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Fourier coefficients and Fourier series

A complex-valued function f : R — C is 2m-periodic or periodic with period 27, if
f(x +27m) = f(x) for all x € R.

In the following, we identify any 27-periodic function f : R — C with the
corresponding function f : T — C defined on the torus T of length 27.

The torus T can be considered as quotient space R/(27Z) or its representatives, e.g.
the interval [0, 27] with identified endpoints 0 and 27. For short, one can also
geometrically think of the unit circle with circumference 27.

Typical examples of 27-periodic functions are 1, cos(n-), sin(n-) for each angular
frequency n € N and the complex exponentials e'** for each k € Z.
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By C(T) we denote the Banach space of all continuous functions f : T — C with the
norm

Illeqry := max ()]

and by C'(T), r € N the Banach space of r-times continuously differentiable functions
f: T — C with the norm

1fllcrery = Il cry + 1F Nl ey -

Clearly, we have C'(T) C C*(T) for r > s.
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Let L,(T), 1 < p < oo be the Banach space of (equivalence classes of) measurable
functions f : T — C with finite norm

2T

1 [ 1/p
1Fllepemy = ( !f(X)”dX) , 1<p<oo,
[f1| oo () := esssup{|f(x)| : x € T},

If a 27m-periodic function f is integrable on [—7, 7], then we have

/ : F(x)dx = / 7: F(x) dx

for all a € R so that we can integrate over any interval of length 27.
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Using Hdlder's inequality it can be shown that the spaces L,(T) for 1 < p < oo are
continuously embedded as

Li(T) D Lp(T) D ... D Lo(T).

In the following we are mainly interested in the Hilbert space Ly(T) consisting of all
absolutely square-integrable functions f : T — C with inner product and norm

(f,8)Ly(T) = % /7r f(x) g(x)dx,

—T

1 Q 1/2
Il = (57 | 1FG0Rax)™

If it is clear from the context which inner product or norm is addressed, we abbreviate
(f.g) = (f,8) () and [|f|| = [[f|ly(r). Forall f, g € Lo(T) it holds the
Cauchy-Schwarz inequality

[(f:8) Lol < [IfllLo(ry 8 Nl Loy -
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Theorem 1

The set of complex exponentials
{e'* = cos(k-) +isin(k-): k€ Z} (1)

forms an orthonormal basis of L»(T).
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Proof: By definition, an orthonormal basis is a complete orthonormal system. First we

show the orthonormality of the complex exponentials in (1). We have
o 1 /™ ., .
<elk- el_[-) - - / e1(l<7_/))< dx
) 27_‘_ o 9
which implies for integers k = j

ik k- L[
(e, e >:§ ldx =1.

-

On the other hand we obtain for distinct integers j, k

ik Gy — wi(k—j) _ —mi(k—j))
) = =) (e ¢ )
_ 2isinm(k —j) 0
o 27i(k—j)
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Now we prove the completeness of the set (1). We have to show that (f, e“"> =0 for
all k € Z implies f = 0.

First we consider a continuous function f € C(T) having (f,e**") = 0 for all k € Z.
Let us denote by

Tn = {kzn_:n ckel® ¢ € (C} (2)

the space of all trigonometric polynomials of degree < n. By the approximation
theorem of Weierstrass there exists for any function f € C(T) a sequence {pn}:ozl of
trigonometric polynomials p, € 7,, which converges uniformly to f, i.e.

max ’f(x) - p,,(x)} —0 for n— oo.
x€
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By assumption we have

n n

(Fopm) = (£, 3 aed®) = >~ e (f,e%) =0,
k=—n k=—n
Hence we conclude

||f||2:<f’f>_<f7pn>:<f7f_pn>—>0

as n — oo, so that f = 0.
Now let f € Lo(T) with (f,e*) = 0 for all k € Z be given. Then

h(x) = /OX f(t)dt, xe[0,2m),

is an absolutely continuous function satisfying h’(x) = f(x) almost everywhere.
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We have further h(0) = h(27) = 0. For k € Z\{0} we obtain

1 .
27 / —1kx dx
1

=g T [T ey e
T 2mik 0 27k Jy —=
=f(x)
1 .
= fek) =0.
omik (€T =0

Hence the 27-periodically continued continuous function h — (h, 1) fulfills

<h — (h, 1>,eik'>: 0 for all k € Z. Using the first part of this proof, we obtain
h = (h,1) = const. Since f(x) = h’(x) = 0 almost everywhere, this yields the
assertion. W
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Once we have an orthonormal basis of a Hilbert space, we can represent its elements
with respect to this basis. Let us consider the finite sum

n

Sof = Y alf)e* eT,,

k=—n

. 1 ™ .
c(f) == (f, elk'> =5 / f(x)e *dx,

—T

called nth Fourier partial sum of f with the Fourier coefficients c,(f). By definition
Sn: La(T) — Lo(T) is a linear operator which possesses the following important
approximation property.
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Lemma 2

The Fourier partial sum operator Sy, : Lo(T) — Lp(T) is an orthogonal projector onto
T, Ie.
If = Snf[| = min {[|f —pl| : p € Tn}

for arbitrary f € Lp(T). In particular, it holds

If = Saf I = IF1% = > le(F). (4)

k=—n
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Proof: For each trigonometric polynomial

with arbitrary ¢, € C and all f € L»(T) we have

If =pl? = [IfI>=(f, p) = (p, £) + [lpII®
= |IfI*+ Z (— ek ck(f) — ck ck(F) + |cil?)
k=—n
n
= |IflP* - Z k(AP + > lex — el )P
k=—n k=—n
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Thus,
IF = ol > £ = D la(FHP,
k=—n

where equality holds only in the case ¢x = cx(f), k = —n, ..., n, i.e. if and only if
p = Saf.

For p € T, of the form (5), the corresponding Fourier coefficients are cx(p) = ¢k for
k= —n,...,nand c(p) =0 for all |k| > n.
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Thus we have S,p = p and S,(S,f) = S,f for arbitrary f € Lp(T). Hence
Sp: Lo(T) — Lp(T) is a projection onto 7,,. By

n

(Snf, g) = Z Ck(f)%: (f, Sng)

k=—n

for all f, g € Ly(T), the Fourier partial sum operator S, is selfadjoint, i.e., S, is an
orthogonal projection. Moreover, S, has the operator norm [|Spl|1,(T)—1m) = 1. B
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As an immediate consequence of Lemma 2 we obtain the following

Theorem 3
Every function f € Ly(T) has a unique representation of the form

F=Yalf)e®, alf)=(f,d*) = /” F(x) e dx,

kEZ d

where the series (Spf)52, converges in L»(T) to f, i.e.
lim ||S,f —f]| =0.
n—o0

Further the Parseval equation is fulfilled

17112 = S [(F e = 3 k()2 < co.

kEZ keZ
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Proof: By Lemma 2, we know that for each n € Ny

n

I1SafII? = D le(FP < [IF]]* < o0.
k=—n

For n — 0o, we obtain Bessel’s inequality
oo
2 2
> (DR < If11%
k=—0c0

Consequently, for arbitrary € > 0, there exists an index N(eg) € N such that

> el <e.

|k|>N(e)
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For m > n > N(g) we obtain

|Smf — Saf || = <_Z Z > lek(F))? < Z lek(F)]? < €.

k=—m  k=n+1 |k|>N(e)

Hence (5,f)2, is a Cauchy sequence. In the Hilbert space L»(T), each Cauchy
sequence is convergent. Assume that lim,_,o Spf = g with g € L(T). Since

(g, %) = lim (S,f, ) = lim (f, Spe') = (f, eiF)

n—o0 n—o0

for all k € Z, we conclude by Theorem 1 that f = g. Letting n — oo in (4) we obtain
the Parseval equation (7). W
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The representation (6) is the so-called Fourier series of f. Figure 1 shows 27-periodic
functions as superposition of two 27-periodic functions.

1 77y /\ 1 N
0.5
- —5 3 . 7
51 2
14
—1.5+

Figure 1: Two 2r-periodic functions sinx + 1 cos(2x) (left) and sinx — 75 sin(4x) as

superpositions of sine and cosine functions.

Clearly, the partial sums of the Fourier series are the Fourier partial sums. The

constant term cp(f) = % ffﬂ f(x) dx in the Fourier series of f is the mean value of f.20/373



Remark 4

For fixed L > 0, a function f : R — C is called L-periodic, if f(x + L) = f(x) for all
x € R. By substitution we see that the Fourier series of an L-periodic function f reads
as follows

(D) £ g2n CIPVE Y i
F=> g l(f)emk/t o (f) =+ / f(x) e 2mR/bdx . (8)
kez Loy
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In polar coordinates we can represent the Fourier coefficients in the form

1 .
ck(f) ==z re e e :=2|ck(f)], pk := atan2 (Im ck(f), Re ck(f)), 9)

2
where
(arctan ¥ if x>0,

arctanf + 71 if x <0, y >0,
arctanY — 7 if x <0, y <0,

atan2(y, x) :==q x ) Y
T if x=0,y>0,
_z ifx=0,y<0,
0 if x=y=0.

Then (|Ck(f)|)kEZ = %(fk)kez is called the spectrum or modulus of f and (Sok)kez the
phase of f.

22/373



For fixed a € R, the 2m-periodic extension of a function f : [—7 + a, 7 + a) — C to
the whole line R is given by f(x + 27n) := f(x) for all x € [-7 + a, 7 + a) and all
n € Z. Often we have a =0 or a = .

Example 5

Consider the 27-periodic extension of the real-valued function f(x) = e™*, x € (—m, )
with f(&£m) = coshm = 3(e™™ +€™). Then the Fourier coefficients cx(f) are given by
1 T .
c(f) = > /_7r e (IHK)x g
_ 1 (ef(1+ik)7r B e(1+ik)7r> ~ (=D¥sinhm
(1+ik)m

2m (1 + ik)

Figure 2 shows both the 8-th and 16-th Fourier partial sum Sgf and Si6f. [
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Figure 2: The 2w-periodic function f given by f(x) :=e™, x € (=7, 1), with
f(£m) = cosh(m) and its Fourier partial sums Sgf (left) and Si6f (right).
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For f € L»(T) we have (7). Thus the Fourier coefficients c,(f) converge to zero as

|k| — oo. Since
1 ™
()< 5 [ 1FCII e = I luce.

the integrals
1 [7 .
ck(f) / f(x)e *™dx, kelZ

=2 |
also exist for all functions f € L1(T), i.e., the Fourier coefficients are well-defined for
any function of L;(T). The next lemma contains simple properties of Fourier
coefficients.
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Lemma 6
The Fourier coefficients of f, g € Li(T) have the following properties for all k € 7Z:
@ Linearity: For all o, 8 € C,

ck(af + Bg) = ac(f) + Bckl(g)-
@® Translation — Modulation: For all xy € [0, 27) and ko € Z,

k(- — x0)) = e %0 ¢ (f),

Ck(e_iko' f) = Ck+k0(f) .

In particular |ck(f(- — x0))| = |ck(f)
spectrum of f.

, I.e., translation does not change the

© Differentiation — Multiplication: For absolute continuous functions f € L1(T) with
f" € L1(T) we have
ck(f') =ik cx(f).
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Proof: The first property follows directly from the linearity of the integral.
The translation—modulation property can be seen as

Ck(f(~_X0))— 1 /W f(X—Xo)e_ikXdX

_g o
1 ™

_ = f —ik(y+xo) — o—ikxo £
L[ et ay = o)

—T

and similarly for the modulation—translation property.
For the differentiation property recall that an absolute continuous function has a
derivative almost everywhere. Then we obtain by integration by parts

™

1 . —ik 1 " ! —ik /
= iho e = — ey = ¢ (F). W
. ik f(x)e "™ dx o / f'(x)e "™ dx = ck(f")

—T
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The complex Fourier series

f= Z ck(f) ek

kEZ

can be rewritten using Euler’s formula el = cos(k-) 41 sin(k-) as

*—ao +i (ak(F) cos(k-) + bi(f) sin(k-)), (10)
k=1

where

ak(f):Ck(f)—i-C_k(f):Z(f COS( )>, k € Ng,
be(f) =i (cu(f) — ck(f)) = 2(f,sin(k:)), keN.

Consequently {1,v/2 cos(k-): k € N} U {v2 sin(k-): k € N} form also an
orthonormal basis of Lp(T). If f : T — R is a real-valued function, then
ck(f) = c_k(f) and (10) is the real Fourier series of f.
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Using polar coordinates (9), the Fourier series of a real-valued function f € Ly(T) can
be written in the form

1 = .
f= 5 ao(f) + Z re sin(k - +¢k).

k=1

with sine oscillations of amplitudes r, = 2|ck|, angular frequencies k and phase shifts
k. For even and odd functions the Fourier series simplify to pure cosine resp. sine
series.
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Lemma 7

If f € Ly(T) is even, i.e. f(x) = f(—x) for all x € T, then cx(f) = c_k(f) for all k € Z
and f can be represented as a Fourier cosine series

f)+2 ch cos( %ao(f)—kz.ak(f) cos(k-).

Iff € Lp(T) is odd, i.e. f(x) = —f(—x) for all x € T, then c,(f) = —c_(f) for all
k € Z and f can be represented as a Fourier sine series

i (f) sin( Zbk sin(

The simple proof of Lemma 7 is left as an exercise.
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Example 8

The 27-periodic extension of the function f(x) = x2, x € [~, 7) is even and has the

Fourier cosine series

% i COS

O
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Example 9

The 27-periodic extension of the function s(x) = 5%, x € (0, 27), with s(0) = 0 is
odd and has jump discontinuities at 27k, k € Z, of unit height. This so-called
sawtooth function has the Fourier sine series

(e.o]

1
ﬁ S|n(k) 0
k=1

Applying the Parseval equation (7) we obtain

P P
2m2 k2 12

This implies >~;7 4 % = %2. The last equation can be also obtained from the Fourier
series in Example 8 by setting x := 7w and assuming that the series converges in this
point. [
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- ™

Figure 3: The Fourier partial sums Sgf of the even 2m-periodic function f given by
f(x) := x2, x € [-m, m) (left) and of the odd 27-periodic function f given by f(x) =
x € (0, 2m), with £(0) = f(27) = 0 (right).

1 _ x
2 2!
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Example 10

We consider the 27-periodic extension of the rectangular pulse function
f:[-m, m) — R given by

[0 ifxe(-m0),
f(X)_{l if x € (0, )

and f(—7) = f(0) = 3. The function f — 3 is odd and the Fourier series of f reads

1 o

2 .
2+nz;(2n_1)7rsm((2n1)o). O
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Convolution of periodic functions

The convolution of two 27-periodic functions f, g € L1(T) is the function h=f x g
given by

h(x) = (F = )(x / f(y)g(x — y)dy.

Using the substitution y = x — t, we see

™

(Fre)) =5 [ fx—Dg(0)dt = (g F)x)

—T
so that the convolution is commutative. It is easy to check that it is also associative
and distributive. Furthermore, the convolution is translation invariant

(F(- =) xg)(x) = (Fx g)(x — ).

If g is an even function, i.e. g(x) = g(—x) for all x € R, then

() =5 [ F0ely -0y,

™ -7
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0.1

7 T

Figure 4: Top: Two 27-periodic functions f (red) and g (green). Down: The corresponding
convolution f x g.
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Theorem 11

O Let f € L,(T), 1< p<ooandge Li(T) be given. Then f x g exists almost
everywhere and f x g € L,(T). Further we have the Young inequality

I+ glle,cry) < Iflle,em gl ()

@ Let f € L,(T) and g € L4(T), where1 < p,q < oo and%—k% =1. Then fxg
exists for every x € T and f x g € C(T). It holds

I gllcmy< Il (ryllgll Ly(r)-

© Let f € Ly(T) and g € L4(T) , where1 < p,q,r < oo and%+%:%+1. Then
fxg € L,(T) and we have the generalized Young inequality

I * glle,(ry < MFllLycmllglliq(r-
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Proof: 1. For f € L,(T) and g € Li(T) we obtain by generalized Minkowski's
inequality

1 ™
I+ gllmy =5l [ &) - =y)dyli,(m
1 ’7T
<5 [ 1) =Dl dy
1

=5 _W!g(y)\ 1£(- = Y)l,(ry dy

= l1glly(my Il cm)-
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2. Let f € Lp(T) and g € Ly(T) with %—i— % =1 and p > 1 be given. By Holder's
inequality it follows

™

(F + )1 < (57 [ IFlx=y)Pdy) /rg )7dy)’

—T

< |IfllL,cr) &l Ly(T)
and consequently
(Frg)(x+8) = (Fx @) < (- + ) = Fll,(m &l Loemy-
Now the second assertion follows, since the translation is continuous in the L(T)

norm (see [5, Proposition 8.5]), i.e. ||f(-+t) — f|l.,(r) — 0 as t — 0.
The case p =1 is straightforward.
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3. Finally, let f € L,(T) and g € Ly(T) with % + = + 1forl1<p,q,r<oobe

given. The case r = oo is described in Part 2 so that |t remains to consider
1<r<oo. Then p<r and g < r, since otherwise we would get the contradiction

g<lresp. p<1. Sets:zp(l—%) =1-2¢€10,1) and t::ée [1,00). Define ¢’
by % + % = 1. Then we obtain by Holder's inequality

h) = o / £ Vgl dy = o / 1 — y)** g ()] 1F(x — y)I* dy

/q
27r/ Fx =g dy) (5= [ 1=l ay)
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Using that by definition sg’ = p and q/q’ = (sq)/p, this implies

1 _ 1 /7 a/d’
i (x )32—/ =gy (5 [ 1= y)Pay)

g 27 ) _n

1 _ \(1-s)g q i/” o\ (sa)/p

=5 [ =gy (5= [ 1= ay)

[ IR ) dy

27'( gy Y Lp(T)

such that

1 [ q/(qt) 1
118 6 = (55 | G ax) ™™ = (5 [ it ax) " = )

. 1 [ /1 [™ . /
< (5o [ (5 | 1= )09 gl dy) ax)
and further by (1 — s)gt = p and generalized Minkowski's inequality

w 1 /7,1 7 _ 1/t
Hh”‘zr(’]l‘) < ”f”LZ('H')Z /777 <£ Lﬂ|f(x—y)|(1 s)at \g(y)l‘”dx) dy
1 /7 1 1/t
q (1—s)qt
= Il 27r/ 80N (55 [ 1=yl ) ay

(1— 1 (7
= 1P 11, 5= [ L)1y = 1F1E el o

Taking the g-th root finishes the proof. Alternatively Part 3 can be proved using the
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The convolution of an L1(T) function and an L,(T) function with 1 < p < oo is in
general not defined pointwise as the following example shows.

Example 12

We consider the 27-periodic extension of f : [—m, m) — R given by

fy) = {|y|_3/4 y € [=m, ™)\ {0},

0 y=0. (11)

The extension denoted by f is even and belongs to L1(T). The convolution (f x f)(x)
is finite for all x € [—m, 7) \ {0}. However, for x = 0, this does not hold true, since

/7r f(y) f(—y)dy=/7r ly|*?dy =00. O

-7 —T
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The following lemma describes the convolution property of Fourier series.
Lemma 13
For f, g € Li(T) it holds

ck(fxg) = c(f)ek(g), keLZ.

Proof.
Using the 27-periodicity of g we obtain

c(fxg) = (21 /ﬂ< 7Tf( ) (x—y)dy)e*ikxdx

1ky - y) e—ik(x—y) dy dx

—T —Tr

:(%)2/_ fly)e lkydy/_ g(t) ekt dt = ¢ (F) cu(g)
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The convolution of functions with certain functions, so-called kernels, is of particular
interest.

Example 14
The nth Dirichlet kernel for n € Ny is defined by

n
Da(x):= Y €, xeR. (12)
k=—n

By Euler's formula it follows

Dp(x)=1+2 En:cos(kx) .
k=1
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Obviously, D, € T, is real-valued and even. For x € (0, 7] and n € N, we can express
sin 3 Dp(x) as telescope sum

. X . X < . X
(sm 5) Dn(x) = sin 5 + 22 cos(kx) sin 5

_ Sln*-i-Z( 2k+1 _sin(ngl)x>

. (2n+ 1)
sin ——

Thus, the nth Dirichlet kernel can be represented as a fraction

sin (2n+1)x

Dn(x) = ﬁ x € [=m, m)\{0} (13)

with D,(0) = 2n + 1.
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Figure 5 depicts the Dirichlet kernel Dg. The Fourier coefficients of D, are

1 k=-n,...,n,
Ck(D”)—{ 0 |k >n.

For f € Li(T) with Fourier coefficients cx(f), k € Z, we obtain by Lemma 13 that

n

fxDp= > cu(f)e =S,f,
k=—n

which is just the nth Fourier partial sum of f and hence its orthogonal projection onto
the space of trigonometric polynomials 7.
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By the following calculations, the Dirichlet kernel fulfills

1 (" 4
IDalry = 5r [ DA e = 5 nn. (14)

Note that ||Dpl|,,(T) are called Lebesgue constants. Since sin x < x for x € [0, 5) we
get by (13) that

1Dallymy = 1/“ |sin(i?:(j/12))x/2)!dx . 72T/0’r |sin((2n:—1)x/2)|dx'
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2n+1

Substituting y = X results in

2 (”+%)“|siny|
1Dalliyry > = / d

Z/ 1)Tr|5';y Z/ ’5”1)/|

n+11 4
zﬂzzk_— ;dx>w—|nn

| V

| \/

The Lebesgue constants fulfill

4
HD,,HLI(T):ﬁlnn—i—(’)(l), n— oo. O
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Example 15
The nth Fejér kernel for n € Ny is defined by

1 n
= — D; s 15
F, n+1j20,e7' (15)

By (13) and (15) we obtain F,(0) = n+ 1 and for x € [—7, 7) \ {0}

Ry = Ly s (U+2)9

n+1 sin
+ =0 5
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Multiplying the numerator and denominator of each right-hand fraction by 2 sin 5 and
replacing the product of sines in the numerator by the differences

cos(jx) — cos ((j + 1)x), we find by cascade summation that F, can be represented in
the form

1 l-cos((n+1)x) 1 /sin (+1)x 5
Falx) = 2(n+1) (sin g)Q o+l < sin% ) (16)

In contrast to the Dirichlet kernel the Fejér kernel is non-negative. Figure 6 shows the
Fejér kernel Fg. The Fourier coefficients of F, are

—% k= —n n
c Fn — n LA )
{F) =1, k| > n.
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Using the convolution property, the convolution f x F, for arbitrary f € L;(T) is given
by

onf :=fxF,= Z (1 - n’—li(—’l) k() ek . (17)

k=—n

Then o,f is called the nth Fejér sum or nth Cesaro sum of f. Further, we have

1 s
||Fn||L1(T) = o / Fa(x)dx = 1. O

—T
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Example 16
The nth de la Vallée Poussin kernel V5, for n € N is defined by

2n—1 2n

1 .
V,-,:* D‘:2Fn_ —Fn_ = Vn ik-
2 - JE:n g 2n—1 1 k_§_2n Ck( 2 )e

with the Fourier coefficients

2 = on,... —(n+1),n+1,...,2n,
Ck(Vzn): 1 =—n,...,n, 0
0 |k| >2n.
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Figure 5: The Dirichlet kernel Dg (left) and its Fourier coefficients cx(Dg) (right).
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SEES

|
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N

Figure 7: The convolution f * D3, of the 2m-periodic sawtooth function f and the Dirichlet
kernel D3, approximates f quite good except at the jump discontinuities (left). The
convolution f % F3, of f and the Fejér kernel F3, approximates f not as good as f * D3y, but it
does not oscillates near the jump discontinuities (right).
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By Theorem 11 the convolution of two Li(T) functions is again a function in Li(T).
The space L1(T) forms together with the addition and the convolution a so-called
Banach algebra. Unfortunately, there does not exist an identity element with respect
to *, i.e., there is no function g € L1(T) such that f x g = f for all f € L1(T). As a
remedy we can define approximate identities.

