

π
f (x0)

∞∫
δ

sin(Lt)

t
dt.
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Since φ(t)/t ∈ L1([0, δ]) by assumption, the first integral converges to zero as L → ∞
by Lemma 24 of Riemann – Lebesgue. The same holds true for the second integral.
Concerning the third integral we use

π

2
=

∞∫
0

sin(Lt)

t
dt =

δ∫
0

sin(Lt)

t
dt +

∞∫
δ

sin(Lt)

t
dt

=

Lδ∫
0

sin(t)

t
dt +

∞∫
δ

sin(Lt)

t
dt.

Since the first summand converges to π
2 as L → ∞, the third integral converges to

zero as L → ∞. This finishes the proof.
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A function f : R → C is called piecewise continuously differentiable on R, if there
exists a finite partition of R determined by −∞ < x0 < x1 < . . . < xn <∞ of R such
that f is continuously differentiable on each interval (−∞, x0), (x0, x1), . . .,
(xn−1, xn), (xn, ∞) and the one-sided limits limx→xj±0 f (x) and limx→xj±0 f

′(x),
j = 0, . . . , n exist. Similarly as in the proof of Theorem 31 of Dirichlet – Jordan the
previous theorem can be used to prove that for a piecewise continuously differentiable
function f ∈ L1(R) it holds

1

2
(f (x0 + 0) + f (x0 − 0)) = lim

L→∞

1

2π

L∫
−L

f̂ (ω)eiωx0dω

for all x0 ∈ R.
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The Fourier transform is again closely related to the convolution of functions. If
f : R → C and g : R → C are given functions, then their convolution f ∗ g is defined by

(f ∗ g)(x) :=
∫
R

f (y) g(x − y) dy , x ∈ R , (55)

provided that this integral (55) exists. Note that the convolution is a commutative,
associative, and distributive operation. Various conditions can be imposed on f and g
to ensure that (55) exists. For instance, if f and g are both in L1(R), then (f ∗ g)(x)
exists for almost every x ∈ R and further f ∗ g ∈ L1(R). In the same way as for
2π-periodic functions we can prove the following theorem.
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Theorem 51

1 Let f ∈ Lp(R) with 1 ≤ p ≤ ∞ and g ∈ L1(R) be given. Then f ∗ g exists almost
everywhere and f ∗ g ∈ Lp(R). Further we have the Young inequality

∥f ∗ g∥Lp(R) ≤ ∥f ∥Lp(R) ∥g∥L1(R) .

2 Let f ∈ Lp(R) and g ∈ Lq(R), where 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. Then f ∗ g is
a bounded, uniformly continuous function fulfilling

∥f ∗ g∥C(R)≤ ∥f ∥Lp(R) ∥g∥Lq(R) .

Furthermore, lim|x |→∞(f ∗ g)(x) = 0 if p ∈ (1,∞).

3 Let f ∈ Lp(R) and g ∈ Lq(R) , where 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q = 1
r + 1. Then

f ∗ g ∈ Lr (R) and we have the generalized Young inequality

∥f ∗ g∥Lr (R) ≤ ∥f ∥Lp(R) ∥g∥Lq(R) .
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Differentiation and convolution are related by the following lemma.

Corollary 52

Let f ∈ L1(R) and g ∈ C r (R), where g (k) is bounded for k = 0, . . . , r . Then
f ∗ g ∈ C r (R) and

(f ∗ g)(k) = f ∗ g (k), k = 1, . . . , r .

Proof: Since g (k) ∈ L∞(R), the first assertion follows by the second part of Theorem
51. The function x 7→ f (y)g(x − y) is r -times differentiable, and for k = 0, . . . , r we
have

|f (y)g (k)(x − y)| ≤ |f (y)| sup
t∈R

|g (k)(t)|.

Since f ∈ L1(R) we can differentiate under the integral sign, see [7, Proposition 14.2.2]
which results in

(f ∗ g)(k)(x) =
∫
R
f (y)g (k)(x − y)dy = f ∗ g (k)(x).
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The relation between convolution and Fourier transform in the following theorem
resemble their behavior in the periodic setting.

Theorem 53 (Convolution and Fourier transform)

Let f , g ∈ L1(R). Then we have

(f ∗ g )̂ = f̂ ĝ .

Proof: For f , g ∈ L1(R) we have f ∗ g ∈ L1(R) by Theorem 51. Using Fubini’s
theorem, we obtain for all ω ∈ R

(f ∗ g )̂ (ω) =

∫
R
(f ∗ g)(x) e−iωx dx

=

∫
R

(∫
R
f (y) g(x − y) dy

)
e−iωx dx

=

∫
R
f (y)

(∫
R
g(x − y) e−iω(x−y)dx

)
e−iωy dy

=

∫
R
f (y)

(∫
R
g(t) e−iωtdt

)
e−iωy dy = f̂ (ω) ĝ(ω) .

This completes the proof.
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Applying these properties we can calculate the Fourier transforms of some special
functions. Let N1 : R → R denote the cardinal B-spline of order 1 defined by

N1(x) :=


1 x ∈ (0, 1) ,
1/2 x ∈ {0, 1} ,
0 otherwise .

For m ∈ N, the convolution

Nm+1(x) := (Nm ∗ N1)(x) =

∫ 1

0
Nm(x − t) dt ,

is the cardinal B-spline of order m + 1.
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Especially, for m = 1 we obtain the linear cardinal B-spline

N2(x) :=


x x ∈ [0, 1) ,
2− x x ∈ [1, 2) ,
0 otherwise .

Note that the support of Nm is the interval [0, m]. By

N̂1(ω) =

∫ 1

0
e−ixω dx =

1− e−iω

iω
,

and N̂1(0) = 1, we obtain

N̂1(ω) = e−iω/2 sinc
ω

2
, ω ∈ R .

By the convolution property of Theorem 53, we obtain

N̂m+1(ω) = N̂m(ω) N̂1(ω) =
(
N̂1(ω)

)m+1
.

Hence the Fourier transform of the cardinal B-spline Nm reads as follows

N̂m(ω) = e−imω/2
(
sinc

ω

2

)m
.
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For the centered cardinal B-spline of order m ∈ N defined by

Mm(x) := Nm(x +
m

2
) ,

we obtain by the translation property of Theorem 44 that

M̂m(ω) =
(
sinc

ω

2

)m
.

The space L1(R) with the addition and convolution of functions is a Banach algebra.
As for periodic functions there is no identity element with respect to the convolution.
A remedy is again to work with approximate identities.
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Theorem 54 (approximate identity)

Let φ ∈ L1(R) with
∫
R
φ(x)dx = 1 and

φε(x) :=
1

ε
φ
(x
ε

)
.

Then the following relations hold true:

i) For f ∈ Lp(R), 1 ≤ p <∞, we have

lim
ε→0

∥f ∗ φε − f ∥Lp(R) = 0.

ii) For a continuous function f with compact support, the sequence f ∗ φε converges
uniformly on supp f to f as ε→ 0.
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Proof: i) With
∫
R
φε(x)dx = 1 we obtain

∥f ∗ φε − f ∥pLp(R) =
∫
R

|
∫
R

f (x − y)φε(y) dy − f (x)|p dx

=

∫
R

|
∫
R

(f (x − y)− f (x))φε(y)dy |p dx

=

∫
R

|
∫
R

(f (x − ε y)− f (x))φ(y)dy |p dx .

By Hölder’s inequality we further conclude with φ = φ
1
p φ

1
q , 1

p + 1
q = 1 that

∥f ∗ φε − f ∥pLp(R) ≤
∫
R

( ∫
R

|f (x − ε y)− f (x)|p |φ(y)| dy
)

( ∫
R

|φ(y)|dy
)p/q

dx .
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Applying the Theorem of Fubini we get

∥f ∗ φε − f ∥pLp(R) ≤ ∥φ∥p/qL1(R)

∫
R

|φ(y)|
∫
R

|f (x − ε y)− f (x)|p dx dy . (56)

Now ∫
R

|f (x − ε y)− f (x)|p dx = ∥f (· − ε y)− f ∥pLp(R) ≤ 2p∥f ∥pLp(R)

and φ ∈ L1(R) so that the sequence in (56) has an integrable upper bound. By
Lebesgue’s theorem and continuity of the norm we obtain

lim
ε→0

∥f ∗ φε − f ∥Lp(R) ≤ ∥φ∥p/qL1(R)

∫
R

|φ(y)| lim
ε→0

∥f (· − ε y)− f ∥pLp(R) dy = 0.
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ii) We have

|f ∗ φε(x)− f (x)| = |
∫
R

(f (x − y)− f (x))φε(y) dy |

≤
∫
R

|(f (x − εy)− f (x))| |φ(y)|dy .

Since φ ∈ L1(R), there exists a compact set W such that
∫

R\W
|φ(y)| dy < δ. Then we

get

sup
x∈supp f

|f ∗φε(x)−f (x)| ≤ sup
x∈supp f ,(x−εỹ)∈supp f

ỹ∈W

|f (x−εỹ)−f (x)|
∫
W

|φ(y)|dy + 2∥f ∥L∞δ.
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Another result on approximate identities is the following lemma.

Lemma 55

Let f ∈ L1(R) and
gσ(x) :=

1√
2πσ2

e−x2/2σ2
.

Then it holds in each point x where f is continuous

lim
σ→0+

(f ∗ gσ)(x) = f (x).

Proof: Let f be continuous in x . Then, for any ε > 0, there exists h > 0 such that for
all |t| ≤ h,

|f (x − t)− f (x)| < ε.
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Since
∫
R
gσ(t)dt = 1 we get

(f ∗ gσ)(x)− f (x) =

∞∫
−∞

(f (x − t)− f (x))gσ(t)dt

and consequently

|(f ∗ gσ)(x)− f (x)| ≤
∫

|t|≤h

|f (x − t)− f (x)|gσ(t)dt

+

∫
|t|≥h

(|f (x − t)|+ |f (x)|)gσ(t)dt

≤ε
h∫

−h

gσ(t)dt + ∥f ∥L1gσ(h) + |f (x)|
∫

|t|≥h

gσ(t)dt.

The first summand is smaller than ε and the other two summands go to zero as
σ → 0.
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Fourier transform in L2(R)

Up to now we have considered the Fourier transform of functions in L1(R). Next we
want to establish a Fourier transform in the Hilbert space L2(R), where the Fourier
integral ∫

R
f (x) e−ixω dx

may not exist, i.e., it does not take a finite value for some ω ∈ R. Therefore we define
the Fourier transform of an L2(R) function in a different way based on the following
lemma.
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Lemma 56

Let f , g ∈ L1(R), such that f̂ , ĝ ∈ L1(R). Then the following Parseval equality is valid

2π ⟨f , g⟩ = ⟨f̂ , ĝ⟩ .

Note that f , f̂ ∈ L1(R) implies that (f̂ )̌ = f almost everywhere and (f̂ )̌ ∈ C0(R).
Thus, ∫

R
|f (x)|2 dx =

∫
R
|(f̂ )̌ (x)| |f (x)| dx ≤ ∥(f̂ )̌ ∥C0(R) ∥f ∥L1(R) .
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Proof: Using Fubini’s theorem and Fourier’s integral formula we obtain∫
R
f̂ (ω) ĝ(ω) dω =

∫
R
f̂ (ω)

∫
R
g(x) e−ixω dx dω

=

∫
R
g(x)

∫
R
f̂ (ω) eixω dω dx

= 2π

∫
R
g(x) f (x) dx .

168 / 373



For any function f ∈ L2(R) there exists a sequence {fj}j∈N of functions in C 1
c (R) such

that
lim
j→∞

∥f − fj∥L2(R) = 0 .

Thus {fj}j∈N is a Cauchy sequence in L2(R), i.e., for every ε > 0 there exists an index
N(ε) ∈ N so that for all j , k ≥ N(ε)

∥fk − fj∥L2(R) < ε .

Clearly, fj , f̂j ∈ L1(R). By Parseval’s equality we obtain for all j , k ≥ N(ε)

∥fk − fj∥L2(R) =
1√
2π

∥f̂k − f̂j∥L2(R) < ε ,

so that {f̂j}j∈N is also a Cauchy sequence in L2(R). Since L2(R) is complete, this
Cauchy sequence converges to some function in L2(R).
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We define the Fourier transform f̂ = F f ∈ L2(R) of f ∈ L2(R) as

f̂ = F f := lim
j→∞

f̂j .

In this way the domain of the Fourier transform is extended to include all of L2(R).
By the continuity of the inner product we obtain also the Parseval equality in L2(R).
We summarize:

Theorem 57 (Plancherel)

The Fourier transform truncated on L1(R) ∩ L2(R) can be uniquely extended to a
bounded linear operator of L2(R) onto itself which satisfies the Parseval equality

2π ⟨f , g⟩L2(R) = ⟨f̂ , ĝ⟩ ,
√
2π ∥f ∥L2(R) = ∥f̂ ∥L2(R)

for all f , g ∈ L2(R).
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Note that Theorem 44 is also true for L2(R) functions. Moreover, we have the
following inversion formula.

Theorem 58 (Fourier inversion formula for L2(R) functions))

Let f ∈ L2(R) and f̂ ∈ L1(R). Then the Fourier inversion formula

f (x) =
1

2π

∫
R

f̂ (ω) eiωx dω (57)

holds true for almost every x ∈ R. If f is in addition continuous, then the inversion
formula holds pointwise for all x ∈ R.
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Remark 59

Often the integral notation

f̂ (ω) =

∫
R
f (x) e−ixω dx

is also used for the Fourier transform of L2 functions although the integral may not
converge pointwise. But it may be interpreted by a limiting process. For ε > 0 and
f ∈ L2(R), the function gε : R → C is defined by

gε(ω) :=

∫
R
e−ε

2x2 f (x) e−ixω dx , ω ∈ R .

Then gε converges in the L2(R) norm and pointwise almost everywhere to f̂ for ε→ 0.
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Finally we introduce an orthogonal basis of L2(R) which elements are eigenfunctions of
the Fourier operator. For n ∈ N0, the n-th Hermite polynomial Hn is defined by

Hn(x) := (−1)n ex
2 dn

dxn
e−x2 , x ∈ R .

In particular we have

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 − 2 , H3(x) = 8x3 − 12x .

The Hermite polynomials fulfill the three term relation

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x) , (58)

and the recursion
H ′
n(x) = 2n Hn−1(x) . (59)
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For n ∈ N0, the n-th Hermite function hn is given by

hn(x) := Hn(x) e
−x2/2 = (−1)n ex

2/2 dn

dxn
e−x2 , x ∈ R .

In particular, we have h0(x) = e−x2/2 which has the Fourier transform
ĥ0(ω) =

√
2π e−ω

2/2. The Hermite functions fulfill the differential equation

h′′n(x)− (x2 − 2n − 1) hn(x) = 0 (60)

and can be computed recursively by

hn+1(x) = x hn(x)− h′n(x) .
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Theorem 60

The Hermite functions hn, n ∈ N0, with

⟨hn, hn⟩ =
√
π 2nn!

form a complete orthogonal system in L2(R). The Fourier transforms of the Hermite
functions are given by

ĥn(ω) =
√
2π (−i)n hn(ω) , ω ∈ R . (61)

In other words, the functions hn are the eigenfunctions of the Fourier operator
F : L2(R) → L2(R) with eigenvalues

√
2π (−i)n for all n ∈ N0.
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By the Theorem 60 we see that the Hermite polynomials are orthogonal polynomials in
the weighted space L2,w (R) with w(x) := e−x2 , x ∈ R, i.e., they are orthogonal with

respect to the weighted Lebesgue measure e−x2 dx .
Proof: 1. We show that ⟨hm, hn⟩ = 0 for m ̸= n. By the differential equation (60) we
obtain

(h′′m − x2hm) hn = −(2m + 1) hm hn ,

(h′′n − x2hn) hm = −(2n + 1) hm hn .

Subtraction yields

h′′m hn − h′′n hm = (h′mhn − h′nhm)
′ = 2(n −m) hm hn ,

which results after integration in

2(n −m) ⟨hm, hn⟩ = 2(m − n)

∫
R
hm(x) hn(x) dx

=
(
h′m(x) hn(x)− h′n(x) hm(x)

)∣∣∞
−∞ = 0 .
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2. Next we prove for n ∈ N0 that

⟨hn, hn⟩ =
√
π 2nn! . (62)

For n = 0 the relation holds true by (48). We show the recursion

⟨hn+1, hn+1⟩ = 2(n + 1) ⟨hn, hn⟩ (63)

which implies (62). Using (59), integration by parts, and step 1 of this proof, we obtain

⟨hn+1, hn+1⟩ =
∫
R
e−x2 (Hn+1(x))

2 dx

=

∫
R

(
2x e−x2

) (
Hn(x)Hn+1(x)

)
dx

=

∫
R
e−x2

(
H ′
n(x)Hn+1(x) + Hn(x)H

′
n+1(x)

)
dx

= 2(n + 1)

∫
R
e−x2

(
Hn(x)

)2
dx = 2(n + 1) ⟨hn, hn⟩ .
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3. To verify the completeness of the orthogonal system {hn : n ∈ N0} we prove that
f ∈ L2(R) with ⟨f , hn⟩ = 0 for all n ∈ N0 implies f = 0 almost everywhere. To this
end, we consider the complex function g : C → C defined by

g(z) :=

∫
R
h0(x) f (x) e

−ixz dx .

This is the holomorphic continuation of the Fourier transform of h0 f onto whole C.
For every m ∈ N0 it holds

g (m)(z) = (−i)m
∫
R
xm h0(x) f (x) e

−ixz dx , z ∈ C .

Since g (m)(0) is a certain linear combination of ⟨f , hn⟩, n = 0, . . . ,m, we conclude that
g (m)(0) = 0 for all m ∈ N0. Thus, g = 0 and (h0f )̌ = 0. By Corollary 49 we have
h0f = 0 almost everywhere and consequently f = 0 almost everywhere.
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4. By the Fourier transform of the Gaussian we know that

ĥ0(ω) =

∫
R
e−ixω−x2/2 dx =

√
2π e−ω

2/2 , ω ∈ R .

