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1
Introduction

We are living in a digital age where the amount of data humanity is
creating increases constantly. On average, the stunning amount of
1 134 000 terabytes or 1.134 exabytes is generated globally each day.
This number is expected to rise to about 463 exabytes per day in 2025.
In the area of machine learning, we create models based on data we
have available with the goal to make predictions for unknown cases.
Today, the applications are rising inflationary and these models are
present in our everyday life as never before with data sets becoming
ever more high-dimensional. These models may bring advancement
even for crucial tasks such as the prevention of forest fires in a world
influenced by climate change.

In a supervised learning setting, we have labeled data available
for training a model that is able to predict the labels on future data.
This is the setting we focus on in this work. Here, we have a close
relationship to approximation theory since we may assume that an
unknown underlying function maps each data point to its label. It is
this function that we want to learn or approximate. In the classical
function approximation sense, our data are nodes in the domain and
the label is represented by the value of the function at the respective
node.

9



10 1 Introduction

When we consider the approximation of a function with high di-
mension, the most fundamental issue is the curse of dimensionality, as
Richard Bellman first described it, see [Bel72]. The curse says that with
increasing dimension, we need an exponentially increasing amount
of data to achieve reasonable accuracy. For a rigorous mathematical
formulation of the curse, we refer to [NW08]. It quickly prevents the
application of straightforward methods for approximation when the
dimension rises. For a single problem with spatial dimension 40 and
two points in each dimension, we have 240 ≈ 2 · 1012 which is not going
to be feasible, even with the huge amount of data we have today. There-
fore, it is a necessity to find ways around this curse, e.g., by making
further assumptions that fit the problem.

Moreover, the question of interpretability in the context of explainable
artificial intelligence is gaining significant traction. We want to know
how the predictions come to pass and which attributes are the most
influential. This gives us not only a possibility to make modifications
trying to achieve a certain outcome, but also to discard the measurement
of unimportant attributes that may be expensive. Many well-known and
proven methods in machine learning, e.g., support vector machines,
neural networks, and decision trees, cf. [SC08, HTF13, Agg15], do
not intrinsically allow for interpretation. However, there is rather
current research on the interpretability of these methods, see e.g.
[MSM18, Sam19]. Moreover, we have approaches from statistics with
regard to interpretability like the estimation of mutual information, see
[KSG04, Ros14].

We focus solely on a scenario with scattered data in this work, i.e., the
nodes are either drawn randomly or they are given to us in applications.
We refer to [Wen04] for a an overview of this topic and [Buh03] with a
special focus on kernel methods with radial basis function kernels. In
the case of active learning or black-box approximation, it would be possible
to choose a sampling scheme for a function. For active learning, we
have seen the development of many reliable methods such as sparse
grids, cf. [Heg03, BG04, GH14], or rank-1 lattices, see e.g. [SJ94, Käm13,
KPV15, CKNS20]. A rank-1 lattice represents a sampling scheme with
a simple structure that transforms the evaluation of a high-dimensional



11

function to the computation of a single fast Fourier transform. They have
been used in the integration as well as the approximation of functions
where the lattice is generated by an efficient component-by-component
construction, see e.g. [CN07].

In this work, we present a method for the approximation of high-
dimensional functions and data that is built around the concept of
interpretability. What are the requirements on this method? The first
requirement is straightforward that the method should produce an
approximation that is close to the original function, in the case of
function approximation, or generalizes well to new data. As the second
requirement, we want to be able to evaluate the approximation fast on a
large number of new nodes or data points. Those two requirements are
nothing surprising and every machine learning method should fulfill
them. However, we add interpretability as the third requirement, i.e.,
the ability to determine how the variables interact and how important
their contribution is. This provides us with a powerful tool to analyze
and understand the data set. Using, e.g., an attribute ranking, we may
identify important and unimportant variables. As the fourth and final
requirement, we want to have the ability to incorporate the information
we gained through this interpretation to improve the model.

Our method consists of three major components which we introduce
in the following. The fist crucial component of the method is the
multivariate classical analysis of variance (ANOVA) decomposition, cf.
[CMO97, RFA99, Gri06, LO06, Hol11] and [Owe13, Appendix A] for an
overview. The ANOVA decomposition is an important model in the
analysis of dimension interactions of multivariate, high-dimensional
functions. It decomposes a 𝑑-variate function 𝑓 into 2𝑑 ANOVA terms
𝑓𝒖 as

𝑓 =
∑

𝒖⊆{1,2,...,𝑑}
𝑓𝒖

where each term is uniquely identified by a subset of the coordinate
indices {1, 2, . . . , 𝑑}. The decomposition has shown to be a useful
tool in the study of the success of certain quadrature methods for the
integration of high- and infinite-dimensional functions, see [Nie92,
BG04, GH10, BG14, GKS16, KNP+17]. The directly related global
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sensitivity indices or Sobol indices, cf. [Sob90, Sob01, LO06], provide
the necessary means for interpretation. They assign each ANOVA
term a value of how much they relatively contribute to the variance
of the function. We investigate the connection of the classical ANOVA
decomposition to orthonormal bases in weighted Lebesgue spaces L2
and show interesting relationships to the support of the index of the
basis coefficients.

Our approach around the curse of dimensionality is also motivated
by the decomposition. In fact, we assume sparsity in the ANOVA
decomposition related to the concept of superposition dimension. In
other words, we remove ANOVA terms where more than 𝑑𝑠 < 𝑑
variables interact such that

𝑓 ≈
∑

𝒖⊆{1,2,...,𝑑}
|𝒖 |≤𝑑𝑠

𝑓𝒖 .

This is a sensible assumptions for functions of certain smoothness types,
e.g., dominating-mixed smoothness, cf. [PS21a], but also for data sets
from applications. Here, the sparsity-of-effects principle tells us that
many real world systems are dominated by a small number of low-
complexity interactions, see e.g. [WH11, HSS+21]. This technique is
also related to low-dimensional structures and active subspace methods
[FSV12, CDW14, CEHW17] as well as random features [RR08, CJJ12,
YLM+12, LTOS19, HSS+21]. The method of sparse random features in
[HSS+21] goes into a similar direction with the difference that weights
or basis functions are drawn at random and a different optimization
problem is considered. The ShRIMP method has also recently combined
this approach with iterative magnitude pruning, cf. [XSSW21].

Discrete transformations such as the discrete Fourier transform, the
discrete cosine transform, and others are of great importance in a
variety of applications from applied mathematics and other sciences.
They are the basis for algorithms like the fast Fourier transform (FFT)
and the fast cosine transform (FCT), cf. [Bri88, PPST18]. The FFT
itself is certainly one of the most important algorithms today. The
non-equispaced fast Fourier transform (NFFT) and the non-equispaced



13

fast cosine transform (NFCT) represent extensions of this concept that
allow for non-equispaced spatial nodes, cf. [KKP09, PPST18, KKP].
The complexity of these algorithms depends on the size of the index
set which grows exponentially in the dimension for many common
examples. In relation to the sparse ANOVA decomposition, we propose
a form of index set, the grouped index set, that fits this decomposition.
The second component of our approximation method are the grouped
transformations from [BPS22]. They represent an extension of NFFT
and NFCT in order to perform fast transformations with grouped
index sets and non-equispaced nodes. The basis for the method is to
break down one high-dimensional transformation into multiple low-
dimensional transformations. In addition, it is possible to compute these
transformations simultaneously which enables us to use parallelization.