A sequence (Kp)nen of functions K, € L1(T) is called an approximate identity or a
summation kernel , if it satisfies the following properties:

® L [ Ky(x)dx=1forall neN,
@ [|Knlly(ry = > f| a(x)|dx < C < oo forall neN,
)|

im (f + [ ) IKn(x)| dx = 0 for each 0 < 0 < .
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Theorem 17
For an approximate identity (K,)nen it holds
nl'_ggo | Kn * £ — f”C(T) =0

for all f € C(T).
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Proof: Since a continuous function is uniformly continuous on a compact interval, for
all £ > 0 there exists a number ¢ > 0 so that for all |u| < ¢

(- —u) = fllcr) <e. (18)
Using the first property of an approximate identity, we obtain
[1Kn* £ = Fllc(ry
1
= f(x — du—f
sup 5 [ = ) Kolw) du = £()

1 T
= sup 5= [ (G u) -~ 709 Kot

< 5w [ 17— u) = ) Kn(w)] o

xeT
2&%/ / /|fx—u—f<)w<()\du
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By (18) the right-hand side can be estimated as
c 1
o [ inans s ([ )i o) - Kl
™ J- T xeT

By the Properties 2. and 3. of the reproducing kernel K,,, we obtain for sufficiently
large n € N that

1
[ Kn* f—fllcery <eC + - Ifllcer e

Since € > 0 can be chosen arbitrarily small, this yields the assertion. H
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Example 18

The sequence (Dj)nen of Dirichlet kernels defined in Example 14 is not an
approximate identity, since || Dpl[.,(T) is not uniformly bounded for all n € N by (14).
Indeed we will see in the next section that S,f = D, * f does in general not converge
uniformly to ¥ € C(T) for n — co. A general remedy in such cases consists in
considering the Cesaro mean as shown in the next example. [
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Example 19

The sequence (F,)nen of Fejér kernels defined in Example 15 possesses by definition
the first two properties of an approximate identity and also fulfills the third one by (16)

(/_ / dx—2/;F,,(x)dx

[y,

< 2 /ﬂﬂ'zd 2T (7r 1)
—dx = ——1).
“n+1); x2 n+1\9

and

The right-hand side tends to zero as n — oo so that (F,)nen is an approximate identity.

It is not hard to verify that the sequence (Van)nen of de la Vallée Poussin kernels
defined in Example 16 is also an approximate identity. [
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From Theorem 17 and Example 19 it follows immediately

Theorem 20 (Approximation Theorem of Fejér)

If f € C(T), then the Fejér sums o,f converge uniformly to f as n — oo. If
m < f(x) < M for all x € T with m, M € R, then m < (o,f)(x) < M for all n € N.
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Proof: Since (Fp)nen is an approximate identity, the Fejér sums o,f converge
uniformly to f as n — oco. If a real-valued function f : T — R fulfills the estimate
m < f(x) < M for all x € T with certain constants m, M € R, then

(0nF)(x) = / Faly) f(x — y)dy

:E .

fulfills also m < (onf)(x) < M for all x € T, since Fo(y) > 0 and
% ffﬁ Fo(y)dy = co(Fr) =1. W
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The Theorem 20 of Fejér has many important consequences such as
Theorem 21 (Approximation Theorem of Weierstrass)

If f € C(T), then for each € > 0 there exists a trigonometric polynomial p = o,f € T,
of sufficiently large degree n such that ||f — pl|c(r) < e. Further this trigonometric
polynomial p is a weighted Fourier partial sum given by (17).
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Pointwise and uniform convergence of Fourier series

It was shown that a Fourier series of an arbitrary function f € L,(T) converges in the
norm of Ly(T), i.e.

A ISnF = Flliagy = fim J1F Do = Flliymy =0

In general convergence of a sequence a.e. does not result in L, p € [1,00]
convergence. Conversely, L, convergence only implies convergence a.e. of a
subsequence. In 1966, L. Carleson proved the fundamental result that the Fourier
series of an arbitrary function f € L,(T), 1 < p < oo converges almost everywhere.
Kolmogorov (1923) showed that the analogue of Carlson’s result for L1(T) is false. A
natural question is whether the Fourier series of every function f € C(T) converges
uniformly or at least pointwise to f.
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In fact, many mathematicians like Riemann, Weierstrass and Dedekind conjectured
over long time that the Fourier series of a function f € C(T) converges pointwise to f.
Unfortunately, we have in general neither pointwise nor uniform convergence of the
Fourier series of a function f € C(T). A concrete counterexample was constructed by
Du Bois—Reymond in 1876 and was a quite remarkable surprise. It was shown that
there exists a (real-valued) function f € C(T) such that

n||_>moo sup |Spf(0)| = oo.
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To see that pointwise convergence fails in general we need the following principle of
uniform boundedness of sequences of linear operators, see e.g. [20, Kor.2.4].

Theorem 22 (Theorem of Banach—Steinhaus)

Let X be a Banach space with a dense subset D C X and Y a normed space. Further
let T,: X =Y forneN, and T : X — Y be linear bounded operators. Then it holds

Tf := lim Tof (19)

n—oo

for all f € X if and only if

O || Thllx—y < const < co for all n € N, and
D lim, oo Tpp= Tp forall p € D.
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Theorem 23

There exists a function f € C(T) whose Fourier series does not converge pointwise.

Proof: Applying Theorem 22 of Banach-Steinhaus, we choose X = C(T), Y = C and
D =J;2, Tn. By the Approximation Theorem 21 of Weierstrass, the set D of all
trigonometric polynomials is dense in C(T). Then we consider the linear bounded
functionals T,f := (S5,f)(0) for n € N and Tf := f(0) for f € C(T). Note that
instead of 0 we can choose any fixed xg € T.

By S,p = p for each p € D and sufficiently large n, in particular we have

limp—00 Snp(0) = p(0). But the norms || Ty||c(T)—c are not uniformly bounded with
respect to n, because || Ty c(ry—c = ||Dnll1 () are not uniformly bounded by (14).
Thus by the Banach—Steinhaus Theorem 22 there exists a function f € C(T) whose
Fourier series does not converge in the point 0.
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Finally we determine the norm | T, | ¢c(1)—c. From

| Taf| = [Saf(0)] = |(Dn = £)(0)]
= ! / D,(x) f(x) dx|

2 ),

11l ccry I Dnll Ly ()

IN

for arbitrary f € C(T) it follows || sl c(ry—c < ||Dnllr (ry- To verify the opposite
direction consider for an arbitrary £ > 0 the function

Dn,

B ETRR

e .

which has C(T) norm smaller than 1.
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Then

s X2
ITofe] = (Do # £)(0) = 1/ l')D(()‘)’ dx
™ [Dn(x)|? —€?
25 » IDa()] T €

> (2;/ 1Dn(x)] dx — €) |l ey

dx

implies || Thllc(t)—c = [|Dnll,(T) — €. For € — 0 we obtain the assertion.
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In the following we will see that for frequently appearing classes of functions stronger
convergence results can be proved. A function f: T — C is called piecewise
continuously differentiable, if there exist finitely many points
0<xp<x1<...<xp_1< 27 such that f is continuously differentiable on each
subinterval (xj, Xj+1), j =0,...,n —1 with x, = xp + 2, and the left and right limits
f(xj +£0), f'(x; £0) for j =0,...,n exist and are finite. In the case

f(x; —0) # f(x; + 0), the piecewise continuously differentiable function f : T — C has
a jump discontinuity at x; with jump height |f(x; +0) — f(x; — 0)|. Simple examples of
piecewise continuously differentiable functions f : T — C are the the sawtooth
function and the rectangular pulse function (see Examples 9 and 10). This definition is
illustrated in Figure 8.
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Figure 8: A piecewise continuously differentiable function (left) and a function that is not

piecewise continuously differentiable (right).
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The next convergence statements will use the following result of Riemann—Lebesgue.
Lemma 24 (Lemma of Riemann-Lebesgue)
Let f € L1((a, b)) with —co < a < b < oo be given. Then the following relations hold

b
lim / f(x)e ™ dx =0,
a

[v|—=o0

lim / f(x) sin(xv) 0, lim / f(x) cos(xv) dx

[v|—o0 [v|—=o0

Especially, for f € L1(T) we have

1 m :
lim ¢ (f) = lim / f(x)e > dx =0.

|k| =00 2T |k|—»oo J 1
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Proof: We prove only

b
lim / f(x)p(vx)dx =0 (20)
[v]—=oo S,

for p(t) = e it. The other cases p(t) = sint and p(t) = cost can be shown
analogously.

For the characteristic function x|, g of a finite interval [a, 5] C [a, b] it follows for

v # 0 that

’ i 1
|/ X () e dx| = [ = &
a

(e—ivﬂ _ e—iva)‘ < 7’
This becomes arbitrarily small as |v| — oo so that characteristic functions and also all
linear combinations of characteristic functions (i.e. step functions) fulfill the assertion.

2
iv |v
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The set of all step functions is dense in L;i([a, b]), i.e. for any e > 0 and f € Li([a, b])

there exists a step function ¢ such that

1 = ollLy(a) = / (%) — o(x)|dx < e.

b b b
‘/a f(x) e v dx! < ‘/ (f(x) — go(x))e_ixv dx} + ‘ o(x) e v dx‘
< e+ ‘/ —1xv dX|

we obtain the assertion.
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Next we formulate a localization principle, which states that the convergence behavior
of a Fourier series of a function f € L1(T) at a point xp depends merely on the values
of f in some arbitrarily small neighborhood — despite the fact that the Fourier
coefficients are determined by all function values on T.

Theorem 25 (Riemann’s Localization Principle)

Let f € L1(T) and xo € R be given. Then we have

lim S,f(x0) =c¢

n—o0

for some ¢ € R if and only if for some ¢ € (0, 7]

n—oo

é
lim / (f(xo—t)+ f(xo+1t) —2c) Dp(t)dt =0.
0
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Proof: Since D, € C(T) is even, we get

Saf(xo) = / / (x0 — t) Dy(t) dt

- (f(xo—t)+f(x0+t))D (t)dt.

27T
Using 7 = [y Da(t)dt, we concIude further
1 ™
Saf(x0) —c = > (f(xo — t) + f(x0 +t) — 2¢) Dy(t) dt.
T Jo

By Example 14, we have Dy(t) =sin ((n+ 1)t)/sin £ for t € (0, 7]. By the
Lemma 24 of Riemann—Lebesgue we obtain

Tf(xg—t)+f t) -2 1
lim / Co= )+ o+t =2¢ G ((n 1 Ly ar=o
n—oo s sin 5 2
and hence
. .1
n||—>r20 S,,f(Xo) —Cc= n||_>n<’|>o % A (f(Xo — t) + f(Xg + t) -2 C) Dn(t) dt,

if one of the limits exists. W 76373



For a complete proof of the main result on the convergence of Fourier series, we need
some additional preliminaries. Here we follow mainly the ideas of [11, p. 137 and

pp. 144-148].

Let a compact interval [a, b] C R with —co < a < b < 0o be given. Then a function
¢ : [a, b] = C is called a function of bounded variation, if

VE(p) = sup D [e(x)) — ¢(xj-1)| < o0,
=1

where the supremum is taken over all partitions a = xp < x1 < ... < x, = b of [a, b].
The nonnegative number V() is the total variation of ¢ on [a, b]. We set

VZ(p) := 0. For instance, each monotone function ¢ : [a, b] — R is a function of
bounded variation with V() = |¢(b) — ¢(a)|. Because

()| < l(a)] + lo(x) = w(a)l < le(a)] + V3 () < le(a)l + V() < o0

for all x € [a, b], each function of bounded variation is bounded on [a, b].
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Lemma 26

Let v : [a, b] = C and 1) : [a, b] — C be functions of bounded variation. Then for
arbitrary o € C and c € [a, b] it holds

Vi) = ol V2(p),
V2e+v) < V2(e)+ Vi),
V2(e) = V(o) + V2(e), (21)
max{V2(Rep), VZ(Imp)} < VE(p) < VE(Rep)+ VE(Imyp).  (22)

The simple proof is omitted here. For details see e.g. [18, pp. 159-162].
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Theorem 27 (Jordan Decomposition Theorem)

Let ¢ : [a, b] — C be a given function of bounded variation. Then there exist four
nondecreasing functions ¢j : [a, b| = R, j =1,...,4, such that ¢ possesses the
Jordan decomposition

¢ = (p1—2) +i(p3z — pa),

where Re p = p1 — o and Im ¢ = w3 — 4 are functions of bounded variation. If ¢ is
continuous, then ¢;, j =1,...,4, are continuous too.
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Proof: From (22) it follows that Re ¢ and Im ¢ are functions of bounded variation. We

decompose Re . Obviously,
v1(x) == VX(Rey), xE€]la, b],
is nondecreasing by (21). Then
pa(x) = 1 —Rep(x), x€la, b],
is nondecreasing too, since for a < x < y < b it holds
|Regp(y) — Rep(x)| < V¥(Rey) = ¢1(y) — pa(x)

and hence

©2(y) — p2(x) = (¢1(y) — v1(x)) — (Regp(y) — Re(x)) > 0.

Thus we obtain Rep = ¢1 — 2. Analogously, we can decompose Im ¢ = 3 — 4.

Using ¢ = Rep + 1 Im ¢, we receive the above Jordan decomposition of . If ¢ is
continuous at x € [a, b], then, by definition, each @;j is continuous at x. W
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A 2m-periodic function f : T — C with V@™(f) < oc is called a 2m-periodic function of
bounded variation. By (21) a 2m-periodic function of bounded variation has the
property V°(f) < oo for each compact interval [a, b] C R.

Example 28

Let f : T — C be a piecewise continuously differentiable function with jump
discontinuities at distinct points x; € (0, 27), j =1,...,n — 1. Assume that it holds
f(x) =3 (f(x+0) + f(x — 0)) for all x € [0, 2). Then f is a 27-periodic function of
bounded variation, since

V§™(f) = |f(0+0)—f(0—-0)| +nz_:\f(xj+0) — f(x — 0)]
j=1

27
+ / |f'(t)|dt < co.
0

The functions given in Examples 5, 8, 9, and 10 are 27-periodic functions of bounded
variation. [
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Lemma 29
There exists a constant ¢y > 0 such that for all ., 8 € [0, 7] and all n € N it holds

B
\/ Dy(1)dt] < co. (23)

Proof: We introduce the function h € C[0, 7| by

1 2
h(t) := - = t 0
(t) snf t’ € (0, 7,

and h(0) := 0. This continuous function h is increasing, i.e., we have
0 < h(t) < h(m) < 3 for all t € [0, 7]. Using (13), for arbitrary c, 8 € [0, 7] we
estimate

B
|/ Dn(t)dt‘ < !/ sm n+ tdt‘+2‘/ smn;—)dt‘
a t

IN
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By the sine integral

x)—/ smt XxER,

it holds for all v > 0 (see Lemma 37)

| /07 Siix dx| < Si(r) < 2

//3 sin (n + %)t i — /("Jfé)ﬁ sin x e /("4“5)0‘ sin x dx
o t 0 X 0 X
it follows that 5 1
sin(n+ )t
‘/ Mdt‘ <4,
o t

i.e., (23) is fulfilled for the constant ¢ = 5 +8. W

From
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Lemma 30

Assume that 0 < a< b< 2w, 0 >0 and b— a+ 26 < 27 be given. Let
p:[a—d—m, b+ 0+ 7] — R be nondecreasing, piecewise continuous function which

is continuous on [a — §, b+ 0].
Then for each € > O there exists an index ny(¢) such that for all n > no(e) and all

x € [a, b]
y/ o0+ 1)+ plx — ) — 200(x)) Da(t)de| < e.
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Proof: 1. For (x,t) € [a— 0, b+ 0] x [0, 7] we introduce the functions

g(x,t) = px+1t)+elx—1t)—2¢(x),
hi(x,t) = ¢(x+1)—¢(x) =0,
ha(x,t) = @(x) —p(x—t) >0

such that g = hy — ho. For fixed x € [a, b], both functions hj(x,-), j =1, 2, are
nondecreasing on [0, 7. Since hj(-,7), j =1, 2, are piecewise continuous on [a, b],
there exists a constant ¢; > 0 such that for all (x,t) € [a, b] x [0, 7]

‘hj(X, t)‘ <c. (24)

Since @ is continuous on the compact interval [a — d, b+ ¢], the function ¢ is
uniformly continuous on [a — d, b+ d], i.e., for each € > 0 there exists 3 € (0, ) such
that for all y, z € [a— §, b+ 0] with |y — z| < 5 we have
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By the proof of Lemma 29 we can choose ¢y = 5 + 8. Hence we obtain for all
(x,t) € [a, B] x [0, ] and j = 1, 2

€
0 < h; t —_—
< hi(x, )<4C0

2. Now we split the integral

™

™ B
/Og(x,t)Dn(t)dt:/o g(x,t)Dn(t)dt+/B g(x, t) Dy(t) dt

into a sum of two integrals, where the first integral can be written in the form

B B B
/Og(x,t)Dn(t)dt:/o hl(x,t)Dn(t)dt—/o ha(x, t) Dy(t) dt.

(25)

(26)

(27)
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Observing that hj(x,-), j = 1, 2, are nondecreasing for fixed x € [a, b], we obtain by

the second mean value theorem for integrals, see e.g. [18, pp. 328-329], that for
certain aj(x) € [0, 5]

B aj(x)
/ hi(x, £) Da(t)dt = hj(x,O)/ Da(t) dt
0 0

B
s [ Dy(e)de
@j(x)
B
= 0+hj(x,ﬁ)/ Dn(t)dt, j=1,2.
a;j(x)

By (23) and (25) this integral can be estimated for all x € [a, b] by

]/Bh-(x £) Dp(t)dt| < — o = =
o ~ 4 4

such that by (27) for all x € [a, b]

3
\/ (x,£) Da(t)dt| < = +Z 5

(28)
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3. Next we consider the second integral in (26) which can be written as
/ g(x, £)Dn( )dt—/ hu(x, £) D )dt—/ ho(x, £) Da(t)dt.  (29)

B B B
). j =1, 2, are nondecreasing for fixed x € [a, b], the second mean value

theorem for integrals provides the existence of certain v;(x) € [3, 7] such that
(30)

Since hj(x,
Dp(t)dt + hj(X,T()/ Dy(t)dt.
()

/ﬁﬂ hj(X, t) Dn(t)dt = hj(X?B)/ﬁ (x)

From (13) it follows
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Since (sin %)71 is monotone on [3, v;(x)], again by the second mean value theorem
for integrals there exist 7;(x) € [, vj(x)] with

() 1 n;(x) 1
/ Dy(t)dt = / sin (n+ =) tdt
8 in5 Js 2

S|n§

1 i(x) 1
+/ sin (n+ =) tdt. (31)
sin (%) (%) 2
Now we estimate both integral in (31) such that

n(x) 1 4
‘/ﬁ S|n(n+§)tdt‘§2n+1,

) 1 4
\/W) sin (n+ ) tde] < 52—

J

Applying the above inequalities, we see by (31) for all x € [a, b] and j =1, 2 that

(x) 8
}/ﬁ Dy(t)dt| < m (32)
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Analogously, one can show for all x € [a, b] and j = 1, 2 that

| i Dn(t)dt| < 8

5 33
() (2n+1) sin 5 )

Using (24) and (30), the inequalities (32) and (33) yield for all x € [a, b] and j =1, 2,

1
\/ i(x,t) Dn(t)dt| < Lﬁ
(2n+1) sin5
and hence by (29)
32
\/ (x,) Do(t)dt| < ——L
(2n+1) sin 2

Therefore for the chosen € > 0 there exists an index ng(¢) € N such that for all
n > ng(e) and all x € [a, b],

‘ /ﬁwg(x, t) D,(t) dt‘ < g ) (34)
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Together with (26), (28), and (34) it follows for all n > ng(e) and all x € [a, b] that

\/ (x,t) Dp(t)dt| < e.

This completes the proof. W
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Based on Riemann’s Localization Principle and these preliminaries, we can prove the
following important theorem concerning pointwise convergence of the Fourier series of
a piecewise continuously differentiable function f.

Theorem 31 (Convergence Theorem of Dirichlet—Jordan)

Let f : T — C be a piecewise continuously differentiable function. Then at every point
xp € R, the Fourier series of f converges as

: 1
n|l_>l’TC1>O Snf(x0) = E(f(xo +0) + f(xo — 0)) .
In particular, if f is continuous at xgy, then
nIer;O Snf(x0) = f(x0)-
Further the Fourier series of f converges uniformly on any closed interval
[a, b] C (0, 2m), if f is continuous on [a — &, b+ d] with certain 6 > 0. Especially, if

f € C(T) is piecewise continuously differentiable, then the Fourier series of f
converges uniformly to f on R.
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Proof: 1. By assumption there exists § € (0, ), such that f is continuously
differentiable in [xo — d, x0 + 6]\{x0}. Let

M = max {|f/(t+0)| [f'(t = 0)|}.

te[—m,
By the mean value theorem we conclude
[f(xo+t)—f(xo+0)| <tM, |f(xo—1t)—Ff(xo—0)<tM
for all t € (0,0]. This implies

/5 1f(xo — t) 4 f(xo + t) — f(xo + 0) — f(xo — 0)|

; dt <2Md < ©.

By £ <sin$ for t € [0, 7] the function

f(xo—t)+f(xo+t)—f(xo+0)—rf(xo—0) t

h(t) =
(1) t sin 57

€ (0, 9],

is absolutely integrable on [0,4]. By Lemma 24 of Riemann—Lebesgue we get

s . 1 B
lim /0 h(t) S|n((n—|—§)t)dt—0.

n—o0
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Using Riemann's Localization Principle, Theorem 25, we obtain the assertion with
2¢c="f(xo+0)+ f(xo — 0).

2. By assumption and Example 28, the given function f is a 2w-periodic function of
bounded variation. Then it follows that Vabfé‘sf;(f) < 00. By the Jordan
Decomposition Theorem 27 the function f restricted on [a —J — 7, b+ 0 + 7] can be
represented in the form

f=(p1—p2)+i(p3—wa),

where pj: [a—d—m, b+ 06+ 7] =R, j=1,...,4, are nondecreasing and piecewise
continuous. Since f is continuous on [a, b], each ¢;, j =1,...,4, is continuous on
[a, b] too. Applying Lemma 30, we obtain that for each € > 0 there exists an index
N(e) € N such that for n > N(c) and all x € [a, b],

IShF(x) — F(x)| = % | /07r (Fx+ t) + F(x — £) — 2F(x)) Do(t) dt| < e

This completes the proof. H
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Example 32

The functions f : T — C given in Examples 5, 8, 9, and 10 are piecewise continuously
differentiable. If xo € R is a jump discontinuity of f, then the value f(x) is equal to
the mean 3 (f(xo + 0) + f(xo — 0)) of right and left limits. By the Convergence
Theorem 31 of Dirichlet—Jordan, the Fourier series of f converges to f in each point of
R. On each closed interval, which does not contain any discontinuity of f, the Fourier
series converges uniformly. Since the piecewise continuously differentiable function of
Example 8 is contained in C(T), its Fourier series converges uniformly on R. [

Remark 33

The Convergence Theorem 31 of Dirichlet—Jordan is also valid for each 2m-periodic
function f : T — C of bounded variation (see e.g. [18, pp. 546-547]). [
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A useful criterion for uniform convergence of the Fourier series of a function f € C(T)
is given in the following theorem.