We compute the Fourier transform of hn and obtain after n times integration by parts

ĥn(ω) =

∫
R
hn(x) e

−iωx dx

= (−1)n
∫
R
e−iωx+x2/2

( dn

dxn
e−x2

)
dx

=

∫
R
e−x2

( dn

dxn
e−iωx+x2/2

)
dx

= eω
2/2

∫
R
e−x2

( dn

dxn
e(x−iω)2/2) dx .
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By symmetry reasons we have

dn

dxn
e(x−iω)2/2 = in

dn

dωn
e(x−iω)2/2 ,

so that

ĥn(ω) = in eω
2/2

∫
R
e−x2

( dn

dωn
e(x−iω)2/2

)
dx

= in eω
2/2 dn

dωn

(
e−ω

2/2

∫
R
e−ixω−x2/2 dx

)
=

√
2π in eω

2/2 dn

dωn
e−ω

2
=

√
2π (−i)n hn(ω) .

This completes the proof.
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Poisson’s summation formula and Shannon’s sampling theorem

Poisson’s summation formula establishes an interesting relation between Fourier series
and Fourier transforms. For n ∈ N and f ∈ L1(R) we consider the functions

φn(x) :=
n∑

k=−n

|f (x + 2kπ)|

which fulfill

π∫
−π

φn(x)dx =

π∫
−π

n∑
k=−n

|f (x + 2kπ)|dx =
n∑

k=−n

π∫
−π

|f (x + 2kπ)| dx

=
n∑

k=−n

2kπ+π∫
2kπ−π

|f (x)|dx =

2nπ+π∫
−2nπ−π

|f (x)|dx .
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Since {φn}n∈N is a monotone increasing sequence of nonnegative functions, we obtain
by the monotone convergence theorem of B. Levi that the function
φ(x) := limn→∞ φn(x), x ∈ R, is measurable and fulfills

π∫
−π

φ(x) dx = lim
n→∞

π∫
−π

φn(x)dx = ∥f ∥L1(R) .

We introduce the 2π-periodic function

f̃ (x) :=
∑
k∈Z

f (x + 2kπ) . (64)

The 2π–periodic function f̃ is called 2π–periodization of f . Since

|f̃ (x)| =
∣∣∑
k∈Z

f (x + 2kπ)
∣∣ ≤∑

k∈Z
|f (x + 2kπ)| = φ(x) ,

we obtain ∫
T
|f̃ (x)|dx ≤

∫
T
|φ(x)| dx = ∥f ∥L1(R)

so that f̃ ∈ L1(T). After these preparations we can formulate the Poisson summation
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Theorem 61 (Poisson summation formula)

Assume that f ∈ L1(R) ∩ C0(R) fulfills the conditions

1
∑

k∈Z max
x∈[−π, π]

|f (x + 2kπ)| <∞ ,

2
∑

k∈Z|f̂ (k)| <∞ .

Then for all x ∈ R, the following relation is fulfilled

2π f̃ (x) = 2π
∑
k∈Z

f (x + 2kπ) =
∑
k∈Z

f̂ (k) eikx .

For x = 0 this implies the Poisson summation formula

2π
∑
k∈Z

f (2kπ) =
∑
k∈Z

f̂ (k) . (65)
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Proof: By the first assumption the convergence of the series defining f̃ is uniformly by
the known criterium of Weierstrass. Since f is continuous, also f̃ is continuous. Its
Fourier coefficient can be written using Fubini’s theorem as

2π ck(f̃ ) =

π∫
−π

∑
l∈Z

f (x + 2lπ) e−ikx dx =
∑
l∈Z

π∫
−π

f (x + 2lπ) e−ikx dx

=

∫
R
f (x) e−ikx dx = f̂ (k) .

Thus,

f̃ (x) =
∑
k∈Z

ck(f̃ ) e
ikx =

1

2π

∑
k∈Z

f̂ (k) eikx

where the series converges uniformly by the second assumption.
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Remark 62

It can be shown that the Poisson summation formula is fulfilled pointwise absolute
convergence of both series for any function satisfying

f (x) = O
(

1

1 + |x |1+ε
)
, f̂ (ω) = O

(
1

1 + |ω|1+ε
)
, ε > 0,

see, e.g., [9, 17]. The Poisson summation formula was generalized for slowly growing
functions in [14].

We illustrate the performance of Poisson summation formula (65) by an example.
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Example 63

For fixed α > 0, we consider the function f (x) := e−α|x |, x ∈ R. Simple calculation
shows that its Fourier transform reads

f̂ (ω) =

∫ ∞

0

(
e(−α−iω)x + e(−α+iω)x

)
dx =

2α

α2 + ω2
.

Note that by Fourier’s inversion formula in Theorem 48, the function
g(x) := (x2 + α2)−1 has the Fourier transform ĝ(ω) = π

α e−α|ω|.
The function f is contained in L1(R) ∩ C0(R) and fulfills both conditions of Theorem
61. Since ∑

k∈Z
f (2πk) = 1 + 2

∞∑
k=1

(
e−2πα

)k
=

1 + e−2πα

1− e−2πα
,

we obtain by the Poisson summation formula (65) that

∑
k∈Z

1

α2 + k2
=
π

α

1 + e−2πα

1− e−2πα
.
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The following sampling theorem in various generalizations goes back to Whittaker [21],
Kotelnikov [12] and Shannon [16], see also [6, 19]. It answers the question how to
sample a function f by its values f (nT ), n ∈ Z, for an appropriate T > 0 while
keeping the whole information contained in f . The distance T between two successive
sample points is called sampling period. In other words, we want to find a convenient
sampling period T such that f can be recovered from its samples f (nT ), n ∈ Z. The
sampling rate is defined as the reciprocal value 1

T of the sampling period T . Indeed
this question can be only answered for a certain class of functions.
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A function f ∈ L2(R) is called bandlimited on [−L, L] with some L > 0, if
supp f̂ ⊆ [−L, L], i.e., if f̂ (ω) = 0 for all |ω| > L. The positive number L is the
bandwidth of f . A typical bandlimited function on [−L, L] is

h(x) =
L

π
sinc(Lx) .

Note that h ∈ L2(R) \ L1(R). Its Fourier transform ĥ can be determined by the theory
of Section 6. Then we obtain that

ĥ(ω) =


1 x ∈ (−L, L) ,
1
2 x ∈ {−L, L} ,
0 otherwise .

(66)
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Theorem 64 (Shannon – Whittaker – Kotelnikov)

Let f ∈ L1(R) ∩ C0(R) be bandlimited on [−L, L]. Let M ≥ L. Then f is completely
determined by its values f

(
kπ
M

)
, k ∈ Z, and further f can be represented in the form

f (x) =
∑
k∈Z

f
(kπ
M

)
sinc(Mx − kπ) , (67)

where the series converges absolutely and uniformly on R.
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Proof: 1. We prove that the formula holds pointwise. First note that from
f ∈ L1(R) ∩ C0(R) it follows that f ∈ L2(R), since

∥f ∥L2(R) ≤
√
∥f ∥C0(R) ∥f ∥L1(R) <∞ .

Since f̂ ∈ C0(R) by Theorem 46 and since supp f̂ ⊆ [−L, L] by assumption, we have
f̂ ∈ L1(R) so that the Fourier inversion formula (f̂ )̌ (x) = f (x) is valid almost
everywhere by Theorem 48. Because f ∈ C0(R), the Fourier inversion formula holds
for all x ∈ R. Then for M ≥ L we have

f (x) =
1

2π

M∫
−M

f̂ (ω) ĥ(ω) eiωx dω =
1

2π

M∫
−M

f̂ (ω) ĝx(ω)dω , (68)

where ĥ is given by (66) and

ĝx(ω) := ĥ(ω) e−iωx .
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In the case M = L, the function (66) is the only possible choice for ĥ, while for M > L
also smoother functions with ĥ(ω) = 1 for ω ∈ [−L, L] can be used in the above
equation.
We form the 2M–periodic functions

(f̂ )∼(ω) :=
∑
r∈Z

f̂ (ω + 2Mr) ,

(ĝx)
∼(ω) :=

∑
r∈Z

ĥ(ω + 2Mr) e−i(ω+2Mr)x .

Clearly (f̂ )∼(ω) = f̂ (ω) and (ĝx)
∼(ω) = ĝx(ω) for |ω| < M. Further we have (f̂ )∼,

(ĝx)
∼ ∈ L2([−M,M)). Applying the Parseval equation for 2M–periodic Fourier series

(see Remark 4) and (68), we obtain

f (x) =
1

2π

M∫
−M

(f̂ )∼(ω) (ĝx)∼(ω) dω =
M

π

∑
k∈Z

c
(2M)
k

(
(f̂ )∼

)
c
(2M)
k

(
(ĝx)∼

)
.
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In a similar way as in the proof of Theorem 61, we see that the Fourier coefficients of
(f̂ )∼ and (ĝx)

∼ have the following forms

c
(2M)
k

(
(f̂ )∼

)
:=

1

2M

M∫
−M

(f̂ )∼(ω) e−πiωk/M dω

=
1

2M

∫
R
f̂ (ω) e−πiωk/M dω

=
π

M
f
(
− kπ

M

)
, k ∈ Z ,

and

c
(2M)
k

(
(ĝx)

∼) := 1

2M

M∫
−M

(ĝx)
∼(ω) e−πiωk/M dω

=
1

2M

∫
R

ĥ(ω) e−iω(x+kπ/M) dω

=
1

2M

∫ M

−M
e−iω(x+kπ/M) dω = sinc

(
Mx + kπ

)
, k ∈ Z . 192 / 373



Hence we obtain for all x ∈ R that

f (x) =
∑
k∈Z

f
(kπ
M

)
sinc(Mx − kπ) .

Note that each summand of the above series has the following interpolation property

f
(kπ
M

)
sinc(Mx − kπ) =

{
f
(
kπ
M

)
x = kπ

M ,

0 x ∈ π
M (Z \ {k})) .
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2. We show that the sum in (67) converges uniformly. We obtain

2π

∣∣∣∣∣f (x)−
n∑

k=−n

f
(
−kπ

M

)
sinc(Mx + kπ)

∣∣∣∣∣
=

∣∣∣∣∣
∫ M

−M
f̂ (ω)eiωxdω −

n∑
k=−n

c
(2M)
k (f̂ ∼)

∫ M

−M
ĝ∼
x (ω)e−πiωk/(M)dω

∣∣∣∣∣
=

∣∣∣∣∣
∫ M

−M

(
f̂ ∼(ω)−

n∑
k=−n

c
(2M)
k (f̂ ∼)e−πiωk/(M)

)
e−iωxdω

∣∣∣∣∣
≤
∫ M

−M

∣∣∣f̂ ∼(ω)− Sn(f̂
∼)
∣∣∣ dω

≤
√
2M ∥f̂ ∼(ω)− Sn(f̂

∼)∥L2 .

The last expression becomes arbitrary small as n → ∞ independently of x .
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3. Finally we see absolute convergence of the sampling sum by the following
computation: ∑

k∈Z

∣∣∣∣f (−kπ

M

)∣∣∣∣ ∣∣∣∣sinc(M(x +
kπ

M

))∣∣∣∣
=

π

M

∑
k∈Z

|c(2M)
k (f̂ ∼)||c(2M)

k (ĝ∼
x )|

≤ π

M
∥
(
c
(2M)
k (f̂ ∼)

)
k
∥2∥

(
c
(2M)
k (ĝ∼

x )
)
k
∥2

<∞.

This finishes the proof. This completes the proof.

195 / 373



By the sampling Theorem 64, the bandlimited f with supp f̂ ⊆ [−L, L] can be
reconstructed from its equispaced samples f

(
kπ
M

)
, k ∈ Z, with M ≥ L > 0. Then the

sampling period T = π
L is the largest and the sampling rate L

π is the smallest possible
one. This sampling rate is called Nyquist rate after Nyquist [15]. The sinc function
decreases only slightly as |x | → ∞ so that we have to incorporate many summands in
a truncated series (67) to get a good approximation of f .
One can obtain a better approximation of f by the choice of a higher sampling rate
L(1+λ)
π with some λ > 0 and corresponding sample values f

(
kπ

L(1+λ)

)
, k ∈ Z. This

so-called oversampling allows a smoother choice of ĥ in the above proof. The
smoother ĥ the faster decays h, so that (67) converges fast for such h. The choice of a

lower sampling rate L(1−λ)
π with some λ ∈ (0, 1) is called undersampling which results

in a reconstruction of a function f ◦ where higher frequency parts of f appear in lower
frequency parts of f ◦. This effect is called aliasing or Moiré effect in imaging.

196 / 373



Heisenberg’s uncertainty principle

In this section, we consider nonzero functions f ∈ L2(R). A signal is often measured in
time. We keep the spatial variable x instead of t also when speaking about
time-dependent signals. In the following, we investigate the time–frequency locality of
f and f̂ .
It is impossible to construct a nonzero compactly supported function f ∈ L2(R) whose
Fourier transform f̂ has a compact support too. More generally we show the following
lemma.
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Lemma 65

If the Fourier transform f̂ of a nonzero function f ∈ L2(R) has compact support, then
f cannot be zero on a whole interval. If a nonzero function f ∈ L2(R) has compact
support, then f̂ cannot be zero on a whole interval.

Proof: We consider f ∈ L2(R) with supp f̂ ⊆ [−L, L] with some L > 0. By the Fourier
inversion formula of Theorem 58 we have almost everywhere

f (x) =
1

2π

∫ L

−L
f̂ (ω) eiωx dω ,

where the function on the right-hand side is infinitely differentiable. Since we identify
almost everywhere equal functions in L2(R), we can assume that f is smooth.
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Assume that f (x) = 0 for all x ∈ [a, b] with a < b. For x0 =
a+b
2 we obtain by

repeated differentiation with respect to x that

f (n)(x0) =
1

2π

∫ L

−L
f̂ (ω) (iω)n eiωx0 dω = 0 , n ∈ N0 .

Expressing the exponential eiω(x−x0) as power series, we see that for all x ∈ R,

f (x) =
1

2π

∫ L

−L
f̂ (ω) eiω(x−x0) eiωx0 dω

=
1

2π

∞∑
n=0

(x − x0)
n

n!

∫ L

−L
f̂ (ω) (iω)n eiωx0 dω = 0 .

This contradicts the assumption that f ̸= 0. Analogously, we can show the second
assertion.
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By Lemma 65 gives a special aspect of a general principle that says that both f and f̂
cannot be highly localized, i.e., if |f |2 vanishes or is very small outside some small
interval, then |f̂ |2 spreads out, and conversely. We measure the dispersion of f about
the time x0 ∈ R by

∆x0f :=
1

∥f ∥2
∫
R
(x − x0)

2 |f (x)|2dx > 0 .

Note that if x f (x), x ∈ R, is not in L2(R), then ∆x0f = ∞ for any x0 ∈ R. The
positive number ∆x0f measures how much |f (x)|2 spreads out in a neighborhood of
x0. If |f (x)|2 is very small outside a small neighborhood of x0, then the factor
(x − x0)

2 makes the numerator of ∆x0f small in comparison to the denominator ∥f ∥2.
Otherwise, if |f (x)|2 is large far away from x0, then the factor (x − x0)

2 makes the
numerator of ∆x0f large in comparison to the denominator ∥f ∥2.
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Analogously, we measure the dispersion of f̂ about the frequency ω0 ∈ R by

∆ω0 f̂ :=
1

∥f̂ ∥2
∫
R
(ω − ω0)

2 |f̂ (ω)|2dω > 0 .

By the Parseval equation ∥f̂ ∥2 = 2π ∥f ∥2 > 0 we obtain

∆ω0 f̂ =
1

2π ∥f ∥2
∫
R
(ω − ω0)

2 |f̂ (ω)|2dω .

If ω f (ω), ω ∈ R, is not in L2(R), then ∆ω0f = ∞ for any ω0 ∈ R.
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We consider the normalized Gaussian function

f (x) :=
1√
2πσ2

e−x2/(2σ2) (69)

with standard deviation σ > 0. Then f has L1(R) norm one, but the energy

∥f ∥2 = 1

2πσ2

∫
R
e−x2/σ2

dx =
1

2σ
√
π
.

Further f has the Fourier transform

f̂ (ω) = e−σ
2ω2/2

with the energy

∥f̂ ∥2 =
∫
R
e−σ

2ω2
dω =

√
π

σ
.
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For small deviation σ we observe that f is highly localized near zero, but its Fourier
transform f̂ has the large deviation 1

σ and is not concentrated near zero. Now we
measure the dispersion of f around the time x0 ∈ R by

∆x0f =
1

2πσ2 ∥f ∥2
∫
R
(x − x0)

2 e−x2/σ2
dx

=
1

2πσ2 ∥f ∥2
∫
R
x2 e−x2/σ2

dx + x20 =
σ2

2
+ x20 .

For the dispersion of f̂ about the frequency ω0 ∈ R, we obtain

∆ω0 f̂ =
1

∥f̂ ∥2
∫
R
(ω − ω0)

2 e−σ
2ω2

dω

=
1

∥f̂ ∥2
∫
R
ω2 e−σ

2ω2
dω + ω2

0 =
1

2σ2
+ ω2

0 .

Thus for each σ > 0 we get the inequality(
∆x0f

) (
∆ω0 f̂

)
=
(σ2
2

+ x20

)( 1

2σ2
+ ω2

0

)
≥ 1

4
with equality for x0 = ω0 = 0.
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Heisenberg’s uncertainty principle says that for any x0, ω0 ∈ R, both functions f and f̂
cannot be localized around time x0 ∈ R and frequency ω0 ∈ R, respectively.

Theorem 66 (Heisenberg’s uncertainty principle)

For any nonzero function f ∈ L2(R), the inequality

(
∆x0f

) (
∆ω0 f̂

)
≥ 1

4
(70)

is fulfilled for each x0, ω0 ∈ R. The equality in (70) holds if and only if

f (x) = C eiω0x e−a(x−x0)2/2 , x ∈ R , (71)

with some a > 0 and complex constant C ̸= 0.
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Proof: 1. Without lost of generality, we can assume that both functions x f (x), x ∈ R,
and ω f̂ (ω), ω ∈ R are contained in L2(R) too, since otherwise we have(
∆x0f

) (
∆ω0 f̂

)
= ∞ and the inequality (70) is true.

2. In the special case x0 = ω0 = 0, we obtain by the definitions that(
∆x0f

) (
∆ω0 f̂

)
=

1

2π ∥f ∥4
(∫

R
|x f (x)|2 dx

)(∫
R
|ω f̂ (ω)|2 dω

)
.