Finally, we combine the previous ideas and approximate our function
via solving a least-squares problem of the form

min
𝒇




𝒚 − 𝑭 𝒇
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ℓ2

which represents our third and final component. We employ the
iterative LSQR algorithm, cf. [PS82, Bjö96], in a matrix-free variant.
The system matrix 𝑭 itself is never explicitly constructed, but the
fast grouped transformation algorithms serve as an oracle function
that delivers the result of matrix-vector multiplications with 𝑭 and
its adjoint. We also incorporate regularization into the problem that
additionally allows us to use a priori information about the smoothness
of the function if it is given. Furthermore, we analyze the condition
of the matrices based on the matrix Chernoff bound by Tropp, see
[Tro11], as well as the errors of the method with two approaches.
To this end, we assume randomly generated nodes according to a
distribution corresponding to the underlying function space and make
use of concentration inequalities. First, we consider the worst-case error
for classes of functions in smoothness spaces and show probabilistic
error bounds. The results are an extension of [KUV21, MU21] in our
setting. The error for individual function approximation is considered
as the second setting with the help of Bernstein’s inequality, cf. [SC08,
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Chapter 6]. In the case of sparse grids as sampling schemes, such errors
have been discussed in [Boh17]. For hyperbolic wavelet regression, this
has recently been considered in [LPU21].

In order to demonstrate the applicability of the method, we perform
numerical experiments with synthetic and real data. Synthetic data
represents the approximation of a given function where the nodes as
data points are generated randomly in the domain and the function is
evaluated at these points. In the case of real data, we apply our method
to publicly available regression data sets. In both settings, we compare
our results to benchmark data from published articles.

Outline of the Thesis

Chapter 2: The Classical ANOVA Decomposition
Chapter 2 is concerned with the introduction of the classical ANOVA
decomposition and its properties. In Section 2.1, we discuss weighted
Lebesgue spaces and orthonormal systems as well as some of the
surrounding important theory as preliminaries. Section 2.1.1 lies
emphasis on the spaces that characterize smoothness through the
decay of the basis coefficients such as Sobolev type spaces and weighted
Wiener spaces. Examples for spaces with complete orthonormal systems
that will be important for our method are provided in Section 2.1.2.
The approximation of functions by partial sums is briefly discussed in
Section 2.1.3.

The main goal of Section 2.2 is to expand the results of [PS21a] for
periodic functions, and [PS22a] for the Chebyshev system. In these
works, we proposed a new Fourier approach to understanding the
ANOVA decomposition. Here, we aim to generalize this approach to the
setting of complete orthonormal systems in weighted Lebesgue spaces.
We introduce the integral projection and the ANOVA terms leading
to the classical ANOVA decomposition. Specifically, we investigate
the relationship between the decomposition and the basis coefficients
culminating in Lemma 2.14 and Lemma 2.17. Moreover, we show that
functions inherit their smoothness, i.e., the decay properties of the basis
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coefficients, to projections and ANOVA terms in Theorem 2.21 and
Theorem 2.22.

Section 2.3 is concerned with the interpretability of the ANOVA
decomposition using Sobol indices. We discuss notions of effective
dimension and specifically how the superposition dimension as one
such notion may lead to sparsity in the decomposition. This motivates
the introduction of the truncated ANOVA decomposition. Here, we are
able to find a relationship to the basis coefficients in Lemma 2.24 and a
direct formula in Theorem 2.25. In order to connect the smoothness of
the function to the concept of low-dimensional interactions, we use a
previously proposed worst-case version of the superposition dimension
for the Sobolev type space. In this setting, Lemma 2.28 connects this
worst-case version with the truncation error of the truncated ANOVA
decomposition. Theorem 2.29 and Theorem 2.30 provide general
bounds for this truncation error. When considering the important
special case of dominating-mixed and isotropic smoothness, we have
the bounds in Corollary 2.32 and Corollary 2.33 which imply that the
worst-case superposition dimension is low for this class of functions.

Chapter 3: Fast Multiplication with Grouped
Transformations
In Chapter 3, we introduce the grouped transformations from [BPS22]
in a general setting. Section 3.1 provides the foundation for this by
reiterating on the non-equispaced discrete Fourier transform (NDFT)
and the non-equispaced discrete cosine transform (NDCT) as well as
their fast algorithms NFFT and NFCT.

Section 3.2 is concerned with the grouped transformations making a
distinction between the periodic and non-periodic case. In Section 3.2.1,
we relate the sparsity in the ANOVA decomposition to a specific
structure in index sets, culminating in Definition 3.3, the grouped index
set, and the analysis of its properties. Section 3.2.2 introduces the
details of the grouped transformation. Specifically, we go into detail
about the matrix structure and how to decompose the high-dimensional
transformation into multiple low-dimensional transformations. As a
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result, we obtain Algorithm 3.1 and its counterpart for the adjoint
multiplication Algorithm 3.2. The algorithm is implemented as a
publicly available package for the programming language Julia which
is addressed in Section 3.2.3.

Chapter 4: High-Dimensional Explainable ANOVA
Approximation
Chapter 4 combines the classical ANOVA decomposition and the
grouped transformations into our approximation method. In Section 4.1,
we discuss how the method uses LSQR to solve a least-squares problem
with the goal to determine approximations of the basis coefficients of
our unknown function. In the case of a real data set, we refer to the
unknown underlying function that maps input to output. Here, the
relationship between the number of nodes and the number of basis
functions for the approximation is crucial. We distinguish between the
overdetermined and the underdetermined case. In an overdetermined
setting, Theorem 4.2 and Corollary 4.3 provide upper and lower bounds
on the spectral norm of the Moore-Penrose of our system matrix. In the
case of an underdetermined setting, we introduce regularization that is
capable of incorporating a priori information about the decay of the
basis coefficients, i.e., the smoothness of the function.

Section 4.2 introduces the method with its interpretation capabilities
that allow us to perform a refitting, i.e., using structural information to
obtain a better approximation. This is summarized in Algorithm 4.1.
In Section 4.2.1, we go into detail about different strategies for detecting
important ANOVA terms and recognizing the potential sparsity in the
decomposition. Specifically, we propose a new method for obtaining
attribute rankings. Section 4.3 is concerned with approximation errors,
i.e., the worst-case error for functions from smoothness spaces and the
individual approximation error. Theorem 4.10 considers the worst-case
error bound for L2 in Sobolev type spaces while Theorem 4.11 gives us
a bound in weighted Wiener spaces. We consider the bounds in the
context of functions of dominating-mixed smoothness as an important
special case. Theorem 4.12 and Theorem 4.13 give bounds on the indi-
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vidual approximation error for L2 and L∞ with the help of Bernstein’s
inequality. However, this may again grant insight for functions in
smoothness spaces when we are unaware of the L∞ worst-case error,
see Corollary 4.14 and Corollary 4.15. Additional information on the
importance of ANOVA terms can be incorporated using Theorem 4.16
and Theorem 4.17. The method and all the related tools are imple-
mented in a publicly available package for the programming language
Julia.

Chapter 5: Numerical Experiments with Synthetic Data
Chapter 5 is concerned with demonstrating the applicability of our
method for function approximation, i.e., as data we have nodes in
the domain drawn i.i.d. at random according to the corresponding
distribution. The function is then evaluated at these nodes and for
some experiments we add Gaussian noise. As benchmark function,
we use a 9-dimensional periodic function in Section 5.1 which is a
sum of products of univariate B-splines, see also [PV16] where a
similar function appears. We also consider a related 8-dimensional
non-periodic function in Section 5.2. As a final example, we use the well-
known Friedman 1, Friedman 2, and Friedman 3 functions in Section 5.3,
see e.g. [MLH03, BGM09, BDL11]. We apply different methods from
Section 4.2.1 for the detection of important ANOVA terms and use
refitting to obtain our approximations. For the Friedman functions, we
compare our results to popular machine learning methods and mutual
information estimation as a different form of attribute ranking.

Chapter 6: Numerical Experiments with Real Data
In Chapter 6, we perform experiments with our method on real data
sets that are publicly available. Here, we rely on data sets from the
UCI repository [DG17] and from the website [Tor]. The data sets
include forest fire prevention, house energy prediction, air-foil self-
noise prediction, and house price prediction. Moreover, we consider
a data set about the control action on the ailerons of an F16 airplane.
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The strategies from Section 4.2.1 are applied to detect importance
information about the attributes and their interactions. All results
are compared to published benchmark experiments with well-known
machine learning methods.