Theorem 34
If f € C(T) fulfills the condition

> ()] < o0, (35)

keZ

then the Fourier series of f converges uniformly to f. Each function f € C1(T) has the
property (35).
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Proof: By the assumption (35) and
ek (F) e[ = |a(F)],

the assertion follows from the Weierstrass criterion of uniform convergence.
Assume that f € C1(T). By the Convergence Theorem 31 of Dirichlet—Jordan we
know already that the Fourier series of f converges uniformly to f. This could be also
seen as follows: By the differentiation property of the Fourier coefficients in Lemma 6,
we have ci(f) = (ik) ™1 ck(f’) for all k # 0 and co(f') = 0. By Parseval’s identity of
f" € Ly(T) it follows

1112 = lex(F)? < oo.

kEZ
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Using Cauchy—Schwarz inequality, we get finally

Sl = la(] + 3 4 lex(F)

keZ k0

<la)l+ (X 5) " (Sletr)P)” < .

k£0 k£0

This completes the proof. W
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Remark 35
If f € CY(T), then by the mean value theorem it follows that

[+ h) = F(x)] < [h] max|f'(2)]

for all x, x + h € T, that means f is Lipschitz continuous on T. More generally, a
function f € C(T) is called Hélder continuous of order o € (0, 1] on T, if

[f(x 4+ h) = F(x)| < c|h]*

for all x, x + h € T with certain constant ¢ > 0 which depends on f. One can show
that the Fourier series of a function f € C(T) which is Hélder continuous of order
a € (0, 1] converges uniformly to f and it holds

[Snf = fllc(ry = O(n™* Inn), n— o0

(see [22, Vol. |, p. 64]). O
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In practice, the following convergence result of Fourier series for a sufficiently smooth,
2m—periodic function is very useful.

Theorem 36 (Theorem of Bernstein)

Let f € C"(T) with fixed r € N be given. Then the Fourier coefficients ci(f) have the

form
1

(ik)

Further the approximation error f — Spf can be estimated for all n € N\ {1} by

a(f) = 5 a(fV), ke Z\{0}. (36)

|
I = Saflloo < € [[F) o0 —

(37)

n"’

where the constant ¢ > 0 is independent of f and n.
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Proof: 1. Repeated integration by parts provides (36). By Lemma 24 of
Riemann—Lebesgue we known

lim ¢ (F(7) =0

|k|—o00

such that
lim k" cx(f)=0.

|k|—o00

2. The nth partial sum of the Fourier series of (") € C(T) can be written in the form

(5N =+ [* (O y)+ 0= )

™

sin(n+ %)y
2sin§
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Then we estimate

2 ™ [sin(n+ 1)y
(r) 210 I3

T | i 1
< 1Fs / Mdy
0 y

(+2)7 | i
— Hf‘(r)HoO / 2 ‘Sln u‘ du
0 u

(n+3)m 1
< 1f) (1+/1 Edu)

1
— |If 1
= |If ||oo<1+ln(n+2)7r>.

For a convenient constant ¢ > 0, we obtain for all n € N\ {1} that

1l < € [FD]|oc In . (38)
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By Theorem 34 the Fourier series of f converges uniformly to f such that by (36)

o0

f—S,f = Z (ck(f)eik'+c_k(f)e_ik')

k=n+1

=2 (ikl)f(ck(fv))eik' (1) k(£ ). (39)
k=n+1

3. For even smoothness r = 2s, s € N, we obtain by (39) that

f—Sof = (~1)° Z %(Ck(f(’))eik'—|—c,k(f(’))e_ik‘)
k=n+1
|
= (-1)° > F(skf(f)—sk,lf(ﬂ).
k=n+1
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Obviously, for N > n it holds the identity

N N—1
Z a (bx — bx—1) = an by — any1 by + Z (ak — ak+1) bk (40)
k=n+1 k=n+1

for arbitrary complex numbers a, and b,. We apply (40) to ax = k~" and by = S, f(").
Then for N — oo we receive

1 =1 1
f—S,f=(-1 S+175nf(r) —1)° S f(r)7 41
o (n 1) o )k;rl(kr (k+1)r) : (41)
since by (38)
( (r) In N
HSNf loo < c|lFY oo 7—>0 as N — oo.

Thus we can estimate the approximation error (41) by

I o
I = Sl < e 1w (e + 22
k=n+1

k+1)) " )
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Using the identity (40) for ax = Ink and by = —(k + 1)™", we see that

e}

k=n+1 k=n+1

since (N +1)"% InN — 0 as N — oo. From In(1 + %) < 7 it follows that

> 1 1
kzznﬂ(ﬂl)"”(”k) = Z kk+1 Z o

Hence for convenient constant ¢; > 0 we have
F o Sufllo < e 1FD)lo L (141
If = Snflloc < e [|F7]loc — (1 +Inn).

This inequality implies (37) for even r.

1 1 Cn(n+1) o 1 1
> (F_W) |nk_m+ > mln(l#—;),
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4. The case of odd smoothness r = 2s + 1, s € Np, can be handled similarly as the
case of even r. By (39) we obtain

o0

: 1 r —ik- r ik-
f—Spf = (—1)51k_2+1k,(c—k<f< Nyek — ¢ (F1) k)

1 . -
- (—=1)° il (r) _ (r)
(1 D o (5f) = §af ) (42)
k=n+1
with the nth partial sum of the conjugate Fourier series of (")

S f) =i Z (c,j(f('))e*ij' - cj(f(’))eij') .

Jj=1

106 /373



From

e
—
ﬁ

\
—~

_(F) eV — () el¥)

F(y) sinj(y — x)dy

3

Il
|
A= A= 3
3

|
3

F(x +y) sin(jy)dy

3

(FO(x+y) = FO(x — y)) sin(iy)dy

and

N

_ cos% —cos(n+3)y
Zsm Jy)

R\ 27 Z
25|n% , yER\2Z,

it follows that

& 1 [ cos% —cos(n+3)y
M(x) = —= (r) _f(x 2 2
(SpfY7)(x) - /0 (f (x+y)—F\"(x y)) S % dy
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and hence

(8t ) ()|

IN

in X
2sm2

4 . 7r|sinﬂsinw|
21 [y

in ¥
2S|n2

4 . ™ |sin n+1y\
e [T

Y
25|n2

A

Similarly as in step 2, we obtain for any n € N\ {1}
150f Vloe < c1F ]| In

with some constant ¢ > 0.
Now we apply the identity (40) to ax = k=" and by = S f(r),

T 1
2 17O / | cos % — cos(n+ 3)y] dy
n 0
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For N — oo it follows from (42) that

1 ~ (e%e] 1 1 .
S = (1)t =& ) (1) - (r)
f— Saf = (—1) I Spf") +(-1) k_§n+1(kr (kH)r)Skf :

Thus we obtain the estimate

Inn > 1 1
_ (") S (E-
Hf Snf”OOSCHf HOO <(n+1)r+k:n+l(kr (k+1)r) lnk)

We proceed as in step 3 and show the estimate (37) for odd r. W

Roughly speaking we can say by Theorem 36 of Bernstein:

The smoother a function f : T — C is, the faster its Fourier coefficients c,(f) tend to
zero as |k| — oo and the faster its Fourier series converges uniformly to f.
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Gibbs phenomenon

Let f : T — C be a piecewise continuously differentiable function with a jump
discontinuity at xg € R. Then Theorem 31 of Dirichlet—Jordan implies
f(xo—0)+f 0
lim (Suf) () = 00O T 0 0],

n—o0 2

Clearly, the Fourier series of f cannot converge uniformly in any small neighborhood of
Xg, because the uniform limit of the continuous functions S, would be continuous.
The Gibbs phenomenon describes the bad convergence behavior of the Fourier sums
Snf in a small neighborhood of xg. If n — oo, then S,f overshoot and undershoot f
near the jump discontinuity at xp, see the right Figure 3.
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First we analyze the convergence of the Fourier partial sums S,s of the sawtooth
function s from Example 9 which is piecewise linear with s(0) = 0 and therefore
piecewise continuously differentiable. The nth Fourier partial sum S,s reads as

n

(Ss)) =3 % sin(kx).

k=1

By the Theorem 31 of Dirichlet-Jordan, (S,s)(x) converges to s(x) as n — oo at each
point x € R\ {2km : k € Z} such that

1
)= s

k=1
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Now we compute S,s in a neighborhood of the jump discontinuity at xg = 0. By

Example 14 we have
1 < 1
S+ cos(kx) = 5Dn(t), teR,

and hence by integration

1 X 1 sin((2n+1)t)
%4-(55)() = 2/, D,,(t)d1r_7T/0 fdt
1 x/2
+7r/0 h(t) sin((2n+ 1)t)dt,

where the function

h(e) = {(sin £y l— 1 te[-ma\{0},

0 t=20

is continuously differentiable in (—m, 7).

(43)
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Integration by parts yields

1 x/2 ) B 1
it /0 h(t) sin((2n+1)t)dt = O(n "),

s

Using the sine integral

Yy
Si(y) = SILtdt, y eR,
0 t
we obtain .
X _
(Sps)(x) = = Sl((n + E)X) ~ o +O(n 1),

n— oo.

n— oo.

(44)
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Lemma 37
The sine integral has the property

. . *sin t T
Further Si(7) is the maximum value of the sine integral.

Proof: Introducing
ak::/ SILdt‘, k € Ng,
km t

we see that sgn ax = (—1)¥, |ax| > |aks1| and limy_soo|ax| = 0. By the Leibniz
criterion for alternating series we obtain that

i.e., limy_o Si(y) exists.
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From equation (43) with x = 7 it follows that

_[™2sin((2n + 1)t) /2
_/ tdt+/0 h(t) sin((2n + 1)t) dt.

0

NS

By the Lemma 24 of Riemann—Lebesgue we conclude for k — oo that

72 o (k+ Dy o
T i / sin((2k + 1)t) df = lim / 2Tsinx
0 0

2 k—o0 t k—00 X

Consequently,
o) . n—1
Zak:§’ Si(mr):Zak, neN
k=0 k=0

The function Si defined on [0, co) is continuous, bounded and non-negative. Further
Si increases monotonously on [2k7, (2k 4+ 1)x] and decreases monotonously on
[(2k + 1), (2k + 2)7] for all k € Ng. Thus we have

max{Si(y) : y € [0, o0)} = Si(7) ~ 1.8519. W
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For x = 223:1 we obtain by (44) and Lemma 37 that
2 1 1
(5,,5)( T _ .

— ZSi(r) —
o1 7" g
where 1 Si(r) is the maximum value of 1 Si((n+ 3)x) for all x > 0.
Ignoring the term _T:BA + O(n™1) for large n, we conclude that

Jim (5n%) (5 21 1) = % Si(m)

— s(040)+ (;Si(w) - %) (s(0+0) — s(0 - 0)),

where %Si(w) — % ~ 0.08949. Since the sawtooth function s : T — C is odd, we
obtain that

+0(n1), n— oo,

. 27
nILrT;o(S"S)( C 2n+ 1)

= —Isi(n)
1

— s(0-0)— (% Si(m) — 5) (s(0+0) ~ 5(0 - 0)).
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Thus for large n, we observe an overshooting and undershooting of S,s at both sides
of the jump discontinuity of approximately 9% of the jump height s(0 4+ 0) — s(0 — 0).
This behavior does not change with growing n und is typical for the convergence of
Sns near a jump discontinuity. Figure 9 illustrates this behavior.

0.5 {0 0.5 1

—0.5%

Figure 9: Gibbs phenomenon for the Fourier partial sums Sgs (blue, left) and Sigs
(blue,right), where s is the 27-periodic sawtooth function (red).
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A general description of the Gibbs phenomenon is given by the following
Theorem 38 (Gibbs phenomenon)

Let f : T — C be a piecewise continuously differentiable function with a jump
discontinuity at xo € R. Assume that f(xo) = 3 (f(xo — 0) + f(xo +0)). Then it holds

) 21
nll—>n<lo(5"f)(xo + T 1)

= F(r0+0) + (= Si(m) — 3) (F(r0 +0) ~ F(x — 0))

lim (SnF)(x0 — —

n—00 2n—|—1)
1

= Fx0~0) ~ (- Si(r) — ) (Flx0 +0) ~ Flxo — 0)).
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Proof: Let s: T — C denote the sawtooth function of Example 9. We consider the

function
g:=f—(f(xo+0)—f(xo—0))s(-—xo).
Then g : T — C is also piecewise continuously differentiable and continuous in an
interval [xo — d, xo + 6] with 6 > 0. Further we have
g(x0) = f(x0) = 3 (f(xo — 0) + f(xo + 0). By the Theorem 31 of Dirichlet—Jordan, the

2
Fourier series of g converges uniformly to g in [xo — d, xo + J]. By

n

(Saf)(x) = (Sng)(x) + (f(x0 +0) — f(x0 — 0)) > % sin(k(x — x0))
k=1
2T

lim (Sf)0o+ 50) = g(x0) + = Si(m) (Flxo +0) — Fxo — 0))

Jim (SF)0o — 50) = g(x0) — - Si(m) (Flxo +0) — Fx — 0)).

it follows for x = xg & and n — oo that

This completes the proof. W
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For large n, the Fourier partial sum S,f of a piecewise continuously differentiable
function f : T — C exhibits the overshoot and undershoot at each point of
discontinuity. If f is continuous at xp, then S,f converges uniformly to f as n — oo in
a certain neighborhood of xp and the Gibbs phenomenon is absent.
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Remark 39

Assume that f : T — C is a piecewise continuously differentiable function. By the
Gibbs phenomenon, the truncation of Fourier series to S,f causes ripples in a
neighborhood of each point of jump discontinuity. These ripples can be removed by
the use of properly weighted Fourier coefficients such as by Fejér summation or
Lanczos smoothing.

By the Fejér summation , we take the arithmetic mean o,f of all Fourier partial sums
Skf, k=0,...,n, ie

1 n
f=—"Y Sif €T
On n+1k:05k €T,

Then o,f is the nth Fejér sum of f.
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With the Fejér kernel

1 n
F,= D n
n+1kz;) keTr

of Example 15 and by Sxf = f x Dy, k =0, ..., n, we obtain the representation
on,f = f % F,. Since

k

Sif = Z cj(f)eij',

Jj=—k
then it follows that
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Note that the positive weights
wpi=1— ——, =-—n,...,n

decay linearly from wo =1 to w, = w_, = (n+1)~! as |¢| increases from 0 to n.
In contrast to the Fejér summation, the Lanczos smoothing uses the means of the
function S,f over the intervals [x — T, x — 7] for each x € T, i.e., we form

n x+m/n
(Anf)(x) / T S du.

B 27 —7/n
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n

Sof = > al(f)e™,

k=—n

we obtain the weighted Fourier partial sum

n n x+m/n
(Aaf)(x) = = ck(f) ek du
2w k=—n x—m/n
n
k .
= Z (sinc —W) () etk
k=—n n
where the non-negative weights wy := sinc an k= —n,...,n, decay from wg =1 to

wp = w_pn = 0 as || increases from 0 to n. If we arrange that wy := 0 for all k € Z
with |k| > n, then we obtain a so-called window sequence which will be considered in
the next section. [

124 /373



Fourier transform

Let Co(R) denote the Banach space of continuous functions vanishing as |x| — oo

with norm
Fllcry = max| ()]

and let C.(R) be the subspace of continuous functions with compact support. By
C"(R), r € N, we denote the r-times continuously differentiable functions on R.
Accordingly CJ(R) and C/(R) are defined.
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For 1 < p < o0, let L,(IR) denote the Banach space of all (equivalence classes of)
measurable functions f : R — C with finite norm

{ (JelF(x)Pdx)™? 1< p< oo,

1L
esssup{|f(x)|: x € R} p=00.

In particular, we are interested in the Hilbert space Lp(IR) with inner product and norm

(F.8) i) = / Fx) 20 dx. [Fllg = / ()2 dx) 2.

R

If it is clear from the context which inner product resp. norm is addressed, we
abbreviate (f, g) == (f,8)1,(r) and ||f]|:= [[f[|,(r)-
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Note that in contrast to the periodic setting there is no continuous embedding of the
L,(R) spaces. We neither have Li(R) C Lp(R) nor L1(R) O Ly(R). For example
f(x) = %1[1700)()(), where 11 ) denotes the characteristic function of the interval
[1,00), is in La(R) but not in L1(R). On the other hand, f(x) := % L(o,y(x) is in
L1(R) but not in Lo(R).

Remark 40

Note that a continuous function in Co(R) is uniformly continuous by the following
reason: For an arbitrary fixed € > 0 there exists L = L(e) such that |f(x)| <e/3 if

|x| > L. If x,y € [-L, L], then there exists 6 > 0 such that |f(x) — f(y)| <¢&/3
whenever |x —y| < 4. If x,y € R\[-L, L], then

If(x) = f(y)| < |f(x)|+1|f(y) <2¢/3. Ifxe[-L,L] andy € R\[-L,L], sayy > L
with |x — y| <6, then |f(x) — f(y)| < |f(x) — f(L)| + |f(L) — f(y)| <e. In summary
we have that |f(x) — f(y)| < e whenever |x — y| < 0.
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Fourier transform in L;(R)

The (continuous) Fourier transform f = Ff of a function f € L;(R) is defined by

Fw) = (FF(w) = / Fx)e ™ dx, weR. (45)
R

Since |f(x)e ™| = |f(x)| and f € L1(R), the integral (45) is well defined. In practice,
the variable x denotes mostly the time or the space and the variable w is the frequency.
Therefore the domain of the Fourier transform is called time domain or space domain.
The range of the Fourier transform is called frequency domain. Roughly spoken, the
Fourier transform (45) measures how much oscillations around the frequency w are
contained f € L1(R). The function f = |f| €& is also called spectrum of f with
modulus |f| and phase argf.
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Remark 41

In the literature, the Fourier transform is not consistently defined. For instance, other
frequently applied definitions are

1 / B / 72.
—— | f(x)e “Xdx, f(x)e ™ dx. O
V2r Jr ) R 2
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Example 42
Let L > 0. The rectangle function

1 xe(-L L),
f(x) =<1 xe{-L L},
0 otherwise,
has the Fourier transform
L 7. L .L . .
o) = fermrans =T teT  Blonbl
iw ilw
—L
2L sin(L
= SILr:fw) = 2Lsinc(Lw)

with the cardinal sine function or sinc function

itk e R\ {0},
Sinc(x):{1x X_n\{}
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Example 42 (continue)

While supp f = [—L, L] is bounded, this is not the case for f. Even worse, f & L1(R),
since

nrr
/]sinc(x)|dx = Z / ’SI&’
0 =Lk 1)n
> ka /|sm )|dx
(k—1)m
222G
T 1k

and the last sum becomes infinitely large as n — co. Thus the Fourier transform does
not map L;(R) into itself. [J
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Example 43
For given L > 0, the hat function

1 _
f(x)::{l_L xe[-L, 1],

0 otherwise ,

has the Fourier transform

L L
A 2
flw) = 2/ 1—— cos(wx) =1 /sm(wx
0 0
2 L
= [z (1 — cos(Lw)) = (smc7w)2

for w € R\ {0}. In the case w = 0, we obtain

L
fO):2/(1—)L<)dx:L. 0
0
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Theorem 44 (Properties of the Fourier transform)

Let f € L1(IR). Then the following properties holds true:

@ Translation and modulation: For each xp,wp € R,

(F(- — %0))"(w) = e™>* f(w),
(e70 F)(w) = f(wo +w).

® Differentiation and multiplication: For an absolutely continuous function
f € L1(R) with f' € L1(R),

(F)(w) = iw f(w).

If g(x) :== x f(x), x € R, is absolutely integrable, then

© Scaling: For a # 0,
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Applying these properties we can calculate the Fourier transforms of some special

functions.
We consider the normalized Gaussian function

1 2
flx) = =737, x€R, (46)

with standard deviation o > 0. Note that [ f(x)dx = 1, since for a > 0 we obtain
using polar coordinates r and ¢ that

(/Re_"”x2 dx)2 = (/Re_""x2 dx) (/Re_ay2 dy)
_ / / e dx dy
R JR
= /Ozw(/ooore_a'er)dgpzz.
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Now we compute the Fourier transform

f(w)

2
/ 207 079 dix . (47)

R

V2ro?

This integral can be calculated by Cauchy’s integral theorem of complex function
theory. Here we use another technique. Obviously, the Gaussian function (46) satisfies
the differential equation

F(x) + =5 F(x) = 0.

Applying Fourier transform to this differential equation, we obtain by the
differentiation—multiplication property of Theorem 44
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This differential equation has the general solution

with an arbitrary constant C. From (47) it follows that

f(0) = C—/Rf(x)dx—l

and hence
2

flw) = o2 (48)
is a non-normalized Gaussian function with standard deviation 1/0. The smaller the
standard deviation is in the space domain the larger it is in the frequency domain. In
particular for o = 1, the Gaussian function (46) coincides with its Fourier transform f
up to the factor 1/v/27. Note that the Gaussian function is the only function with this
behavior. [
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Example 45
Let a>0and b € R\ {0} be given. We consider the Gaussian chirp

f(x) 1= e (@71 (49)
The Fourier transform of (49) reads as follows
N T —(a +ib)w?
f =
@)=\ 2@ 107

which can be calculated by a similar differential equation as above.

In Example 42 we have seen that the Fourier transformed function of an L; functions is
not necessarily in L. By the following theorem it is a continuous function which
vanishes at infinity.

138 /373



Theorem 46

The Fourier transform F defined by (45) is a linear, continuous operator from L1 (R)
into Co(R) with operator norm || F|| 1, (r)—co(r) = 1.

More precisely F maps onto a dense subspace of Cp(RR).
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Proof: The linearity of F follows from those of the integral operator. Let f € L;(R).

For any w, h € R we can estimate

\f(w—i—h — f )| = ‘/ _WX e ix _ 1)dx‘ < /\f(x)\ \e_ihx —1]dx.

Since |f(x)||e7 ™ — 1] < 2|f(x)| € L1(R) and

N[

\eﬁx—u:(@%m@—1y+@mm@)) = (2 —2cos(hx))? —

as h — 0, we obtain by the convergence theorem of Lebesgue

lim |f(w + h) — F(w)] < i f Ti_q
fim -+ )~ ()] < fim [ 1FGle™ - 1] dx

= [If lim [e7 —1]) dx = 0.
JIFGI i o7~ 1)) dx =0
R

—0
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Hence f is continuous. Further, we know by Lemma 24 of Riemann — Lebesgue that
lim f(w)=0.Thus f = Ff € G(R).

|w|—o00

For f € L1(R) we have

Fw)] < / () dx = [l Ly
R

so that A

[Fllcory = Il oy < 1]y (r)
and consequently || F|| ;)= cy®) < 1. In particular we obtain for g(x) = \/%Q—Q/Z,
x € R, that [|g||,r) = 1 and g(w) = e=?/2 € R, see the Fourier transform of the
Gaussian.
Hence [|g]|c,r) = 1 and || F1,(r)—co(r) = 1- u
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Using the Theorem 46 we obtain following result.

Lemma 47
Let f,g € L1(R). Then we have fg,gf € L1(R) and

~

/Rf(x)g(x)dxz/f(x)g(x)dx. (50)

R

Proof: By Theorem 46 we know that g is bounded so that fg € L;(R). Taking into
account that f(x)g(y)e ™ € L1(RR?), equality (50) follows as a direct application of
Fubini's theorem

[ F9200ax= [ 700 [ gl)e ayx

_ /R 2(y) /IR F(x)e™ dx dy
z/Rg(y)f(y)dy-
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Next we examine under which assumptions on f € L;(IR) the Fourier inversion formula

Fx) = (F)x) = % / Fw) % du (51)
R

holds true. Note that this is the same formula as those for f in terms of f, except of
the plus sign in the exponential and the factor %

Theorem 48 (Fourier inversion formula for L;(R) functions))

Let f € L1(R) and f € L1(R). Then the Fourier inversion formula (51) holds true for
almost every x € R. If f is in addition continuous, then the inversion formula is
pointwise true for all x € R.

In the following we give the proof for f € L1(R) N Co(R) with € L;(R). For the
general setting we refer, e.g. to [2, p. 38—44].
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Proof: For any n > 0 we use the function gs(x) := s~e~XI/" which has by
straightforward computation the Fourier transform

(W)= —— 1

Enl) = (1 + n2w?)’