From ωf̂ (ω) ∈ L2(R) it follows by Theorems 44 and 57 that f ′ ∈ L2(R). Thus we get
by (F f ′)(ω) = iωf̂ (ω) and the Parseval equation that

(
∆x0f

) (
∆ω0 f̂

)
=

1

2π ∥f ∥4
(∫

R
|x f (x)|2 dx

)(∫
R
|(F f ′)(ω)|2 dω

)
=

1

∥f ∥4
(∫

R
|x f (x)|2 dx

)(∫
R
|f ′(x)|2 dx

)
. (72)
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By integration by parts we obtain∫
R

(
x f (x)

)
f ′(x) dx = x |f (x)|2

∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫
R
|f (x)|2 + x f (x) f ′(x) dx

and hence

∥f ∥2 = −2 Re

∫
R
x f (x) f ′(x) dx .

By the Cauchy–Schwarz inequality in L2(R) it follows that

∥f ∥4 = 4
(
Re

∫
R
x f (x) f ′(x) dx

)2
≤ 4

∣∣∣ ∫
R
x f (x) f ′(x)dx

∣∣∣2
≤ 4

(∫
R
x2 |f (x)|2 dx

)(∫
R
|f ′(x)|2 dx

)
. (73)

Then by (72) and (73) we obtain the inequality (70) for x0 = ω0 = 0.
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3. As known, the equality in the Cauchy–Schwarz inequality∣∣∣ ∫
R
x f (x) f ′(x) dx

∣∣∣2 = (∫
R
x2 |f (x)|2 dx

)(∫
R
|f ′(x)|2 dx

)
holds if and only if the functions f ′(x) and x f (x) are linearly dependent. Thus the
equality in (73) holds if and only if f ′(x) and x f (x) are linearly dependent and∫
R x f (x) f ′(x) dx is real. Therefore for some a+ b i ∈ C \ {0}, we obtain the
differential equation

f ′(x) + (a+ b i) x f (x) = 0 , x ∈ R ,

which has the general (nonzero) solution f (x) = C e−(a+b i) x2/2, x ∈ R, with an
arbitrary complex constant C ̸= 0. By f ∈ L2(R) we have a > 0. Since

−
∫
R
x f (x) f ′(x) dx = |C |2 (a+ b i)

∫
R
x2 e−a x2/2 dx

is real, we obtain b = 0. Consequently, we have equality in (70) with x0 = ω0 = 0 only
for f (x) = C e−a x2/2, x ∈ R.
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4. In the general case with any x0, ω0 ∈ R, we introduce the function

g(x) := e−iω0(x+x0) f (x + x0) , x ∈ R . (74)

Obviously, g ∈ L2(R) is nonzero. By Theorem 44, this function g has the Fourier
transform

ĝ(ω) = ei(ω+ω0)x0 f̂ (ω + ω0) , ω ∈ R ,

such that

∆0g =

∫
R
x2 |f (x + x0)|2 dx = ∆x0f ,

∆0ĝ =

∫
R
ω2 |f̂ (ω + ω0)|2 dω = ∆ω0 f̂ .

Thus we obtain by step 2 that(
∆x0f

) (
∆ω0 f̂

)
=
(
∆0g

) (
∆0ĝ

)
≥ 1

4
.
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5. From the equality
(
∆0g

) (
∆0ĝ

)
= 1

4 it follows by step 3 that g(x) = C e−ax2/2

with C ∈ C and a > 0. By the substitution (74) we see that the equality in (70) means
that f has the form (71).
The average time of a nonzero function f ∈ L2(R) is defined by

x∗ :=
1

∥f ∥2
∫
R
x |f (x)|2 dx .

This value exists and is a real number, if
∫
R |x | |f (x)|2 dx <∞. For a nonzero function

f ∈ L2(R) with x∗ ∈ R, the quantity ∆x∗f is the so-called temporal variance of f .
Analogously, the average frequency of the Fourier transform f̂ ∈ L2(R) is defined by

ω∗ :=
1

∥f̂ ∥2
∫
R
ω |f̂ (ω)|2 dω .

For a Fourier transform f̂ with ω∗ ∈ R, the quantity ∆ω∗ f̂ is the so-called frequency
variance of f̂ .
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Example 67

The normalized Gaussian function in (69) has the average time zero and the temporal

variance ∆0f = σ2

2 , where σ > 0 denotes the standard deviation. Its Fourier transform

has the average frequency zero and the frequency variance ∆0f̂ = 1
2σ2 .

Lemma 68

For each nonzero function f ∈ L2(R) with finite average time x∗, it holds the estimate

∆x0f = ∆x∗f + (x∗ − x0)
2 ≥ ∆x∗f

for any x0 ∈ R.
Similarly, for each nonzero function f ∈ L2(R) with finite average frequency ω∗ of f̂ it
holds the estimate

∆ω0 f̂ = ∆ω∗ f̂ + (ω∗ − ω0)
2 ≥ ∆ω∗ f̂

for any ω0 ∈ R.
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Proof: From

(x − x0)
2 = (x − x∗)2 + 2 (x − x∗)(x∗ − x0) + (x∗ − x0)

2

it follows immediately that∫
R
(x − x0)

2 |f (x)|2 dx =

∫
R
(x − x∗)2 |f (x)|2 dx + 0 + (x∗ − x0)

2 ∥f ∥2

and hence
∆x0f = ∆x∗f + (x∗ − x0)

2 ≥ ∆x∗f .

Analogously, one can show the second result.
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Applying Theorem 66 in the special case x0 = x∗ and ω0 = ω∗, we obtain the following
corollary.

Corollary 69

For any nonzero function f ∈ L2(R) with finite average time x∗ and finite average
frequency ω∗, the inequality (

∆x∗f
) (

∆ω∗ f̂
)
≥ 1

4

is fulfilled. The equality in above inequality holds if and only if

f (x) = C eiω
∗x e−a(x−x∗)2/2 , x ∈ R ,

with some a > 0 and complex constant C ̸= 0.
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Windowed Fourier transform

The Fourier transform f̂ contains frequency information of the whole function
f ∈ L2(R). Now we are interested in simultaneous information about time and
frequency of a given function f ∈ L2(R). In time–frequency analysis we ask for
frequency information of f near certain time. Analogously, we are interested in the
time information of the Fourier transform f̂ near certain frequency. Therefore we
localize the function f and its Fourier transform f̂ by using windows.
A real, even nonzero function ψ ∈ L2(R), where ψ and ψ̂ are localized near zero, is
called a window function or window. Thus ψ̂ is a window too.

213 / 373



Example 70

Let L > 0 be fixed. Frequently applied window functions are the

rectangular window ψ(x) = 1[−L, L](x) ,

the triangular window ψ(x) =
(
1− |x |

L

)
1[−L, L](x) ,

the Gaussian window with deviation σ > 0

ψ(x) =
1√
2πσ2

e−x2/(2σ2) ,

the Hanning window ψ(x) = 1
2

(
1 + cos πxL

)
1[−L, L](x) ,

and the Hamming window

ψ(x) =
(
0.54 + 0.46 cos

πx

L

)
1[−L, L](x) .
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Using the shifted window ψ(· − b), we consider the product f ψ(· − b) which is
localized in some neighborhood of b ∈ R. Then we form the Fourier transform of the
localized function f ψ(· − b). The mapping Fψ : L2(R) → L2(R2) defined by

(Fψf )(b, ω) :=
∫
R
f (x)ψ(x − b) e−iωx dx = ⟨f , Ψb,ω⟩L2(R) (75)

with the time–frequency atom

Ψb,ω(x) := ψ(x − b) eiωx , x ∈ R ,

is called windowed Fourier transform or short time Fourier transform (STFT) .
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Note that the time–frequency atom Ψb,ω is concentrated in time b and in frequency ω.
A special case of the windowed Fourier transform is the Gabor transform (Gabor 1946)
which uses a Gaussian window. The squared magnitude |(Fψf )(b, ω)|2 of the
windowed Fourier transform is called spectrogram of f with respect to ψ.
The windowed Fourier transform Fψf can be interpreted as a joint time–frequency
information of f . Thus (Fψf )(b, ω) can be considered as a measure for the amplitude
of a frequency band near ω at time b.
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We choose the Gaussian window ψ with deviation σ = 1, i.e.

ψ(x) :=
1√
2π

e−x2/2 , x ∈ R ,

and consider the L2(R) function f (x) := ψ(x) eiω0x with fixed frequency ω0 ∈ R. We
show that the frequency ω0 can be detected by windowed Fourier transform Fψf which
reads as follows

(Fψf )(b, ω) =
1

2π
e−b2/2

∫
R
e−x2 ebx+i(ω0−ω)x dx .
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From the Fourier transform of the Gaussian we know that∫
R
e−x2 eiωx dx =

√
π e−ω

2/4

and hence we obtain by substitution that

(Fψf )(b, ω) =
1

2
√
π
e−b2/4 e−(ω0−ω)2/4 eib(ω0−ω)/2 .

Thus the spectrogram is given by∣∣(Fψf )(b, ω)∣∣2 = 1

4π
e−b2/2 e−(ω0−ω)2/2 .

For each time b ∈ R, the spectrogram has its maximum at the frequency ω = ω0. In
practice, one can detect ω0 only, if |b| is not too large.
The following identity combines f and f̂ in a joint time–frequency representation.
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Lemma 71

Let ψ be a window. Then for all time–frequency locations (b, ω) ∈ R2 we have

2π (Fψf )(b, ω) = e−ibω (Fψ̂ f̂ )(ω,−b) .

Proof: Since ψ is real and even by definition, its Fourier transform ψ̂ is real and even
too. Thus ψ̂ is a window too. By Theorem 44 and Parseval’s equality we obtain

2π ⟨f , ψ(· − b) eiω ·⟩L2(R) = ⟨f̂ , ψ̂(· − ω) e−ib(·−ω)⟩L2(R) .

and hence

2π

∫
R
f (x)ψ(x − b) e−iωx dx =

∫
R
f̂ (u) ψ̂(u − ω) eib(u−ω) du

= e−ibω

∫
R
f̂ (u) ψ̂(u − ω) eibu du .

This completes the proof.
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Let ψ be a window function, where the functions x ψ(x) and ω ψ̂(ω) are in L2(R) too.
For all time–frequency locations (b, ω) ∈ R2, the time–frequency atoms
Ψb,ω = ψ(· − b) eiω· and their Fourier transforms Ψ̂b,ω = ψ̂(· − ω) e−ib (·−ω) have

constant energies ∥Ψb,ω∥2 = ∥ψ∥2 and ∥Ψ̂b,ω∥2 = ∥ψ̂∥2 = 2π ∥ψ∥2, respectively. Then
the atom Ψb,ω has the average time x∗ = b and Ψ̂b,ω has the average frequency
ω∗ = ω, since

x∗ =
1

∥ψ∥2
∫
R
x |Ψb,ω(x)|2 dx =

1

∥ψ∥2
∫
R
(x + b) |ψ(x)|2 dx = b ,

ω∗ =
1

∥ψ̂∥2
∫
R
u |Ψ̂b,ω(u)|2 du =

1

∥ψ̂∥2
∫
R
(u + ω) |ψ̂(u)|2 du = ω .
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Further, the temporal variance of the time–frequency atom Ψb,ω is invariant for all
time–frequency locations (b, ω) ∈ R2, because

∆bΨb,ω =
1

∥ψ∥2
∫
R
(x − b)2 |Ψb,ω(x)|2 dx

=
1

∥ψ∥2
∫
R
x2 |ψ(x)|2 dx = ∆0ψ .

Analogously, the frequency variance of Ψ̂b,ω is constant for all time–frequency
locations (b, ω) ∈ R2, because

∆ωΨ̂b,ω =
1

∥ψ̂∥2
∫
R
(u − ω)2 |Ψ̂b,ω(u)|2 du

=
1

∥ψ̂∥2
∫
R
u2 |ψ̂(u)|2 du = ∆0ψ̂ .

For arbitrary f ∈ L2(R), we obtain by Parseval’s equality

2π (Fψ)(b, ω) = 2π ⟨f , Ψb,ω⟩L2(R) = ⟨f̂ , Ψ̂b,ω⟩L2(R) .
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Hence the value (Fψ)(b, ω) contains information on f in the time–frequency window
resp. Heisenberg box[

b −
√
∆0ψ, b +

√
∆0ψ

]
×
[
ω −

√
∆0ψ̂, ω +

√
∆0ψ̂

]
,

since the deviation is the square root of the variance. Note that the area of the
Heisenberg box cannot become arbitrary small, i.e., it holds by Heisenberg’s
uncertainty principle (see Corollary 69) that(

2
√
∆0ψ

) (
2

√
∆0ψ̂

)
≥ 2.

The size of the Heisenberg box is independent of the time–frequency location
(b, ω) ∈ R2. This means that a windowed Fourier transform has the same resolution
across the whole time–frequency plane R2.
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Theorem 72

Let ψ be a window function. Then for f , g ∈ L2(R) the following relation holds true:

⟨Fψf , Fψg⟩L2(R2) = 2π ∥ψ∥2L2(R) ⟨f , g⟩L2(R) .

In particular, for ∥ψ∥L2(R) = 1 the energies of Fψf and f are equal up to the factor 2π,

∥Fψf ∥2L2(R2) = 2π ∥f ∥2L2(R) .
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Proof: 1. First, let ψ ∈ L1(R) ∩ L∞(R). Then we have

⟨Fψf ,Fψg⟩L2(R2) =

∫
R

∫
R
(Fψf )(b, ω) (Fψg)(b, ω) dω db .

We consider the inner integral∫
R
(Fψf )(b, ω) (Fψg)(b, ω)dω =

∫
R
(f ψ(· − b))̂ (ω) (g ψ(· − b))̂ (ω) dω .

By ∫
R
|f (x)ψ(x − b)|2 dx ≤ ∥ψ∥2L∞(R) ∥f ∥2L2(R) <∞

we see that f ψ ∈ L2(R) such that we can apply Parseval’s equality∫
R
(Fψf )(b, ω) (Fψg)(b, ω)dω = 2π

∫
R
f (x) g(x) |ψ(x − b)|2 dx .

Using this in the above inner product results in

⟨Fψf , Fψg⟩L2(R2) = 2π

∫
R

∫
R
f (x) g(x) |ψ(x − b)|2 dx db .
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Since f , g ∈ L2(R), we see as in the above argumentation that the absolute integral
exists. Hence we can change the order of integration by Fubini’s theorem which results
in

⟨Fψf , Fψg⟩L2(R2) = 2π

∫
R
f (x) g(x)

∫
R
|ψ(x − b)|2 db dx

= 2π ∥ψ∥2L2(R) ⟨f , g⟩L2(R) .

2. Let f , g ∈ L2(R) be fixed. By ψ 7→ ⟨Fψf ,Fψg⟩L2(R2) a continuous functional is
defined on L1(R) ∩ L∞(R). Now L1(R) ∩ L∞(R) is a dense subspace of L2(R). By the
Hahn–Banach theorem this can be uniquely extended to a functional on L2(R), where
⟨f , g⟩L2(R) is kept.
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Remark 73

By Theorem 72 we know that∫
R
|f (x)|2 dx =

1

2π

∫
R

∫
R
|(Fψf )(b, ω)|2 db dω .

Hence the spectrogram |(Fψf )(b, ω)|2 can be interpreted as an energy density, i.e., the
time–frequency rectangle [b, b +∆b]× [ω, ω +∆ω] corresponds to the energy

1

2π
|(Fψf )(b, ω)|2∆b ∆ω .

By Theorem 72 the windowed Fourier transform represents a univariate signal
f ∈ L2(R) by a bivariate function Fψf ∈ L2(R2). Conversely, from given windowed
Fourier transform Fψf one can recover the function f :
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Corollary 74

Let ψ be a window function with ∥ψ∥L2(R) = 1. Then for all f ∈ L2(R) it holds the
representation formula

f (x) =
1

2π

∫
R

∫
R
(Fψf )(b, ω) ψ(x − b) eiωx db dω ,

where the integral is meant in the weak sense.

Proof: Let

f̃ (x) :=

∫
R

∫
R
(Fψf )(b, ω)ψ(x − b) eiωx db dω , x ∈ R .

By Theorem 72 we obtain

⟨f̃ , h⟩L2(R) =
∫
R

∫
R
(Fψf )(b, ω) ⟨ψ(· − b) ei·ω, h⟩L2(R) db dω

= ⟨Fψf , Fψh⟩L2(R2) = 2π ⟨f , h⟩L2(R)
for all h ∈ L2(R) so that f̃ = 2π f in L2(R).

227 / 373



A typical application of this time–frequency analysis consists in the following three
steps:
1. For a given (noisy) signal f ∈ L2(R) compute the windowed Fourier transform Fψf
with respect to a suitable window ψ.
2. Then (Fψf )(b, ω) is transformed into a new function g(b, ω) by so-called signal
compression. Usually, (Fψf )(b, ω) is truncated to a region of interest where
|(Fψf )(b, ω)| is larger than a given threshold.
3. By the compressed function g compute an approximate signal f̃ (of the given signal
f ) by a modified reconstruction formula of Corollary 74

f̃ (x) =
1

2π

∫
R

∫
R
g(b, ω) φ(x − b) eiωx db dω ,

where φ is a convenient window. Note that distinct windows ψ and φ may be used in
steps 1 and 3.
For application of the windowed Fourier transform in music analysis we refer to
paperes of C. Févotte, see, e.g. [4].
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Motivations for discrete Fourier transforms

We start with introducing the discrete Fourier transform.
For a given vector a = (aj)

N−1
j=0 ∈ CN we call the vector â = (âk)

N−1
k=0 ∈ CN the discrete

Fourier transform of a if

âk =
N−1∑
j=0

aje
−2πijk/N =

N−1∑
j=0

ajw
jk
N , k = 0, . . . ,N − 1 , (76)

where

wN := e−2πi/N = cos
2π

N
− i sin

2π

N
. (77)

Obviously, wN ∈ C is a primitive Nth root of unity, because wN
N = 1 and wk

N ̸= 1 for
k = 1, . . . ,N − 1. Since

(wk
N)

N =
(
e−2πik/N

)N
= e−2πik = 1 ,

all numbers wk
N , k = 0, . . . ,N − 1 are Nth roots of unity and form the vertices of a

regular N-gon inscribed in the complex unit circle.
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In this section we will show that the discrete Fourier transform naturally comes into
play for the numerical solution of following fundamental problems:

• computation of Fourier coefficients of a function f ∈ C (T),
• computation of the values of a trigonometric polynomial on a uniform grid of the
interval [0, 2π),

• calculation of the continuous Fourier transform of a function f ∈ L1(R)∩C (R) on
a uniform grid of an interval [−nπ, nπ) with certain n ∈ N,

• interpolation by trigonometric polynomials on a uniform grid.
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Approximation of Fourier coefficients and aliasing formula

First we describe a numerical approach to compute the Fourier coefficients ck(f ),
k ∈ Z, of a given function f ∈ C (T), where f is given by its values sampled on the
uniform grid

{2πj
N

: j = 0, . . . ,N − 1}.