Chapter 7: Conclusion
We summarize the main results of this work in Chapter 7.
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2
The Classical ANOVA Decomposition

The analysis of variance (ANOVA) decomposition, see e.g. [CMO97,
RFA99, Gri06, LO06, Hol11], represents an important model in the
analysis of dimension interactions of multivariate, high-dimensional
functions. It was also a major tool in understanding the reason behind
the success of quadrature methods for high-dimensional integration
[Nie92, BG04, GH10] as well as infinite-dimensional integration [BG14,
GKS16, KNP+17]. The ANOVA decomposition decomposes a 𝑑-variate
function in 2𝑑 ANOVA terms where each term belongs to a subset
of coordinate indices [𝑑] B {1, 2, . . . , 𝑑}. Each single term depends
only on the variables in the corresponding subset and the number of
these variables is the order of the ANOVA term. In this chapter, we
study the classical ANOVA decomposition for functions in weighted
Lebesgue spaces with orthonormal bases - periodic and non-periodic
- and how it acts on the frequency domain. The decomposition is
referred to as classical because we choose an integral projection operator.
In this setting, we discuss relationships between ANOVA terms and
the support of the basis indices as subsets of Z𝑑. Moreover, we prove
formulas for the representation of ANOVA terms and projections. The
chapter is based on results from [PS21a] for periodic functions and

21



22 2 The Classical ANOVA Decomposition

[PS22a] for non-periodic functions.
In Section 2.1, we discuss weighted Lebesgue spaces and necessary

functional analytic foundations for our theory. Smoothness spaces
based on the decay of basis coefficients are considered as well. The
ANOVA decomposition will be introduced in Section 2.2 and we study
its behavior with regard to orthonormal bases in weighted Lebesgue
spaces. Lemma 2.14 and Lemma 2.17 based on [PS21a] show how
the projection operator and the ANOVA terms are represented in
the frequency domain. Moreover, we show in Theorem 2.21 and
Theorem 2.22 that functions in our setting inherit their smoothness
to the projections and the ANOVA terms. In Section 2.3, we discuss
the important interpretability properties of the decomposition with
regard to effective dimensions and certain truncation ideas. These
will be particularly relevant for the explainable approximation method
in Chapter 4. We also provide a connection between the truncated
decomposition and the basis expansion of the function in Lemma 2.24.

The worst-case superposition dimension relates the smoothness of the
function in form of a Sobolev type space to the superposition dimension.
In Lemma 2.28, we show the connection to the L2 truncation error in the
Sobolev type space. Subsequently, we discuss the worst-case ANOVA
truncation error in L2 in Theorem 2.29 and L∞ in Theorem 2.30. As an
important example, we consider product and order-dependent weights,
see [KSS12, GKN+14, KN16, GKN+18], of functions with isotropic and
dominating-mixed smoothness, cf. [GH14, KPV15, BKUV17], an derive
Corollary 2.32 and Corollary 2.33.

2.1 Weighted Lebesgue Spaces and
Orthonormal Systems

In this section, we discuss weighted Lebesgue spaces and their im-
portant properties as well as complete orthonormal systems and basis
expansions. Together with the idea of product spaces we lay the foun-
dation for our later considerations of the ANOVA decomposition in
Section 2.2. We use the well-known book by Werner [Wer18] as our
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reference for functional analysis and [CK04] for Lebesgue spaces in
particular. We also consider Sobolev spaces, see e.g. [Ada03], in the
variant of Sobolev type spaces, cf. [KMU16], and weighted Wiener
spaces, see [BD73, KLT21], which relate the smoothness of a function
to the decay of its basis coefficients.

In the following, we define the Lebesgue function spaces and the
corresponding sequence spaces.
Definition 2.1. Let 𝑝 ∈ [1,∞], D ∈ {T, [−1, 1], [0, 1],R}, and 𝜔 : D𝑑 →
(0,∞) a probability measure with∫

D𝑑
𝜔(𝒙)d𝒙 = 1

where T � R /Z is the torus. We define the weighted Lebesgue spaces with
spatial dimension 𝑑 ∈ N as

L𝑝(D𝑑 , 𝜔) B
{
𝑓 : D𝑑 → C measurable :

∫
D𝑑
| 𝑓 (𝒙)|𝑝 𝜔(𝒙)d𝒙 < ∞

}
for 𝑝 < ∞ and

L∞(D𝑑) B
{
𝑓 : D𝑑 → C measurable : ess supp

𝒙∈D𝑑

| 𝑓 (𝒙)| < ∞
}
.

For the weight function 𝜔 ≡ 1, we write

L𝑝(D𝑑) B L𝑝(D𝑑 , 1).
The corresponding norms are given by

∥ 𝑓 ∥L𝑝 (D𝑑 ,𝜔) B
(∫
D𝑑
| 𝑓 (𝒙)|𝑝 d𝒙

) 1
𝑝

for 𝑝 < ∞ and

∥ 𝑓 ∥L∞(D𝑑) B ess supp
𝒙∈D𝑑

| 𝑓 (𝒙)| .

Additionally, L2(D𝑑 , 𝜔) is a separable Hilbert space with scalar product

⟨ 𝑓 , 𝑔⟩L2(D𝑑 ,𝜔) =
∫
D𝑑

𝑓 (𝒙) 𝑔(𝒙)𝜔(𝒙)d𝒙 , 𝑓 , 𝑔 ∈ L2(D𝑑 , 𝜔).
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Under our assumption that we have a probability measure 𝜔 in
Definition 2.1, we have the embeddings

L𝑝(D𝑑 , 𝜔) ⊆ L𝑞(D𝑑 , 𝜔), 1 ≤ 𝑞 < 𝑝 < ∞, and
L∞(D𝑑) ⊆ L𝑝(D𝑑 , 𝜔), 1 ≤ 𝑝 ≤ ∞,

see e.g. [Vil85, CK04]. Moreover, the continuous functions 𝒞(D𝑑) with
compact domain D are bounded and therefore elements of L∞(D𝑑).
Definition 2.2. Let 𝑝 ∈ [1,∞]. Then we define the Lebesgue sequence
spaces as

ℓ𝑝 B


(
𝑥 𝑗

)
𝑗∈Z ⊆ C :

∑
𝑗∈Z

��𝑥 𝑗 ��𝑝 < ∞


for 𝑝 < ∞ and

ℓ∞ B

{(
𝑥 𝑗

)
𝑗∈Z ⊆ C : sup

𝑗∈Z

��𝑥 𝑗 �� < ∞}
.

The norms are given by


(𝑥 𝑗 ) 𝑗∈Z


ℓ𝑝 B

(∑

𝑗∈Z
��𝑥 𝑗 ��𝑝) 1

𝑝 : 𝑝 < ∞
sup𝑗∈Z

��𝑥 𝑗 �� : 𝑝 = ∞.

Additionally, ℓ2 is a separable Hilbert space with scalar product

⟨(𝑥 𝑗 ) 𝑗∈Z , (𝑦 𝑗 ) 𝑗∈Z⟩ℓ2 =
∑
𝑗∈Z𝑑

𝑥 𝑗 𝑦 𝑗 ,
(
𝑥 𝑗

)
𝑗∈Z ,

(
𝑦 𝑗

)
𝑗∈Z ∈ ℓ2.

We consider the norms ∥𝒙∥ℓ𝑝 also for finite vectors 𝒙 ∈ R𝑑, 𝑑 ∈ N.
The Lebesgue sequence spaces are embedded with

ℓ𝑝 ⊆ ℓ𝑞 for 1 ≤ 𝑝 < 𝑞 ≤ ∞,

see e.g. [Tre06].
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We consider the separable Hilbert space L2(D𝑑 , 𝜔) which is where
we later apply the ANOVA decomposition. Since the space has the
property of separability, we know that there exists a countable complete
orthonormal system or basis and we have Parseval’s identity.