Both functions g, and &, are in L1(R). By (50) and Theorem 44ii) we deduce for the
functions f and g,,eixy the relation

| F0en(0e e = [ F)ente - ) d

We examine this equation as n — co. We have lim,_ ga(x) = % For the left-hand
side, since |£(x)gn(x)e™| < |f(x)| and f € L1(R), we can pass to the limit under the
integral
~ . 1 A . A
lim / f(x)gn(x)e™ dx = / f(x)e™ dx = f{y).
R 21 Jr

n—o0
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It remains to show that the limit on the right-hand side is
limn—oo [ F(w)8n(w — y)dw = f(y). First we note that since g, € L1(R) the relation

L
2
/g,,(w) dw = lim / gn(w) dw = — lim arctan(nL) =1
R

L—oo J_ | T L—oo

holds true. Then we get
[ F)tno =)o~ £5) = [ () - F) ) do
R R
- /| () = ) ()]

+ /|w|>§ (flw+y)—f(y))|&n(w)|dw.

145 /373



By assumption f € L1(R) N Go(R). Then f is also uniformly continuous, i.e., for every
e > 0, there exists § = 0(g) > 0 such that |f(x) — f(y)| < e if [x — y| < 4. For all
n > 0, we obtain

[ (e -ronlee)do<s [ @l <e.
|w|<é

|w|<é

Next we see

2
1) [ eyl <17 (1 Zarctan(os) ) (52)
|w|>6 Q
and since g, is decreasing on R>q further
| s f(w+ y)&n(w) dw| < &n(8) ||l 1y(r)- (53)
w|>

As n — oo the right-hand sides in (52) and (53) go to zero which finishes the proof.
|
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As a corollary we obtain that the Fourier transform is one-to-one.
Corollary 49
For f € Ly(R) let f =0. Then f = 0 almost everywhere on R.

We have seen that a 2n-periodic function can be reconstructed from its Fourier
coefficients by the Fourier series in the Ly(T) sense and that pointwise and uniform
convergence requires additional assumptions on the function. Now we consider a
corresponding problem and ask for the convergence of Cauchy principal value (of an
improper integral)

L

1 N .

lim — [ F(w)e“ dw.

LL[T]OO 27 (UJ)G de
—L

Note that for Lebesgue integrable functions f on R Cauchy's mean value coincides
with the integral of f over R.
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Similar to Riemann’s localization principle in Theorem 25 in the 27-periodic setting we
have the following result.

Theorem 50 (Riemann’s localization principle)
Let f € L1(R) and xo € R. Further let p(t) == f(xo + t) + f(x0 — t) — 2f(x0), t € R.

Assume that for some § > 0 5
t
/ ‘SO(t ) dt < 00.
0

Then it holds .

1 N .
f(x0) = L||_>ngo > f(w)edw.
—L
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Proof: It follows

L L
1 2 : 1 . .
IL(XO) = 7 / f(w) elwX0 o = 271-//'((”) e wu gy el q
LR

T
—L _
1 L
_ f iw(xo—u) )
27r// (u)e dudw
—L R

Since |f(u) e“0~¥)| = |f(u)| and f € L1(R), we can change the order of integration
in I by Fubini's theorem which results in

L
- 1 in(L(xo —
IL(x0) = 217r/f(u) /e”’(XO‘”) dwdu = w/f(“)wd”
R ] »
ji sin(Lt)dt

:71ro/(f(X0+t)+f(X0_t))
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Since we have by Lemma 37 that

/sintdt: / sin(Lt) df — g’ (54)

we conclude

0
/(t) sin(Lt)dt
0

+ 717/ flo+ 1) —it_ flxo = t) sin(Lt)dt

o

sm
— *fXO /
1
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Since (t)/t € L1([0, d]) by assumption, the first integral converges to zero as L — oo

by Lemma 24 of Riemann — Lebesgue. The same holds true for the second integral.

Concerning the third integral we use

_ 7sin(tLt)
0

o,
~
I
o,
%)
5

o
sin(
t+/
0
o0
sin(
e [
0

Since the first summand converges to 5 as L — oo, the third integral converges to
zero as L — oco. This finishes the proof.

I
\
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A function f : R — C is called piecewise continuously differentiable on R, if there
exists a finite partition of R determined by —co < xg < x1 < ... < x, < oo of R such
that f is continuously differentiable on each interval (—oo, xg), (X0, X1), - - .

(Xn—1, Xn), (X, 00) and the one-sided limits limy x40 f(x) and limy_x+0 f'(x),
j=0,...,n exist. Similarly as in the proof of Theorem 31 of Dirichlet — Jordan the
previous theorem can be used to prove that for a piecewise continuously differentiable
function f € L;(R) it holds

L
1 1 . .
- o — - iwxg
2(f(xo +0)+ f(xo —0)) Lll_)ngo - f(w)e“dw
—L

for all xg € R.
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The Fourier transform is again closely related to the convolution of functions. If
f:R— Candg:R — C are given functions, then their convolution f x g is defined by

(r+8)) = [ ey, xer, (55)
R

provided that this integral (55) exists. Note that the convolution is a commutative,
associative, and distributive operation. Various conditions can be imposed on f and g
to ensure that (55) exists. For instance, if f and g are both in L;(RR), then (f * g)(x)
exists for almost every x € R and further f x g € L1(R). In the same way as for
2m-periodic functions we can prove the following theorem.
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Theorem 51

O Let f € Lp(R) with1l < p<oo and g € Li(R) be given. Then f x g exists almost
everywhere and f x g € L,(R). Further we have the Young inequality

I *gll,m® < IfllLm®) &l ) -

@ Let f € Ly(R) and g € Ly(R), where 1 < p,q<ooand  + =1 Thenfxgis
a bounded, uniformly continuous function fulfilling

I * gllcw)y< 1fllL,r) gl o) -

Furthermore, lim|, |, (f * g)(x) = 0 if p € (1,00).

© Let f € Lp(R) and g € Lg(R) , where1 < p, q, rgooand%—F%:%—Fl. Then
fxg e L,(R) and we have the generalized Young inequality

I *gllL,®) < Ifll,®) 18]l ®) -
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Differentiation and convolution are related by the following lemma.

Corollary 52

Let f € L1(R) and g € C"(R), where g(¥) is bounded for k = 0,...,r. Then
fxge C'(R) and
(Fxg)) =Ffsgh k=1, r

Proof: Since g(¥) € L,,(R), the first assertion follows by the second part of Theorem
51. The function x — f(y)g(x — y) is r-times differentiable, and for k =0,...,r we
have

sup [g(¥)(1)].
teR

F(¥)gW(x — y)| < [f(y)

Since f € L1(R) we can differentiate under the integral sign, see [7, Proposition 14.2.2]
which results in

(F )P (x) = /R F()g®(x — y)dy = £ g®(x).

155 /373



The relation between convolution and Fourier transform in the following theorem
resemble their behavior in the periodic setting.

Theorem 53 (Convolution and Fourier transform)

Let f,g € L1(R). Then we have
(Fxg)=Fg.

Proof: For f, g € L1(R) we have f * g € L1(R) by Theorem 51. Using Fubini’s
theorem, we obtain for all w € R

(Fxg)(w) = /R (F * g)(x) e dx

= [ ([ r»)etc=yay)eioras
= /R fy) ( /R g(x —y)e b )dX) ™ dy
= [0 ([ sea) e ay = Fw) g,
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Applying these properties we can calculate the Fourier transforms of some special
functions. Let Ny : R — R denote the cardinal B-spline of order 1 defined by

1 x € (0,1),
Ni(x):=<¢ 1/2 xed{0,1},
0 otherwise .

For m € N, the convolution

1
Npt1(x) :== (N * Np)(x) = /0 Np(x — t)dt,

is the cardinal B-spline of order m + 1.
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Especially, for m = 1 we obtain the linear cardinal B-spline

X x €0, 1),
No(x) =< 2—x x€]l,2),
0 otherwise .

Note that the support of Np, is the interval [0, m]. By

. 1 ) 1— —iw
Ni(w) = / e "Ydx = ,76,
0

1w
and N;(0) = 1, we obtain
Ny (w) = e /2 sinc g, weR.
By the convolution property of Theorem 53, we obtain
N 1(w) = Nim(w) Ry (w) = (Rn(w))™ .

Hence the Fourier transform of the cardinal B-spline N, reads as follows

N : LW

N (w) = e 1m/2 (sinc E)m
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For the centered cardinal B-spline of order m € N defined by

Mpm(x) := Np(x + g),

we obtain by the translation property of Theorem 44 that

A

Mpm(w) = (sinc %)m O
The space L;(R) with the addition and convolution of functions is a Banach algebra.

As for periodic functions there is no identity element with respect to the convolution.
A remedy is again to work with approximate identities.
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Theorem 54 (approximate identity)
Let ¢ € L1(R) with [ ¢(x)dx =1 and
R

Then the following relations hold true:
i) Forf € Lp(R), 1 < p < o0, we have

| % @e — fll,®) =0

lim

e—0

ii) For a continuous function f with compact support, the sequence f x p. converges
uniformly on supp f to f ase — 0.
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Proof: i) With [ ¢.(x)dx =1 we obtain
R

IF 500 = A1 ey = [1 [ = y) ) dy = FP dx
R R

- / | / (F(x — y) — F(x)) el dyl? dx
R R

_/|/(f(X_EY)—f(X))w(y)dyV’dx.

R R
1 1
By Holder's inequality we further conclude with ¢ = ¢r @9, % + % =1 that

IFeoe=lE g < [ ([ 1Ftc=ey) = FRP o] d)
R

R

( / o(y)] dy)?'? dx.
R
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Applying the Theorem of Fubini we get

IF % e = FIE oy < 161Gy [ 1601 [ 1Fx—ey) = FPaxdy.  (56)
R R

Now
[ 1= e3) = 0017 ax = £ = 23) = FI2 gy < 2112, e

and ¢ € L1(R) so that the sequence in (56) has an integrable upper bound. By
Lebesgue’'s theorem and continuity of the norm we obtain

lim ([ 0z = FllL,r) < o2/ ey / eI lim [[£(- = ey) = FII7 =) dy = 0.
R
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i) We have

5 0e(x) — F)| = | / (F(x — y) — F())pe(y) dy |

R

< / (F(x — ey) — £ 19(y)] dy.

R

Since ¢ € L1(R), there exists a compact set W such that [ |p(y)|dy < . Then we

R\W
get

sup  [Frope(x)—F(x)| < sup |f(X—€}7)—f(X)|/80()/)|dy + 2[[f L. 0.
x€supp f XEsupp f,;z—ms/f/)€supp f v
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Another result on approximate identities is the following lemma.

Lemma 55
Let f € L1(R) and

1 —X2/20'2
&-(x) i= e .
7(x) V2nro?
Then it holds in each point x where f is continuous

Uirng(f * 8o )(x) = f(x).

Proof: Let f be continuous in x. Then, for any € > 0, there exists h > 0 such that for
all [t] < h,

[f(x —t) — f(x)| <e.
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Since [ g,(t)dt =1 we get
R

(F + g,)(x) — F(x) = / (F(x — 1) — F(x))an (1) dt

and consequently

(F  8)(x) — F(x)]| < / 1F(x — 1) — F(x)]go (t)de
[t|[<h
T / (IF(x - 6)] + [F(x))go(£)dt

t|>h
h

<e / g (D)t + 1|F]lLy0 (h) + F(x)] / &, (t)de.
—h [t|>h

The first summand is smaller than ¢ and the other two summands go to zero as
c—0. 1
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Fourier transform in L,(R)

Up to now we have considered the Fourier transform of functions in L1(R). Next we
want to establish a Fourier transform in the Hilbert space L(R), where the Fourier

integral
/ f(x) e > dx
R

may not exist, i.e., it does not take a finite value for some w € R. Therefore we define
the Fourier transform of an Lp(R) function in a different way based on the following
lemma.
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Lemma 56
Let f, g € L1(R), such that f ge L1(R). Then the following Parseval equality is valid

w(f.g) = (f,2).

Note that £, f € Ly(R) implies that (f)*= f almost everywhere and (f) e Go(R).
Thus,

[ 1FGoR = [ 1B COIIFe ax < 1Y a1
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Proof: Using Fubini's theorem and Fourier’s integral formula we obtain

[ F) @) ao = [ Fo) [ atoeaxas

:/Rg(x)/Rf(w)eixw dw dx
:27r/Rg(x)f(x)dx. u
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For any function f € Ly(R) there exists a sequence {f;};en of functions in C(R) such
that

lim |f — £l @) =0.

Jim 17 = e

Thus {f;}jen is a Cauchy sequence in L>(R), i.e., for every € > 0 there exists an index
N(e) € N so that for all j, k > N(¢)

i = fill Lory < e-
Clearly, f;, f € L1(R). By Parseval's equality we obtain for all j, k > N(e)
1 ~ ~
1fe = fill Lyr) = Ton 1k — fill ) <€,

so that {f;}en is also a Cauchy sequence in Ly(R). Since Ly(R) is complete, this
Cauchy sequence converges to some function in Lp(R).
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We define the Fourier transform f = Ff € L(R) of f € Lo(R) as

f=Ff:= lim f.

Jj—o0

In this way the domain of the Fourier transform is extended to include all of Lp(R).
By the continuity of the inner product we obtain also the Parseval equality in Ly(R).
We summarize:

Theorem 57 (Plancherel)

The Fourier transform truncated on Li(R) N La(R) can be uniquely extended to a
bounded linear operator of Ly(R) onto itself which satisfies the Parseval equality

21 (f, &) o) = (F,8), V27 |||l o) = I1Fllom)

for all f, g € Lo(R).
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Note that Theorem 44 is also true for Ly(IR) functions. Moreover, we have the
following inversion formula.

Theorem 58 (Fourier inversion formula for L,(R) functions))

Let f € Ly(R) and f € Ly(R). Then the Fourier inversion formula

F(x) = / Flw) €% duw (57)

holds true for almost every x € R. If f is in addition continuous, then the inversion
formula holds pointwise for all x € R.
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Remark 59
Often the integral notation

Plw) = /R F(x) e~ dx

is also used for the Fourier transform of Ly functions although the integral may not
converge pointwise. But it may be interpreted by a limiting process. For € > 0 and
f € Lo(R), the function g. : R — C is defined by

g-(w) := / Each f(x)e ™ dx, weR.
R

Then g. converges in the Ly(R) norm and pointwise almost everywhere to f fore — 0.
O
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Finally we introduce an orthogonal basis of Ly(R) which elements are eigenfunctions of
the Fourier operator. For n € Ny, the n-th Hermite polynomial H, is defined by

n
X2 d _x2
dx”e , xeR.

X
—~
X
~
I
|
[
~—

3>
D

In particular we have
Ho(x) =1, Hi(x)=2x, Ha(x)=4x>—-2, Hs(x)=8x>—12x.
The Hermite polynomials fulfill the three term relation
Hpt1(x) = 2x Hp(x) — 2n Hp—1(x) (58)

and the recursion
H/(x) = 2n Hp—1(x) . (59)
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For n € Ny, the n-th Hermite function h, is given by

dn
hn(x) := Hp(x) e /2 = (—1)"6X2/2 @e*’g, x eR.

In particular, we have hy(x) = e=*/2 which has the Fourier transform
ho(w) = V2w e=%*/2. The Hermite functions fulfill the differential equation

h!(x) = (x> =2n —1) hy(x) =0 (60)
and can be computed recursively by

P (x) = x ha(x) = Hy(x)..
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Theorem 60
The Hermite functions h,, n € Ny, with

(hn, hy) = /72"

form a complete orthogonal system in Ly(R). The Fourier transforms of the Hermite
functions are given by

~

hn(w) = V21 (=i)" hp(w), w€ER. (61)

In other words, the functions h,, are the eigenfunctions of the Fourier operator
F : Lo(R) — La(R) with eigenvalues /2w (—1)" for all n € Ny.
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By the Theorem 60 we see that the Hermite polynomials are orthogonal polynomials in
the weighted space L, (R) with w(x) := ¢, x € R, i.e., they are orthogonal with
respect to the weighted Lebesgue measure e dx.

Proof: 1. We show that (hp, h,) = 0 for m # n. By the differential equation (60) we
obtain

(W' —x*hm) hy = —(2m +1) hy by,
(h! — x?hp) hm = —(2n+ 1) hpy hy .

Subtraction yields
H! by —h by = (h by — h hm) =2(n—m) hy by,
which results after integration in
2(n— m) (hm, he) = 2(m— n) / Bin(x) B () dx
R

= (Hp(x) hn(x) = Bp(x) hm(x))| =, = 0.
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2. Next we prove for n € Ny that

(hp, hn) = /7 2"n! | (62)

For n = 0 the relation holds true by (48). We show the recursion
(hnt1, hnt1) = 2(n+ 1) (hp, hy) (63)
which implies (62). Using (59), integration by parts, and step 1 of this proof, we obtain
(it ) = [ €7 (Hoia () d
= / (2x e_X2) (Hn(x) Hp41(x)) dx

= [ 7 (Hy(x) Ha1(x) + Ha(x) Hyy1(x)) dx

=

=2(n+1) /Re—xz (Hn(x))? dx = 2(n + 1) (A, hy) -
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3. To verify the completeness of the orthogonal system {h, : n € No} we prove that
f € Lo(R) with (f, h,) =0 for all n € Ny implies f = 0 almost everywhere. To this
end, we consider the complex function g: C — C defined by

g(z) = /R ho(x) f(x)e ™ dx .

This is the holomorphic continuation of the Fourier transform of hg f onto whole C.
For every m € Ny it holds

g™ (z) = (i)™ /R x™ho(x) f(x)e ™ dx, zeC.

Since g(™(0) is a certain linear combination of (f, h,), n=0,..., m, we conclude that
g(m(0) = 0 for all m € Nyg. Thus, g = 0 and (hof)*= 0. By Corollary 49 we have
hof = 0 almost everywhere and consequently f = 0 almost everywhere.
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4. By the Fourier transform of the Gaussian we know that
ho(w) = /}Re_ix“’_xz/2 dx =V2re /2, weR.
We compute the Fourier transform of h, and obtain after n times integration by parts
hn(w) = /Rh,,(x) e % dx
_ (_l)n/ R (i efxz) dx
R dx”

- /Rex2 (% efiwx+x2/2> dx

_ 22 / o (i"ev—iw)?/z)dx,
R

dxn
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By symmetry reasons we have

so that

This completes the proof. W
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Poisson’s summation formula and Shannon’s sampling theorem

Poisson’s summation formula establishes an interesting relation between Fourier series
and Fourier transforms. For n € N and f € L;1(R) we consider the functions

on(x) = > |F(x + 2km)]

k=—n

which fulfill

™

/gpn(x)dx:] zn:|f(x+2k7r)]dx: Z ]\f(x+2k7r)|dx

e e k=—n ke—n 7
n 2km+m 2nm+m

-y /]f(x)\dx: / 1£(x)| dx.
k==nour_n —2nm—m
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Since {¢n}nen is @ monotone increasing sequence of nonnegative functions, we obtain
by the monotone convergence theorem of B. Levi that the function

©(x) == limp—o0 @n(x), x € R, is measurable and fulfills
Jeax= lim [ at)dx =1l

We introduce the 2m-periodic function
F(x) =Y f(x+ 2km). (64)
keZ
The 2m—periodic function f is called 27—periodization of f. Since

FO) =] D Fx +2km)| < |F(x + 2k)| = p(x),

keZ keZ
we obtain

/T F()] dx < /T o0 dx = |l

so that £ € Ly(T). After these preparations we can formulate the Poisson summation
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Theorem 61 (Poisson summation formula)

Assume that f € L1(R) N Go(R) fulfills the conditions
O >,z max |f(x+2km)| < oo,
x€[—m, 7]

0 ezl (k)| < oo
Then for all x € R, the following relation is fulfilled

omf(x) =2m Y Fx+2km) =Y F(k)e™.

keZ keZ

For x = 0 this implies the Poisson summation formula

om > f(2km) = F(k). (65)

keZ keZ
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Proof: By the first assumption the convergence of the series defining f is uniformly by

the known criterium of Weierstrass. Since f is continuous, also f is continuous. Its
Fourier coefficient can be written using Fubini's theorem as

2m () = /Zf(x+2l7r)e—ikxdxzz /f(X_|_2/ﬂ.)e—ikde

“n lez lez ~ .
= / f(x)e " dx = f(k).
R

Thus, .
)? — £\ olkx — & 7 ikx
(x)=> alf)e o > fk)e
keZ keZ

where the series converges uniformly by the second assumption. H
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Remark 62
It can be shown that the Poisson summation formula is fulfilled pointwise absolute
convergence of both series for any function satisfying

1 o 1
f(X)_O<1—{—|X1+5>7f(w)_O(1—|—|UJ|1+E>’ &‘>07

see, e.g., [9, 17]. The Poisson summation formula was generalized for slowly growing
functions in [14].

We illustrate the performance of Poisson summation formula (65) by an example.
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Example 63

For fixed @ > 0, we consider the function f(x) := e~ x € R. Simple calculation
shows that its Fourier transform reads

f(w) = /0 h (eFafiw)x n e(fam)x) G 20

ol 4+ w?’

Note that by Fourier's inversion formula in Theorem 48, the function
g(x) := (x> + a?)! has the Fourier transform g(w) = ge_o“‘*".
The function f is contained in L;(R) N Co(R) and fulfills both conditions of Theorem

61. Since .
_ i P _ 1 _|_e—27ra
kezzf(%k)—“r2 ;(e ") = e

we obtain by the Poisson summation formula (65) that

Z 1 _ T 1+672ﬂ-a D
a2+ k> al—e2ra’
keZ
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The following sampling theorem in various generalizations goes back to Whittaker [21],
Kotelnikov [12] and Shannon [16], see also [6, 19]. It answers the question how to
sample a function f by its values f(nT), n € Z, for an appropriate T > 0 while
keeping the whole information contained in f. The distance T between two successive
sample points is called sampling period. In other words, we want to find a convenient
sampling period T such that f can be recovered from its samples f(nT), n € Z. The
sampling rate is defined as the reciprocal value % of the sampling period T. Indeed
this question can be only answered for a certain class of functions.
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A function f € L>(R) is called bandlimited on [—L, L] with some L > 0, if
suppf C [—L, L], i.e., if f(w) =0 for all |w| > L. The positive number L is the
bandwidth of f. A typical bandlimited function on [—L, L] is

h(x) = L sinc(Lx) .

s

Note that h € Ly(R) \ L1(R). lts Fourier transform h can be determined by the theory
of Section 6. Then we obtain that

1 xe(-L 1),
h(w)y=4¢ 3 xe{-L L}, (66)
0 otherwise.
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Theorem 64 (Shannon — Whittaker — Kotelnikov)

Let f € L1(R) N Go(R) be bandlimited on [—L, L]. Let M > L. Then f is completely
determined by its values f(kﬁﬂ) k € Z, and further f can be represented in the form

Z f ) sinc(Mx — k), (67)
keZ

where the series converges absolutely and uniformly on R.
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Proof: 1. We prove that the formula holds pointwise. First note that from
f € L1(R) N Go(R) it follows that f € Ly(R), since

1oy < /I lcogen 1 sy < o0

Since f € Co(R) by Theorem 46 and since suppf C [—L, L] by assumption, we have
f € L1(R) so that the Fourier inversion formula (#)"(x) = f(x) is valid almost
everywhere by Theorem 48. Because f € Cy(RR), the Fourier inversion formula holds
for all x € R. Then for M > L we have

M M
f(x):% / F(w) E(w)eiwxdw:% / Fw) Be(@) dow (68)
Y M

where h is given by (66) and
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In the case M = L, the function (66) is the only possible choice for h, while for M > L
also smoother functions with A(w) = 1 for w € [L, L] can be used in the above
equation.