Assume that N ∈ N is even. Using the trapezoidal rule for numerical integration, we
can compute ck(f ) for each k ∈ Z approximately.
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By f (0) = f (2π) we find that

ck(f ) =
1

2π

∫ 2π

0
f (t) e−ikt dt

≈ 1

2N

N−1∑
j=0

[
f
(2πj
N

)
e−2πijk/N + f

(2π(j + 1)

N

)
e−2πi(j+1)k/N

]

=
1

2N

N−1∑
j=0

f
(2πj
N

)
e−2πijk/N +

1

2N

N∑
j=1

f
(2πj
N

)
e−2πijk/N

=
1

N

N−1∑
j=0

f
(2πj
N

)
e−2πijk/N , k ∈ Z .

Thus we obtain

f̂k :=
1

N

N−1∑
j=0

f
(2πj
N

)
w jk
N (78)

as approximate values of ck(f ).
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If f is real-valued, then we observe the symmetry relation

f̂k = f̂ −k , k ∈ Z .

Obviously, the values f̂k are N-periodic, i.e. f̂k+N = f̂k for all k ∈ Z, since wN
N = 1.

However, by the Lemma 24 of Riemann–Lebesgue we know that ck(f ) → 0 as
|k | → ∞. Therefore, f̂k is only an acceptable approximation of ck(f ) for small |k |, i.e.,

f̂k ≈ ck(f ) , k = −N

2
, . . . ,

N

2
− 1 .
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Example 75

Let f be the 2π-periodic extension of the pulse function

f (x) :=


1 x ∈ (−π

2 ,
π
2 ) ,

1
2 x ∈ {−π

2 ,
π
2 } ,

0 x ∈ [−π, −π
2 ) ∪ (π2 , π) .

Note that f is even. Then its Fourier coefficients read for k ∈ Z \ {0} as follows

ck(f ) =
1

2π

∫ π

−π
f (x) e−ikx dx =

1

π

∫ π/2

0
cos(kx)dx =

1

πk
sin

πk

2

and c0(f ) =
1
2 .
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Example 75 (continue)

For fixed N ∈ 4N, we obtain the related approximate values

f̂k =
1

N

N/2−1∑
j=−N/2

f
(2πj
N

)
w jk
N

=
1

N

(
cos

πk

2
+ 1 + 2

N/4−1∑
j=1

cos
2πjk

N

)
k ∈ Z .

Hence we have f̂k = 1
2 for k ∈ N Z. Using the Dirichlet kernel DN/4−1 with (13), it

follows that for k ∈ Z \ (N Z)

f̂k =
1

N

(
cos

πk

2
+ DN/4−1

(2πk
N

))
=

1

N
sin

πk

2
cot

πk

N
.

This example illustrates the different asymptotic behavior of the Fourier coefficients
ck(f ) and its approximate values f̂k for |k | → ∞.
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To see this effect more clearly, we will derive a so-called aliasing formula for Fourier
coefficients. To this end we use the following notations. As usual, δj , j ∈ Z, denotes
the Kronecker symbol with

δj :=

{
1 j = 0 ,

0 j ̸= 0 .

For j ∈ Z, we denote the nonnegative residue modulo N ∈ N by (j mod N), where
(j mod N) ∈ {0, . . . ,N − 1} and N is a divisor of j − (j mod N). Note that we have
for all j , k ∈ Z

(j k) mod N =
(
(j mod N) k

)
mod N . (79)

236 / 373



Lemma 76

Let N ∈ N be given. For each j ∈ Z, the primitive Nth root of unity wN has the
property

N−1∑
k=0

w jk
N = N δj mod N , (80)

where

δj mod N :=

{
1 j modN = 0 ,

0 j modN ̸= 0

denotes the N-periodic Kronecker symbol.
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Proof: In the case j modN = 0 we have j = ℓN with certain ℓ ∈ Z and hence
w j
N = (wN

N )ℓ = 1. This yields (80) for j modN = 0.
In the case j modN ̸= 0 we have j = ℓN +m with certain ℓ ∈ Z and
m ∈ {1, . . . ,N − 1} such that w j

N = (wN
N )ℓ wm

N = wm
N ̸= 1. For arbitrary x ̸= 1, it holds

N−1∑
k=0

xk =
xN − 1

x − 1
.

For x = w j
N we obtain (80) for j modN ̸= 0.

Lemma 76 can be used to prove the following aliasing formula, which describes the
relation between the Fourier coefficients ck(f ) and their approximate values f̂k .
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Theorem 77 (Aliasing formula for Fourier coefficients)

Let f ∈ C (T) be given. Assume that the Fourier coefficients of f satisfy the condition∑
k∈Z|ck(f )| <∞. Then the aliasing formula

f̂k =
∑
ℓ∈Z

ck+ℓN(f ) , k ∈ Z (81)

holds.

Proof: Using Theorem 34, the Fourier series of f converges uniformly to f . Hence for
each x ∈ T,

f (x) =
∑
ℓ∈Z

cℓ(f ) e
iℓx .

For x = 2πj
N , j = 0, . . . ,N − 1, we obtain that

f
(2πj
N

)
=
∑
ℓ∈Z

cℓ(f ) e
2πijℓ/N =

∑
ℓ∈Z

cℓ(f )w
−ℓj
N .
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Hence due to (78) and the convergence of the Fourier series

f̂k =
1

N

N−1∑
j=0

(∑
ℓ∈Z

cℓ(f )w
−jℓ
N

)
w jk
N =

1

N

∑
ℓ∈Z

cℓ(f )
N−1∑
j=0

w
j(ℓ−k)
N

which yields by (80) the aliasing formula (81).

By Theorem 77 we have no aliasing effect if f is a trigonometric polynomial of degree
< N

2 , i.e. for

f =

N/2−1∑
k=−N/2+1

ck(f ) e
2πik·

we have f̂k = ck(f ), k = −N/2 + 1, . . . ,N/2− 1.
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Corollary 78

With the assumptions of Theorem 77, the error estimate

|f̂k − ck(f )| ≤
∑
ℓ̸=0

|ck+ℓN(f )| (82)

holds for k = −N
2 , . . . ,

N
2 − 1. Especially for f ∈ C r (T), r ∈ N, with the property

|ck(f )| ≤
c

|k|r+1
, k ̸= 0 , (83)

where c > 0 is a constant, we have the error estimate

|f̂k − ck(f )| ≤
c

r N r+1

((1
2
+

k

N

)−r
+
(1
2
− k

N

)−r
)

(84)

for |k | < N
2 .
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Proof: The estimate (82) immediately follows from the aliasing formula (81) by
triangle inequality. With the assumption (83), formula (82) implies that

|f̂k − ck(f )| ≤
∞∑
ℓ=1

(
|ck+ℓN(f )|+ |ck−ℓN(f )|

)
≤ c

N r+1

∞∑
ℓ=1

(∣∣ℓ+ k

N

∣∣−r−1
+
∣∣ℓ− k

N

∣∣−r−1
)
.

For |s| < 1
2 and ℓ ∈ N, it can be simply checked that(

ℓ+ s
)−r−1

<

∫ ℓ+1/2

ℓ−1/2
(x + s)−r−1 dx ,

since the function g(x) = (x + s)−r−1 is convex and monotonically decreasing. Hence

∞∑
ℓ=1

(
ℓ+ s

)−r−1
<

∫ ∞

1/2
(x + s)−r−1 dx =

1

r

(1
2
+ s
)−r

,

since for s = ± k
N with |k | < N

2 we have |s| < 1
2 . This completes the proof of (84).
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Computation of Fourier series and the continuous Fourier
transform

First we study the computation of a trigonometric polynomial p ∈ Tn, n ∈ N, on a
uniform grid of [0, 2π). Choosing N ∈ N with N ≥ 2n + 1, we want to calculate the
value of p =

∑n
j=−n cj e

ij · at all grid points 2πk
N for k = 0, . . . ,N − 1, where the

coefficients cj ∈ C are given. Using (77) we have

p
(2πk

N

)
=

n∑
j=−n

cj e
2πijk/N =

n∑
j=−n

cj w
−jk
N

=
n∑

j=0

c−j w
jk
N +

n∑
j=1

cj w
(N−j)k
N

=
n∑

j=0

c−j w
jk
N +

N−1∑
j=N−n

cN−j w
jk
N . (85)
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Introducing the entries

dj :=


c−j j = 0, . . . , n ,
0 j = n + 1, . . . ,N − n − 1 ,
cN−j j = N − n, . . . ,N − 1 ,

we obtain

p
(2πk

N

)
=

N−1∑
j=0

dj w
jk
N , k = 0, . . . ,N − 1 , (86)

which can be interpreted as a discrete Fourier transform of length N.
Now, in order to evaluate a Fourier series on a uniform grid of an interval of length 2π,
we use their partial sum p = Snf as an approximation. For smooth functions, the
Fourier series converges rapidly, see Theorem 36, such that we can approximate the
Fourier series arbitrarily exactly by choosing the polynomial degree n properly.
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Next we sketch the computation of the continuous Fourier transform f̂ of a given
function f ∈ L1(R) ∩ C (R). Since f (x) → 0 for |x | → ∞, we obtain for sufficiently
large n ∈ N that

f̂ (v) =

∫ ∞

−∞
f (x) e−ixv dx ≈

∫ nπ

−nπ
f (x) e−ixv dx , v ∈ R .

Using the uniform grid {2πj
N : j = −nN

2 , . . . ,
nN
2 − 1} of the interval [−nπ, nπ) for even

n ∈ N, we approximate the integral by the rectangle rule,∫ nπ

−nπ
f (x) e−ixv dx ≈ 2π

N

nN/2−1∑
j=−nN/2

f
(2πj
N

)
e−2πijv/N .

For v = k
n with k = −nN

2 , . . . ,
nN
2 − 1 we find the following approximate value of f̂

(
k
n

)
,

f̂
(k
n

)
≈ 2π

N

nN/2−1∑
j=−nN/2

f
(2πj
N

)
w jk
nN . (87)
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This is indeed a discrete Fourier transform of length nN when we shift the summation
index similarly as in (85). Here, as before when evaluating the Fourier coefficients, the
approximation is only acceptable for the |k | ≤ nN

2 since the values f̂ (kn ) are periodic

while the Fourier transform decays with limν→∞ |f̂ (ν)| = 0.

Finally we consider the interpolation by a trigonometric polynomial on a uniform grid
of [0, 2π). First we discuss the trigonometric interpolation with an odd number of
equidistant nodes

xk :=
2πk

2n + 1
∈ [0, 2π), k = 0, . . . , 2n.
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Trigonometric polynomial interpolation

Lemma 79

Let n ∈ N be given and N = 2n + 1. For arbitrary pk ∈ C, k = 0, . . . ,N − 1, there
exists a unique trigonometric polynomial of degree n,

p =
n∑

ℓ=−n

cℓ e
iℓ· ∈ Tn (88)

satisfying the interpolation conditions

p(xk) = p
( 2πk

2n + 1

)
= pk , k = 0, . . . , 2n . (89)

The coefficients cℓ ∈ C of (88) are given by

cℓ =
1

2n + 1

2n∑
k=0

pk w
ℓk
N , ℓ = −n, . . . , n . (90)
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Lemma 79 (continue)

Using the Dirichlet kernel Dn, the interpolating trigonometric polynomial (88) can be
written in the form

p =
1

2n + 1

2n∑
k=0

pk Dn(· − xk) . (91)

Proof: 1. From the interpolation conditions (89) it follows by (77) that solving the
trigonometric interpolation problem is equivalent to solving the system of linear
equations

p(xk) =
n∑

ℓ=−n

cℓ w
−ℓk
N = pk , k = 0, . . . , 2n . (92)

Assume that cℓ ∈ C solve (92). Then by Lemma 76 we obtain

2n∑
k=0

pk w
jk
N =

2n∑
k=0

( n∑
ℓ=−n

cℓ w
−kℓ
N

)
w jk
N =

n∑
ℓ=−n

cℓ

( 2n∑
k=0

w
(j−ℓ)k
N

)
= (2n + 1) cj .
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Hence any solution of (92) has to be of the form (90).
On the other hand, for cℓ given by (90) we find by Lemma 76 that for k = 0, . . . , 2n

p
( 2πk

2n + 1
) = p(xk) =

n∑
ℓ=−n

cℓ w
−ℓk
N =

1

2n + 1

n∑
ℓ=−n

( 2n∑
j=0

pj w
jℓ
N

)
w−ℓk
N

=
1

2n + 1

2n∑
j=0

pj

( n∑
ℓ=−n

w
(j−k)ℓ
N

)
= pk .

Thus the linear system (92) is uniquely solvable.
2. From (88) and (90) it follows by c−ℓ = cN−ℓ, ℓ = 1, . . . , n, that

p(x) = c0 +
n∑
ℓ=1

(
cℓ e

iℓx + cN−ℓ e
−iℓx

)
=

1

2n + 1

2n∑
k=0

pk

(
1 +

n∑
ℓ=1

(
eiℓ(x−xk ) + e−iℓ(x−xk )

))
and we conclude (91) by the definition (12) of the Dirichlet kernel Dn.
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Formula (91) particularly implies that the trigonometric Lagrange polynomials ℓk ∈ Tn
with respect to the uniform grid {xk = 2πk

2n+1 : k = 0, . . . , 2n} are given by

ℓk :=
1

2n + 1
Dn(· − xk) , k = 0, . . . , 2n .

By Lemma 79 the trigonometric Lagrange polynomials ℓk , k = 0, . . . ,N − 1, form a
basis of Tn and satisfy the interpolation conditions

ℓk(xj) = δj−k , j , k = 0, . . . , 2n .

Further, the trigonometric Lagrange polynomials generate a partition of unity, since
(91) yields for p = 1 that

1 =
1

2n + 1

2n∑
k=0

pk Dn(· − xk) =
2n∑
k=0

ℓk . (93)

Now we consider the trigonometric interpolation for an even number of equidistant
nodes x∗k := πk

n ∈ [0, 2π), k = 0, . . . , 2n − 1.
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Lemma 80

Let n ∈ N be given and N = 2n. For arbitrary p∗k ∈ C, k = 0, . . . , 2n− 1, there exists a
unique trigonometric polynomial of the special form

p∗ =
n−1∑
ℓ=1−n

c∗ℓ e
iℓ· +

1

2
c∗n
(
ein· + e−in·) ∈ Tn (94)

satisfying the interpolation conditions

p∗
(2πk
2n

)
= p∗k , k = 0, . . . , 2n − 1 . (95)

The coefficients c∗ℓ ∈ C of (94) are given by

c∗ℓ =
1

2n

2n−1∑
k=0

p∗k w
ℓk
N , ℓ = 1− n, . . . , n . (96)

The interpolating trigonometric polynomial (94) can be written in the form
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Lemma 80 (continue)

p∗ =
1

2n

2n−1∑
k=0

p∗k D
∗
n(· − x∗k ) , (97)

where D∗
n := Dn − cos(n ·) denotes the modified nth Dirichlet kernel.

A proof of Lemma 80 is omitted here, since this result can be similarly shown as
Lemma 79.

Remark 81

By sin(nx∗k ) = sin(πk) = 0 for k = 0, . . . , 2n − 1, each trigonometric polynomial
p∗ + c sin(n ·) with arbitrary c ∈ C is a solution of the trigonometric interpolation
problem (95). Therefore the restriction to trigonometric polynomials of the special
form (94) is essential for the unique solvability of the trigonometric interpolation
problem (95).
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Formula (97) implies that the trigonometric Lagrange polynomials ℓ∗k ∈ Tn with
respect to the uniform grid {x∗k = πk

n : k = 0, . . . , 2n − 1} are given by

ℓ∗k :=
1

2n
D∗
n(· − x∗k ) , k = 0, . . . , 2n − 1 .

By Lemma 80 the 2n trigonometric Lagrange polynomials ℓ∗k are linearly independent,
but they do not form a basis of Tn, since dim Tn = 2n + 1.
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Fourier matrix and discrete Fourier transform

For fixed N ∈ N, we consider the vectors a = (aj)
N−1
j=0 and b = (bj)

N−1
j=0 with

components aj , bj ∈ C. As usual, the inner product and the Euclidean norm in the
vector space CN are defined by

⟨a, b⟩ := a⊤b =
N−1∑
j=0

aj bj , ∥a∥2 :=

√√√√N−1∑
j=0

|aj |2 .
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Lemma 82

Let N ∈ N be given and wN := e−2πi/N . Then the set of the exponential vectors

ek :=
(
w jk
N

)N−1

j=0
, k = 0, . . . ,N − 1, forms an orthogonal basis of CN , where

∥ek∥2 =
√
N for each k = 0, . . . ,N − 1. Any a ∈ CN can be represented in the form

a =
1

N

N−1∑
k=0

⟨a, ek⟩ ek . (98)

The set of complex conjugate exponential vectors ek =
(
w−jk
N

)N−1

j=0
, k = 0, . . . ,N − 1,

forms also an orthogonal basis of CN .
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Proof: For k , ℓ ∈ {0, . . . ,N − 1}, the inner product ⟨ek , eℓ⟩ can be calculated by
Lemma 76 such that

⟨ek , eℓ⟩ =
N−1∑
j=0

w
(k−ℓ)j
N = N δ(k−ℓ) mod N .

Thus {ek : k = 0, . . . ,N − 1} is an orthogonal basis of CN , because the N exponential
vectors ek are linearly independent and dim CN = N. Consequently, each vector
a ∈ CN can be expressed in the form (98). Analogously, the vectors ek ,
k = 0, . . . ,N − 1, form an orthogonal basis of CN .
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The N-by-N Fourier matrix is defined by

FN :=
(
w jk
N

)N−1

j ,k=0
=


1 1 . . . 1

1 wN . . . wN−1
N

...
...