Definition 2.3. Letℋ be a separable Hilbert space with scalar product ⟨·, ·⟩ℋ
and induced norm ∥·∥ℋ =

√
⟨·, ·⟩ℋ . A sequence of elements (𝜑𝑘)𝑘∈Z ⊆ ℋ is

called complete orthonormal system or basis inℋ if

⟨𝜑𝑘 , 𝜑ℓ ⟩ = 𝛿𝑘,ℓ B

{
1 : 𝑘 = ℓ
0 : 𝑘 ≠ ℓ

and
𝑓 =

∑
𝑘∈Z

c𝑘( 𝑓 )𝜑𝑘

holds for all elements 𝑓 ∈ ℋ . We denote with

c𝑘( 𝑓 ) B ⟨ 𝑓 , 𝜑𝑘⟩ℋ , 𝑘 ∈ Z,

the basis coefficients of 𝑓 with respect to the system (𝜑𝑘)∞𝑘=1.

Theorem 2.4 (Parseval’s identity). Letℋ be a separable Hilbert space with
orthonormal basis (𝜑𝑘)𝑘∈Z. Then

∥ 𝑓 ∥ℋ =

√∑
𝑘∈Z
|c𝑘( 𝑓 )|2

holds for all 𝑓 ∈ ℋ .

Proof. see e.g. [Wer18, Chapter V]

In the case of product spaces, we are able to construct a basis
from the one-dimensional case. To this end, we consider 𝑑 = 1 with
probability measure 𝜔, i.e., the space L2(D, 𝜔) for a domain D ∈
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{T, [−1, 1], [0, 1],R} and orthonormal basis (𝜑𝑘)𝑘∈Z. For 𝑑 > 1 it follows
that the product space L2(D𝑑 , 𝜔(𝑑))with product density

𝜔(𝑑)(𝒙) B
𝑑∏
𝑗=1

𝜔(𝑥 𝑗)

has the basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 with

𝜑(𝑑)𝒌 (𝒙) B
𝑑∏
𝑗=1

𝜑𝑘 𝑗 (𝑥 𝑗), (2.1)

see e.g. the product topology in [Hoc88].

2.1.1 Smoothness and Weighted Decay
In this section, we aim to characterize the smoothness of a function
in relation to the function space by the decay of its basis coefficients.
Here, we always consider a product space L2(D𝑑 , 𝜔(𝑑)) for spatial
dimension 𝑑 ∈ Nwith an orthonormal basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 . We assume that
𝜑(𝑑)𝒌 , 𝒌 ∈ Z𝑑, are bounded continuous functions such that we have a
bounded orthonormal system (BOS) with

𝐶BOS B sup
𝒌∈Z𝑑




𝜑(𝑑)𝒌 



L∞(D𝑑)

< ∞ (2.2)

for the BOS constant. Note that if our domain D is compact, then every
continuous function is also bounded.

Given a weight function 𝑤 : Z𝑑 → [1,∞), we introduce the weighted
Wiener spaces

𝒜𝑤(D𝑑 , 𝜔(𝑑)) B
{
𝑓 ∈ L1(D𝑑 , 𝜔(𝑑)) :

∑
𝒌∈Z𝑑

𝑤(𝒌) |c𝒌( 𝑓 )| < ∞
}

(2.3)

∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑)) B
∑
𝒌∈Z𝑑

𝑤(𝒌) |c𝒌( 𝑓 )|
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with 𝒜𝑤(D𝑑) B 𝒜𝑤(D𝑑 , 1) as well as 𝒜(D𝑑 , 𝜔(𝑑)) B 𝒜1(D𝑑 , 𝜔(𝑑)).
Note that𝒜(D𝑑 , 𝜔(𝑑)) is called Wiener Algebra for D = T and 𝜔(𝑑) ≡ 1,
cf. [BD73], which motivates the term weighted Wiener spaces, see also
[KLT21]. We have the apparent embeddings

𝒜𝑤(D𝑑 , 𝜔(𝑑)) ⊆ 𝒜(D𝑑 , 𝜔(𝑑)) ⊆ L∞(D𝑑).
The embedding into L∞ follows from the estimate

∥ 𝑓 ∥L∞(D𝑑) = ess supp
𝒙∈D𝑑

�����∑
𝒌∈Z𝑑

c𝒌( 𝑓 )𝜑(𝑑)𝒌 (𝒙)
����� ≤ 𝐶BOS

∑
𝒌∈Z𝑑
|c𝒌( 𝑓 )|

= 𝐶BOS ∥ 𝑓 ∥𝒜(D𝑑 ,𝜔(𝑑)) .

Moreover, we define the space

H𝑤(D𝑑 , 𝜔(𝑑)) B
{
𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) :

∑
𝒌∈Z𝑑

𝑤2(𝒌) |c𝒌( 𝑓 )|2 < ∞
}

(2.4)

∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑)) B
√∑

𝒌∈Z𝑑
𝑤2(𝒌) |c𝒌( 𝑓 )|2

with H𝑤(D𝑑) B H𝑤(D𝑑 , 1) which may be referred to as Sobolev type
space or also weighted Korobov space, see e.g. [SW01, KMU16, DTU18].
In this setting, we have that the absolute value of the basis coefficients
|c𝒌( 𝑓 )| decays like the inverse of the weight 𝑤(𝒌) and specifically
|c𝒌( 𝑓 )| ∈ 𝑜(𝑤−1(𝒌)). In the following lemma, we show that functions in
𝒜𝑤(D𝑑 , 𝜔(𝑑)) also have continuous representatives.

Lemma 2.5. Let L2(D𝑑 , 𝜔(𝑑)) be a weighted Lebesgue product space as in
Definition 2.1 with an orthonormal basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 of bounded continuous
functions such that 𝐶BOS < ∞. Then every element of the corresponding
weighted Wiener space𝒜(D𝑑 , 𝜔(𝑑)) has a continuous representative.

Proof. We prove that for 𝑔 ∈ 𝒜(D𝑑 , 𝜔(𝑑)), the function

ℎ(𝒙) B
∑
𝒌∈Z𝑑

c𝒌(𝑔)𝜑(𝑑)𝒌 (𝒙)
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is this representative. This sum converges absolutely to 𝑔 since it is an
element of the Wiener algebra 𝒜(D𝑑 , 𝜔(𝑑)). Since the basis functions
𝜑(𝑑)𝒌 are bounded and continuous, the absolute convergence implies
the convergence in the space of bounded continuous functions which
proves our statement.

Lemma 2.6. Let 𝑤 : Z𝑑 → [1,∞) be a weight function with (𝑤−1(𝒌))𝒌∈Z𝑑 ∈
ℓ2. Then H𝑤(D𝑑 , 𝜔(𝑑)) ⊆ 𝒜(D𝑑 , 𝜔(𝑑)).
Proof. The result follows directly by the Cauchy-Schwarz inequality∑
𝒌∈Z𝑑
|c𝒌( 𝑓 )| =

∑
𝒌∈Z𝑑

𝑤−1(𝒌) · 𝑤(𝒌) |c𝒌( 𝑓 )| ≤ ∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔)

√∑
𝒌∈Z𝑑

𝑤−2(𝒌).

Lemma 2.5 and Lemma 2.6 imply that every 𝑓 ∈ H𝑤(D𝑑 , 𝜔(𝑑))with
(𝑤−1(𝒌))𝒌∈Z𝑑 ∈ ℓ2 has a continuous representative.

Lemma 2.7. Let𝑤 : Z𝑑 → [1,∞) be a weight function. Then𝒜𝑤(D𝑑 , 𝜔(𝑑)) ⊆
H𝑤(D𝑑 , 𝜔(𝑑)).
Proof. This follows directly from embeddings of the Lebesgue sequence
spaces, i.e., we have for the norm ∥·∥ℓ2 ≤ ∥·∥ℓ1 .