We form the 2M—periodic functions

(A (w) = flw+2Mr),

reZ
(&)~ (w) = Z h(w 4 2Mr) e iwH2Mn)x
rez
Clearly (f ) (w) = 1?( ) and (8x)~(w) = 8x(w) for |w| < M. Further we have (f)N
(8x)~ € Lo([-M, M)). Applying the Parseval equation for 2M—periodic Fourier series
(see Remark 4) and (68), we obtain

M
0= 5 [ @@ =2 3 (7)) (@),
Y keZ
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In a similar way as in the proof of Theorem 61, we see that the Fourier coefficients of

~

(F)~ and (8x)™~ have the following forms

and

kelZ.
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Hence we obtain for all x € R that

Z f ) sinc(Mx — k).
keZ

Note that each summand of the above series has the following interpolation property

55) x= 5

kmy . B R
f(ﬁ) sinc(Mx — km) = { 0 e T @\ (k).
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2. We show that the sum in (67) converges uniformly. We obtain

4 km
21 |f(x) — Z f(—— )sinc(Mx + k)
> ()
M M) M )
— / wadw Z C( (fN/ g_;(w)e—mwk/(l\/l)dw
-M k=—n M
Ml 2M) 2 ’ -
— / fN(w)_ Z Cl(< )(fN)e—mwk/(M) e~ iwxq,,
-M k=—n
M ~ ~
< P (w) - S,,(f”)‘ dw
M

< V2M HfN(w) - Sn(fN)HLz'

The last expression becomes arbitrary small as n — oo independently of x.
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3. Finally we see absolute convergence of the sampling sum by the following

computation:

> | (-3)

sinc<M(x + l;;;)) ‘

kZ

= o 21 E)I @)
kEZ

< T lall (&) e

< 0.

This finishes the proof. This completes the proof. H
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By the sampling Theorem 64, the bandlimited f with supp f C [—L, L] can be
reconstructed from its equispaced samples f(kﬁﬂ) k € Z, with M > L > 0. Then the
sampling period T = T is the largest and the sampling rate # is the smallest possible
one. This sampling rate is called Nyquist rate after Nyquist [15]. The sinc function
decreases only slightly as |x| — oo so that we have to incorporate many summands in
a truncated series (67) to get a good approximation of f.

One can obtain a better approximation of f by the choice of a higher sampling rate
L(I;F)‘) with some A > 0 and corresponding sample values f( (1+)\)) k € Z. This
so-called oversampling allows a smoother choice of h in the above proof. The
smoother h the faster decays h, so that (67) converges fast for such h. The choice of a
lower sampling rate @ with some A € (0, 1) is called undersampling which results
in a reconstruction of a function f° where higher frequency parts of f appear in lower
frequency parts of f°. This effect is called aliasing or Moiré effect in imaging.
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Heisenberg’s uncertainty principle

In this section, we consider nonzero functions f € L»(IR). A signal is often measured in
time. We keep the spatial variable x instead of t also when speaking about
time-dependent signals. In the following, we investigate the time—frequency locality of
fand f.

It is impossible to construct a nonzero compactly supported function f € Ly(R) whose
Fourier transform f has a compact support too. More generally we show the following
lemma.
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Lemma 65

If the Fourier transform f of a nonzero function f € Ly(R) has compact support, then
f cannot be zero on a whole interval. If a nonzero function f € Ly(R) has compact
support, then f cannot be zero on a whole interval.

Proof: We consider f € L»(R) with supp f C [—L, L] with some L > 0. By the Fourier
inversion formula of Theorem 58 we have almost everywhere

L
f(x) 1 / f(w)e“>dw,

zg -,

where the function on the right-hand side is infinitely differentiable. Since we identify
almost everywhere equal functions in Ly(R), we can assume that f is smooth.
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Assume that f(x) = 0 for all x € [a, b] with a < b. For xp = 252 we obtain by
repeated differentiation with respect to x that

1 [t .
f(")(xo):%/Lf(w)(iw)”elwxodw:o, neNp.

Expressing the exponential el@(x=%0) a5 power series, we see that for all x € R,

1 (L. . .
f(X) _ % 3 f(w) e1u.z(xfxo) w0 J.
o 1 - (X - Xo)n Lo s AN iwx _
= 27Tnzon!/Lf(w)(lw) e“dw=0.

This contradicts the assumption that f = 0. Analogously, we can show the second
assertion. W
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By Lemma 65 gives a special aspect of a general principle that says that both f and f
cannot be highly localized, i.e., if |f|?> vanishes or is very small outside some small
interval, then |f\2 spreads out, and conversely. We measure the dispersion of f about
the time xg € R by

1
Af = /(X — o) |F(x)[2dx > 0.
1£11% Jr

Note that if x f(x), x € R, is not in Lp(RR), then A, f = oo for any xp € R. The
positive number A, f measures how much |f(x)|? spreads out in a neighborhood of
xo. If |f(x)|? is very small outside a small neighborhood of xp, then the factor

(x — x0)? makes the numerator of A, f small in comparison to the denominator |/f|?.
Otherwise, if |f(x)|? is large far away from xp, then the factor (x — xg)? makes the
numerator of A, f large in comparison to the denominator | f||2.
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Analogously, we measure the dispersion of f about the frequency wp € R by

. 1

= T /R(w — wo)? |A(w)Pdw > 0.

wo

By the Parseval equation ||f||2 = 2 ||f]|2 > 0 we obtain

1

Awf:/w—wozh?w 2dw .
O e RO

If wf(w), weR,isnotin Lp(R), then A, f = oo for any wg € R.
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We consider the normalized Gaussian function
1 2 2
— —x*/(20?)
f(x): 5oz © (69)

with standard deviation o > 0. Then f has L;(R) norm one, but the energy

172 = — / L M
R

2mo? 20/

Further f has the Fourier transform
flw) = e T2

with the energy

172 = [ & dw = VT
R g

202 /373



For small deviation o we observe that f is highly localized near zero, but its Fourier
transform f has the large deviation % and is not concentrated near zero. Now we
measure the dispersion of f around the time xg € R by

]_ 2 2
Dof = —m —xp)2e /" d
o = g fe e
= 1/x2 —/e? dx +x3 = 2—i—x§.
272 || ]| 2
For the dispersion of f about the frequency wp € R, we obtain
a 1 2,2
Ayt = —— /(w—wo)2e_"w dw
1712 Jr
1 / 2 —o2w? 2 1 2
= — we 7Y dwH4wi = 5 +wj -
112 J= P22

Thus for each o > 0 we get the inequality

(Asf) (Dupf) = (U; —i—xg) (% —l—w%) > %

with equality for xp = wp = 0. [
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Heisenberg's uncertainty principle says that for any xp,wp € R, both functions f and f
cannot be localized around time xp € R and frequency wg € R, respectively.

Theorem 66 (Heisenberg’s uncertainty principle)
For any nonzero function f € Ly(R), the inequality

(Bf) (Busf) > 7 (70)

is fulfilled for each xp, wo € R. The equality in (70) holds if and only if
f(x) = Celwox e 3(x—x0)*/2 , xX€ER, (71)

with some a > 0 and complex constant C # 0.
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Proof: 1. Without lost of generality, we can assume that both functions x f(x), x € R,
and w f(w), w € R are contained in Ly(R) too, since otherwise we have

(D) (Auyf) = 00 and the inequality (70) is true.

2. In the special case xg = wp = 0, we obtain by the definitions that

(D) (Bunf) = M (/R\xf(x)lzdx) (/R\w )P dw)

From wf(w) € La(R) it follows by Theorems 44 and 57 that f’ € L»(R). Thus we get
by (Ff')(w) = iwf(w) and the Parseval equation that

(8 () = g ([ IxFGOP ) ([ 1(FA@)P )

_ W(/RW(X)MX) (/R\f’(x)]2dx). (72)
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By integration by parts we obtain

/R(xf(x))f’(x)dx—xf N /|f )2 4 x £(x) f/(x) dx
T

and hence

it follows that

[£]> = —2 Re /RXf(X) f'(x)dx.
By the Cauchy-Schwarz inequality in Lp(RR)
S 2
IF14 = 4<Re/Rxf(x)f(x)dx)
4’/Rxf(x)f’(x)dx’2
4(/Rx2|f(x)|2dx) (/R|f’(x)|2dx>_

Then by (72) and (73) we obtain the inequality (70) for xo = wo = 0.

IN

IN

(73)
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3. As known, the equality in the Cauchy-Schwarz inequality

- 2
‘/Rxf(x)f(x)dx‘ - (/Rx2|f(x)|2dx) (/R|f(x)|2dx)

holds if and only if the functions f’(x) and x f(x) are linearly dependent. Thus the
equality in (73) holds if and only if f/(x) and x f(x) are linearly dependent and

Jg x f(x) f'(x) dx is real. Therefore for some a+ bi € C\ {0}, we obtain the
differential equation

f'(x)+(a+bi)xf(x)=0, xeR,

which has the general (nonzero) solution f(x) = Ce~(3+bDx*/2 x c R with an
arbitrary complex constant C # 0. By f € L(R) we have a > 0. Since

—/Xf(x)f’(x)dX:\Cz(a—i-bi)/XQe_ax2/2dx
R R

is real, we obtain b = 0. Consequently, we have equality in (70) with xp = wp = 0 only

for f(x) = Ce 2%/2, x € R.
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4. In the general case with any xp, wg € R, we introduce the function
g(x) = e wol0) f(x 4 x5), x€eR. (74)

Obviously, g € La(R) is nonzero. By Theorem 44, this function g has the Fourier

transform .
g(w) = el £y, 4 wy), weR,

such that
Nog = /x2|f(x+xo)|2dx:AX0f,
R
Nog = /w2|fc(w+wo)|2dw:Aw0f.
R

Thus we obtain by step 2 that

—

(Bsf) (Auef) = (Do) (A0g) > R
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5. From the equality (Aog) (Aog) = 3 it follows by step 3 that g(x) = Cea°/2
with C € C and a > 0. By the substitution (74) we see that the equality in (70) means
that f has the form (71). W

The average time of a nonzero function f € Ly(R) is defined by

1 / 5
x* = ——= [ x|f(x)|cdx.
172 ST

This value exists and is a real number, if [, [x| |f(x)|? dx < oco. For a nonzero function
f € L(R) with x* € R, the quantity Ay«f is the so-called temporal variance of f.
Analogously, the average frequency of the Fourier transform f € L>(R) is defined by

1 N
w* ::A2/w|f(w)|2dw.
171> Jr

For a Fourier transform f with w* € R, the quantity A+ f is the so-called frequency
variance of f.
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Example 67

The normalized Gaussian function in (69) has the average time zero and the temporal
0 2 5o 5
variance Aof = %, where o > 0 denotes the standard deviation. Its Fourier transform

has the average frequency zero and the frequency variance Nof = ﬁ ]

Lemma 68

For each nonzero function f € Ly(R) with finite average time x*, it holds the estimate
Dyf =D f + (X' —x0)% > Ay f

for any xo € R.

Similarly, for each nonzero function f € Ly(R) with finite average frequency w* of f it
holds the estimate

Dpyf = Def + (W' —w)? > Apsf

for any wy € R.
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Proof: From
(x — X0)2 =(x— X*)2 +2(x — x")(x* —x0) + (x* — X0)2

it follows immediately that
/ (x — x0)2 |F(3) 2 dx = / (x — x| ()P dx + 0+ (x* — x0)2 1]
R R

and hence
Dyf = Dy f + (X —x0)? > DAy f .

Analogously, one can show the second result. B
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Applying Theorem 66 in the special case xg = x* and wg = w*, we obtain the following
corollary.

Corollary 69

For any nonzero function f € Ly(R) with finite average time x* and finite average
frequency w*, the inequality

2 1

(80ef) (B 2
is fulfilled. The equality in above inequality holds if and only if
f(x) = Ce¥™x emd=x"/2 -y e R,

with some a > 0 and complex constant C # 0.
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Windowed Fourier transform

The Fourier transform  contains frequency information of the whole function

f € Lo(R). Now we are interested in simultaneous information about time and
frequency of a given function f € L>(R). In time—frequency analysis we ask for
frequency information of f near certain time. Analogously, we are interested in the
time information of the Fourier transform f near certain frequency. Therefore we
localize the function f and its Fourier transform f by using windows.

A real, even nonzero function ) € L(R), where 1 and v are localized near zero, is
called a window function or window. Thus 12 is a window too.
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Example 70
Let L > 0 be fixed. Frequently applied window functions are the

rectangular window v (x) = 11_; (x),
the triangular window (x) = ( — |LL|) L—r, (%),

the Gaussian window with deviation o > 0

]. 2 2
_ —x=/(20%)
Xx) = e ,
¥ix) V2mo?

the Hanning window 9 (x) = % (1 + cos Z*) L—r, (%),

and the Hamming window

P(x) = (0.54 -+ 0.46 cos LLX) L—g, (). [

214 /373



Using the shifted window (- — b), we consider the product f ¢)(- — b) which is
localized in some neighborhood of b € R. Then we form the Fourier transform of the
localized function f (- — b). The mapping Fy: L2(R) — Lo(R?) defined by

(Fuf)(bw) = /R Fx) (x — b) e % dx = (F, Wp o) 1omy (75)

with the time—frequency atom
Vpo(x) = (x — b)e“*, xeR,

is called windowed Fourier transform or short time Fourier transform (STFT) .
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Note that the time—frequency atom Wy, is concentrated in time b and in frequency w.
A special case of the windowed Fourier transform is the Gabor transform (Gabor 1946)
which uses a Gaussian window. The squared magnitude |(Ff)(b,w)[? of the
windowed Fourier transform is called spectrogram of f with respect to .

The windowed Fourier transform F,,f can be interpreted as a joint time—frequency
information of f. Thus (Fyf)(b,w) can be considered as a measure for the amplitude
of a frequency band near w at time b.
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We choose the Gaussian window ¢ with deviation o =1, i.e.

[y

P(x) = e /2 xeR,

and consider the Lp(IR) function f(x) := t(x) e“0% with fixed frequency wy € R. We
show that the frequency wq can be detected by windowed Fourier transform JF,,f which
reads as follows

1 .
(Fpf)(bw) = — o b2 / o pbxHilwo—w)x g,
2m R
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From the Fourier transform of the Gaussian we know that
/ efx2 eiwx dx = \/Eefoﬂ/ll
R
and hence we obtain by substitution that

1 2 2 ;
(f¢f)(b7 w) — e—b /4 e—(wo—w) /4 elb(wo—w)/Z )
2y

Thus the spectrogram is given by
1
|(/__.wf)(b,w)‘2 = e—b2/2 e—(Wo—w)2/2'

For each time b € R, the spectrogram has its maximum at the frequency w = wyq. In
practice, one can detect wq only, if |b| is not too large. [
The following identity combines f and f in a joint time—frequency representation.
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Lemma 71

Let 1) be a window. Then for all time—frequency locations (b,w) € R? we have

2m (Fyf)(b,w) = 7% (FF)(w, —b).

Proof: Since 1) is real and even by definition, its Fourier transform 1& is real and even
too. Thus v is a window too. By Theorem 44 and Parseval's equality we obtain

21 (F, (- — b)) ) = (F, (- — w) e ET9) )y

and hence

o / Fx) (x — b)e ™ dx = / Fu)P(u —w)e®=) qy
R R

This completes the proof. W

219 /373



Let ¢ be a window function, where the functions x ¢(x) and w ¢)(w) are in L»(R) too.
For all time—frequency locations (b, w) € R?, the time—frequency atoms

Yy =Y(-— b) e“" and their Fourier transforms \be,w = 12( — w)e*“’('*‘”) have
constant energies |V, ||2 = [[¢]|2 and || ¥y, || = ||]|> = 27 [|9]|?, respectively. Then
the atom W, ,, has the average time x* = b and \le,w has the average frequency

w* = w, since

1 1
* — —_— \U w 2d = b 2d _ b7
X e /]RX| bew(x)|” dx e /R(x+ ) [4b(x)|? dx

1 o 1 X
* = ~ \U w 2d = = 2d _ ‘
T AL Oy AGRIEO R
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Further, the temporal variance of the time—frequency atom Wy, is invariant for all
time—frequency locations (b, w) € R?, because

1
]2 /R(X — b)? |Wp(x)2 dx

1
- o /R X2 ()2 dx = Ao

ApVy

Analogously, the frequency variance of \ijw is constant for all time—frequency
locations (b, w) € R?, because
~ 1 ~
BV = o [ (=R Fhu(w)du
1912 Jr

1 N n
- W/Ruzww)zduonw.

For arbitrary f € L>(R), we obtain by Parseval’s equality
2m (‘Fw)(baw) =2m <f7 \Ub,w>L2(R) = <7?7 \ﬁb,w>L2(R) .
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Hence the value (F;)(b,w) contains information on f in the time—frequency window
resp. Heisenberg box

[b—\/ﬁ,bﬁ-\/ﬁ(ﬂﬂ} X [w—@,w%— Aoi/s} ;

since the deviation is the square root of the variance. Note that the area of the
Heisenberg box cannot become arbitrary small, i.e., it holds by Heisenberg's
uncertainty principle (see Corollary 69) that

(2 \/ATq/}) (2 \/@> > 2.

The size of the Heisenberg box is independent of the time—frequency location
(b,w) € R2. This means that a windowed Fourier transform has the same resolution
across the whole time—frequency plane R2.
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Theorem 72
Let ¢ be a window function. Then for f,g € Ly(R) the following relation holds true:

(Fuf, Fu8)iymey = 27 10113 ,m) (F &) La(m) -

In particular, for ||¢b||.,r) = 1 the energies of Ff and f are equal up to the factor 2,

IFu I, mey = 2 IFIIZ, ) -
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Proof: 1. First, let ¢ € L1(R) N Loo(R). Then we have

(Fof Fug) L) = /R /R (FuF)(b, ) (Fog)(b,w) dwdb.

We consider the inner integral

/ (FuF)(b,w) (Fpg) (b ) deo = / (Fu(- — b)Y () @Il — B)) (@) dw.
R R

By
/|f (x = B dx < 12z I1F12,0m) < 0

we see that f1 € Lp(R) such that we can apply Parseval’s equality

/ (Fuf)(bw) (Fog)(brw) duw = 2 / F(x) 80) [(x — b)? dx.
R R

Using this in the above inner product results in

(Fof, Fyg) L>(R?) —27‘(‘// |1/) X — )| dxdb.
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Since f, g € Lp(R), we see as in the above argumentation that the absolute integral
exists. Hence we can change the order of integration by Fubini’s theorem which results
in

(Fuf. Fug) ) = 27 /R F(x) 80 /R hp(x — b)[? dbdx
=27 [[9[17, gy (F &) La(e) -

2. Let f, g € Lp(R) be fixed. By ¢ (Fyf, Fyg)1,(m2) a continuous functional is
defined on L1(R) N Lo(R). Now L1(R) N Loo(R) is a dense subspace of Lo(R). By the
Hahn—-Banach theorem this can be uniquely extended to a functional on L>(R), where
(f,8)1y(r) is kept. W
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Remark 73
By Theorem 72 we know that

/|f |2dx_ //|fw w)?dbdw.

Hence the spectrogram |(Fyf)(b,w)|? can be interpreted as an energy density, i.e., the
time—frequency rectangle [b, b + Ab] x [w, w + Aw] corresponds to the energy

zi [(Fyf)(b,w)> Ab Aw. O
vy

By Theorem 72 the windowed Fourier transform represents a univariate signal
f € Lo(R) by a bivariate function Fyf € Lp(IR?). Conversely, from given windowed
Fourier transform F,,f one can recover the function f:

226 /373



Corollary 74

Let i) be a window function with ||1)|| ) = 1. Then for all f € L>(R) it holds the
representation formula

= % /R /R(]-“wf)(b,w) P(x — b)e“*dbdw,
where the integral is meant in the weak sense.
Proof: Let
= / /(f¢f)(b,w)¢(x — b)e“*dbdw, x€R.
By Theorem 72 we obtaiﬂi -
(F, M Lym) = / / Fyf) (W(- — b)e™, h),r) dbdw

= (Fyf, Fyph >L2(R2) =21 (f, h)1,(m)
for all h € L5(R) so that f =27 f in [5(R). M
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A typical application of this time—frequency analysis consists in the following three
steps:

1. For a given (noisy) signal f € L»(R) compute the windowed Fourier transform F,f
with respect to a suitable window 1.

2. Then (Fyf)(b,w) is transformed into a new function g(b,w) by so-called signal
compression. Usually, (F,f)(b,w) is truncated to a region of interest where
|(Fyf)(b,w)]| is larger than a given threshold.

3. By the compressed function g compute an approximate signal f (of the given signal
f) by a modified reconstruction formula of Corollary 74

F(x) = % /R /Rg(bw) o(x — b)e“*dbdw,

where ¢ is a convenient window. Note that distinct windows 1) and ¢ may be used in
steps 1 and 3.

For application of the windowed Fourier transform in music analysis we refer to
paperes of C. Févotte, see, e.g. [4].
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Motivations for discrete Fourier transforms

We start with introducing the discrete Fourier transform.

For a given vector a = (aJ-)jN:_O1 € CN we call the vector & = (ék)f(vz_ol € CN the discrete

Fourier transform of a if

N-1 N—1
§k:Zaje_2Wijk/N:ZajW,]\§(, kZO,...,N—l, (76)
j=0 j=0
where 5 5
wy = e 2M/N = cos WW —1isin WW . (77)

Obviously, wy € C is a primitive Nth root of unity, because W/\\/ =1and W,’\‘, = 1 for
k=1,...,N—1. Since

i

(WmN _ (6—27rik/N)N — o 2mik _q

all numbers w,’\‘,, k=0,...,N—1 are Nth roots of unity and form the vertices of a

regular N-gon inscribed in the complex unit circle.
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In this section we will show that the discrete Fourier transform naturally comes into
play for the numerical solution of following fundamental problems:

e computation of Fourier coefficients of a function f € C(T),

® computation of the values of a trigonometric polynomial on a uniform grid of the
interval [0, 27),

e calculation of the continuous Fourier transform of a function f € L;(R) N C(R) on
a uniform grid of an interval [—nm, nm) with certain n € N,

® interpolation by trigonometric polynomials on a uniform grid.
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Approximation of Fourier coefficients and aliasing formula

First we describe a numerical approach to compute the Fourier coefficients ¢k (f),
k € Z, of a given function f € C(T), where f is given by its values sampled on the
uniform grid
2mj
N
Assume that N € N is even. Using the trapezoidal rule for numerical integration, we
can compute ck(f) for each k € Z approximately.

j=0,...,N—1}
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By 7(0) = f(27) we find that

2
al(f) = / F(t) e dt
0
N—

Q

N

. N
= LSy iy Ly g

N 2N 4
Jj=0 j=1

= LN (PN e

Thus we obtain

as approximate values of cx(f).

1
2
1 27\ _omii 27(j + 1)
o 3 [y o (2D

N

2rj

N

) e—27ri(j+1)k/N}

) o—2mijk/N

(78)
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If f is real-valued, then we observe the symmetry relation
f?k = F,k , keZ.

Obviously, the values fk are N-periodic, i.e. fk+N = fk for all k € Z, since W,,\\/ = 1.
However, by the Lemma 24 of Riemann—Lebesgue we know that ¢, (f) — 0 as
|k| = oo. Therefore, f, is only an acceptable approximation of c,(f) for small |k], i.e.,

o N N
fk%Ck(f), k:—E,,E—l
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Example 75

Let f be the 27m-periodic extension of the pulse function

T (=3, %)
f(X) = 2 XE{_%v %}7
0 XE[_T‘-7 _g)u(gvﬂ-)

1 s i 1 /2
c(f) = 5 / f(x)e ¥ dx = = /0 cos(kx)dx = L sin K

o s
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Example 75 (continue)

For fixed N € 4N, we obtain the related approximate values

N/2-1

A 27'('_]
f = N Z
j=—N/2
N/4—1 :
1 Tk 2mjk
= N<C057+1+2 Zl cosT) keZ.
J:

Hence we have f, = % for k € NZ. Using the Dirichlet kernel Dy 41 with (13), it
follows that for k € Z\ (NZ)

1 mk
N(cos > + Dnja—1(—

>

27k ) 1 Tk Tk
k

N ) N sin 7 cot W
This example illustrates the different asymptotic behavior of the Fourier coefficients

cx(f) and its approximate values f; for |k| — co. [
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To see this effect more clearly, we will derive a so-called aliasing formula for Fourier
coefficients. To this end we use the following notations. As usual, 5J-, Jj € Z, denotes
the Kronecker symbol with

1 j=0,
(5_/::{0 i
J#0.