...

1 wN−1
N . . . wN

 .

Due to the properties of the primitive Nth root of unity wN , the Fourier matrix FN

consists of only N distinct entries. Obviously, FN is symmetric, FN = F⊤
N , but not

Hermitian for N > 2. The columns of FN are the vectors ek of the orthogonal basis of
CN such that by Lemma 82

F⊤
N FN = N IN , (99)

where IN denotes the N-by-N identity matrix. Hence the scaled Fourier matrix 1√
N
FN

is unitary.
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The linear map from CN to CN , which is represented as the matrix vector product

â = FN a =
(
⟨a, ek⟩

)N−1

k=0
, a ∈ CN ,

is called discrete Fourier transform of length N and abbreviated by DFT(N). The

transformed vector â =
(
âk
)N−1

k=0
is called the discrete Fourier transform (DFT) of

a =
(
aj
)N−1

j=0
and we have

âk = ⟨a, ek⟩ =
N−1∑
j=0

aj w
jk
N , k = 0, . . . ,N − 1 . (100)

In practice, one says that the DFT(N) maps from time domain CN to frequency
domain CN .
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The main importance of the DFT arises from the fact that there exist fast and
numerically stable algorithms for its computation.

Example 83

For N ∈ {2, 3, 4} we obtain the Fourier matrices

F2 =

(
1 1
1 −1

)
, F3 =

 1 1 1
1 w3 w3

1 w3 w3

 , F4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


with w3 = −1

2 −
√
3
2 i. Figure 11 displays both real and imaginary part of the Fourier

matrix F16 and a plot of the second row of both below. In the grayscale images, white
corresponds to the value 1 and black corresponds to -1.
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ReF16 =
(
cos

πjk

8

)15
j ,k=0

, ImF16 = −
(
sin

πjk

8

)15
j ,k=0

.

15

−1

1

15

−1

1

Figure 11: Grayscale images of real and imaginary part of the Fourier matrix F16 (top left and
right, respectively) and the corresponding second rows (bottom).
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Remark 84

Let N ∈ N with N > 1 be given. Obviously we can compute the values

âk =
N−1∑
j=0

aj w
jk
N (101)

for all k ∈ Z. From
w

j(k+N)
N = w jk

N · 1 = w jk
N , k ∈ Z ,

we observe that the resulting sequence (âk)k∈Z is N-periodic. The same is true for the
inverse DFT(N). For a given vector (âk)

N−1
k=0 the sequence (aj)j∈Z with

aj =
1

N

N−1∑
k=0

âk w
−jk
N , j ∈ Z ,

is an N-periodic sequence, since
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Remark 84 (continue)

w
−(j+N)k
N = w−jk

N · 1 = w−jk
N , j ∈ Z .

Thus, the DFT(N) can be extended, mapping an N-periodic sequence (aj)j∈Z to an
N-periodic sequence (âk)

N−1
k=0 . A consequence of this property is the fact that the

DFT(N) of even length N of a complex N-periodic sequence (aj)j∈Z can be formed by

any N-dimensional subvector of (aj)j∈Z. For instance, if we choose (aj)
N/2−1
j=−N/2, then

we obtain the same transformed sequence, since

N/2−1∑
j=−N/2

aj w
jk
N =

N/2∑
j=1

aN−j w
(N−j)k
N +

N/2−1∑
j=0

aj w
jk
N

=
N−1∑
j=0

aj w
jk
N , k ∈ Z .
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Example 85

For given N ∈ 2N, we consider the vector a = (aj)
N−1
j=0 with

aj =


0 j ∈ {0, N

2 } ,
1 j = 1, . . . , N2 − 1 ,

−1 j = N
2 + 1, . . . ,N − 1 .

We determine the DFT(N) of a, i.e., â = (âk)
N−1
k=0 . Obviously, we have â0 = 0. For

k ∈ {1, . . . ,N − 1} we obtain

âk =

N/2−1∑
j=1

w jk
N −

N−1∑
j=N/2+1

w jk
N =

(
1− (−1)k

) N/2−1∑
j=1

w jk
N

and hence âk = 0 for even k .
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Example 85 (continue)

Using
N/2−1∑
j=1

x j =
x − xN/2

1− x
, x ̸= 1 ,

it follows for x = wk
N with odd k that

âk = 2
wk
N − w

kN/2
N

1− wk
N

= 2
wk
N + 1

1− wk
N

= 2
wk
2N + w−k

2N

w−k
2N − wk

2N

= −2i cot
πk

N
.

Thus we receive

âk =

{
0 k = 0, 2, . . . , N − 2 ,

−2i cot πkN k = 1, 3, . . . , N − 1 .
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Example 86

For given N ∈ N \ {1}, we consider the vector a = (aj)
N−1
j=0 with

aj =

{
1
2 j = 0 ,

j
N j = 1, . . . , N − 1 .

Note that the related N-periodic sequence (aj)j∈Z with aj = aj modN , j ∈ Z, is a
sawtooth sequence. Now we calculate the DFT(N) of a, i.e., â = (âk)

N−1
k=0 . Obviously,

we have

â0 =
1

2
+

1

N

N−1∑
j=1

j =
1

2
+

N (N − 1)

2N
=

N

2
.
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Example 86 (continue)

Using the sum formula

N−1∑
j=1

j x j = −(N − 1) xN

1− x
+

x − xN

(1− x)2
, x ̸= 1 ,

we obtain for x = wk
N with k ∈ {1, . . . ,N − 1} that

N−1∑
j=1

j w jk
N =

−(N − 1)

1− wk
N

+
wk
N − 1

(1− wk
N)

2
= − N

1− wk
N

and hence

âk =
1

2
+

1

N

N−1∑
j=1

j w jk
N =

1

2
− 1

1− wk
N

= − 1 + wk
N

2 (1− wk
N)

=
i

2
cot

πk

N
.
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Remark 87

In the literature, the Fourier matrix is not consistently defined. In particular, the

normalization constants differ and one finds for example
(
w−jk
N

)N−1

j ,k=0
, 1√

N

(
w jk
N

)N−1

j ,k=0
,

1
N

(
w jk
N

)N−1

j ,k=0
, and

(
w jk
N

)N
j ,k=1

. Consequently, there exist different forms of the

DFT(N). For the sake of clarity, we emphasize that the DFT(N) is differently defined
in the respective package documentations. For instance, Mathematica uses the
DFT(N) of the form

âk =
1√
N

N∑
j=1

aj w
−(j−1)(k−1)
N , k = 1, . . . ,N .

In Matlab, the DFT(N) is defined by

âk+1 =
N−1∑
j=0

aj+1 w
jk
N , k = 0, . . . ,N − 1 .
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Theorem 88 (Properties of the Fourier matrix)

The Fourier matrix FN is invertible and its inverse reads as follows

F−1
N =

1

N
FN =

1

N

(
w−jk
N

)N−1

j ,k=0
. (102)

The corresponding DFT is a bijective map on CN . The inverse DFT of length N is
given by the matrix-vector product

a = F−1
N â =

1

N

(
⟨â, ek⟩

)N−1

k=0
, â ∈ CN

such that

aj =
1

N
⟨â, ek⟩ =

1

N

N−1∑
k=0

âk w
−jk
N , j = 0, ...,N − 1 . (103)

Proof: Relation (102) follows immediately from (99). Consequently, the DFT(N) is
bijective on CN .
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Lemma 89

The Fourier matrix FN satisfies

F2
N = N J′N , F4

N = N2 IN , (104)

with the flip matrix

J′N :=
(
δ(j+k) mod N

)N−1

j ,k=0
=


1 0 . . . 0
0 0 . . . 1
...

...
...

0 1 . . . 0

 .

Further we have

F−1
N =

1

N
J′N FN =

1

N
FN J′N . (105)
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Proof: Let F2
N =

(
cj ,ℓ
)N−1

j ,ℓ=0
. Using Lemma 76, we find

cj ,ℓ =
N−1∑
k=0

w jk
N wkℓ

N =
N−1∑
k=0

w
(j+ℓ)k
N = N δ(j+ℓ) mod N .

and hence F2
N = N J′N . From (J′N)

2 = IN it follows that

F4
N = F2

N F2
N = (N J′N) (N J′N) = N2 (J′N)

2 = N2 IN .

By N FN J′N = N J′N FN = F3
N and F4

N = N2 IN we finally obtain

F−1
N =

1

N2
F3
N =

1

N
FN J′N =

1

N
J′N FN .

This completes the proof.
Using (105), the inverse DFT(N) can be computed by the same algorithm as the
DFT(N) employing a reordering and a scaling.
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Remark 90

The application of the flip matrix J′N to a vector a = (ak)
N−1
k=0 provides the vector

J′N a =
(
a(−j) mod N

)N−1

j=0
= (a0, aN−1, . . . , a1)

⊤ ,

i.e., the components of a are “flipped”.

Now we want to study the spectral properties of the Fourier matrix in a more detailed
manner. For that purpose, let the counter-identity matrix JN be defined by

JN :=
(
δ(j+k+1) mod N

)N−1

j ,k=0
=

 1
...

1


having nonzero entries 1 only on the main counter-diagonal. Then JNa provides the
reversed vector

JNa =
(
a(−j−1) mod N

)N−1

j=0
= (aN−1, aN−2, . . . , a1, a0)

⊤ .
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DFT and cyclic convolutions

The cyclic convolution of the vectors a = (ak)
N−1
k=0 , b = (bk)

N−1
k=0 ∈ CN is defined as

the vector c = (cn)
N−1
n=0 := a ∗ b ∈ CN with the components

cn =
N−1∑
k=0

ak b(n−k) mod N =
n∑

k=0

ak bn−k +
N−1∑

k=n+1

ak bN+n−k , n = 0, . . . ,N − 1 .

The cyclic convolution in CN is a commutative, associative, and distributive operation

with the unity b0 =
(
δj mod N

)N−1

j=0
= (1, 0, . . . , 0)⊤ which is the so-called pulse vector.

The forward-shift matrix VN is defined by

VN :=
(
δ(j−k−1) mod N

)N−1

j ,k=0
=


0 0 . . . 0 1
1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0

 .
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The application of VN to a vector a = (ak)
N−1
k=0 provides the forward-shifted vector

VNa =
(
a(j−1) mod N

)N−1

j=0
= (aN−1, a0, a1, . . . , aN−2)

⊤ .

Hence we obtain

V2
N :=

(
δ(j−k−2) mod N

)N−1

j ,k=0
=


0 . . . 0 1 0
0 . . . 0 0 1
1 . . . 0 0 0
...

...
...

...
0 . . . 1 0 0


and

V2
Na =

(
a(j−2) mod N

)N−1

j=0
= (aN−2, aN−1, a0, . . . , aN−3)

⊤ .
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Further we have VN
N = IN and

V⊤
N = V−1

N = VN−1
N =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
1 0 0 . . . 0

 ,

which is called backward-shift matrix, since

V−1
N a =

(
a(j+1) mod N

)N−1

j=0
= (a1, a2, . . . , aN−1, a0)

⊤ .

is the backward-shifted vector of a.
The matrix IN − VN is the cyclic difference matrix, since

(IN − VN) a =
(
aj − a(j−1) mod N

)N−1

j=0

= (a0 − aN−1, a1 − a0, . . . , aN−1 − aN−2)
⊤ .

We observe that
IN + VN + V2

N + . . .+ VN−1
N =

(
1
)N−1

j ,k=0
.
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We want to characterize all linear maps HN from CN to CN which are shift-invariant,
i.e., satisfy

HN(VNa) = VN(HNa)

for all a ∈ CN . Thus we have HN Vk
N = Vk

N HN , k = 0, . . . ,N − 1. Shift-invariant
maps play an important role for signal filtering. We show that a shift-invariant map
HN can be represented by the cyclic convolution.

Lemma 91

Each shift-invariant, linear map HN from CN to CN can be represented in the form

HN a = a ∗ h , a ∈ CN ,

where h := HN b0 is the impulse response vector of the pulse vector b0.
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Proof: Let bk :=
(
δ(j−k) mod N

)N−1

j=0
, k = 0, . . . ,N − 1, be the standard basis vectors of

CN . Then bk = Vk
N b0, k = 0, . . . ,N − 1. An arbitrary vector a = (ak)

N−1
k=0 ∈ CN can

be represented in the standard basis as

a =
N−1∑
k=0

ak bk =
N−1∑
k=0

ak V
k
N b0 .

Applying the linear, shift-invariant map HN to this vector a, we get

HN a =
N−1∑
k=0

ak HN(V
k
N b0) =

N−1∑
k=0

ak V
k
N (HN b0) =

N−1∑
k=0

ak V
k
N h

=
(
h |VN h | . . . |VN−1

N h
)
a

that means

276 / 373



HN a =


h0 hN−1 . . . h2 h1
h1 h0 . . . h3 h2
...

...
...

...
hN−1 hN−2 . . . h1 h0




a0
a1
...

aN−1


=

( N−1∑
k=0

ak h(n−k) mod N

)N−1

n=0
= a ∗ h .

This completes the proof.
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Now we present the basic properties of DFT(N) and start with an example.

Example 92

Let bk =
(
δ(j−k) mod N

)N−1

j=0
, k = 0, . . . ,N − 1, be the standard basis vectors of CN

and let ek =
(
w jk
N

)N−1

j=0
, k = 0, . . . ,N − 1, be the exponential vectors in Lemma 82

that form the columns of FN . Then we obtain for k = 0, . . . ,N − 1 that

FN bk = ek , FN ek = F2
N bk = N J′N bk = N b(−k) mod N .

In particular we observe that the sparse vectors bk are transformed into non-sparse
vectors ek .
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Example 92 (continue)

Further we obtain that for all k = 0, . . . ,N − 1

FN VN bk = FN b(k+1) mod N = e(k+1) mod N = MN FN bk ,

where MN := diag e1 is the so-called modulation matrix which generates a modulation
or frequency shift by the property MN ek = e(k+1) mod N . Consequently, we have

FN VN = MN FN (106)

and more generally FN Vk
N = Mk

N FN , k = 1, . . . ,N − 1. Transposing the last equation
for k = N − 1, we obtain

V⊤
N FN = V−1

N FN = FN MN , VN FN = FN M−1
N . (107)
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Theorem 93

The DFT(N) possesses the following properties.

1 Linearity: For all a, b ∈ CN and α ∈ C we have

(a+ b)̂ = â+ b̂ , (α a)̂ = α â .

2 Inversion: For all a ∈ CN we have

a = F−1
N â =

1

N
FN â =

1

N
J′N FN â .

3 Flipping property: For all a ∈ CN we have

(J′N a)̂ = J′N â , (a)̂ = J′N â .

4 Shifting in time and frequency domain: For all a ∈ CN we have

(VN a)̂ = MN â , (M−1
N a)̂ = VN â .
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Theorem 93 (continue)

5 Cyclic convolution in time and frequency domain: For all a, b ∈ CN we have

(a ∗ b)̂ = â ◦ b̂ , N (a ◦ b)̂ = â ∗ b̂ ,

where a ◦ b := (ak bk)
N−1
k=0 denotes the componentwise product of the vectors

a = (ak)
N−1
k=0 and b = (bk)

N−1
k=0 .

6 Parseval identity: For all a, b ∈ CN we have

1

N
⟨â, b̂⟩ = ⟨a, b⟩ , 1

N
∥â∥22 = ∥a∥22 .

7 Difference property in time and frequency domain: For all a ∈ CN we have(
(IN − VN) a

)̂
= (IN −MN) â ,

(
(IN −M−1

N ) a
)̂
= (IN − VN) â .
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Theorem 93 (continue)

8 Permutation property: Let p ∈ Z and N be relatively prime. Assume that q ∈ Z
satisfies the condition (p q) mod N = 1 and that the DFT(N) of (aj)

N−1
j=0 ∈ CN is

equal to (âk)
N−1
k=0 . Then the DFT(N) of the permuted vector

(
a(pj) mod N

)N−1

j=0
is

equal to the permuted vector
(
â(qk) mod N

)N−1

k=0
.

Proof: 1. The linearity follows from the definition of the DFT(N).
2. The second property is obtained from (102) and (105).
3. By (102) and (105) we have FN J′N = J′N FN = FN and hence

(J′Na)̂ = FN J′N a = J′N FN a = J′N â ,

(a)̂ = FN a = FN a = J′N FN a = J′N â .
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4. From (106) and (107) it follows that

(VN a)̂ = FN VN a = MN FN a = MN â ,

(M−1
N a)̂ = FN M−1

N a = VN FN a = VN â .

5. Let c = a ∗ b be the cyclic convolution of a and b with the components

cj =
N−1∑
n=0

an b(j−n) mod N , j = 0, . . . ,N − 1 .
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We calculate the components of ĉ =
(
ĉk
)N−1

k=0
and obtain for k = 0, . . . ,N − 1

ĉk =
N−1∑
j=0

( N−1∑
n=0

an b(j−n) mod N

)
w jk
N

=
N−1∑
n=0

an w
nk
N

( N−1∑
j=0

b(j−n) mod N w
((j−n) mod N) k
N

)

=
( N−1∑

n=0

an w
nk
N

)
b̂k = âk b̂k .

Now let c = a ◦ b = (aj bj)
N−1
j=0 . Using the second property, we get

aj =
1

N

N−1∑
k=0

âk w
−jk
N , bj =

1

N

N−1∑
ℓ=0

b̂ℓ w
−jℓ
N , j = 0, . . . ,N − 1 .

284 / 373



Thus we obtain that for j = 0, . . . ,N − 1

cj = aj bj =
1

N2

( N−1∑
k=0

âk w
−jk
N

)( N−1∑
ℓ=0

b̂ℓ w
−jℓ
N

)
=

1

N2

N−1∑
k=0

N−1∑
ℓ=0

âk b̂ℓ w
−j(k+ℓ)
N

=
1

N2

N−1∑
n=0

( N−1∑
k=0

âk b̂(n−k) mod N

)
w−jn
N ,

i.e., c = 1
N F−1

N (â ∗ b̂) and hence N ĉ = â ∗ b̂.
6. For arbitrary a, b ∈ CN we conclude

⟨â, b̂⟩ = a⊤ FN FN b = N a⊤ b = N ⟨a, b⟩ .