In the following, we discuss an important type of smoothness weights,
isotropic and dominating-mixed smoothness. Especially the functions
of mixed smoothness are of great importance in many applications and
have been studied for a long time. We introduce the related weights

𝑤𝛼,𝛽(𝒌) B 𝛾−1
supp 𝒌 (1 + ∥𝒌∥1)𝛼

𝑑∏
𝑠=1
(1 + |𝑘𝑠 |)𝛽 (2.5)

with supp 𝒌 B {𝑖 ∈ {1, 2, . . . , 𝑑} : 𝑘𝑖 ≠ 0} as well as parameters 𝛽 ≥ 0,
and 𝛼 > −𝛽. The parameters 𝛼, 𝛽, and the weight 𝛾𝒖 , 𝒖 ⊆ {1, 2, . . . , 𝑑},
regulate the decay of the basis coefficients. Here, 𝛼 is the isotropic
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smoothness parameter and 𝛽 the dominating-mixed smoothness pa-
rameter, cf. [KMU16, DTU18]. Moreover, 𝜸 is a weight that controls
the influence of dimensions and their interactions. For a general choice
of the weights 𝜸 we refer to [DSWW06]. However, we want to focus
on a specific structure for 𝜸 and choose product and order-dependent
(POD) weights such that

𝛾𝒖 = Γ|𝒖 |
∏
𝑠∈𝒖

𝛾𝑠 , (2.6)

where 𝚪 ∈ (0, 1]𝑑 is non-increasing and 𝜸 = (𝛾𝑖)𝑑𝑖=1 ∈ (0, 1]𝑑. This POD
structure gets its motivation from quasi-Monte Carlo methods for the
solution of PDEs with random coefficients, cf. [KSS12, GKN+14, KN16,
GKN+18]. Similar weights for isotropic and dominating-mixed smooth-
ness have been considered in [GH14, KPV15, BKUV17]. Different
structures for the weights have also been discussed in [CKNS20].

The following theorem shows that a function in a Sobolev type space
H𝑤𝛼,𝛽+𝜆 (D𝑑 , 𝜔(𝑑))with any 𝜆 > 1/2 is an element of the weighted Wiener
space𝒜𝑤𝛼,𝛽 (D𝑑 , 𝜔(𝑑)) as well. Consequently, any function contained in
a Sobolev type space H𝑤0,𝜆 (D𝑑 , 𝜔(𝑑)), i.e., any function of dominating-
mixed smoothness larger than 1/2, is an element of the weighted Wiener
space𝒜(D𝑑 , 𝜔(𝑑)). The theorem is similar to the result [KPV15, Lemma
2.2].

Theorem 2.8. Let H𝑤𝛼,𝛽+𝜆 (D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight
𝑤𝛼,𝛽 as in (2.5), 𝜆 > 1/2, and POD weights 𝛾supp 𝒌 ∈ (0, 1] as in (2.6) for
𝒌 ∈ Z𝑑. Then we have

∥ 𝑓 ∥𝒜𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑)) ≤
(

𝑑∏
𝑠=1

√
1 + 2𝛾2

𝑠 (𝜁(2𝜆) − 1)
)
∥ 𝑓 ∥H𝑤𝛼,𝛽+𝜆 (D𝑑 ,𝜔(𝑑))

for all 𝑓 ∈ H𝑤𝛼,𝛽+𝜆 (D𝑑 , 𝜔(𝑑)) and therefore the embedding H𝑤𝛼,𝛽+𝜆 (D𝑑 , 𝜔(𝑑)) ⊆
𝒜𝑤𝛼,𝛽 (D𝑑 , 𝜔(𝑑)).
Proof. We estimate the norm ∥ 𝑓 ∥𝒜𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑)) by applying the Cauchy-
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Schwarz inequality to obtain

∥ 𝑓 ∥𝒜𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑)) =
∑
𝒌∈Z𝑑

𝑤𝛼,𝛽(𝒌) |c𝒌( 𝑓 )| =
∑
𝒌∈Z𝑑

𝑤0,𝜆(𝒌)
𝑤0,𝜆(𝒌) 𝑤

𝛼,𝛽(𝒌) |c𝒌( 𝑓 )|

≤ ∥ 𝑓 ∥H𝑤𝛼,𝛽+𝜆 (D𝑑 ,𝜔(𝑑))

√∑
𝒌∈Z𝑑

1
𝑤0,2𝜆(𝒌) .

The remaining sum can be decomposed into a product and expressed
as the Riemann zeta function 𝜁 such that we have

∑
𝒌∈Z𝑑

1
𝑤0,2𝜆(𝒌) =

∑
𝒌∈Z𝑑

Γ2
|𝒖 |

∏
𝑠∈supp 𝒌 𝛾

2
𝑠∏𝑑

𝑠=1(1 + |𝑘𝑠 |)2𝜆
≤

∑
𝒌∈Z𝑑

𝑑∏
𝑠=1

𝛾
2(1−𝛿𝑘𝑠 ,0)
𝑠

(1 + |𝑘𝑠 |)2𝜆

=

𝑑∏
𝑠=1

∑
𝑘∈Z

𝛾
2(1−𝛿𝑘,0)
𝑠

(1 + |𝑘 |)2𝜆 =

𝑑∏
𝑠=1

(
1 + 2𝛾2

𝑠

∑
𝑘∈N

1
(1 + 𝑘)2𝜆

)
=

𝑑∏
𝑠=1

(
1 + 2𝛾2

𝑠 (𝜁(2𝜆) − 1)
)
.

This also implies the constraint 𝜆 > 1/2 since the argument in the
Riemann zeta function needs to be larger than one.

2.1.2 Examples for Complete Orthonormal Systems

While the previous and forthcoming considerations in this section
allow for a very general orthonormal system with product structure,
we introduce four important examples. These four examples do not
only cover a wide range of functions, both periodic and non-periodic,
but also important probability measures 𝜔(𝑑) in the Lebesgue space
L2(D𝑑 , 𝜔(𝑑)). This fact will be helpful when dealing with different
data distributions in the approximation method in Chapter 4 and the
experiments in Chapter 6.
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2.1.2.1 The Fourier System

A well-known example for complete orthonormal systems is the Fourier
system. We have periodic functions 𝑓 : T𝑑 → C defined over the 𝑑-
dimensional torus T𝑑 and a density 𝜔 ≡ 1 which yields the space L2(T𝑑)
as in Definition 2.1. It is well-known that the Fourier system given by
the functions

𝜑
(𝑑), exp
𝒌 (𝒙) = e2𝜋i 𝒌·𝒙 , 𝒌 ∈ Z𝑑 , (2.7)

forms a complete orthonormal system in L2(T𝑑), see e.g. [PPST18,
Chapter 1]. Moreover, the basis functions are continuous and bounded
with ���𝜑(𝑑), exp

𝒌 (𝒙)
��� = 1

for all 𝒌 ∈ Z𝑑 and 𝒙 ∈ T𝑑. The BOS constant (2.2) is 𝐶BOS = 1.

2.1.2.2 The Chebyshev Polynomials

As a second example, we consider functions 𝑓 : [−1, 1]𝑑 → R defined
over the cube [−1, 1]𝑑 and the Chebyshev probability density

𝜔(𝑑), cheb(𝒙) =
𝑑∏

𝑠=1

1
𝜋
√

1 − 𝑥2
𝑠

.

If we consider the weighted Lebesgue space L2([−1, 1]𝑑 , 𝜔(𝑑), cheb), the
(normed) Chebyshev polynomials of first kind

𝜑(𝑑), cheb
𝒌 (𝒙) =

√
2
|supp 𝒌 | 𝑑∏

𝑠=1
cos(𝑘𝑠 arccos 𝑥𝑠), 𝒌 ∈ N𝑑

0 , (2.8)

form an orthonormal basis, see e.g. [Tre20]. Moreover, the basis
functions are continuous and bounded with


𝜑(𝑑), cheb

𝒌





L∞([−1,1]𝑑)

=
√

2
|supp 𝒌 |

(2.9)
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for 𝒌 ∈ N𝑑
0 . This implies for the BOS constant (2.2)

𝐶BOS =
√

2
𝑑

which rises exponentially for a growing spatial dimension 𝑑.