For j € Z, we denote the nonnegative residue modulo N € N by (j mod N), where

( mod N) €{0,...,N—1} and N is a divisor of j — (j mod N). Note that we have
forall j, ke Z

(j k) mod N = ((j mod N)k) mod N. (79)
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Lemma 76
Let N € N be given. For each j € Z, the primitive Nth root of unity wy has the
property

N-1
VV,j\f:NéjmodN7 (80)
k=0
where
1 jmodN =0,
0 mod N i— i
0 jmodN #0

denotes the N-periodic Kronecker symbol.
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Proof: In the case j mod N = 0 we have j = ¢ N with certain / € Z and hence

wh = (wf)! = 1. This yields (80) for j mod N = 0.

In the case j mod N # 0 we have j = ¢ N + m with certain ¢ € Z and

m € {1,...,N —1} such that wj, = (W)’ wil = wjJ # 1. For arbitrary x # 1, it holds
N-1 N 1

X
xK =

x—1"

For x = W/jv we obtain (80) for j mod N #0. W

Lemma 76 can be used to prove the following aliasing formula, which describes the
relation between the Fourier coefficients c(f) and their approximate values f.
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Theorem 77 (Aliasing formula for Fourier coefficients)

Let f € C(T) be given. Assume that the Fourier coefficients of f satisfy the condition
> kezlck(f)| < oco. Then the aliasing formula

fe=> " ckren(f), kezZ (81)
LeL
holds.
Proof: Using Theorem 34, the Fourier series of f converges uniformly to f. Hence for

each x € T, '
F(x) = clf)e™.
ez,

For x = %,ij,...,N—l, we obtain that
2mj 2mije/N _ —{j
f(w) = )N =N " () wyY .
LeZ LeZ
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Hence due to (78) and the convergence of the Fourier series

N-1

p 3 S (et - et

j=0 ‘ez

x

which yields by (80) the aliasing formula (81). M

By Theorem 77 we have no aliasing effect if f is a trigonometric polynomial of degree

< % i.e. for
N/2—1

f= Z ck(f) ™k

k=—N/2+1

we have f = ¢, (f), k=—N/2+1,... N/2 —1.
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Corollary 78

With the assumptions of Theorem 77, the error estimate

e — (O <D leiren(f)| (82)

(0

holds for k = =N ... N _ 1 Especially for f € C"(T), r € N, with the property
2 2

k()] < Pk k#0, (83)

where ¢ > 0 is a constant, we have the error estimate

B=alE e (G =) (84)

N
for |k| < 7.
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Proof: The estimate (82) immediately follows from the aliasing formula (81) by
triangle inequality. With the assumption (83), formula (82) implies that

fe—aNl < D (lecran(Dl + leeen(P)])

/=1
- k—r— K-
< N,CH;(}EJFN\ e 4l Y.

For [s| < 1 and £ € N, it can be simply checked that

(+1/2

(¢+ 5)_r_1 < / (x+s)"tdx,
0-1/2

since the function g(x) = (x 4+ s)~""! is convex and monotonically decreasing. Hence

e¢] 00 1

Z(ﬁ—l—s)*“l </1 (x—i—s)_’_ldx: 1 (E—i-s)*r,

=1 /2 r

since for s = X with |k| < ¥ we have |s| < 1. This completes the proof of (84). W
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Computation of Fourier series and the continuous Fourier

transform

First we study the computation of a trigonometric polynomial p € 7,, n € N, on a
uniform grid of [0, 27). Choosing N € N with N > 2n+ 1, we want to calculate the
value of p = ZJ__,, cjeY” at all grid points 27,{/‘ for k=0,...,N —1, where the
coefficients ¢; € C are given. Using (77) we have

2wk i
p(T) = Zce2 VN = ZCJWN

‘j_fn j_fn

= ZC_J Wit + Z cn_j wih . (85)

j=N—n
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Introducing the entries

cj J=0,...,n,
d:=¢0 j=n+1....N—n—-1,
CN—j j:N—n,...,N—l,

we obtain

2k N1 ;
p(T):ZdjW;Vk, k=0,...,N—1, (86)
j=0

which can be interpreted as a discrete Fourier transform of length N.

Now, in order to evaluate a Fourier series on a uniform grid of an interval of length 27,
we use their partial sum p = S,f as an approximation. For smooth functions, the
Fourier series converges rapidly, see Theorem 36, such that we can approximate the
Fourier series arbitrarily exactly by choosing the polynomial degree n properly.
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Next we sketch the computation of the continuous Fourier transform f of a given
function f € L1(R) N C(R). Since f(x) — 0 for |x| — oo, we obtain for sufficiently
large n € N that

f(v):/ f(x)e_ixvdxw/ f(x)e ™ dx, veR.

—00 —nm
Using the uniform grid {27” Jj= —%, e 2 — 1} of the interval [—nm, nr) for even
n € N, we approximate the integral by the rectangle rule,
N/2—1 .
n . o " 27 iy
f —xv Qo S5 ' fuiic 7271'1_[V/N.
/_mr(x)e X N_Z (N)e
j=—nN/2
For v = % with k = —%, cees % — 1 we find the following approximate value of f(%)
N/2—1
~ k o " 2T\ ik
f(;)%W.Z F(=y) wan - (87)
j=—nN/2
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This is indeed a discrete Fourier transform of length nN when we shift the summation
index similarly as in (85). Here, as before when evaluating the Fourier coefficients, the
approximation is only acceptable for the |k| < % since the values f(%) are periodic
while the Fourier transform decays with lim,_,o, | ()| = 0.

Finally we consider the interpolation by a trigonometric polynomial on a uniform grid
of [0, 27). First we discuss the trigonometric interpolation with an odd number of

equidistant nodes

27k
= 2 k=0,...,2n.
Xk i1l E[O7 7T), s ,2h
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Trigonometric polynomial interpolation

Lemma 79

Let n € N be given and N =2n+ 1. For arbitrary p, € C, k =0, ...

exists a unique trigonometric polynomial of degree n,

n
p= Z cel eT,

{=—n

satisfying the interpolation conditions

The coefficients ¢, € C of (88) are given by

2n+1

1 2n
Lk

= ZpkWN, £=—n,...,n.
k=0

, N — 1, there

(88)

(89)

(90)
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Lemma 79 (continue)

Using the Dirichlet kernel D,,, the interpolating trigonometric polynomial (88) can be
written in the form

2n
1
_ S Pk Dal- = x). 1
P 2n+1k:0pk (=) &)

Proof: 1. From the interpolation conditions (89) it follows by (77) that solving the
trigonometric interpolation problem is equivalent to solving the system of linear
equations

Zc@ k= pe, k=0,...,2n. (92)
{=—n
Assume that ¢; € C solve (92). Then by Lemma 76 we obtain

a3 3 cont) vk = 3 (Ll ) =@ g
k=0

k=0 {=-—n f=—n
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Hence any solution of (92) has to be of the form (90).
On the other hand, for ¢; given by (90) we find by Lemma 76 that for k

n

=0,...,2n

2k B B
p(2n7:—1) - ZCKW“ 2n—|—1 Z(pr“’ﬂ) "

{=—n {=—n

2n+1z;pj(ZWN k)e)—p

{=—n

Thus the linear system (92) is uniquely solvable.
2. From (88) and (90) it follows by c_y = cy—¢, £ =1,...,n, that

n
p(x) = oo+ Z (ce e + ey e_wx)

/=1
1§ ) (=)
— Zpk< _1_2 1€x xk+—1€x xk))
2n+_1k 0 (=1

and we conclude (91) by the definition (12) of the Dirichlet kernel Dp,.
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Formula (91) particularly implies that the trigonometric Lagrange polynomials ¢ € Ty,

with respect to the uniform grid {xx = 22,771‘1 : k=0,...,2n} are given by
L 1 D ( ), k=0 2
= - — =0,...,2n.
k on+1 n Xk ) s ) s
By Lemma 79 the trigonometric Lagrange polynomials ¢y, k =0,...,N — 1, form a

basis of 7, and satisfy the interpolation conditions
(%) =0j—k, J, k=0,...,2n.

Further, the trigonometric Lagrange polynomials generate a partition of unity, since
(91) yields for p =1 that

2n 2n
1
1= > Pk Dal- —xk) =Yl
2n+ 1 kzopk (- =) kiof" (93)

Now we consider the trigonometric interpolation for an even number of equidistant
_ 7k
nodes x; := T € [0, 27), k =0,...,2n — 1.
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Lemma 80

Let n € N be given and N = 2n. For arbitrary p; € C, k =0,...,2n— 1, there exists a
unique trigonometric polynomial of the special form

. 1 . .
p*= E celt + 5 (€™ +e™) eTy (94)
satisfying the interpolation conditions

ok
p*(%):pz, k=0,....2n—1. (95)

The coefficients c; € C of (94) are given by

2n—1

S K 1

=5 g prwyn, L= n,...,n. (96)
k=0

The interpolating trigonometric polynomial (94) can be written in the form
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Lemma 80 (continue)

2n—1

1 * * *
Z Pk Dn('_Xk)v (97)
k=0

P:%

where D} := D, — cos(n-) denotes the modified nth Dirichlet kernel.

A proof of Lemma 80 is omitted here, since this result can be similarly shown as
Lemma 79.

Remark 81

By sin(nx;) = sin(mk) =0 for k = 0,...,2n — 1, each trigonometric polynomial
p* + ¢ sin(n-) with arbitrary c € C is a solution of the trigonometric interpolation
problem (95). Therefore the restriction to trigonometric polynomials of the special
form (94) is essential for the unique solvability of the trigonometric interpolation
problem (95). [
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Formula (97) implies that the trigonometric Lagrange polynomials ¢}, € T, with

respect to the uniform grid {x} = Lnk : k=0,...,2n— 1} are given by
% 1 * *
0y ::ﬂDn(—xk), k=0,...,2n—1.

By Lemma 80 the 2n trigonometric Lagrange polynomials £} are linearly independent,
but they do not form a basis of 7T, since dim 7, =2n+ 1.
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Fourier matrix and discrete Fourier transform

For fixed N € N, we consider the vectors a = (a; J'-V:BI and b = (bj)j’V:BI with
components a;, b; € C. As usual, the inner product and the Euclidean norm in the
vector space CN are defined by

N-1

(a,b):=a'b=> ajb;, |a]z:=
j=0
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Lemma 82

Let N € N be given and wy := e~2m/N  Then the set of the exponential vectors
ey = (W;\f)JN:_ol k=0,...,N—1, forms an orthogonal basis of CN, where

lexlla = V/N for each k =0,...,N —1. Anya € CN can be represented in the form

1 N—-1
a=— . 98
N 2@ ex)ex (98)
k=0
The set of complex conjugate exponential vectors €, = (W&jk)jN:_ol, k=0,....,N—1,

forms also an orthogonal basis of CN.
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Proof: For k,¢ € {0,..., N — 1}, the inner product (e, €/) can be calculated by
Lemma 76 such that

N-1
(k—0)j
(ex, e0) = > wy 7 = NGy mod -
j=0

Thus {ex: k=0,. — 1} is an orthogonal basis of CV, because the N exponential
vectors e, are Ilnearly mdependent and dim CN = N. Consequently, each vector

a e CN can be expressed in the form (98). Analogously, the vectors €,
k=0,...,N—1, form an orthogonal basis of CN. H
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The N-by-N Fourier matrix is defined by

1 1 1
. 1 w w1
) ky N—1 N N
F = (WfV)J,k=o - :
1 W,’\\/_1 e Wy

Due to the properties of the primitive Nth root of unity wy, the Fourier matrix Fy
consists of only N distinct entries. Obviously, Fy is symmetric, Fy = FL, but not
Hermitian for N > 2. The columns of Fy are the vectors e of the orthogonal basis of
CN such that by Lemma 82

FUuFy=Nly, (99)

where |y denotes the N-by-/ identity matrix. Hence the scaled Fourier matrix ﬁ Fn
is unitary.
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The linear map from CV to CV, which is represented as the matrix vector product
a=Fya=((a, &), ,, acCV,

is called discrete Fourier transform of length N and abbreviated by DFT(N). The

N—1

k=0

transformed vector & = (&) is called the discrete Fourier transform (DFT) of

a= (aj)j,\lzz)l and we have
=@ =) awh, k=0,... N-1. (100)

In practice, one says that the DFT(N) maps from time domain CV to frequency
domain CN.
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The main importance of the DFT arises from the fact that there exist fast and
numerically stable algorithms for its computation.

Example 83
For N € {2, 3, 4} we obtain the Fourier matrices

1 1 1 L 1 ! 1
F=( ! Fs=| 1 ws w = | b b
2 — 1 —1 ) 3 = ” W3 W3 ) 4 — 1 —1 1 —1
3 1 i -1 —i
with ws = —% — ?i. Figure 11 displays both real and imaginary part of the Fourier

matrix F15 and a plot of the second row of both below. In the grayscale images, white
corresponds to the value 1 and black corresponds to -1. [
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ReFq6 = (cos %’()15

jik=0"

ImFq6 = —(

. mjk\15
sin 3 )

J,k=0"

15
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Remark 84
Let N € N with N > 1 be given. Obviously we can compute the values

N-1

Ge=> ajwhy (101)
for all k € Z. From e
et ” "
wy, =wy-l=wy, ke,

we observe that the resulting sequence (3x)kez is N-periodic. The same is true for the
inverse DFT(N). For a given vector (ék)f(\’:_(;l the sequence (aj)jcz with

2
-

A —ik .
aowy", JjeL,
0

==

aj =

x
Il

is an N-periodic sequence, since
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Remark 84 (continue)

wy Uk — ok 1=k jez.
Thus, the DFT(N) can be extended, mapping an N-periodic sequence (aj)jez to an
N-periodic sequence (51()2/;01- A consequence of this property is the fact that the

DFT(N) of even length N of a complex N-periodic sequence (a;j)jcz can be formed by
any N-dimensional subvector of (aj)jcz. For instance, if we choose (aj)J'.V:/ﬁll/z, then

we obtain the same transformed sequence, since

N/2—-1 N/2 N/2—-1
. Ne ik .
Z aj W,/\;( = Z aN—j WI(V 2 TF Z aj W,/\i(
Jj==—N/2 J=1 j=0
N—-1

= ajwh, kezZ. O

.
I
o
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Example 85

For given N € 2N, we consider the vector a = (e,)j)jN:_O1 with
0 jefo by,
aj=1¢1 ji=1...%-1,
-1 j=%+1... ,N-1.

We determine the DFT(N) of a, i.e., a = (§k)LV;01. Obviously, we have 4y = 0. For
ke{l,...,N—1} we obtain

N/2-1 N—1 ' N/2-1
T R DI TSSO
Jj=1 Jj=N/2+1 j=1

and hence 4, = 0 for even k.
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Example 85 (continue)

Using
Nj2-1 N2
g b=X"X , x#1,
; 1—x
Jj=1

1 k
§k:2WN '\f{ N+k—2W2_AL+W2N——2icot%.
1—WN 1—WN Won — Wany
Thus we receive
~ | O k=0, 2, , N—2, 0
KT\ —2icotTE  k=1,3,... N—1
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Example 86

For given N € N\ {1}, we consider the vector a = (aJ-)J’.V:_O1 with

[z =0,
T L 5=n N-—1
N J Y ey .

Note that the related N-periodic sequence (a;j)jcz with aj = ajmedn, j € Z, is a
sawtooth sequence. Now we calculate the DFT(N) of a, i.e., & = (ék)ﬁlz_ol. Obviously,

we have
1,15, 1 NWN-1) N
N,ﬂJ_Z

%= 2N 2

N |
-
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Example 86 (continue)

Using the sum formula

N-1
. (N-1)xN  x—xN
J_ _ 1
Z./X ].—X +(1_X)27 X7é7
j=1
we obtain for x = wfi with k € {1,..., N — 1} that
"’i.wjk “(N-1) w1 N
J =] = =
=i N 1—wy (1— wk)? 1—wy
and hence
N—1 K :
.11 a1 1 1+wl i wk
Gk==+—= ) jwy==— =— = - cot—.
sz_; N2 1wk 2(l—wf) 2 N

Ol
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Remark 87

In the literature, the Fourier matrix is not consistently defined. In particular, the
jk\N-1 1 ik N—1
normalization constants differ and one finds for example (WN )J k=0" TN ( N )j,k:O'

(W’k) Nk 10, and (VV/\j()J - Consequently, there exist different forms of the
DF T(N ) For the sake of clarity, we emphasize that the DFT(N) is differently defined
in the respective package documentations. For instance, Mathematica uses the

DFT(N) of the form

ékz\ﬁZaj woU= D= 1N

In Matlab, the DFT(N) is defined by

§k+1:Zaj+1wﬁ, kZO,...,N—l.
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Theorem 88 (Properties of the Fourier matrix)
The Fourier matrix Fy is invertible and its inverse reads as follows

1 = 1 x N—

1 —jkyN—1

FN e N FN = N (WNJ )j,k:() o (102)
The corresponding DFT is a bijective map on CN. The inverse DFT of length N is
given by the matrix-vector product

_ 1 N—1
1A ~ ~ N
a=F), a:N(<a,ek))k:0, acC
such that
0 L N1 .
aj = N(a, ex) == kg_o Gewy, j=0,.,N—-1. (103)

Proof: Relation (102) follows immediately from (99). Consequently, the DFT(N) is
bijective on CN. W
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Lemma 89

The Fourier matrix Fp satisfies

Fy=NJy, Fiy=Nly, (104)
with the flip matrix
1 0 . 0
0 0 . 1
N—-1
J//\/ = (6(j+k) mod N)j,k=0 = :
01 . 0
Further we have ; 0
Fy' = N InFy =5 Fudy. (105)
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Proof: Let FN = (cJ g) o- Using Lemma 76, we find

Cjo= Z WJk Z ik _ N(;(J—i-é) mod N -

k=0

and hence F3, = N J},. From (J})? = I it follows that
Fi = FR Fy = (NJy) (N Jy) = N2 (Jy)* = N2 1y
By NFy Jy = NJ) Fy = F3 and F}, = N2 Iy we finally obtain

_ 1 1 1
FNIZWF?\,:NFN n=qInFn.
This completes the proof. W
Using (105), the inverse DFT(/) can be computed by the same algorithm as the

DFT(N) employing a reordering and a scaling.
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Remark 90

The application of the flip matrix J), to a vector a = (ak)f(\lz_o1 provides the vector

N—1
J//\/"" = (a(fj) mod N)j:() = (307 aN—1, -+, al)T

i.e., the components of a are “flipped”. [

Now we want to study the spectral properties of the Fourier matrix in a more detailed
manner. For that purpose, let the counter-identity matrix Jp be defined by

1
N-1
Jy = (5U+k+1) mod N)j,kzO -

1

having nonzero entries 1 only on the main counter-diagonal. Then Jya provides the
reversed vector

N—-1

Jna = (a(—j-1) mod N)J-:_o = (an—1, an—2, ---, a1, a0)
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DFT and cyclic convolutions

The cyclic convolution of the vectors a = (ak)LV;(Jl, b= (bk)k’\’;o1 € CV is defined as

the vector ¢ = (¢,)M-4 := a*b € C" with the components

N-1 n N—-1
Cn:Zakb(nfk)modN:Zakbn—k"i_ Z ak byyn—k, n=0,...,N—1.
k=0 k=0 k=n+1

The cyclic convolution in CN is a commutative, associative, and distributive operation
. ; -1 L.
with the unity by = (6} mod N)jN:O =(1,0,...,0)" which is the so-called pulse vector.

The forward-shift matrix V is defined by

= O

VN = (6U_k—1) mod N)jYI:Z]-O =
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The application of Vjy to a vector a = (;:7k)f<\’:_(;l provides the forward-shifted vector

N-1
Vya = (3(1'71) mod N)J-Zo = (an-1, a0, a1, -+, an—2) "

Hence we obtain

0 010
0O ... 001
N—1
V3 = (0g—k—2) mod W) ;o =| L -+ 0 00
0 1 00
and -
V%Va = (a(j—2) mod N)j:(] = (aN—27 aN—1, 40y - -+, aN—3)—r
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Further we have VN = 1y and

010 0
0 01 0
Vi=Vit=vyt=1| : : e

0 00O 1

1 00 0
which is called backward-shift matrix, since
_ N—1

VNla = (3(j+1) mod N)j:() = (a1, a2, -+, an-1, ao)T

is the backward-shifted vector of a.
The matrix Iy — Vy is the cyclic difference matrix, since

N—1
(IN - VN)a = (aj — d(j—1) mod N)j:O
= (a0 —an-1, a1 —ao, -..,an—1 — an—2

We observe that
N—1

|N+VN+V/2V+...+V%_1 = (l)j,k:O'

)"
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We want to characterize all linear maps Hy from CN to CV which are shift-invariant,
i.e., satisfy

HN(VNa) = VN(HNa)

for all a € CN. Thus we have Hy V& = Vﬂ Hy, k=0,...,N — 1. Shift-invariant
maps play an important role for signal filtering. We show that a shift-invariant map
Hy can be represented by the cyclic convolution.

Lemma 91

Each shift-invariant, linear map Hy from CN to CN can be represented in the form
N
Hya=axh, acC",

where h := Hy bg is the impulse response vector of the pulse vector byg.
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Proof: Let by := (5U—k) mod N)J.N:_Ol, k=0,...,N—1, be the standard basis vectors of

CN. Then by, = VK, bo, k=0,...,N — 1. An arbitrary vector a = (ak)f(\’:_(;l e CN can
be represented in the standard basis as

=
—

N-1
a= ak bk ag Vk bo
0 k=0

x
Il

Applying the linear, shift-invariant map Hy to this vector a, we get

N— N-1 N-1
Hya = Z kHN VNbO Zakal(HNbo):ZQkVKIh
k=0 k=0 =

= (h|Vyh|...|Vy'h)a

that means
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ho hy—1 ... hb M 4o

h1 ho ce h3 h2 dai
Hya = . . o .
hn-1 hny—2 ... 1 ho aN—1
-1 N—1
= < ak h(n—k) mod N) o =axh.
k=0 =

This completes the proof. W
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Now we present the basic properties of DFT(/N) and start with an example.

Example 92
Let by, = (5(/—k) mod N)J.N:_Ol, k=0,...,N—1, be the standard basis vectors of CV

and let e, = (W,j\i()Jsz)l k=0,...,N—1, be the exponential vectors in Lemma 82
that form the columns of Fp. Then we obtain for k =0,..., N — 1 that

Fybi=ex, Fyex=Fybe=NJybi=Nb_) modn-

In particular we observe that the sparse vectors by are transformed into non-sparse
vectors ey.
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Example 92 (continue)
Further we obtain that for all k =0,...,N—1
FnVinbe =Fnbi1) mod N = €k+1) mod N = My Fu by,

where My := diag e; is the so-called modulation matrix which generates a modulation
or frequency shift by the property My ex = €(41) mod n- Consequently, we have

FyVy = MpyFy (106)
and more generally Fy VK = MKk Fy, k=1,..., N — 1. Transposing the last equation
for k = N — 1, we obtain

ViFy=Vy'Fy=FyMy, VyFy=FyMyl. O (107)
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Theorem 93
The DFT(N) possesses the following properties.
© Linearity: For alla, b € CN and o € C we have

(a+b)=a+b, (aa)=aa.
@® Inversion: For all a € CN we have

1 1
a:Fﬁlﬁ:NFNﬁ:N

JyFna.
© Flipping property: For alla € CN we have
(Jya)y=Jya, (ay=Jya.