7. The difference properties follow directly from the shift properties.
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8. Since p ∈ Z and N are relatively prime, the greatest common divisor of p and N is
one. Then there exist q, M ∈ Z with p q +M N = 1 (see [1, p. 21]). By the
Euler–Fermat theorem (see [1, p. 114]) the (unique modulo N) solution of the linear
congruence p q ≡ 1 (modN) is given by q ≡ pφ(N)−1 (modN), where φ(N) denotes
the Euler totient function.
Now we compute the DFT(N) of the permuted vector

(
a(pj) mod N

)N−1

j=0
. Then the kth

component of the transformed vector reads

N−1∑
j=0

a(pj) mod N w jk
N . (108)

The value (108) does not change if the sum is reordered and the summation index
j = 0, . . . ,N − 1 is replaced by (q ℓ) mod N with ℓ = 0, . . . ,N − 1.
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Indeed, by p q ≡ 1 (modN) and (79) we have

ℓ = (p q ℓ) mod N =
[(
(q ℓ) mod N

)
p
]
mod N

and furthermore

w

(
(q ℓ) mod N

)
k

N = wq ℓ k
N = w

ℓ
(
(q k) mod N

)
N .

Thus we obtain

N−1∑
j=0

a(pj) mod N w jk
N =

N−1∑
ℓ=0

a(p q ℓ) mod N wq ℓ k
N

=
N−1∑
j=0

aℓ w
ℓ
(
(q k) mod N

)
N = â(qk) mod N .

For example, in the special case p = q = −1, the flipped vector
(
a(−j) mod N

)N−1

j=0
is

transformed to the flipped vector
(
â(−k) mod N

)N−1

k=0
.
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Now we analyze the symmetry properties of DFT(N). A vector a = (aj)
N−1
j=0 ∈ CN is

called even, if a = J′N a, i.e. aj = a(N−j) mod N for all j = 0, . . . ,N − 1, and it is called
odd, if a = −J′N a, i.e. aj = −a(N−j) mod N for all j = 0, . . . ,N − 1. For N = 6 the

vector (a0, a1, a2, a3, a2, a1)
⊤ is even and (0, a1, a2, 0, −a2, −a1)

⊤ is odd.

Corollary 94

For a ∈ RN and â = FNa =
(
âj
)N−1

j=0
we have

â = J′N â ,

i.e., âj = â(N−j) mod N , j = 0, . . . ,N − 1. In other words, Re â is even and Im â is odd.
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Proof: By a = a ∈ RN and FN = J′N FN it follows that

J′N â = J′N FN a = FN a = FN a = â .

For â = Re â+ i Im â we obtain

â = Re â− i Im â = J′N â = J′N (Re â) + i J′N (Im â)

and hence Re â = J′N (Re â) and Im â = −J′N (Im â).
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Corollary 95

If a ∈ CN is even/odd, then â = FNa is even/odd.
If a ∈ RN is even, then â = Re â ∈ RN is even.
If a ∈ RN is odd, then â = i Im â ∈ iRN is odd.

Proof: From a = ±J′N a it follows that

â = FN a = ±FN J′N a = ±J′N FN a = ±J′N â .

For even a ∈ RN we obtain by Corollary 94 that â = J′N â = â, i.e., â ∈ RN is even.
Analogously we can show the assertion for odd a ∈ RN .
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Circulant matrices

An N-by-N matrix

circ a :=
(
a(j−k) mod N

)N−1

j ,k=0
=


a0 aN−1 . . . a2 a1
a1 a0 . . . a3 a2
...

...
...

...
aN−1 aN−2 . . . a1 a0

 (109)

is called circulant matrix generated by a = (ak)
N−1
k=0 ∈ CN . The first column of circ a is

equal to a. A circulant matrix is a special Toeplitz matrix in which the diagonals wrap

around. Remember that a Toeplitz matrix is a structured matrix
(
aj−k

)N−1

j ,k=0
for given(

ak
)N−1

k=1−N
∈ C2N−1 such that the entries along each diagonal are constant.
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Example 96

If bk = (δj−k)
N−1
j=0 , k = 0, . . . ,N − 1, denote the standard basis vectors of CN , then

the forward shift matrix VN is a circulant matrix, since VN = circ b1. More generally,
we obtain that

Vk
N = circ bk , k = 0, . . . ,N − 1 .

with V0
N = circ b0 = IN and VN−1

N = V−1
N = circ bN−1. The cyclic difference matrix is

also a circulant matrix, since IN − VN = circ (b0 − b1).
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Circulant matrices and cyclic convolutions of vectors in CN are closely related. From
Lemma 91 it follows that for arbitrary vectors a, b ∈ CN

(circ a)b = a ∗ b .

Using the cyclic convolution property of DFT(N) (see property 5 of Theorem 93), we
obtain that a circulant matrix can be diagonalized by Fourier matrices.

Theorem 97

For each a ∈ CN , the circulant matrix circ a can be diagonalized by the Fourier matrix
FN . We have

circ a = F−1
N

(
diag (FNa)

)
FN . (110)
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Proof: For any b ∈ CN we form the cyclic convolution of a and b. Then by the
convolution property of Theorem 93 we obtain that

FN c = (FN a) ◦ (FN b) =
(
diag (FN a)

)
FN b .

and hence
c = F−1

N

(
diag (FN a)

)
FN b .

On the other hand we have c = (circ a)b such that for all b ∈ CN

(circ a)b = F−1
N

(
diag (FN a)

)
FN b .

This completes the proof of (110).
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Remark 98

Using the decomposition (110), the matrix-vector product (circ a)b can be realized by
employing three DFT(N) and one componentwise vector multiplication. We compute

(circ a)b = F−1
N

(
diag (FNa)

)
FN b = F−1

N (diag â) b̂ = F−1
N (â ◦ b̂) .

As we will see later, one DFT(N) can be realized by O(N logN) arithmetical
operations.
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Corollary 99

For arbitrary a ∈ CN , the eigenvalues of circ a coincide with the components âj ,
j = 0, . . . ,N − 1, of (âj)

N−1
j=0 = FN a. A right eigenvector related to the eigenvalue âj ,

j = 0, . . . ,N − 1, is the complex conjugate exponential vector ej = (w−jk
N )N−1

k=0 and a
left eigenvector of âj is e

⊤
j , i.e.,

(circ a) ej = âj ej , e⊤j (circ a) = âj e
⊤
j . (111)
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Proof: Using (110), we obtain that(
circ a

)
F−1
N = F−1

N diag (âj)
N−1
j=0 , FN circ a =

(
diag (âj)

N−1
j=0

)
FN

with

FN =
(
e0 | e1 | . . . | eN−1

)
=


e⊤0
e⊤1
...

e⊤N−1

 , (112)

F−1
N =

1

N

(
e0 | e1 | . . . | eN−1

)
=

1

N


e⊤0
e⊤1
...

e⊤N−1

 .

Hence we conclude (111) holds. Note that the eigenvalues âj of circ a need not be
distinct.
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By the definition of the forward-shift matrix VN , each circulant matrix (109) can be
written in the form

circ a =
N−1∑
k=0

ak V
k
N , (113)

where V0
N = VN

N = IN . Therefore, VN is called basic circulant matrix.
The representation (113) reveals that N-by-N circulant matrices form a commutative
algebra. Linear combinations and products of circulant matrices are also circulant
matrices, and products of any two circulant matrices commute. The inverse of a
nonsingular circulant matrix is again a circulant matrix. The following result is very
useful for the computation with circulant matrices:
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Theorem 100

For arbitrary a, b ∈ CN and α ∈ C we have

1 (circ a)⊤ = circ (J′N a) ,

2 (circ a) + (circ b) = circ (a+ b) , α (circ a) = circ (α a) ,

3 (circ a) (circ b) = (circ b) (circ a) = circ (a ∗ b) ,
4 circ a is a normal matrix with the spectral decomposition (110),

5 det (circ a) =
∏N−1

j=0 âj with
(
âj
)N−1

j=0
= FN a .

6 The Moore–Penrose pseudo-inverse of circ a has the form

(circ a)+ = F−1
N

(
diag (â+j )

N−1
j=0

)
FN ,

where â+j := â−1
j if âj ̸= 0 and â+j := 0 if âj = 0.

7 circ a is invertible if and only if âj ̸= 0 for all j = 0, . . . ,N − 1 . Under this
condition, (circ a)−1 is the circulant matrix

(circ a)−1 = F−1
N

(
diag (â−1

j )N−1
j=0

)
FN .
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Proof: 1. Using V⊤
N = V−1

N and VN
N = IN , we obtain for a = (ak)

N−1
k=0 ∈ CN by (113)

that

(circ a)⊤ =
N−1∑
k=0

ak
(
Vk

N

)⊤
=

N−1∑
k=0

ak
(
V⊤

N

)k
=

N−1∑
k=0

ak V
−k
N =

N−1∑
k=0

ak V
N−k
N

= a0 IN + aN−1VN + . . .+ a1V
N−1
N = circ (J′N a) .

2. The two relations follow from the definition (109).
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3. Let a = (ak)
N−1
k=0 , b = (bℓ)

N−1
ℓ=0 ∈ CN be given. Using VN

N = IN , we conclude that by
(113)

(circ a) (circ b) =
( N−1∑

k=0

ak V
k
N

)( N−1∑
ℓ=0

bℓV
ℓ
N

)
=

N−1∑
n=0

cn V
n
N

with the entries

cn =
N−1∑
j=0

aj b(n−j) mod N , n = 0, . . . ,N − 1 .

By (cn)
N−1
n=0 = a ∗ b we obtain (circ a) (circ b) = circ (a ∗ b). Since the cyclic

convolution is commutative, the product of circulant matrices is also commutative.
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4. By property 1, the conjugate transpose of circ a is again a circulant matrix. Since
circulant matrices commute by property 3, circ a is a normal matrix. By (110) we
obtain the spectral decomposition of the normal matrix

circ a =
1√
N

FN

(
diag (FNa)

) 1√
N

FN , (114)

because 1√
N
FN is unitary.

5. The determinant det (circ a) of the matrix product (110) can be computed by

det (circ a) =
(
det FN

)−1
( N−1∏

j=0

âj

)
det FN =

N−1∏
j=0

âj .
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6. The Moore–Penrose pseudo-inverse A+
N of an N-by-N matrix AN is uniquely

determined by the properties

AN A+
N AN = AN , A+

N AN A+
N = A+

N ,

where AN A+
N and A+

N AN are Hermitian. From the spectral decomposition (114) of
circ a it follows that

(circ a)+ =
1√
N

FN

(
diag (âj)

N−1
j=0

)+ 1√
N

FN = F−1
N

(
diag (â+j )

N−1
j=0

)
FN .

7. The matrix circ a is invertible if and only if det (circ a) ̸= 0, i.e., if âj ̸= 0 for all
j = 0, . . . ,N − 1. In this case,

F−1
N

(
diag (â−1

j )N−1
j=0

)
FN

is the inverse of circ a.
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Circulant matrices can be characterized by the following property.

Lemma 101

An N-by-N matrix AN is a circulant matrix if and only if AN and the basic circulant
matrix VN commute, i.e.,

VN AN = AN VN . (115)
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Each circulant matrix circ a with a ∈ CN can be represented in the form (113). Hence
circ a commutes with VN .
Let AN =

(
aj ,k
)N−1

j ,k=0
be an arbitrary N-by-N matrix with the property (115) such that

VN AN V−1
N = AN . From

VN AN V−1
N =

(
a(j−1) mod N,(k−1) mod N

)N−1

j ,k=0

it follows for all j , k = 0, . . . ,N − 1

a(j−1) mod N,(k−1) mod N = aj ,k .

Setting aj := aj ,0 for j = 0, . . . ,N − 1, we conclude that aj ,k = a(j−k) mod N for

j , k = 0, . . . ,N − 1, i.e., AN = circ (aj)
N−1
j=0 .
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Remark 102

For arbitrarily given tk ∈ C, k = 1− N, . . . ,N − 1, we consider the N-by-N Toeplitz
matrix

TN :=
(
tj−k

)N−1

j ,k=0
=


t0 t−1 . . . t2−N t1−N

t1 t0 . . . t3−N t2−N
...

...
...

...
tN−1 tN−2 . . . t1 t0

 .

In general, TN is not a circulant matrix. But TN can be extended to a circulant matrix
C2N of order 2N. We define

C2N :=

(
TN EN

EN TN

)
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Remark 102 (continue)

with

EN :=


0 tN−1 . . . t2 t1

t1−N 0 . . . t3 t2
...

...
...

...
t−1 t−2 . . . t1−N 0

 .

Then, C2N = circ c with the vector

c := (t0, t1, . . . , tN−1, 0, t1−N , . . . , t−1)
⊤ ∈ C2N .

Thus for an arbitrary vector a ∈ CN , the matrix vector product TN a can be computed
using the circulant matrix vector product

C2N

(
a
0

)
=

(
TN a
EN a

)
,

where 0 ∈ CN denotes the zero vector. Applying a fast Fourier transform of Chapter 4,
this matrix-vector product can therefore be realized with only O(N logN) arithmetical
operations.
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Summary: The 4 Fourier transforms

freq. \ time continuous discrete

continuous Fourier transform “semidiscrete”
Fourier transform

discrete Fourier series discrete Fourier transform
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Summary: The 4 Fourier transforms

Fourier transform on R

forward: f̂ (v) =
∞∫

−∞
f (x)e−ivxdx

inverse: f (x) = 1
2π

∞∫
−∞

f̂ (v)eivxdx

periodicity: none
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Summary: The 4 Fourier transforms

“semidiscrete” Fourier transform

forward: f̂ (v) =
∞∑

j=−∞
f (j)e−ivj

inverse: f (j) = 1
2π

π∫
−π

f̂ (v)eivjdv

periodicity: f̂ (v) = f̂ (v + 2π)
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Summary: The 4 Fourier transforms

Fourier series

forward: ck(f ) =
1
2π

π∫
−π

f (x)e−ikxdx

inverse: f (x) =
∞∑

k=−∞
ck(f )e

ikxdx

periodicity: f (x) = f (x + 2π)
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Summary: The 4 Fourier transforms

discrete Fourier transform (DFT)

forward: f̂k =
N−1∑
j=0

fje
−2πijk/N

inverse: fj =
1
N

N−1∑
k=0

f̂ke
2πijk/N

periodicity: f̂k = f̂k+rN ; fj = fj+rN
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Fast Fourier transforms

Any application of Fourier methods leads to the evaluation of a discrete Fourier
transform of length N (DFT(N)). Thus the efficient computation of DFT(N) is very
important. Therefore this chapter is devoted to fast Fourier transforms. A fast Fourier
transform (FFT) is an algorithm for computing the DFT(N) which needs only a
relatively low number of arithmetic operations.

Fast FFT’s considerably reduce the computational cost for computing the DFT(N)
from 2N2 to O(N logN) arithmetic operations. We will study the numerical stability
of the derived FFT. Note there exists no linear algorithm that can realize the DFT(N)
with a smaller computational cost than O(N logN) (see [13]). Faster algorithms can
be only derived if some a priori information on the resulting vector are available.
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Construction principles of fast algorithms

One of the main reasons for the great importance of Fourier methods is the existence
of fast algorithms for its implementation of DFT. Nowadays, the FFT is one of the
most well-known and mostly applied fast algorithms. Many applications in physics,
engineering and signal processing were just not possible without FFT.
A frequently applied FFT is due to J.W. Cooley and J.W. Tuckey [3]. Indeed an earlier
fast algorithm by I.J. Good [8] used for statistical computations did not find further
attention. Early ideas for efficient computation of DFT(N) for N = 12 and N = 36 go
even back to C.F. Gauss. In 1805, he derived a special algorithm to determine the
orbit of Pallas, the second largest asteroid in our solar system. Being interested in
trigonometric interpolation problems, C. Runge developed in 1903 fast methods for
discrete sine transforms of certain lengths.
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But only the development of the computer technology heavily enforced the
development of fast algorithms. After deriving the Cooley–Tukey FFT in 1965, many
further FFT’s emerged being mostly based on similar strategies. We especially mention
the Sande–Tukey FFT as a second radix–2 FFT, the radix–4 FFT, and the split–radix
FFT. While these FFT methods are only suited for length N = 2t or even N = 4t ,
other approaches employ cyclic convolutions and can be generalized to other lengths
N. For the history of FFT see [10].
First we want to present five aspects being important for the evaluation and
comparison of fast algorithms, namely computational cost, storage cost, numerical
stability, suitability for parallel programming, and needed number of data
rearrangements.
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1. Computational cost
The computational cost of an algorithm is determined by the number of floating point
operations (flops), i.e., of single (real/complex) additions and (real/complex)
multiplications to perform the algorithm. For the considered FFT we will separately
give the number of required additions and multiplications.
Usually, one is only interested in the order of magnitude of the computational cost of
an algorithm in dependence of the number of input values and uses the big O notation.
For two functions f , g : N → R with f (N) ̸= 0 for all N ∈ N, we write
g(N) = O(f (N)) for N → ∞, if there exists a constant c > 0 such that
|g(N)/f (N)| ≤ c holds for all N ∈ N. By

loga N = (loga b)(logb N) , a, b > 1 ,

we have
O(loga N) = O(logb N) .

Therefore it is usual to write simply O(logN) without fixing the base of the logarithm.
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2. Storage cost
While memory capacities got tremendously cheaper within the last years, it is desired
that algorithms require only a memory capacity being in the same order as the size of
input data. Therefore we prefer so-called in-place algorithms, where the needed
intermediate and final results can be stored by overwriting the input data. Clearly,
these algorithms have to be carefully derived, since a later access to the input data or
intermediate data is then impossible. Most algorithms that we consider in this chapter
can be written as in-place algorithms.

3. Numerical stability
Since the evaluations are performed in floating point arithmetic, rounding errors can
accumulate essentially during a computation leading to an inaccurate result. We will
show that the FFT’s accumulate smaller rounding errors than the direct computation
of the DFT using a matrix vector multiplication.
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4. Parallel programming
In order to increase the speed of computation it is of great interest to decompose the
algorithm into independent subprocesses such that execution can be carried out
simultaneously using multiprocessor systems. The results of these independent
evaluations have to be combined afterwards upon completion.
The FFT has been shown to be suitable for parallel computing. One approach to
efficiently implement the FFT and to represent the decomposition of the FFT into
subprocesses is to use signal flow graphs.
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5. Rearrangements of data
The computation time of an algorithm mainly depends on the computational cost of
the algorithm but also on the data structure as e.g. the number and complexity of
needed data rearrangements.
In practical applications the simplicity of the implementation of an algorithm plays an
important role. Therefore FFT’s with a simple and clear data structure are preferred to
FFT’s with slightly smaller computational cost but requiring more complex data
arrangements.
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Basic principles for the construction of fast algorithms are
• the application of recursions,
• the divide–and–conquer technique, and
• parallel programming.