2.1.2.3 The Cosine Basis

The so-called half-period cosine with basis functions

𝜑(𝑑), cos
𝒌 (𝒙) =

√
2
|supp 𝒌 | 𝑑∏

𝑠=1
cos(𝜋𝑘𝑠𝑥𝑠), 𝒌 ∈ N𝑑

0 , (2.10)

defined over the cube [0, 1]𝑑 is a well-known basis of L2([0, 1]𝑑), cf.
[Sut18, Chapter 9]. As for the Chebyshev system, we have the norm


𝜑(𝑑), cos

𝒌





L∞([0,1]𝑑)

=
√

2
|supp 𝒌 |

and therefore the BOS constant (2.2)

𝐶BOS =
√

2
𝑑

which rises exponentially in the spatial dimension.

2.1.2.4 The Transformed Cosine

We consider the space L2(R𝑑 , 𝜔(𝑑), std)with the density

𝜔(𝑑), std(𝒙) B
𝑑∏

𝑠=1

1√
2𝜋

e−
𝑥2
𝑠
2 = (2𝜋)− 𝑑

2 e−
1
2 ∥𝒙∥2ℓ2 . (2.11)

This is the probability density function of the standard normal distribu-
tion, i.e., the normal distribution with zero mean and variance one. We
have

∫
R𝑑

𝜔(𝑑), std(𝒙)d𝒙 = 1 as well as sup𝒙∈R𝑑 𝜔
(𝑑), std(𝒙) = (2𝜋)− 𝑑

2 which
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implies 𝜔(𝑑), std ∈ L∞(R𝑑). The cumulative distribution function of the
standard normal distribution is given by

Φ : R→ [0, 1], Φ(𝑥) = 1
2

[
1 + erf

(
𝑥√
2

)]
(2.12)

with the error function defined as

erf(𝑥) = 2√
𝜋

∫ 𝑥

0
e−𝑡2 d𝑡.

It is our goal to construct a basis in L2(R𝑑 , 𝜔(𝑑), std) using transfor-
mation ideas from [NP20, NK14] and the half-period cosine basis in
L2([0, 1]𝑑), see (2.10), by using the approach from [PS22b]. As transfor-
mation we propose to apply the cumulative distribution function Φ for
each variable yielding

𝜓 : R𝑑 → [0, 1]𝑑 , 𝜓(𝒙) =
©­­­­«
Φ(𝑥1)
Φ(𝑥2)

...
Φ(𝑥𝑑)

ª®®®®¬
(2.13)

with the inverse

𝜓−1 : [0, 1]𝑑 → R𝑑 , 𝜓−1(𝒙) =
©­­­­«
Φ−1(𝑥1)
Φ−1(𝑥2)

...
Φ−1(𝑥𝑑)

ª®®®®¬
. (2.14)

If we have a given function 𝑓 : [0, 1]𝑑 → R, 𝑓 ∈ L2([0, 1]𝑑), we may
apply the transformation to obtain 𝑓 ◦ 𝜓 ∈ L2(R𝑑 , 𝜔(𝑑), std). As a result,
we have the commutative diagram in Figure 2.1. This process can also
be related to inverse transform sampling, see e.g. [H0̈4]. Now, we aim
to transform the half-period cosine to a complete orthonormal system
on L2(R𝑑 , 𝜔(𝑑), std) using 𝜓.
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[0, 1]𝑑 R𝑑

R

L2([0,1]𝑑)∋ 𝑓

𝜓−1

𝜓

𝑓 ◦𝜓∈L2(R𝑑 ,𝜔(𝑑), std)

Figure 2.1: Commutative diagram of spaces and the transformations
between them.

Lemma 2.9. Let 𝑔, ℎ ∈ L2([0, 1]𝑑), 𝑢, 𝑣 ∈ L2(R𝑑 , 𝜔(𝑑), std) with probability
density 𝜔(𝑑), std from (2.11), and transformation 𝜓, 𝜓−1 as in (2.13) and (2.14)
respectively. Then

⟨𝑔 ◦ 𝜓, ℎ ◦ 𝜓⟩L2(R𝑑 ,𝜔(𝑑), std) = ⟨𝑔, ℎ⟩L2([0,1]𝑑)
⟨𝑢, 𝑣⟩L2(R𝑑 ,𝜔(𝑑), std) = ⟨𝑢 ◦ 𝜓−1 , 𝑣 ◦ 𝜓−1⟩L2([0,1]𝑑)

and ∥ℎ∥L2([0,1]𝑑) =


ℎ ◦ 𝜓−1




L2(R𝑑 ,𝜔(𝑑), std), ∥𝑢 ◦ 𝜓∥L2([0,1]𝑑) = ∥𝑢∥L2(R𝑑 ,𝜔(𝑑), std).

Proof. In order to prove the first equality, we insert the definition and
perform a change of variable as follows

⟨𝑔 ◦ 𝜓, ℎ ◦ 𝜓⟩L2(R𝑑 ,𝜔(𝑑), std) =
∫
R𝑑

𝑔(𝜓(𝒙)) ℎ(𝜓(𝒙))𝜔(𝑑), std(𝒙) d𝒙

=

∫
[0,1]𝑑

𝑔(𝒕) ℎ(𝒕)𝜔(𝑑), std(𝜓−1(𝒕)) ��det(𝜓−1)′(𝒕)�� d𝒕 .

As functional determinant we obtain the product
��det(𝜓−1)′(𝒕)�� =∏𝑑

𝑠=1
√

2𝜋 eerf−2(2𝑥𝑠−1) and subsequently

𝜔(𝑑), std(𝜓−1(𝒕)) ��det(𝜓−1)′(𝒕)�� = 𝑑∏
𝑠=1

1√
2𝜋

e−erf−2(2𝑥𝑠−1) ·
√

2𝜋 eerf−2(2𝑥𝑠−1)

= 1.



2.1 Weighted Lebesgue Spaces and Orthonormal Systems 35

This proves the first equality. The proof for the second equality works
analogously.

Theorem 2.10. The functions (𝜑(𝑑), std𝒌 )𝒌∈N𝑑
0

with

𝜑(𝑑), std𝒌 (𝒙) B
(
𝜑(𝑑), cos

𝒌 ◦ 𝜓
)
(𝒙) =

√
2
∥𝒌∥0

𝑑∏
𝑠=1

cos (𝜋𝑘𝑖 Φ(𝑥𝑖)) , (2.15)

the cumulative distribution function Φ from (2.12), and the transformation 𝜓
from (2.14) form a complete orthonormal system in L2(R𝑑 , 𝜔(𝑑), std).
Proof. The cumulative distribution functionΦ is bĳective and Lemma 2.9
implies that 𝑓 ↦→ 𝑓 ◦𝜓 is an isometric isomorphism between L2([0, 1]𝑑)
and L2(R𝑑 , 𝜔(𝑑), std). An isometric isomorphism between two spaces
maps an orthonormal basis in one space to an orthonormal basis in the
other. This directly implies that (𝜑(𝑑), std𝒌 )𝒌∈N𝑑

0
is an orthonormal basis

in L2(R𝑑 , 𝜔(𝑑), std).
In summary, we have constructed a complete orthonormal system
(𝜑(𝑑), std𝒌 )𝒌∈N𝑑

0
in the weighted space L2(R𝑑 , 𝜔(𝑑), std) using transforma-

tion ideas from [NP20, NK14] and the well-known half-period cosine
basis (𝜑(𝑑), cos

𝒌 )𝒌∈N𝑑
0

on L2([0, 1]𝑑). The transformation and some basis
functions have been visualized in Figure 2.2. The BOS constant (2.2) is
then equal to that of the half-period cosine, i.e., 𝐶BOS =

√
2
𝑑
.