O Shifting in time and frequency domain: For alla € CN we have

(Vya)'=Mya, (Myla)'=Vya.
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Theorem 93 (continue)

© Cyclic convolution in time and frequency domain: For all a, b € CN we have

S

(axb)’=4o0b, N(aob)'=axbh,

where ao b := (aj bk)QI:_O1 denotes the componentwise product of the vectors
a= (ak);(vz_ol and b = (bk)ﬁlz_ol
@ Parseval identity: For all a, b € CN we have

1 .~ R
@b ={@b), & 13 = [lall3 -

@ Difference property in time and frequency domain: For alla € CN we have

((IN—VN)a)“: (l,\/-'\/'/\/)c‘:\l7 ((lN— 1) ) ( N—VN)a
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Theorem 93 (continue)

©® Permutation property: Let p € Z and N be relatively prime. Assume that q € Z

satisfies the condition (p q) mod N =1 and that the DFT(N) of(aj)jN:*O1 cCNis

equal to (4x)y—o. Then the DET(N) of the permuted vector (a(p) mod N)J.N:_Ol is
equal to the permuted vector (aA(qk) mod N) kN:_;

Proof: 1. The linearity follows from the definition of the DFT(N).
2. The second property is obtained from (102) and (105).

3. By (102) and (105) we have Fy J), = J)y Fy = Fy and hence

(Jva)" = Fnlya=JyFya=Jya,

a)> = Fya=Fya=J,Fya=1J)ya.
N N
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4. From (106) and (107) it follows that

(VNa)A = FNVNa = MN FNa = MNé\l,
(Myta) = FyMpta=VyFya=Vya.
5. Let ¢ = a x b be the cyclic convolution of a and b with the components

N-1

Cf:zanb(j—n)mod/v, j=0,...,N—1.
n=0
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N A \N-1 .
We calculate the components of € = (Ck)k o and obtain for k =0,...,N -1

N—-1 N-1
e = < an b(j—n) mod N) wy
j=0 n=0
N—-1 N-1
_ nk ((j—n) mod N) k
- dn Wy ( b(j—n) mod N Wy
n=0 j=0
N—-1
= ( dnp W,r\;k> bk = §k bk
n=0
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Thus we obtain that for j =0,...,N —1

1 o —in
= ( 3k b(n—k) mod N> wy'"

ie, c= % Fpy'(axb)and hence N&=axb.
6. For arbitrary a, b € CN we conclude

(a,by=a FyFyb=Na'b=N{(a, b).

7. The difference properties follow directly from the shift properties.
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8. Since p € Z and N are relatively prime, the greatest common divisor of p and N is
one. Then there exist g, M € Z with pg+ M N =1 (see [1, p. 21]). By the
Euler-Fermat theorem (see [1, p. 114]) the (unique modulo N) solution of the linear
congruence p g = 1(mod N) is given by g = p?(M~1 (mod N), where p(N) denotes
the Euler totient function.

Now we compute the DFT(N) of the permuted vector (a(,j) mod N)J’.V:_Ol. Then the kth
component of the transformed vector reads

N—

[ay

d(pj) mod N W{\;( (108)
j=0

—~

The value (108) does not change if the sum is reordered and the summation index
Jj=0,...,N—1is replaced by (g ¢) mod N with £ =0,..., N —1.
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Indeed, by pg = 1 (mod N) and (79) we have
¢=(pqt) mod N = [((g¢) mod N) p|] mod N

and furthermore
((q@) mod N) k  qek ¢ ((q k) mod N)
Wy =wy = wy )

Thus we obtain

N—1 N—1
ik lk
D aAp) mod N W = 3(pqt) mod N W
j=0 =0
e 14 ((q k) mod N) "
= g Wy = d(gk) mod N -
j=0
: . : N-1 .
For example, in the special case p = g = —1, the flipped vector (a(_j) mod N)j:o is

N-1

- N

transformed to the flipped vector (4(_k) mod )
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Now we analyze the symmetry properties of DFT(N). A vector a = (aj)jN;O1 cCVis
called even, if a = Jyya, i.e. aj = a(n_j) mod v for all j=0,..., N —1, and it is called
odd, ifa= —Jya,ie aj=—an_jymodan forall j=0,...,N—1. For N =6 the
vector (ag, a1, a2, as, a2, a1) ' is even and (0, a1, a2, 0, —ap, —a1) " is odd.

Corollary 94
A A\ N-1
Forac RN anda=Fpya= (aj)j:0 we have
~ ! A
a=Jya,
ie., Sj = 3(N—j) mod N+ J = 0,..., N —1. In other words, Re a is even and Im & is odd.
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Proof: Bya=a € RN and Fy = J’N F it follows that

|

Jya=JyFya=Fya=Fya=
For 8 = Re a +1i Im a we obtain
a=Rea—ilma=1Jya=Jy(Read)+iJy(Ima)

and hence Re d = Jjy(Red) and Ima = —-Jj(Ima). H
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Corollary 95

Ifa e CN is even/odd, then & = Fya is even/odd.
Ifa c RN is even, then 4 = Re 4 € RN s even.
Ifae RN jsodd, thena=1lm aciRN is odd.

Proof: From a = +J, a it follows that
4=Fya=+FyJya=+J,Fya=+J)a.

For even a € RV we obtain by Corollary 94 that & = Jya=a ie, ac RN is even.

Analogously we can show the assertion for odd a ¢ RN. W
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Circulant matrices

An N-by-N matrix

a0 anN—-1 ... d2 ai
_ al a0 ... a3 az
. N—-1
Circ a .= (a(j_k) mod N)j,k=0 = : : : : (109)
anN—-1 daN—-2 ... d1 4o

is called circulant matrix generated by a = (ak)QI:_O1 € CN. The first column of circ a is

equal to a. A circulant matrix is a special Toeplitz matrix in which the diagonals wrap
. . . N—1 .

around. Remember that a Toeplitz matrix is a structured matrix (aj,k)j o for given

N—1 . :
(ak)kzlfN € C?N=1 sych that the entries along each diagonal are constant.
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Example 96
If by = (5j_k)j'\l;01, k=0,...,N—1, denote the standard basis vectors of C"V, then
the forward shift matrix Vy is a circulant matrix, since Vy = circ b;. More generally,
we obtain that

Vi =circb,, k=0,...,N—1.
with V(/)v = circ bg = Iy and V;\\,I_l = V,T,l = circ byy_1. The cyclic difference matrix is
also a circulant matrix, since Iy — Vy = circ(bg — by). [
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Circulant matrices and cyclic convolutions of vectors in CV are closely related. From
Lemma 91 it follows that for arbitrary vectors a, b € cN

(circa)b=axb.
Using the cyclic convolution property of DFT(N) (see property 5 of Theorem 93), we

obtain that a circulant matrix can be diagonalized by Fourier matrices.

Theorem 97

For each a € CN, the circulant matrix circ a can be diagonalized by the Fourier matrix
Fn. We have
circ a = Fy' (diag (Fya)) Fy . (110)
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Proof: For any b € CN we form the cyclic convolution of a and b. Then by the
convolution property of Theorem 93 we obtain that

Fvc=(Fya)o (Fyb) = (diag(Fya))Fuyb.

and hence
c = Fy' (diag(Fya)) Fyb.

On the other hand we have ¢ = (circ a) b such that for all b € CN
(circ a)b = Fy! (diag (Fya)) Fyb.

This completes the proof of (110). W
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Remark 98

Using the decomposition (110), the matrix-vector product (circ a)b can be realized by
employing three DFT(N ) and one componentwise vector multiplication. We compute

circ a)b = F! (diag (Fya)) Fyb = Fy! (diag 8)b = Fy! (a0b).
N N N

As we will see later, one DFT(N) can be realized by O(N log N) arithmetical
operations. [
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Corollary 99
For arbitrary a € CN, the eigenvalues of circ a coincide with the components aj,

j=0,...,N—1, of(éj)jN:_Ol = Fya. A right eigenvector related to the eigenvalue 3;,
Jj=0,...,N—1, is the complex conjugate exponential vector €; = (W,\_,Jk)f:’:_o1 and a

left eigenvector of &; is ej—-r, ie.,

(circa)e; = 4j€;, eJ-T (circa) = §; eJ-T : (111)
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Proof: Using (110), we obtain that

(circ a) Fy!t = Fp! diag (a)N3!

i—o » Fncirca= (diag (éj)j/\/:_ol) Fn
with
eg
0
€
FN: (eo\e1| |eN_1) = : s (112)
ey
&
=T
1 1 e
Fﬁlzﬁ(éo‘él|...|é/\1_1):ﬁ !

Hence we conclude (111) holds. Note that the eigenvalues 4; of circ a need not be
distinct. W
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By the definition of the forward-shift matrix V, each circulant matrix (109) can be
written in the form

N—1
circa = Z a VK (113)
k=0

where VO, = V,Q,’ = ly. Therefore, Vy is called basic circulant matrix.

The representation (113) reveals that N-by-N circulant matrices form a commutative
algebra. Linear combinations and products of circulant matrices are also circulant
matrices, and products of any two circulant matrices commute. The inverse of a
nonsingular circulant matrix is again a circulant matrix. The following result is very
useful for the computation with circulant matrices:
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Theorem 100
For arbitrary a, b € CN and o € C we have
® (circa)" =circ(J)ya),
@® (circ a) + (circ b) =circ(a+b), «(circa) = circ(aa),
© (circ a) (circ b) = (circ b) (circ a) = circ(a* b),
O circ a is a normal matrix with the spectral decomposition (110),
@ det (circ a) = HJN 01 a; with (aj)N =Fya.
® The Moore—Penrose pseudo-inverse of circ a has the form

(circa)t = Fy} (dlag( ) ) Fn,

where &§f := &1 if 4 # 0 and &/ :== 0 if 3 = 0.
@circais mvertible if and only if 4; # 0 for all j = 0,..., N — 1. Under this
condition, (circ a)~! is the circulant matrix

(circ a)*1 = FX, (dlag( )JN 01) Fp.
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Proof: 1. Using Vi, = V' and V¥ = Iy, we obtain for a = (ax)p_g € CN by (113)

that

(circ a

)T

N—-1 N-1

a (V) =D a (V)"
k=0 k=0
N-1 N-1
Z ak Vﬁk = Z ak V%_k
k=0 k=0

aly+ay_1Vy+...+ a1 V,I:Il_l = circ(J’Na).

2. The two relations follow from the definition (109).
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3. Leta= (ak)2’;01, b= (bg)évz})l € CN be given. Using VN = I, we conclude that by

(113)
N—1 N—1
(circ a) (circ b) = ( ak Vk,) ( A > Z cn Vi
k=0 £=0
with the entries
N—1
c,,:Zajb(,,_j)modN, HZO,...,N*]..
j=0

By (cn)N=) = a b we obtain (circ a) (circ b) = circ (a * b). Since the cyclic

convolution is commutative, the product of circulant matrices is also commutative.
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4. By property 1, the conjugate transpose of circ a is again a circulant matrix. Since
circulant matrices commute by property 3, circ a is a normal matrix. By (110) we
obtain the spectral decomposition of the normal matrix

1

\/N?N (diag(FNa)) iF/\/, (114)

VN

circa =

because ﬁ F is unitary.
5. The determinant det (circ a) of the matrix product (110) can be computed by

N—-1
det (circ a) = (det Fy) " (][ &) det Fv =[] 4.

J=0 Jj=0
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6. The Moore—Penrose pseudo-inverse AE of an N-by-N matrix Ay is uniquely
determined by the properties

AyALAy=Ay, ALAyAj =AY,

where Ay A} and A} Ay are Hermitian. From the spectral decomposition (114) of
circ a it follows that

(crc )" =~ i (g (3)]'5)) 7 Fo = Pyt (g (3 )1) P

7. The matrix circ a is invertible if and only if det (circ a) # 0, i.e., if 4; # 0 for all
j=0,...,N—1. In this case,

Fy (dlag( )JN 01) Fy

is the inverse of circa. W
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Circulant matrices can be characterized by the following property.

Lemma 101

An N-by-N matrix Ay is a circulant matrix if and only if Ay and the basic circulant
matrix Vy commute, i.e.,

VyAy = Ay Vy. (115)
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Each circulant matrix circ a with a € CV can be represented in the form (113). Hence
circ a commutestith Vy.
Let Ay = (aJ-’k)J. k;lo be an arbitrary N-by-N matrix with the property (115) such that

Vy Ay V!t = Ay. From

_ N-1
VyApy VNl = (a(j—l) mod N,(k—1) mod N)j,k:O

it follows for all j, k=0,...,N—1

d(j—1) mod N,(k—1) mod N = djk -

Setting aj := ajo for j =0,..., N — 1, we conclude that aj x = a;j_x) mod N for
Jyk=0,...,N—1,ie, Ay =circ(a)}'. ™
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Remark 102
For arbitrarily given t, € C, k=1—N,..., N — 1, we consider the N-by-N Toeplitz
matrix

to t.1 ... by ti—n
_ t to ... B3y t-n
N—-1
Ty = (tf*k)j,k:O = : :
ty—1 tn—2 ... ty to

In general, Ty is not a circulant matrix. But Ty can be extended to a circulant matrix

Con of order 2N. We define
_( Ty Ep
Con = ( Ev Twn )
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Remark 102 (continue)

with
0 tn_1 t t1
ti—nN 0 t3 to
Eny = .
t_1 to ... ti_y O

Then, Copn = circ ¢ with the vector
. T 2N
C: = (to, t1, ..., tn—1, 0, t1_n, - - -, 1.'_1) e C".

Thus for an arbitrary vector a € CN, the matrix vector product Ty a can be computed
using the circulant matrix vector product

a\)\ ( Tya
e (5)=(ena):
where 0 € CN denotes the zero vector. Applying a fast Fourier transform of Chapter 4,
this matrix-vector product can therefore be realized with only O(N log N) arithmeticalsor 373



Summary: The 4 Fourier transforms

freq. \ time continuous discrete

continuous Fourier transform “semidiscrete”
Fourier transform

discrete Fourier series discrete Fourier transform
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Summary: The 4 Fourier transforms

Fourier transform on R
forward: f(v) = [ f(x)e dx

inverse: f(x) =& [ f(v)e™dx

periodicity: none
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Summary: The 4 Fourier transforms

“semidiscrete” Fourier transform

[e.°]

forward: fvy= S f(j)e v
j=—o0
inverse: f(j) = = [ f(v)eMdv

periodicity:  f(v) = f(v + 2n)
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Summary: The 4 Fourier transforms

Fourier series

T

forward: c(f) = & [ f(x)e dx
inverse: f(x)= Y ckl(f)et™dx

k=—o00

periodicity:  f(x) = f(x + 2m)
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Summary: The 4 Fourier transforms

discrete Fourier transform (DFT)

N-1
: f = - —2mijk/N
forward: o= fe=2mi /
j=0
LNt -
Inverse: fi = ® £, e2mijk/N
k=0

periodicity:  fx = frapn; fj = fipm
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Fast Fourier transforms

Any application of Fourier methods leads to the evaluation of a discrete Fourier
transform of length N (DFT(N)). Thus the efficient computation of DFT(N) is very
important. Therefore this chapter is devoted to fast Fourier transforms. A fast Fourier
transform (FFT) is an algorithm for computing the DFT(N) which needs only a
relatively low number of arithmetic operations.

Fast FFT's considerably reduce the computational cost for computing the DFT(N)
from 2 N? to O(N log N) arithmetic operations. We will study the numerical stability
of the derived FFT. Note there exists no linear algorithm that can realize the DFT(N)
with a smaller computational cost than O(N log N) (see [13]). Faster algorithms can
be only derived if some a priori information on the resulting vector are available.
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Construction principles of fast algorithms

One of the main reasons for the great importance of Fourier methods is the existence
of fast algorithms for its implementation of DFT. Nowadays, the FFT is one of the
most well-known and mostly applied fast algorithms. Many applications in physics,
engineering and signal processing were just not possible without FFT.

A frequently applied FFT is due to J.W. Cooley and J.W. Tuckey [3]. Indeed an earlier
fast algorithm by I.J. Good [8] used for statistical computations did not find further
attention. Early ideas for efficient computation of DFT(N) for N = 12 and N = 36 go
even back to C.F. Gauss. In 1805, he derived a special algorithm to determine the
orbit of Pallas, the second largest asteroid in our solar system. Being interested in
trigonometric interpolation problems, C. Runge developed in 1903 fast methods for
discrete sine transforms of certain lengths.
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But only the development of the computer technology heavily enforced the
development of fast algorithms. After deriving the Cooley—Tukey FFT in 1965, many
further FFT's emerged being mostly based on similar strategies. We especially mention
the Sande-Tukey FFT as a second radix—2 FFT, the radix-4 FFT, and the split-radix
FFT. While these FFT methods are only suited for length N = 2! or even N = 4t,
other approaches employ cyclic convolutions and can be generalized to other lengths
N. For the history of FFT see [10].

First we want to present five aspects being important for the evaluation and
comparison of fast algorithms, namely computational cost, storage cost, numerical
stability, suitability for parallel programming, and needed number of data
rearrangements.

315/373



1. Computational cost

The computational cost of an algorithm is determined by the number of floating point
operations (flops), i.e., of single (real/complex) additions and (real/complex)
multiplications to perform the algorithm. For the considered FFT we will separately
give the number of required additions and multiplications.

Usually, one is only interested in the order of magnitude of the computational cost of

an algorithm in dependence of the number of input values and uses the big O notation.

For two functions f, g : N — R with f(N) # 0 for all N € N, we write
g(N) = O(f(N)) for N — oo, if there exists a constant ¢ > 0 such that
lg(N)/f(N)| < c holds for all N € N. By

log, N = (log, b)(log, N),  a,b>1,

we have

O(log, N) = O(logy, N) .

Therefore it is usual to write simply O(log N) without fixing the base of the logarithm.
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2. Storage cost

While memory capacities got tremendously cheaper within the last years, it is desired
that algorithms require only a memory capacity being in the same order as the size of
input data. Therefore we prefer so-called in-place algorithms, where the needed
intermediate and final results can be stored by overwriting the input data. Clearly,
these algorithms have to be carefully derived, since a later access to the input data or
intermediate data is then impossible. Most algorithms that we consider in this chapter
can be written as in-place algorithms.

3. Numerical stability

Since the evaluations are performed in floating point arithmetic, rounding errors can

accumulate essentially during a computation leading to an inaccurate result. We will
show that the FFT's accumulate smaller rounding errors than the direct computation
of the DFT using a matrix vector multiplication.
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4. Parallel programming

In order to increase the speed of computation it is of great interest to decompose the
algorithm into independent subprocesses such that execution can be carried out
simultaneously using multiprocessor systems. The results of these independent
evaluations have to be combined afterwards upon completion.

The FFT has been shown to be suitable for parallel computing. One approach to
efficiently implement the FFT and to represent the decomposition of the FFT into
subprocesses is to use signal flow graphs.
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5. Rearrangements of data

The computation time of an algorithm mainly depends on the computational cost of
the algorithm but also on the data structure as e.g. the number and complexity of
needed data rearrangements.

In practical applications the simplicity of the implementation of an algorithm plays an
important role. Therefore FFT's with a simple and clear data structure are preferred to
FFT's with slightly smaller computational cost but requiring more complex data
arrangements.
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Basic principles for the construction of fast algorithms are

e the application of recursions,

e the divide-and—conquer technique, and

e parallel programming.
All three principles are applied for the construction of FFT's.
Recursions can be used, if the computation of the final result can be decomposed into
consecutive steps, where in the nth step only the intermediate results from the previous
r steps are required. Optimally, we need only the information of one previous step to
perform the next intermediate result such that an in-place processing is possible.
The divide—and—conquer technique is a suitable tool to reduce the execution time of an
algorithm. The original problem is decomposed into several subproblems of smaller size
but with the same structure. This decomposition is then iteratively applied to decrease
the subproblems even further. Obviously, this technique is closely related to the
recursion approach. In order to apply the divide—and—conquer technique to construct
FFT's a suitable indexing of the data is needed.
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The FFT's can be described in different forms. We will especially consider the sum
representation, the representation based on polynomials, and the matrix representation.
The original derivation of the FFT by J.W. Cooley and J.W. Tukey [3] applied the sum
representation of the DFT(N). For a vector a = (aj)jN:_O1 € CN the DFT is given by

a= (ék)ivz_ol € CN with the sum representation

=2
-

>
=
I

awh, k=0,....N—1, wy:=e 2N (116)

.
I
o

The FFT performs the above summation using the iterative evaluation of partial sums
applying the divide—and—conquer technique.
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Employing the polynomial representation of the FFT, we interpret the DFT(N) as
evaluation of the polynomial

a(z) =ay+az+...+ any_1zN"te Clz]

at the N knots W,’\‘,, k=0,....N—1, ie.,
dci=a(wk), k=0,...,N—1. (117)

This approach to the DFT is connected with trigonometric interpolation. The FFT is
now based on the fast polynomial evaluation by reducing it to the evaluation of
polynomials of smaller degrees.
Besides the polynomial arithmetic, the matrix representation has been shown to be
appropriate for representing fast DFT algorithms. Starting with the matrix
representation of the DFT

a:=Fpya, (118)
the Fourier matrix Fy := (W,’\f)ij_:lO is factorized into a product of sparse matrices.

322/373



Then the FFT is performed by successive matrix vector multiplications. This method
requires essentially less arithmetical operations than a direct multiplication with the full
matrix Fp. The obtained algorithm is recursive, where at the nth step, only the
intermediate vector obtained in the previous step is employed.

Beside the three possibilities to describe the FFT's, one tool to show the data
structures of the algorithm and to simplify the programming is the signal flow graph.
The signal flow graph is a directed graph whose vertices represent the intermediate
results and whose edges illustrate the arithmetical operations. In this chapter, all signal
flow graphs are composed of butterfly forms as presented in Figure 12.

ap + a1

w(ag — ay)

Figure 12: Butterfly signal flow graph.
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The direction of evaluation in signal flow graphs is always from left to right. In
particular, the factorization of the Fourier matrix into sparse matrices with at most two
nonzero entries per row and per column can be simply transferred to a signal flow
graph. For example, the matrix vector multiplications

re= (1 ) (3) = (50)(3)

can be transferred to the signal flow graphs in Figure 13.