All three principles are applied for the construction of FFT’s.
Recursions can be used, if the computation of the final result can be decomposed into
consecutive steps, where in the nth step only the intermediate results from the previous
r steps are required. Optimally, we need only the information of one previous step to
perform the next intermediate result such that an in-place processing is possible.
The divide–and–conquer technique is a suitable tool to reduce the execution time of an
algorithm. The original problem is decomposed into several subproblems of smaller size
but with the same structure. This decomposition is then iteratively applied to decrease
the subproblems even further. Obviously, this technique is closely related to the
recursion approach. In order to apply the divide–and–conquer technique to construct
FFT’s a suitable indexing of the data is needed.
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The FFT’s can be described in different forms. We will especially consider the sum
representation, the representation based on polynomials, and the matrix representation.
The original derivation of the FFT by J.W. Cooley and J.W. Tukey [3] applied the sum
representation of the DFT(N). For a vector a = (aj)

N−1
j=0 ∈ CN the DFT is given by

â = (âk)
N−1
k=0 ∈ CN with the sum representation

âk :=
N−1∑
j=0

aj w
jk
N , k = 0, . . . ,N − 1 , wN := e−2πi/N . (116)

The FFT performs the above summation using the iterative evaluation of partial sums
applying the divide–and–conquer technique.
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Employing the polynomial representation of the FFT, we interpret the DFT(N) as
evaluation of the polynomial

a(z) := a0 + a1z + . . .+ aN−1z
N−1 ∈ C[z ]

at the N knots wk
N , k = 0, . . . ,N − 1, i.e.,

âk := a(wk
N) , k = 0, . . . ,N − 1 . (117)

This approach to the DFT is connected with trigonometric interpolation. The FFT is
now based on the fast polynomial evaluation by reducing it to the evaluation of
polynomials of smaller degrees.
Besides the polynomial arithmetic, the matrix representation has been shown to be
appropriate for representing fast DFT algorithms. Starting with the matrix
representation of the DFT

â := FNa , (118)

the Fourier matrix FN := (w jk
N )N−1

j ,k=0 is factorized into a product of sparse matrices.
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Then the FFT is performed by successive matrix vector multiplications. This method
requires essentially less arithmetical operations than a direct multiplication with the full
matrix FN . The obtained algorithm is recursive, where at the nth step, only the
intermediate vector obtained in the previous step is employed.

Beside the three possibilities to describe the FFT’s, one tool to show the data
structures of the algorithm and to simplify the programming is the signal flow graph.
The signal flow graph is a directed graph whose vertices represent the intermediate
results and whose edges illustrate the arithmetical operations. In this chapter, all signal
flow graphs are composed of butterfly forms as presented in Figure 12.
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Figure 12: Butterfly signal flow graph.
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The direction of evaluation in signal flow graphs is always from left to right. In
particular, the factorization of the Fourier matrix into sparse matrices with at most two
nonzero entries per row and per column can be simply transferred to a signal flow
graph. For example, the matrix vector multiplications

F2a =

(
1 1
1 −1

)(
a0
a1

)
and

(
1 0
0 w

)(
a0
a1

)
can be transferred to the signal flow graphs in Figure 13.
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Figure 13: Signal flow graphs of F2a and diag (1,w) a.
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Most applications use beside the DFT also the inverse DFT, such that we need also a
fast algorithm for the inverse transform. However, since

F−1
N =

1

N
J′N FN

with the flip matrix J′N := (δ(j+k) mod N)
N−1
j ,k=0 in Lemma 89, each fast algorithm for

the DFT(N) also provides a fast algorithm for the inverse DFT(N), and we need not to
consider this case separately.
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Radix–2 FFT’s

Radix–2 FFT’s are based on the iterative divide–and–conquer technique for computing
the DFT(N), if N is a power of 2. The most well-known radix–2 FFT’s are the
Cooley–Tukey FFT and the Sande–Tukey FFT, [3]. These algorithms can be also
adapted for parallel processing. The two radix–2 FFT’s only differ regarding the order
of components of the input and output vector and the order of the multiplication with
twiddle factors. As we will see from the corresponding factorization of the Fourier
matrix into a product of sparse matrices, the one algorithm is derived from the other
by using the transpose of the matrix product. In particular, the two algorithms possess
the same computational cost. Therefore we also speak about variants of only one
radix–2 FFT.
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We start with deriving the Sande–Tukey FFT using the sum representation. Then we
develop the Cooley–Tukey FFT in polynomial form. Finally we show the close relation
between the two algorithms by examining the corresponding factorization of the
Fourier matrix. This representation will be also applied to derive an implementation
that is suitable for parallel programming.
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Sande–Tukey FFT in summation form

Assume that N = 2t , t ∈ N \ {1}, is given. Then (116) implies

âk =

N/2−1∑
j=0

aj w
jk
N +

N/2−1∑
j=0

aN/2+j w
(N/2+j)k
N

=

N/2−1∑
j=0

(
aj + (−1)kaN/2+j

)
w jk
N , k = 0, . . . ,N − 1 . (119)

Considering the components of the output vector with even and odd indices,
respectively, we obtain

â2k =

N/2−1∑
j=0

(aj + aN/2+j)w
jk
N/2 , (120)

â2k+1 =

N/2−1∑
j=0

(aj − aN/2+j)w
j
N w jk

N/2 , k = 0, . . . ,
N

2
− 1 . (121)
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DFT(N) takes N additions, N/2 multiplications and 2 DFT(N/2).
Thus, using the divide–and–conquer technique, the DFT(N) is obtained by computing

• N/2× DFT(2) of the vectors (aj , aN/2+j)
⊤, j = 0, . . . ,N/2− 1,

• N/2 multiplications with the twiddle factors w j
N , j = 0, . . . ,N/2− 1,

• 2 DFT(N/2) of the vectors (aj + aN/2+j)
N/2−1
j=0 and

(
(aj − aN/2+j)w

j
N

)N/2−1

j=0
.

329 / 373



However, we do not evaluate the two DFT(N/2) directly but apply the decomposition
in (119) again to the two sums. We iteratively continue this procedure and obtain the
desired output vector after t decomposition steps. At each iteration step we require
N/2× DFT(2) and N/2 multiplications with twiddle factors. As we will show in
Subsection 4.2.5, this procedure reduces the computational cost to perform the
DFT(N) to O(N logN). This is an essential improvement! For example, for
N = 512 = 29 the computation cost are reduced by more than 50 times.
The above algorithm is called Sande–Tukey FFT. In Figure 15 we show the
corresponding signal flow graph of the DFT(8).
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â4

â2
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â1

â5
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Figure 14: Sande–Tukey algorithm for DFT(8) with input values in natural order.
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Figure 15: Sande–Tukey algorithm for DFT(8) with input values in bit reversal order.
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The evaluation of â0 =
∑N−1

j=0 aj in the Sande–Tukey FFT is obviously executed by
cascade summation. The signal flow graph well illustrates how to implement an
in-place algorithm. Note that the output components are obtained in a different order,
which can be described by a permutation of indices.
All indices are in the set

JN := {0, . . . ,N − 1} = {0, . . . , 2t − 1}

and can be written as t–digit binary numbers,

k = (kt−1, . . . , k1, k0)2 := kt−12
t−1 + . . .+ k12 + k0 , kj ∈ {0, 1} .

The permutation ϱ : JN → JN with

ϱ(k) = (k0, k1, . . . , kt−1)2 = k02
t−1 + . . .+ kt−22 + kt−1

is called bit reversal or bit-reversed permutation of JN .
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Let RN := (δϱ(j)−k)
N−1
j ,k=0 be the permutation matrix corresponding to ϱ. Since we have

ϱ2(k) = k for all k ∈ JN , it follows that

R2
N = IN , RN = R−1

N = R⊤
N . (122)

Table 1 shows the bit reversal for N = 8 = 23.

k k2k1k0 k0k1k2 ϱ(k)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Table 1: Bit reversal for N = 8 = 23.
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The comparison with Figure 15 demonstrates that ϱ(k) indeed determines the order of
output components. In general we can show the following:

Lemma 103

For an input vector with natural order of components, the Sande–Tukey FFT
computes the output components in bit-reversed order.

Proof: We show by induction with respect to t that for N = 2t t ∈ N \ {1} the kth
value of the output vector is âϱ(k).
For t = 1, the assertion is obviously correct. Assuming that the assertion holds for
N = 2t , we consider now the DFT of length 2N = 2t+1.
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The first step of the algorithm decomposes the DFT(2N) into two DFT(N), where for
k = 0, . . . ,N − 1 the values â2k are computed at the kth position and â2k+1 at the
(N + k)th position of the output vector. Afterwards the two DFT(N) are
independently computed using further decomposition steps of the Sande–Tukey FFT.
By induction assumption, we thus obtain after executing the complete algorithm the
values â2ϱ(k) at the kth position, and â2ϱ(k)+1 at the (N + k)th position of the output
vector. The permutation π : J2N → J2N with

π(k) = 2 ϱ(k) , π(k + N) = 2 ϱ(k) + 1 , k = 0, . . . ,N − 1 ,

is by

π(k) = π((0, kt−1, . . . , k0)2)

= 2 (0, k0, . . . , kt−2, kt−1)2 = (k0, . . . , kt−1, 0)2 ,

π(N + k) = π((1, kt−1, . . . , k0)2)

= 2 (0, k0, . . . , kt−2, kt−1)2 + 1 = (k0, . . . , kt−1, 1)2

indeed equivalent to the bit reversal of J2N . Thus the assertion of the lemma is true.
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We summarize the pseudo-code for the Sande–Tukey FFT as follows.
Input: N = 2t with t ∈ N \ {1}, aj ∈ C for j = 0, . . . ,N − 1.

for n := 1 to t do
begin m := 2t−n+1

for l := 0 to 2n−1 − 1 do
begin
for r := 0 to m/2− 1 do
begin j := r + lm;

s := aj + am/2+j ;
am/2+j := (aj − am/2+j)w

r
m;

aj := s
end

end
end.

Output: âk := aϱ(k) ∈ C, k = 0, . . . ,N − 1.
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Next, we derive the Cooley–Tukey FFT in polynomial form. In the presentation of the
algorithm we use multi-indices for a better illustration of the order of data. We
consider the polynomial a(z) := a0 + a1z + . . .+ aN−1z

N−1 that has to be evaluated at
the N knots z = wk

N , k = 0, . . . ,N − 1. We decompose the polynomial a(z) as follows

a(z) =

N/2−1∑
j=0

aj z
j +

N/2−1∑
j=0

aN/2+j z
N/2+j =

N/2−1∑
j=0

(aj + zN/2 aN/2+j) z
j .

By w
kN/2
N = (−1)k = (−1)k0 for all k ∈ {0, . . . ,N − 1} with

k = (kt−1, . . . , k0)2 , kj ∈ {0, 1} ,

the term zN/2 can be only 1 or −1.
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Thus the evaluation of a(z) at z = wk
N , k = 0, . . . ,N − 1, can be reduced to the

evaluation of the two polynomials

a(i0)(z) :=

N/2−1∑
j=0

a
(i0)
j z j , i0 = 0, 1 ,

with the coefficients

a
(i0)
j := aj + (−1)i0 aN/2+j , j = 0, . . . ,N/2− 1 ,

at the N/2 knots wk
N with k = (kt−1, . . . , k1, i0)2. In the first step of the algorithm, we

compute the coefficients of the new polynomials a(i0)(z), i0 = 0, 1.
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Then we apply the method again separately to the two polynomials a(i0)(z), i0 = 0, 1.
By

a(i0)(z) :=

N/4−1∑
j=0

(
a
(i0)
j + zN/4a

(i0)
N/4+j

)
z j

and w
kN/4
N = (−1)k1 (−i)k0 , this polynomial evaluation is equivalent to the evaluating

the four polynomials

a(i0,i1)(z) :=

N/4−1∑
j=0

a
(i0,i1)
j z j , i0, i1 ∈ {0, 1} ,

with the coefficients

a
(i0,i1)
j := a

(i0)
j + (−1)i1 (−i)i0 a

(i0)
N/4+j , j = 0, . . . ,N/4− 1 ,

at the N/4 knots wk
N with k = (kt−1, . . . , k2, i1, i0)2.
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Therefore, at the second step we compute the coefficients of a(i0,i1)(z), i0, i1 ∈ {0, 1}.
We iteratively continue the method and obtain after t steps N polynomials of degree
0, i.e., constants that yield the desired output values. At the (i0, . . . , it−1)2th position
of the output vector we get

a(i0,...,it−1)(z) = a
(i0,...,it−1)
0 = a(wk

N) = âk , i0, . . . , it−1 ∈ {0, 1},

with k = (it−1, . . . , i0)2. Thus, the output values are again in bit-reversed order.
Figure 17 shows the signal flow graph of the described Cooley–Tukey FFT for N = 8.
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Remark 104

In the Sande–Tukey FFT, the number of output values that can be independently
computed doubles at each iteration step, i.e., the sampling rate is iteratively reduced in
frequency domain. Therefore this algorithm is also called decimation-in-frequency FFT,
see Figure 15. Analogously, the Cooley–Tukey FFT corresponds to reduction of
sampling rate in time and is therefore called decimation-in-time FFT, see Figure 17.
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Figure 16: Cooley–Tukey FFT for N = 8 with input values in natural order.

343 / 373



bild4.pic !!
!
!
!!

!
!
!

!!
!
!
!!

!
!
!

!
!
!
!

!
!
!

!
!
!
!

!
!
!
!

!
!
!
!

!
!
!
!

!
!
!
!

!
!
!
!

✖✕
✗✔

â0
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Figure 17: Cooley–Tukey FFT for N = 8 with input values in in bit reversal order.
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Radix–2 FFT’s in matrix form

The close connection between the two radix–2 FFT’s can be well illustrated using the
matrix representation. For this purpose we consider first the permutation matrices that
yield the occurring index permutations when executing the algorithms. Beside the bit
reversal, we introduce the perfect shuffle πN : JN → JN by

πN(k) = πN((kt−1, . . . , k0)2)

= (kt−2, . . . , k0, kt−1)2

=

{
2k k = 0, . . . ,N/2− 1 ,
2k + 1− N k = N/2, . . . ,N − 1 .

The perfect shuffle realizes the cyclic shift of binary representation of the numbers
0, . . . ,N − 1. Then the t-times repeated cyclic shift πtN yields again the original order
of the coefficients.
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Let PN :=
(
δπN(k)−j

)N−1

j ,k=0
denote the corresponding permutation matrix, then

(PN)
t = IN , (PN)

t−1 = P−1
N = P⊤

N . (123)

Obviously

PN a =
(
a0, aN/2, a1, aN/2+1, . . . , aN/2−1, aN−1

)⊤
.

The cyclic shift of (k0, kt−1, . . . , k1)2 provides the original number (kt−1, . . . , k0)2, i.e.,

π−1
N (k) = π−1

N ((kt−1, . . . , k0)2) = (k0, kt−1, . . . , k1)2

=

{
k/2 k ≡ 0 mod 2 ,
N/2 + (k − 1)/2 k ≡ 1 mod 2 .

Hence, at the first step of the algorithm, P−1
N = P⊤

N yields the desired rearrangement
of output components âk taking first all even and then all odd indices.

346 / 373



Example 105

For N = 8, i.e. t = 3, we obtain

P8 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


, P8



c0
c1
c2
c3
c4
c5
c6
c7


=



c0
c4
c1
c5
c2
c6
c3
c7
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Example 105 (continue)

and

P⊤
8 =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


, P⊤

8



c0
c1
c2
c3
c4
c5
c6
c7


=



c0
c2
c4
c6
c1
c3
c5
c7


.
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The first step of the Sande–Tukey FFT is now by (120) und (121) equivalent to the
matrix factorization

FN = PN (I2 ⊗ FN/2)DN (F2 ⊗ IN/2) (124)

with the diagonal matrices

DN := diag (IN/2,WN/2) , WN/2 := diag (w j
N)

N/2−1
j=0 .

At the second step of the decomposition the factorization is again applied to FN/2.
Thus we obtain

FN = PN

(
I2 ⊗

[
PN/2 (I2 ⊗ FN/4)DN/2 (F2 ⊗ IN/4)

])
DN (F2 ⊗ IN/2)

with the diagonal matrices

DN/2 := diag (IN/4,WN/4) , WN/4 := diag (w j
N/2)

N/4−1
j=0 .
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Application of properties of Kronecker products yields

FN = PN (I2 ⊗ PN/2) (I4 ⊗ FN/4) (I2 ⊗DN/2) (I2 ⊗ F2 ⊗ IN/4)DN (F2 ⊗ IN/2) .

After t steps we thus obtain the factorization of the Fourier matrix FN into sparse
matrices for the Sande–Tukey FFT with natural order of input components

FN = RN (IN/2 ⊗ F2) (IN/4 ⊗D4) (IN/4 ⊗ F2 ⊗ I2) (IN/8 ⊗D8) . . .

. . .DN (F2 ⊗ IN/2)

= RN

t∏
n=1

Tn (IN/2n ⊗ F2 ⊗ I2n−1) (125)

with the permutation matrix RN = PN (I2 ⊗ PN/2) . . . (IN/4 ⊗ P4) and the diagonal
matrices

Tn := IN/2n ⊗D2n ,

D2n := diag (I2n−1 ,W2n−1) , W2n−1 := diag (w j
2n)

2n−1−1
j=0 .