Remark 2.11. The same transformation idea can be applied to different
distributions and corresponding probability densities. As origin space, we
may always use L2([0, 1𝑑]) with the half-period cosine basis. This is the
same connection a random variable of any distribution has to the uniform
distribution via inverse transform sampling.

2.1.3 Approximation with Partial Sums
In this subsection, we consider a Lebesgue product space L2(D𝑑 , 𝜔(𝑑)),
see Definition 2.1, with an orthonormal basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 that is a bounded
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1

𝑥

(a) Cumulative distribution func-
tion Φ from (2.12).

−3 −2 −1 0 1 2 3

−√2

0

√
2

𝑥

(b) Basis functions 𝜑(1), std𝑘 from
(2.15) for 𝑘 = 1 (solid), 𝑘 = 2
(dotted), and 𝑘 = 3 (dashed).

Figure 2.2: Cumulative distribution function Φ and transformed basis
functions 𝜑trafo

𝑘 in one dimension.

orthonormal system. Note that our index set may also be the subset
N𝑑

0 ⊆ Z𝑑, cf. Section 2.1.2. However, this is contained in our statements
since we may set 𝜑(𝑑)𝒌 ≡ 0 for 𝒌 ∈ Z𝑑 \N𝑑

0 . The main goal of this work is
the approximation of functions. With our methods in Chapter 4, we are
always going to consider only a finite part of the basis expansion. This
part is given by a finite frequency or index set which we denote in general
by ℐ ⊆ Z𝑑. Given such an index set ℐ, we define the corresponding
partial sum operator as

Sℐ 𝑓 (𝒙) B
∑
𝒌∈ℐ

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌 (𝒙) (2.16)

for every 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and call Sℐ 𝑓 the partial sum of 𝑓 with respect
to ℐ. Since our basis functions 𝜑(𝑑)𝒌 (𝒙) are continuous, the function
Sℐ 𝑓 (𝒙) as a linear combination is a continuous function as well. For a
given weight 𝑤 : Z𝑑 → [1,∞), we consider index sets of type

ℐ B {𝒌 ∈ Z𝑑 : 𝑤(𝒌) ≤ 𝑁} (2.17)
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with cut-off parameter 𝑁 ∈ N. Figure 2.3 shows two possible examples
in 3 dimensions, the full grid version with

𝑤∞(𝒌) B ∥𝒌∥ℓ∞ (2.18)

and a version with our weights 𝑤𝛼,𝛽 from (2.5). Figure 2.3a is also called
a hyperbolic cross. The approximation with hyperbolic crosses and the
related mixed smoothness functions presents an important problem in
many applications. For a detailed overview, we refer to [DTU18]. In
the following two lemmas, we discuss the errors that arise through this
truncation.

(a) ℐ with 𝑤𝛼,𝛽 , 𝛼 = 𝛽 = 1, from (2.5)
and 𝑁 = 40.

(b) ℐ with 𝑤∞ from (2.18) and 𝑁 = 5.

Figure 2.3: Two possible index sets ℐ with different weight functions 𝑤
and cut-off parameter 𝑁 .

Lemma 2.12. Let H𝑤(D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight function
𝑤 : Z𝑑 → [1,∞) and ℐ as in (2.17) with cut-off parameter 𝑁 ∈ N. Then we
have the truncation error

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − Sℐ 𝑓 ∥L2(D𝑑 ,𝜔(𝑑)) ≤
1
𝑁

.

Proof. We employ Parseval’s identity and incorporate the weight to
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obtain

∥ 𝑓 − Sℐ 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) =
∑

𝒌∈Z𝑑\ℐ
|c𝒌( 𝑓 )|2 =

∑
𝒌∈Z𝑑\ℐ

𝑤2(𝒌)
𝑤2(𝒌) |c𝒌( 𝑓 )|

2

≤ sup
𝒌∈Z𝑑\ℐ

1
𝑤2(𝒌)

∑
𝒌∈Z𝑑\ℐ

𝑤2(𝒌) |c𝒌( 𝑓 )|2

≤ 1
inf𝒌∈Z𝑑\ℐ 𝑤2(𝒌) ∥ 𝑓 ∥

2
H𝑤 (D𝑑 ,𝜔(𝑑)) .

The result follows since inf𝒌∈Z𝑑\ℐ 𝑤2(𝒌) = 𝑁2, cf. (2.17).

Lemma 2.13. Let 𝒜𝑤(D𝑑 , 𝜔(𝑑)) be a weighted Wiener space with weight
function 𝑤 : Z𝑑 → [1,∞) and ℐ as in (2.17) with cut-off parameter 𝑁 ∈ N.
Then we have the truncation error

sup
∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − Sℐ 𝑓 ∥L∞(D𝑑) ≤
𝐶BOS
𝑁

with 𝐶BOS from (2.2).

Proof. We estimate the L∞ norm and incorporate the weight in a similar
fashion to the proof of Lemma 2.12 to obtain

∥ 𝑓 − Sℐ 𝑓 ∥L∞(D𝑑) = ess supp
𝒙∈D𝑑

������ ∑
𝒌∈Z𝑑\ℐ

c𝒌( 𝑓 )𝜑(𝑑)𝒌 (𝒙)
������

≤
∑

𝒌∈Z𝑑\ℐ
|c𝒌( 𝑓 )| ess supp

𝒙∈D𝑑

���𝜑(𝑑)𝒌 (𝒙)���
≤ sup

𝒌∈Z𝑑




𝜑(𝑑)𝒌 



L∞(D𝑑)

©­«
∑

𝒌∈Z𝑑\ℐ

𝑤(𝒌)
𝑤(𝒌) |c𝒌( 𝑓 )|

ª®¬
≤ 𝐶BOS

inf𝒌∈Z𝑑\ℐ 𝑤(𝒌)
∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑)) .

The result follows since inf𝒌∈Z𝑑\ℐ 𝑤(𝒌) = 𝑁 , cf. (2.17).



2.2 Projection, ANOVA Terms and the ANOVA Decomposition 39

As Lemma 2.12 and Lemma 2.13 show, the relation between the
weight function 𝑤 and the truncation parameter 𝑁 is the key factor in
the truncation error. In all generality, for a fixed 𝑁 ∈ N, we observe
that with rising smoothness of a function, we need less elements in
the corresponding index set ℐ, i.e., less basis functions to achieve the
same error. If we do not fix 𝑁 , we may state that with the same amount
of basis functions, we achieve a better error. In Figure 2.4, we have
visualized the relationship between 𝑁 and |ℐ| for our two weight
functions from before in three dimensions.

0 5 10 15 20

100

101

102

103

104

105

𝑁

|ℐ
|

Figure 2.4: Number of elements in ℐ in relation to the cut-off parameter
𝑁 for 𝑑 = 3 and 𝑤∞ from (2.18) (dotted) as well as 𝑤𝛼,𝛽,
𝛼 = 𝛽 = 1, from (2.5) (solid).

2.2 Projection, ANOVA Terms and the ANOVA
Decomposition

In this section, we lay the foundation for and subsequently introduce
the classical analysis of variance (ANOVA) decomposition, see e.g.
[CMO97, RFA99, LO06, KSWW09, Hol11, Gu13]. It is based on and an
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extension of results in [PS21a, PS22a]. We specifically want to point
out [Owe13, Appendix A] as a detailed reference to ANOVA with
many important remarks and connections. We consider Lebesgue
space L2(D𝑑 , 𝜔(𝑑)) from Definition 2.1 with functions 𝑓 : D𝑑 → C and a
product structure, i.e., we have a complete orthonormal system

𝜑(𝑑)𝒌 (𝒙) B
𝑑∏
𝑗=1

𝜑𝑘 𝑗 (𝑥 𝑗), 𝒌 ∈ Z𝑑 ,

where 𝜑𝑘 , 𝑘 ∈ Z, is a orthonormal basis in L2(D, 𝜔)with

𝜔(𝑑)(𝒙) B
𝑑∏
𝑗=1

𝜔(𝑥 𝑗),

cf. (2.1). Moreover, we assume the basis functions are bounded and
continuous with BOS constant 𝐶BOS < ∞, cf. (2.2). A final assumption
that we can make without the loss of generality is 𝜑0 ≡ 1. Now, we may
write any 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) as the basis expansion

𝑓 (𝒙) =
∑
𝒌∈Z𝑑

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌 (𝒙). (2.19)

In the following, we denote the set of coordinate indices as [𝑑] B
{1, 2, . . . , 𝑑} and its subsets with bold small letters, e.g., 𝒖 ⊆ [𝑑]. The
complement is always considered with respect to [𝑑], e.g., 𝒖c B [𝑑] \ 𝒖.