— o
ao + a1 ao ao

Figure 13: Signal flow graphs of Fya and diag (1, w)a.
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Most applications use beside the DFT also the inverse DFT, such that we need also a
fast algorithm for the inverse transform. However, since
1

Fyl = v Fu

with the flip matrix Jy := (0(j+k) mod N)J{\,Il:zlo in Lemma 89, each fast algorithm for
the DFT(N) also provides a fast algorithm for the inverse DFT(/N), and we need not to

consider this case separately.
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Radix-2 FFT's

Radix—2 FFT's are based on the iterative divide—and—conquer technique for computing
the DFT(N), if N is a power of 2. The most well-known radix-2 FFT's are the
Cooley—Tukey FFT and the Sande-Tukey FFT, [3]. These algorithms can be also
adapted for parallel processing. The two radix—2 FFT's only differ regarding the order
of components of the input and output vector and the order of the multiplication with
twiddle factors. As we will see from the corresponding factorization of the Fourier
matrix into a product of sparse matrices, the one algorithm is derived from the other
by using the transpose of the matrix product. In particular, the two algorithms possess
the same computational cost. Therefore we also speak about variants of only one
radix—2 FFT.
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We start with deriving the Sande—Tukey FFT using the sum representation. Then we
develop the Cooley—Tukey FFT in polynomial form. Finally we show the close relation
between the two algorithms by examining the corresponding factorization of the

Fourier matrix. This representation will be also applied to derive an implementation
that is suitable for parallel programming.
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Sande—-Tukey FF'T in summation form

Assume that N = 2%, t € N\ {1}, is given. Then (116) implies

N/2—1 O Nj2-1 .
o= > awh+ Y any w2k
j=0 j=0
N/2—1 '
= > (g+(-D*anjor) Wi, k=0,...,N—1. (119)
j=0

Considering the components of the output vector with even and odd indices,
respectively, we obtain
N/2-1
ao = Z (3j+3N/2+J)Wf\§(/2, (120)
j=0
N/2-1

dok+1 = Z (aj_aN/2+J)Wj M’/\i(/ga =0,...,

Jj=0

~1. (121)

N[ =
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DFT(N) takes N additions, N/2 multiplications and 2 DFT(N/2).
Thus, using the divide-and—conquer technique, the DFT(N) is obtained by computing

® N/2x DFT(2) of the vectors (aj,an/o+j) , j=0,...,N/2 -1,
e N/2 multiplications with the twiddle factors W ,j=0,...,N/2—-1,

® 2 DFT(N/2) of the vectors (a; + aN/2+j)J,-V:/§_1 and ((aj — an/2+;) W{V) Nj2-1

j=0
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However, we do not evaluate the two DFT(N/2) directly but apply the decomposition
in (119) again to the two sums. We iteratively continue this procedure and obtain the
desired output vector after t decomposition steps. At each iteration step we require
N/2x DFT(2) and N/2 multiplications with twiddle factors. As we will show in
Subsection 4.2.5, this procedure reduces the computational cost to perform the
DFT(N) to O(N log N). This is an essential improvement! For example, for

N = 512 = 2° the computation cost are reduced by more than 50 times.

The above algorithm is called Sande—Tukey FFT. In Figure 15 we show the
corresponding signal flow graph of the DFT(8).
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Figure 15: Sande-Tukey algorithm for DFT(8) with input values in bit reversal order



The evaluation of 4y = EJ-N:_OI a; in the Sande-Tukey FFT is obviously executed by
cascade summation. The signal flow graph well illustrates how to implement an
in-place algorithm. Note that the output components are obtained in a different order,
which can be described by a permutation of indices.

All indices are in the set

Jv:=10,...,N—1} =1{0,...,2" -1}
and can be written as t—digit binary numbers,
k= (kt—1,-- ki, ko)a = ke—12 4+ ...+ ki2 + ko, ki € {0,1}.
The permutation ¢ : Jy — Jy with
o(k) = (kos kiy - ke1)2 = ko2' 1+ o+ ke—22 + ke1
is called bit reversal or bit-reversed permutation of Jy.
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Let Ry := (590),k)ﬁ’_:10 be the permutation matrix corresponding to o. Since we have

0%(k) = k for all k € Jy, it follows that
Ry =Inv, Ry=Ry'=Ry. (122)

Table 1 shows the bit reversal for N = 8 = 23.

k | kakiko | kokika | o(k)
0 000 | 000 | O
1| 001 | 100 | 4
2| 010 | 010 | 2
3| o011 | 110 | 6
4| 100 | oo1 | 1
5| 100 | 101 | 5
6| 110 | o1l | 3
70 111 | 11 | 7

Table 1: Bit reversal for N = 8 = 23.
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The comparison with Figure 15 demonstrates that p(k) indeed determines the order of
output components. In general we can show the following:

Lemma 103

For an input vector with natural order of components, the Sande—Tukey FFT
computes the output components in bit-reversed order.

Proof: We show by induction with respect to t that for N =2t t € N\ {1} the kth
value of the output vector is d,4).

For t = 1, the assertion is obviously correct. Assuming that the assertion holds for
N = 2¢, we consider now the DFT of length 2N = 2t+1,
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The first step of the algorithm decomposes the DFT(2N) into two DFT(N), where for
k=0,...,N —1 the values 3y, are computed at the kth position and dyx1 at the
(N + k)th position of the output vector. Afterwards the two DFT(N) are
independently computed using further decomposition steps of the Sande—Tukey FFT.
By induction assumption, we thus obtain after executing the complete algorithm the
values dy,(x) at the kth position, and 8,,(x)4+1 at the (N + k)th position of the output
vector. The permutation 7 : oy — Jon with

w(k) =2po(k), w(k+N)=2p(k)+1, k=0,....N—-1,

is by
7T(k) = 7T((0, kt 1,- ko) )
= 2(07 k07 kt Zakt 1)2 —(k07"'7kt—170)27
7T(N+k) = W((l,kt 1. k0)2)
= 2(07 kOa kt 2akt 1)2+1_(k07"'7kt7171)2

indeed equivalent to the bit reversal of Jp. Thus the assertion of the lemma is true.
|
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We summarize the pseudo-code for the Sande—Tukey FFT as follows.
Input: N =2 with t e N\ {1}, aj € C for j=0,...,N—1.

forn:=1to t do
begin m := 2t~ "+l
for ' =0to 2" ! —1do
begin
for r:=0tom/2—1do
begin j:=r+Im;
S = aj+ am/2+j;
am/2+j = (aj = am/2+4j)Wn;
aj =5
end
end
end.
Output: & :=a,4) €C, k=0,...,N—1.
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Next, we derive the Cooley—Tukey FFT in polynomial form. In the presentation of the
algorithm we use multi-indices for a better illustration of the order of data. We
consider the polynomial a(z) := ap + a1z +...+an_1z"" " that has to be evaluated at

the N knots z = W,’\‘,, k=0,...,N—1. We decompose the polynomial a(z) as follows
N/2—1 N/2—1 N/2—1
a(z) = Z ajz + Z an /24 N/ = Z (aj + N2 an/24j) 2
j=0 Jj=0 Jj=0

By wi'/? = (—=1)k = (=1)% for all k € {0,..., N — 1} with
k= (ki_1,---,ko)2, ki €{0,1},

N/2

the term z"/< can be only 1 or —1.
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Thus the evaluation of a(z) at z = W,l\‘,, k=0,...,N—1, can be reduced to the
evaluation of the two polynomials

N/2—1

a(io)(z) = Z aJ(.iO)zj, ib=0,1,

Jj=0
with the coefficients

aJ(:o) 2=3j+(—1)i03N/2+j7 j=0,...,N/2-1,

at the N/2 knots wf with k = (k¢—1,..., k1,i0)2. In the first step of the algorithm, we

compute the coefficients of the new polynomials a(®)(z), iy = 0, 1.
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Then we apply the method again separately to the two polynomials a(®)(z), ip = 0, 1.

By
N/4—1
i : N '
al0)(z) .= Z (af (o) 4 ,N/4 S\IIO/)4+J') 7
j=0
and WkN/4 (—1)k (—i)ko, this polynomial evaluation is equivalent to the evaluating

the four polynomials

N/4—1

ai)(z)i= 3" APV o, iy € {0, 1},

j=0
with the coefficients

(io,i) ._ (o) i io 4(o) -
at = a" —1—(—1)1(—)°aN°/4+J j=0,...,N/4—-1

at the N/4 knots wy with k = (ke—1, ..., ko, i1, i)2.
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Therefore, at the second step we compute the coefficients of alo1)(z), iy, iy € {0, 1}.

We iteratively continue the method and obtain after t steps N polynomials of degree
0, i.e., constants that yield the desired output values. At the (ip, ..., it—1)2th position
of the output vector we get

allooit=)(z) = alorft) — a(wky = &, g, i1 € 0,1},

with k = (it—1,...,lo)2. Thus, the output values are again in bit-reversed order.
Figure 17 shows the signal flow graph of the described Cooley—Tukey FFT for N = 8.
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Remark 104

In the Sande—Tukey FFT, the number of output values that can be independently
computed doubles at each iteration step, i.e., the sampling rate is iteratively reduced in
frequency domain. Therefore this algorithm is also called decimation-in-frequency FFT,
see Figure 15. Analogously, the Cooley—Tukey FFT corresponds to reduction of
sampling rate in time and is therefore called decimation-in-time FFT, see Figure 17. [
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Radix-2 FFT’s in matrix form

The close connection between the two radix—2 FFT's can be well illustrated using the
matrix representation. For this purpose we consider first the permutation matrices that
yield the occurring index permutations when executing the algorithms. Beside the bit
reversal, we introduce the perfect shuffle my : Jy — Jy by

71'/\/(/() = WN((ktfl,...,ko)g)
= (ke—2y..., ko, ke—1)2
B {2k k=0,...,N/2—1,
~ 1 2%+1-N  k=N/2,...,N—1.

The perfect shuffle realizes the cyclic shift of binary representation of the numbers
0,...,N —1. Then the t-times repeated cyclic shift 7}, yields again the original order
of the coefficients.
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Let Py := (57r/v(k)—j)]l'\,lk_lo denote the corresponding permutation matrix, then

(Py)' =In, (Py)"' =Py =Py. (123)
Obviously
-
Pna = (a0, an/2, 31, 3N 241, - - - aNj2—1, AN-1)
The cyclic shift of (ko, kt—1, ..., ki)2 provides the original number (ki_1, ..., ko)2, i.e.,
T k) = T (et ko)2) = (kos ket K)o

k/2 k=0 mod 2,
N/2+(k—1)/2 k=1 mod?2.

Hence, at the first step of the algorithm, Pl= PX, yields the desired rearrangement
of output components &y taking first all even and then all odd indices.
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Example 105

For N =8, i.e. t = 3, we obtain

(or

(or

0 00O0OO0OO0OTG 01

5T &¢a
Il
o &I EE
00
o
Ocoocooooo
coooo - o
cocoo—-ooo
o+ ooooo
Ocoocoooo-
ocoocoo—-oo
oco—-Hoooo
—H o ooooo
Il
0
o
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Example 105 (continue)

and

(&)

%]

Cy

C6
(o]

a

Cs

cr

(&)]

&

(%)

a3
C4

G5

C6

cr

1 000O0O0O0TO
0 01 0O0O0O0O

000 01O0O0TDO

01 00O0O0O0ODO
0 001O00O0O0O0

00 0O0O0OT1QO0TD0

00 0O0O0OOOTO 01
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The first step of the Sande—Tukey FFT is now by (120) und (121) equivalent to the
matrix factorization
Fv =Pn(l2®Fp/) Dy (F2 @ Iy 2) (124)

with the diagonal matrices
. N
Dy := diag (Iny2, Wyy2),  Wyy2 := diag (w})/ Y it

At the second step of the decomposition the factorization is again applied to Fy ;.
Thus we obtain

Fnv=Pn (2@ [Pn2(l2®Fnja) Dpyz (F2 @ Iyya)]) Dy (F2 @ Ly o)
with the diagonal matrices

D2 = diag (In/a, Wpya), Wy, = diag( N/z)N/4 h

349 /373



Application of properties of Kronecker products yields

Fv=Pn(l® PN/2) (ls ® FN/4) (lh® DN/2) (heF,® IN/4) Dy (F2® IN/2) .
After t steps we thus obtain the factorization of the Fourier matrix Fy into sparse
matrices for the Sande—Tukey FFT with natural order of input components

Fv = Ry (IN/2 ® F3) (IN/4 ® Dg) (IN/4 ® Fy ® 1) (IN/8 ® Dg) ...
...Dpn (F2 &K lN/2)

t
= Ry [] Ta(lnjor © F2 @ lp) (125)
n=1

with the permutation matrix Ry = Py (l2® P 2) ... (In/s @ P4) and the diagonal
matrices

Tn = IN/2n®D2n,

D2n = d1ag (|2n71,W2n71) 5 W2"*1 = dlag (Vvé")?;;lil :

Note that T; = lIn. From Lemma 103 and by (122) we know already that Ry in (125)
is the permutation matrix corresponding to the bit reversal. We illustrate this fact
taking a different view. 350373



Remark 106

For distinct indices ji,...,jn € Jy :={0,...,t — 1} let (j1,j2,.-.,Jn) With1 < n <t
be that permutation of J; that maps j1 onto jo, j» onto j3, ..., jn—1 onto j,, and jp
onto j1. Such a permutation is called n—cycle. For N = 2%, the permutations of the
index set Jy occurring in a radix=2 FFT can be represented by permutations of the
indices in its binary presentation, i.e., w : Jy — Jy can be written as

m(k) = 7((ke-1,-- -, k0)2) = (Kny(k—1)s - - - s Kry(0))2

with a certain permutation 7y : J; — J;. The perfect shuffle Ty : Jy — Iy
corresponds to the t—cycle
ﬂ_N,t = (0,,1‘—1)

and the bit reversal o : Jy — Jy to the permutation

O t-1)1,t—-2)...(t/2—-1,t/2) t=0 mod 2,
Qt_{(O,t—1)(1,t—2)...((t—1)/2) t=1 mod 2.
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Remark 106 (continue)

Let tn o Jy — Jp with 1 < n < t be given by the n-cycle
e = (0,...,n—1).
Then we can prove by induction that
Ot = TNt TN,t—1 --- TN,2 -
Using the matrix representation we obtain now the desired relation

RN - I:)N (|2 & PN/Z) (IN/4® P4)
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Example 107

The factorization of Fg in (125) has the form

Fs =Rg(la®@F2) (1@ Dy)(lo®F2®12)Dg (F2® 1),

i.e., Fg
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Corollary 108
Let N = 2t. Then we have

P’,(,(lN/2®F2)PEn = IN/2n+1®F2®I2n, n=0,...,t—1,
RN(lN/2n®F2®|2n—1)RN = |2n—1®F2®|N/2n, n:l,...,t.

From (125) and Corollary 108 we conclude the factorization of Fpy corresponding to
the Sande-Tukey FFT with bit reversed order of input values,

t
Fy = <HT£(|2n71®F2®IN/2n)> RN, Tg = RNT,,RN.
n=1

The matrix factorization corresponding to the Cooley—Tukey FFT is obtained from
(125) by taking the transpose.
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From Fy = FI, it follows that

t
Fy= (H(lzn_l @ Fa @ ly o) Tt_,,+1) Ry .

n=1

This factorization equates the Cooley—Tukey FFT with bit reversal order of input
values. By Corollary 108 we finally observe that

t
Fy =Ry H(l,\,/zn RF2 @ 1) TS 4

n=1

is the matrix factorization of the Cooley—Tukey FFT with natural order of input values.
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Nonequispaced FFT’s

NFFT of type |

The aim is the fast and stable computation of

N/2-1

Foq)= Y. A, j=-M/2,... . M/2-1,
k=—N/2

for given nonequispaced nodes x; € [, 7) and given data f € C at equispaced
frequencies k = —N/2,...,N/2 — 1.
Remark 109

In the case of equispaced nodes x; := 2mj/N with j = —N/2,...,N/2 —1 and
M = N, the FFT requires O(N log N) arithmetical operations.
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We introduce the 2m-periodic trigonometric polynomial
N/2-1
f(x)= Z fic el
k=—N/2
First we approximate f by a linear combination s; of translates of a 27-periodic

function @. Let ¢ € L1(R) N L2(R) be a convenient window function such that its
periodization

P(x) = Z o(x + 2mr)
rez
has a uniformly convergent Fourier series. Then @ can be represented as Fourier series

B(x) = alp)ek™

keZ
with Fourier coefficients
~ 1 " —ikx
WlP)i= 5 [ Blx)e*rdx
= o [ele = o (k) (126)
27 RSO X X g P
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Example 110

A popular window function is the centered cardinal B-spline of order m € N

(1 xe[-1/2,1)2),
M) = { 0 otherwise,
1/2
Mmi1(x) :== e Mpm(x — t)dt = (Mpy, x My)(x) .

The support of M, is the interval [-m/2, m/2]. The Fourier transform of M, is equal

to )
Mpm(v) = (sinc(mv)) m
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Choose an oversampling factor o > 1 such that o N is even. Now we determine
coefficients gy € C, £ = —oN/2,...,0N/2 — 1 of the linear combination

oN/2—1

si(x) = Z ggﬁ(x—%)

t=—0N/2

such that s; approximates f.

Then we have
51(X)=ch 51 1kx ngck lkX

keZ keZ
with DFT
oN/2—-1
Z g eszl'lkE/(O'N) '
l=—cN/2
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Hence we obtain
oN/2—1
s(x):= D Bea(@)e
k=—0oN/2
oN/2—-1
+ Z Z D Ck+UNr(85) ei(k+aNr)x ) (127)

reZ\{0} k=—oN/2

If |ck(@)] < 1 for |k| > oN — 5 and if cx(p) # 0 for k = —N/2,...,N/2 — 1, then a
comparison of the Fourier series of f and s; shows that

B =h/c(@) k=-Nj2,...,N/2—1, (128)
and gx :=0for k= —oN/2,...,—N/2 —-1;N/2,...,0N/2 — 1. We compute the
coefficients gy of s; by inverse DFT (o V)

1 oN/2—1
_ = ~  2mik{/(oN) _ _
gé—aNkZN/zgke , l=-0N/2,... .oN/2~1.
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Further we assume that ¢ is well-localized (cf. Example 110) such that ¢ can be
approximated by its truncation

D) = { g(x) x € [-2mm/(oN), 2rm/(aN)],

otherwise

with 2m < oN. Now we form the 27-periodic function

B(x) =Y P(x+2mr) € Lo(T)

rez
and approximate s; by
oN/2-1 ol
s(x) = Z geib(x — Uw) . (129)
l=—0oN/2
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Since the support of 9 is bounded, we introduce the set I,y m(x) of all indices
te{—oN/2,...,0N/2 — 1} with the property

oN olN
—x—m<A< —x+m.

2 27
For each fixed knot x; € [—m, 7), the sum (129) has at most 2m + 1 nonzero terms.
Thus we obtain

Fx) = s10) = s(x) -

We can approximately compute the trigonometric polynomial f for all x; € [—, 7),
Jj=—-M/2,...,M/2 — 1 with a computational cost of O(N log N + m M) operations.
Note that the computational cost of an algorithm is measured in the number of
arithmetical operations, where all operations are counted equally.
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Algorithm for NFFT of type |

Input: N MeN,o>1 meN,

xj € [-m, m) for j=—-M/2,...,M/2,

e Cfor k=—NJ2,...,N/2 —1.

Precomputation: (i) Compute the Fourier coefficients cx(p) for all
k=-Nj2,...,N/2—1.

(ii) Compute the values 9 (x; — %:,r\f) forj=—-M/2,...,M/2 —1and { € Iyn m(X;)-
1. Let 8y == f/cu(@) for k = —=N/2,...,N/2 —1.

2. By FFT compute the values

N/2—1

. By 27Tik€/(a'N) d
8¢ = aN Z ., Lelly.
k=—N/2
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3. Compute

sGg) = Y gwﬂ(@—%), j==M/2,... M/2—1.

(o m(5)

Output: s(x;), j=—M/2,...,M/2 — 1, approximate values of f(x;).
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Remark 111
The NFET of type II reads as follows
M/2-1
h(k):= > fiel*9, k=-N/2,... ,N/2-1,
j=—M/2

with nonequispaced nodes x; € [—m, ) and given data f; € C,
Jj=—M/2,...,M/2 — 1. Here we introduce the 2m-periodic function

M/2—1

E() = ) fiplx+x)

j=—MJ2

which has the Fourier coefficients cx(g) = h(k) ck($). By the trapezoidal rule,
approximate value of c(g) is

| N2t Mj2- s
W Z Z 6¢(XJ _ m) e271'11([/(0'N) .
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4.4.2. Error estimates for some window functions

In contrast to FFT, the above algorithm for NFFT is an approximate algorithm.
Hence we have to estimate the approximation error E(x;) := |f(x;) — s(x;)|.
Introducing the aliasing error

Ea(x) := |f(xj) — s1(x)]

and the truncation error
Ei(x) == [s1(x5) — s(x5)]

we have by triangle inequality

E(xj) < Ea(x) + Ec(xj) -
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Lemma 112

N N/2—-1
For [[fll == S0 )
N 5(k 4+ oNr
EGo) < flh max 3 Wk)\, (130)
kf—N/2,...,N/2—1r€Z\{0} |5(k)
[Ifll 1 2n’
< max T P+ — )| - 131
Ei() oN k=-n/2,..N/2—1 |P(k) |x +2;|:>27rm‘ & UN)‘ &

Proof: For simplicity, we estimate here only the aliasing error E,(x;) = [f(x;) — s1(x})|.
By (127) and (128), we have

o‘N/2 1

S numaneny

k=—oN/2 r#0
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From (128) and (126), it follows by triangle inequality

N/2—1 R
N |&(k + oNr)|
ke_nj2  r20 P
|&(k + o Nr)|

EC.

<[, max 2
k=—N/2,...N/2—1 reZ\{0}

Now we estimate the approximation errors of NFFT for special window functions ¢
with good localizations in time and frequency domain. First we consider

o(x) = I\/I2m(% x), (132)

where ¢ > 1 and 2m < oN. Then ¢ is supported on

[_ 2mrm 2mm

TN UT] C [-m, 7.
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We compute the Fourier transform
B(v) = / o(x) ”de_/MQm ) e dx
_ / M2 —27r1 vt/(oN) dt.

By Example 110, we have Moy, (t) = (M1« My * ... %« M;)(t). The convolution
property of the Fourier transform yields

2m 1/2 vt 2m  2f v
~ _ <" —2xivt/(oN) dt — VT \2m
SO(V) oN (/_1/2e ) UN(SInCUN)

with the sinc function sincx := X for x € R\ {0} and sinc0 := 1. Note that
¢(k) >0 forall k=—N/2,...,N/2 — 1. Since ¢(x) is supported on
[-27mm/(oN), 2rm/(oN)], we have ¢ = .
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For arbitrary knots x; € [-m, ), j = —=M/2,...M/2 — 1, and each data vector
f= (fk) N/271 e obtain by (130) the approximation error

—N/2!
E(x) = Ealg) < [IfllL _ x| Z \so k +0Nr )| (133)
i |(k + o Nr)| — k )Zm (134)
|o(k)| k+ oNr '
Lemma 113

Assume that ¢ > 1 and 2m < o/N. Then for the window function ¢ in (132) with
1 = @, the approximation error of the NFF'T can be estimated by

4 R
E(x:) < —_||f 135
09) < =gy Il (135)
where xj € [~m, 71), j = —M/2,...,M/2 — 1, are arbitrary knots and f € CN is an

arbitrary data vector.
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Proof: By (133) and (134) we have

. K/(oN) 2
E(x) < |If () 136
Co) < Iflle__ max, ; ko) (136)
Setting u = X for k = —N/2,...,N/2 — 1, we have |u| < 5 < 1. Now we show that
D) S e (137)
—1)2
o u+r (20 — 1)2m

For0<u< <1wehave

Z(uj—r)m:( : )2m+(u—Lil-1)2m

r#0
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By u+r > |u—r| for r € N we have (-4 )2m < (L)zm and hence

u+r u—r

Z(uj—r)szz(u—l +2Z u—r

r#0
u 2m > u 2m
§2(u_1) +2/1 ( )" dx

u—Xx

u o2m 1—u u 2m
§2(u_1) (1+2m_1)<4(u_1) )

L], the above sum has the upper bound

: . 2m . :
Since the function (uﬂl) ™ increases in [0, 3

for each m € N.

4
(20—1)2m
In the case —1 < —% < u < 0, we replace u by —u and obtain the same upper
bound. Now, the estimate (135) follows from (136) and (137). W
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Another popular window function is the (dilated) Gaussian function

xE€R, (138)

20m
(20—-1)7
and frequency domain. As shown in Example 48, the Fourier transform of (138) reads

with the parameter b := which determines the localization of (138) in time

. 27T _(ﬂ)Zb

Plw) = —x e (G (139)
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Lemma 114
Assume that ¢ > 1 and 2m < oN. Then for the Gaussian function (138) and the

truncated function ¢ = | [—2;—,\,"’, Q;T—,\’;’] the approximation error of the NFET can be
estimated by

E(x) < 4e”m U@ )y (140)

where x; € [-m, ), j=—M/2,...,M/2 —1, is an arbitrary knot and f € CN is an
arbitrary data vector.
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