Note that T1 = IN . From Lemma 103 and by (122) we know already that RN in (125)
is the permutation matrix corresponding to the bit reversal. We illustrate this fact
taking a different view. 350 / 373



Remark 106

For distinct indices j1, . . . , jn ∈ Jt := {0, . . . , t − 1} let (j1, j2, . . . , jn) with 1 ≤ n < t
be that permutation of Jt that maps j1 onto j2, j2 onto j3, . . . , jn−1 onto jn, and jn
onto j1. Such a permutation is called n–cycle. For N = 2t , the permutations of the
index set JN occurring in a radix–2 FFT can be represented by permutations of the
indices in its binary presentation, i.e., π : JN → JN can be written as

π(k) = π((kt−1, . . . , k0)2) = (kπt(k−1), . . . , kπt(0))2

with a certain permutation πt : Jt → Jt . The perfect shuffle πN : JN → JN
corresponds to the t–cycle

πN,t := (0, . . . , t − 1)

and the bit reversal ϱ : JN → JN to the permutation

ϱt :=

{
(0, t − 1)(1, t − 2) . . . (t/2− 1, t/2) t ≡ 0 mod 2 ,
(0, t − 1)(1, t − 2) . . . ((t − 1)/2) t ≡ 1 mod 2 .
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Remark 106 (continue)

Let πN,n : Jt → Jt with 1 ≤ n ≤ t be given by the n-cycle

πN,n := (0, . . . , n − 1).

Then we can prove by induction that

ϱt = πN,t πN,t−1 . . . πN,2 .

Using the matrix representation we obtain now the desired relation

RN = PN (I2 ⊗ PN/2) . . . (IN/4 ⊗ P4) .
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Example 107

The factorization of F8 in (125) has the form

F8 = R8 (I4 ⊗ F2) (I2 ⊗D4) (I2 ⊗ F2 ⊗ I2)D8 (F2 ⊗ I4) ,

i.e., F8 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1





1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1



·



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −i





1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1



·



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 w8 0 0
0 0 0 0 0 0 −i 0

0 0 0 0 0 0 0 w3
8





1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


.

This factorization of F8 yields the signal flow graph of the Sande–Tukey FFT in Figure
15.

Using (125), we can now derive further factorizations of the Fourier matrix FN and
obtain corresponding radix–2 FFT’s. A new factorization is e.g. obtained by taking the
transpose of (125), where we use that FN = F⊤

N . Further, we can employ the identity
matrix as a new factor that is written as a product of a permutation matrix and its
transpose. We finish this subsection by deriving the matrix factorizations of FN for the
Sande–Tukey FFT with bit reversed order of input values and for the Cooley–Tukey
FFT. In the next subsection we will show, how these slight manipulations of the found
Fourier matrix factorization can be exploited for deriving a radix–2 FFT that is suitable
for parallel programming.

We recall that by Theorem ??

PN (A⊗ B)P⊤
N = PN(N/2) (A⊗ B)PN(2) = B⊗ A ,

where PN(2) denotes the even–odd permutation matrix and PN(N/2) is the
N/2-stride permutation matrix. Thus we conclude:
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Corollary 108

Let N = 2t . Then we have

Pn
N (IN/2 ⊗ F2)P

−n
N = IN/2n+1 ⊗ F2 ⊗ I2n , n = 0, . . . , t − 1 ,

RN (IN/2n ⊗ F2 ⊗ I2n−1)RN = I2n−1 ⊗ F2 ⊗ IN/2n , n = 1, . . . , t .

From (125) and Corollary 108 we conclude the factorization of FN corresponding to
the Sande–Tukey FFT with bit reversed order of input values,

FN =
( t∏

n=1

Tϱn (I2n−1 ⊗ F2 ⊗ IN/2n)
)
RN , Tϱn := RN Tn RN .

The matrix factorization corresponding to the Cooley–Tukey FFT is obtained from
(125) by taking the transpose.
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From FN = F⊤
N it follows that

FN =
( t∏

n=1

(I2n−1 ⊗ F2 ⊗ IN/2n)Tt−n+1

)
RN .

This factorization equates the Cooley–Tukey FFT with bit reversal order of input
values. By Corollary 108 we finally observe that

FN = RN

t∏
n=1

(IN/2n ⊗ F2 ⊗ I2n−1)Tϱt−n+1

is the matrix factorization of the Cooley–Tukey FFT with natural order of input values.
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Nonequispaced FFT’s
NFFT of type I

The aim is the fast and stable computation of

f (xj) =

N/2−1∑
k=−N/2

f̂k e
i k xj , j = −M/2, . . . ,M/2− 1 ,

for given nonequispaced nodes xj ∈ [−π, π) and given data f̂k ∈ C at equispaced
frequencies k = −N/2, . . . ,N/2− 1.

Remark 109

In the case of equispaced nodes xj := 2πj/N with j = −N/2, . . . ,N/2− 1 and
M = N, the FFT requires O(N logN) arithmetical operations.
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We introduce the 2π-periodic trigonometric polynomial

f (x) =

N/2−1∑
k=−N/2

f̂k eikx .

First we approximate f by a linear combination s1 of translates of a 2π-periodic
function φ̃. Let φ ∈ L1(R) ∩ L2(R) be a convenient window function such that its
periodization

φ̃(x) :=
∑
r∈Z

φ(x + 2πr)

has a uniformly convergent Fourier series. Then φ̃ can be represented as Fourier series

φ̃(x) :=
∑
k∈Z

ck(φ̃) e
i k x

with Fourier coefficients

ck(φ̃) :=
1

2π

∫ π

−π
φ̃(x) e−i k x dx

=
1

2π

∫
R
φ(x) e−i k x dx =

1

2π
φ̂(k) . (126)
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Example 110

A popular window function is the centered cardinal B-spline of order m ∈ N

M1(x) :=

{
1 x ∈ [−1/2, 1/2),
0 otherwise,

Mm+1(x) :=

∫ 1/2

−1/2
Mm(x − t) dt = (Mm ∗M1)(x) .

The support of Mm is the interval [−m/2, m/2]. The Fourier transform of Mm is equal
to

M̂m(v) =
(
sinc(πv)

)m
.
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Choose an oversampling factor σ ≥ 1 such that σN is even. Now we determine
coefficients gℓ ∈ C, ℓ = −σN/2, . . . , σN/2− 1 of the linear combination

s1(x) :=

σN/2−1∑
ℓ=−σN/2

gℓ φ̃
(
x − 2πℓ

σN

)
such that s1 approximates f .
Then we have

s1(x) =
∑
k∈Z

ck(s1) e
i k x =

∑
k∈Z

ĝk ck(φ̃) e
i k x

with DFT

ĝk :=

σN/2−1∑
ℓ=−σN/2

gℓ e
−2π i kℓ/(σN) .
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Hence we obtain

s1(x) :=

σN/2−1∑
k=−σN/2

ĝk ck(φ̃) e
i k x

+
∑

r∈Z\{0}

σN/2−1∑
k=−σN/2

ĝk ck+σNr (φ̃) e
i (k+σNr) x . (127)

If |ck(φ̃)| ≪ 1 for |k| ≥ σN − N
2 and if ck(φ̃) ̸= 0 for k = −N/2, . . . ,N/2− 1, then a

comparison of the Fourier series of f and s1 shows that

ĝk = f̂k/ck(φ̃) k = −N/2, . . . ,N/2− 1, (128)

and ĝk := 0 for k = −σN/2, . . . ,−N/2− 1;N/2, . . . , σN/2− 1. We compute the
coefficients gℓ of s1 by inverse DFT(σN)

gℓ =
1

σN

σN/2−1∑
k=−σN/2

ĝk e
2πi k ℓ/(σN), ℓ = −σN/2, . . . , σN/2− 1 .
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Further we assume that φ is well-localized (cf. Example 110) such that φ can be
approximated by its truncation

ψ(x) :=

{
φ(x) x ∈ [−2πm/(σN), 2πm/(σN)],
0 otherwise

with 2m ≪ σN. Now we form the 2π-periodic function

ψ̃(x) :=
∑
r∈Z

ψ(x + 2πr) ∈ L2(T)

and approximate s1 by

s(x) :=

σN/2−1∑
ℓ=−σN/2

gℓ ψ̃
(
x − 2πℓ

σN

)
. (129)
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Since the support of ψ is bounded, we introduce the set IσN,m(x) of all indices
ℓ ∈ {−σN/2, . . . , σN/2− 1} with the property

σN

2π
x −m ≤ ℓ ≤ σN

2π
x +m .

For each fixed knot xj ∈ [−π, π), the sum (129) has at most 2m + 1 nonzero terms.
Thus we obtain

f (xj) ≈ s1(xj) ≈ s(xj) .

We can approximately compute the trigonometric polynomial f for all xj ∈ [−π, π),
j = −M/2, . . . ,M/2− 1 with a computational cost of O(N logN +mM) operations.
Note that the computational cost of an algorithm is measured in the number of
arithmetical operations, where all operations are counted equally.
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Algorithm for NFFT of type I

Input: N, M ∈ N, σ > 1, m ∈ N,
xj ∈ [−π, π) for j = −M/2, . . . ,M/2,

f̂k ∈ C for k = −N/2, . . . ,N/2− 1.

Precomputation: (i) Compute the Fourier coefficients ck(φ̃) for all
k = −N/2, . . . ,N/2− 1.
(ii) Compute the values ψ̃

(
xj − 2πℓ

σN

)
for j = −M/2, . . . ,M/2− 1 and ℓ ∈ IσN,m(xj).

1. Let ĝk := f̂k/ck(φ̃) for k = −N/2, . . . ,N/2− 1.
2. By FFT compute the values

gℓ :=
1

σN

N/2−1∑
k=−N/2

ĝk e
2πi k ℓ/(σN) , ℓ ∈ I dσN .
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3. Compute

s(xj) :=
∑

ℓ∈IσN,m(xj )

gℓ ψ̃
(
xj −

2πℓ

σN

)
, j = −M/2, . . . ,M/2− 1 .

Output: s(xj), j = −M/2, . . . ,M/2− 1, approximate values of f (xj).
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Remark 111

The NFFT of type II reads as follows

h(k) :=

M/2−1∑
j=−M/2

fj e
i k xj , k = −N/2, . . . ,N/2− 1 ,

with nonequispaced nodes xj ∈ [−π, π) and given data fj ∈ C,
j = −M/2, . . . ,M/2− 1. Here we introduce the 2π-periodic function

g̃(x) :=

M/2−1∑
j=−M/2

fj φ̃(x + xj)

which has the Fourier coefficients ck(g̃) = h(k) ck(φ̃). By the trapezoidal rule,
approximate value of ck(g̃) is

1

σN

σN/2−1∑
ℓ=−σN/2

M/2−1∑
j=−M/2

fj φ̃
(
xj −

2πℓ

σN

)
e2πikℓ/(σN) .
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4.4.2. Error estimates for some window functions

In contrast to FFT, the above algorithm for NFFT is an approximate algorithm.
Hence we have to estimate the approximation error E (xj) := |f (xj)− s(xj)|.
Introducing the aliasing error

Ea(xj) := |f (xj)− s1(xj)|

and the truncation error
Et(xj) := |s1(xj)− s(xj)| ,

we have by triangle inequality

E (xj) ≤ Ea(xj) + Et(xj) .
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Lemma 112

For ∥f̂∥1 :=
∑N/2−1

k=−N/2 |f̂k |, the aliasing and truncation errors can be estimated by

Ea(xj) ≤ ∥f̂∥1 max
k=−N/2,...,N/2−1

∑
r∈Z\{0}

|φ̂(k + σNr)|
|φ̂(k)| , (130)

Et(xj) ≤
∥f̂∥1
σN

max
k=−N/2,...,N/2−1

1

|φ̂(k)|
∑

|xj+ 2πr
σN

|> 2πm
σN

∣∣φ(xj + 2πr

σN
)
∣∣ . (131)

Proof: For simplicity, we estimate here only the aliasing error Ea(xj) = |f (xj)− s1(xj)|.
By (127) and (128), we have

Ea(xj) =
∣∣ σN/2−1∑
k=−σN/2

∑
r ̸=0

ĝk ck+σNr (φ̃) e
i (k+σNr) x

∣∣.
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From (128) and (126), it follows by triangle inequality

Ea(xj) ≤
N/2−1∑
k=−N/2

|f̂k |
∑
r ̸=0

|φ̂(k + σNr)|
|φ̂(k)|

≤ ∥f̂∥1 max
k=−N/2,...,N/2−1

∑
r∈Z\{0}

|φ̂(k + σNr)|
|φ̂(k)| .

Now we estimate the approximation errors of NFFT for special window functions φ
with good localizations in time and frequency domain. First we consider

φ(x) := M2m

(σN
2π

x
)
, (132)

where σ ≥ 1 and 2m ≪ σN. Then φ is supported on[
− 2πm

σN
,
2πm

σN
] ⊂ [−π, π].
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We compute the Fourier transform

φ̂(v) =

∫
R
φ(x) e−i vx dx =

∫
R
M2m

(σN
2π

x
)
e−i vx dx

=
2π

σN

∫
R
M2m(t) e

−2πi vt/(σN) dt .

By Example 110, we have M2m(t) = (M1 ∗M1 ∗ . . . ∗M1)(t). The convolution
property of the Fourier transform yields

φ̂(v) =
2π

σN

(∫ 1/2

−1/2
e−2πivt/(σN) dt

)2m
=

2π

σN

(
sinc

vπ

σN

)2m
with the sinc function sinc x := sin x

x for x ∈ R \ {0} and sinc 0 := 1. Note that
φ̂(k) > 0 for all k = −N/2, . . . ,N/2− 1. Since φ(x) is supported on
[−2πm/(σN), 2πm/(σN)], we have ψ = φ.
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For arbitrary knots xj ∈ [−π, π), j = −M/2, . . .M/2− 1, and each data vector

f̂ =
(
f̂k
)N/2−1

k=−N/2
, we obtain by (130) the approximation error

E (xj) = Ea(xj) ≤ ∥f̂∥1 max
k=−N/2,...,N/2−1

∑
r ̸=0

|φ̂(k + σNr)|
|φ̂(k)| (133)

with
|φ̂(k + σNr)|

|φ̂(k)| =
( k

k + σNr

)2m
. (134)

Lemma 113

Assume that σ > 1 and 2m ≪ σN. Then for the window function φ in (132) with
ψ = φ, the approximation error of the NFFT can be estimated by

E (xj) ≤
4

(2σ − 1)2m
∥f̂∥1 , (135)

where xj ∈ [−π, π), j = −M/2, . . . ,M/2− 1, are arbitrary knots and f̂ ∈ CN is an
arbitrary data vector.
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Proof: By (133) and (134) we have

E (xj) ≤ ∥f̂∥1 max
k=−N/2,...,N/2−1

∑
r ̸=0

( k/(σN)

r + k/(σN)

)2m
. (136)

Setting u = k
σN for k = −N/2, . . . ,N/2− 1, we have |u| ≤ 1

2σ < 1. Now we show that∑
r ̸=0

( u

u + r

)2m ≤ 4

(2σ − 1)2m
. (137)

For 0 ≤ u ≤ 1
2σ < 1 we have∑

r ̸=0

( u

u + r

)2m
=
( u

u − 1

)2m
+
( u

u + 1

)2m
+

∞∑
r=2

[( u

u − r

)2m
+
( u

u + r

)2m]
.
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By u + r > |u − r | for r ∈ N we have
(

u
u+r

)2m ≤
(

u
u−r

)2m
and hence

∑
r ̸=0

( u

u + r

)2m ≤ 2
( u

u − 1

)2m
+ 2

∞∑
r=2

( u

u − r

)2m
≤ 2

( u

u − 1

)2m
+ 2

∫ ∞

1

( u

u − x

)2m
dx

≤ 2
( u

u − 1

)2m (
1 +

1− u

2m − 1

)
< 4

( u

u − 1

)2m
.

Since the function
(

u
u−1

)2m
increases in [0, 1

2σ ], the above sum has the upper bound
4

(2σ−1)2m
for each m ∈ N.

In the case −1 ≤ − 1
2σ < u < 0, we replace u by −u and obtain the same upper

bound. Now, the estimate (135) follows from (136) and (137).
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Another popular window function is the (dilated) Gaussian function

φ(x) :=
1√
πb

e−(σN
2π

x)2/b , x ∈ R , (138)

with the parameter b := 2σm
(2σ−1)π which determines the localization of (138) in time

and frequency domain. As shown in Example 48, the Fourier transform of (138) reads

φ̂(ω) =
2π

σN
e−(πω

σN
)2b . (139)
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Lemma 114

Assume that σ > 1 and 2m ≪ σN. Then for the Gaussian function (138) and the
truncated function ψ = φ| [−2πm

σN , 2πm
σN ], the approximation error of the NFFT can be

estimated by
E (xj) ≤ 4 e−mπ(1−1/(2σ−1)) ∥f̂∥1 , (140)

where xj ∈ [−π, π), j = −M/2, . . . ,M/2− 1, is an arbitrary knot and f̂ ∈ CN is an
arbitrary data vector.

373 / 373



[1] T. M. Apostol.
Introduction to Analytic Number Theory.
Springer-Verlag, New York, 1976.

[2] K. Chandrasenkharan.
Classical Fourier Transforms.
Spinger-Verlag, Berlin, 1989.

[3] J. W. Cooley and J. W. Tukey.
An algorithm for machine calculation of complex Fourier series.
Math. Comput., 19:297–301, 1965.

[4] C. Févotte, N. Bertin, and J. L. Durrieu.
Nonnegative matrix factorization with the Itakura-Saito divergence: with
application to music analysis.
Neural Comput., 21(3):793–830, 2009.

[5] G. B. Folland.
Real Analysis. Modern Techniques and their Applications.

373 / 373



John Wiley & Sons, New York, second edition, 1999.

[6] D. Gabor.
The theory of communication.
J. IEE, 93:429–457, 1946.

[7] C. Gasquet and P. Witomski.
Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets.
Springer-Verlag, 1999.

[8] I. J. Good.
The interaction algorithm and practical Fourier analysis.
J. Roy. Statist. Soc. Ser. B, 20:361–372, 1958.

[9] L. Grafakos.
Classical Fourier Analysis.
Springer-Verlag, New York, second edition, 2008.

[10] M. T. Heideman, D. H. Johnson, and C. S. Burrus.
Gauss and the history of the fast Fourier transform.
Arch. Hist. Exact Sci., 34(3):265–277, 1985.

373 / 373



[11] H. Heuser.
Lehrbuch der Analysis. Teil 2.
B. G. Teubner, Stuttgart, twelve edition, 2002.

[12] V. A. Kotelnikov.
On the transmission capacity of the “ether” and wire in electrocommunications.
translated from russian.
In Modern Sampling Theory: Mathematics and Application, pages 27–45.
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