The foundation of a multivariate decomposition is a projection oper-
ator, cf. [KSWW09]. For the classical ANOVA decomposition, we use
the integral projection

P𝒖 𝑓 (𝒙) B
∫
D𝑑−|𝒖 |

𝑓 (𝒙)𝜔(𝑑−|𝒖 |)(𝒙𝒖c)d𝒙𝒖c (2.20)

which means integrating over the variables 𝑥𝑖 with 𝑖 ∉ 𝒖. If 𝒖 = ∅ we
get the constant P∅ 𝑓 ∈ C and for |𝒖 | > 0 a function P𝒖 𝑓 ∈ L2(D|𝒖 | , 𝜔(|𝒖 |)).
Since P𝒖 𝑓 only depends on the variables 𝒙𝒖 , we have P𝒖 𝑓 (𝒙) = P𝒖 𝑓 (𝒙𝒖).
The following lemma provides a connection between the projections
P𝒖 𝑓 and the basis expansion (2.19) of functions.
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Lemma 2.14. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and P𝒖 𝑓 , ∅ ≠ 𝒖 ⊆ [𝑑], as in (2.20).
Then for an index ℓ ∈ Z|𝒖 | we have

cℓ(P𝒖 𝑓 ) = c𝒌( 𝑓 )
where 𝒌 ∈ Z𝑑 is the index with 𝒌𝒖 = ℓ and 𝒌𝒖c = 0. Note that the basis
coefficient cℓ(P𝒖 𝑓 ) is with respect to the basis (𝜑(|𝒖 |)ℓ )ℓ∈Z|𝒖 | in L2(D|𝒖 | , 𝜔(|𝒖 |)).
Moreover, we have

P∅ 𝑓 = c0( 𝑓 ) .
Proof. The basis coefficient is given by definition as

cℓ(P𝒖 𝑓 ) =
∫
D|𝒖 |

∫
D𝑑−|𝒖 |

𝑓 (𝒙)𝜔(𝑑−|𝒖 |)(𝒙𝒖c)d𝒙𝒖c 𝜑(|𝒖 |)ℓ (𝒙𝒖)𝜔(|𝒖 |)(𝒙𝒖)d𝒙𝒖 .

We consolidate the two integrals and exploit the product structure of
the weight to obtain

cℓ(P𝒖 𝑓 ) =
∫
D𝑑

𝑓 (𝒙)𝜑(|𝒖 |)ℓ (𝒙𝒖)𝜔(𝑑)(𝒙)d𝒙.

If we take the index 𝒌 ∈ Z𝑑 with 𝒌𝒖 = ℓ and supp 𝒌 ⊆ 𝒖 we have
𝜑(|𝒖 |)ℓ (𝒙𝒖) = 𝜑(𝑑)𝒌 (𝒙)which leads to

cℓ(P𝒖 𝑓 ) =
∫
D𝑑

𝑓 (𝒙)𝜑(𝑑)𝒌 (𝒙)𝜔(𝑑)(𝒙)d𝒙 = c𝒌( 𝑓 ) .

and yields our statement.

Using the projections (2.20), we recursively define the ANOVA terms
of a function 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) as

𝑓𝒖(𝒙) B P𝒖 𝑓 (𝒙) −
∑
𝒗⊊𝒖

𝑓𝒗(𝒙). (2.21)

This yields the constant 𝑓∅ = P∅ 𝑓 ∈ C and for ∅ ≠ 𝒖 ⊆ [𝑑] functions
𝑓𝒖 ∈ L2(D|𝒖 | , 𝜔(|𝒖 |)). There also exists a direct formula for the ANOVA
terms 𝑓𝒖 which has been proven in [KSWW09] using properties of
projection operators. We show the same formula in Theorem 2.16 using
combinatorial arguments and the following lemma.
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Lemma 2.15. Let 𝑎 ∈ N0 and 𝑏 ∈ N with 𝑏 > 𝑎. Then

𝑏−1∑
𝑛=𝑎

(−1)𝑛−𝑎+1
(
𝑏 − 𝑎
𝑛 − 𝑎

)
= (−1)𝑏−𝑎 .

Proof. We prove an equivalent form obtained through multiplication
with (−1)𝑎 and an index shift

𝑏−𝑎−1∑
𝑛=0
(−1)𝑛+𝑎+1

(
𝑏 − 𝑎
𝑛

)
= (−1)𝑏 .

Splitting the sum and applying the Binomial theorem yields

𝑏−𝑎−1∑
𝑛=0
(−1)𝑛+𝑎+1

(
𝑏 − 𝑎
𝑛

)
=

𝑏−𝑎∑
𝑛=0
(−1)𝑛+𝑎+1

(
𝑏 − 𝑎
𝑛

)
− (−1)𝑏+1

= (−1)𝑎+1
𝑏−𝑎∑
𝑛=0
(−1)𝑛

(
𝑏 − 𝑎
𝑛

)
︸              ︷︷              ︸

=(−1+1)𝑏−𝑎=0

+(−1)𝑏

= (−1)𝑏 .

Theorem 2.16. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) with 𝒖 ⊆ [𝑑]. Then

𝑓𝒖 =
∑
𝒗⊆𝒖
(−1)|𝒖 |−|𝒗 | P𝒗 𝑓 . (2.22)

Proof. We prove this statement through structural induction over the
cardinality of 𝒖. For |𝒖 | = 0, i.e., 𝒖 = ∅, we have

(−1)0−0 P∅ 𝑓 (𝒙) = P∅ 𝑓 (𝒙) = P∅ 𝑓 (𝒙) −
∑
𝒗⊊∅

𝑓𝒗(𝒙).
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Now, let (2.22) be true for 𝒗 ⊆ [𝑑], |𝒗 | = 0, 1, . . . , 𝑚 − 1, 𝑚 ∈ [𝑑], and
take a subset 𝒖 ⊆ [𝑑]with |𝒖 | = 𝑚. We use the notation

𝛿𝒘⊆𝒗 =

{
1 : 𝒘 ⊆ 𝒗

0 : otherwise.

and start from the recursive expression in (2.21) to obtain

𝑓𝒖(𝒙) = P𝒖 𝑓 (𝒙) −
∑
𝒗⊊𝒖

𝑓𝒗(𝒙) = P𝒖 𝑓 (𝒙) −
∑
𝒗⊊𝒖

∑
𝒘⊆𝒗
(−1)|𝒗 |−|𝒘 | P𝒘 𝑓 (𝒙)

= P𝒖 𝑓 (𝒙) −
∑
𝒗⊊𝒖

∑
𝒘⊊𝒖

(−1)|𝒗 |−|𝒘 | P𝒘 𝑓 (𝒙) 𝛿𝒘⊆𝒗 .

We exchange the two sums and sum over the order of the ANOVA terms∑
𝒗⊊𝒖

∑
𝒘⊊𝒖

(−1)|𝒗 |−|𝒘 | P𝒘 𝑓 (𝒙) 𝛿𝒘⊆𝒗 =
∑
𝒘⊊𝒖

P𝒘 𝑓 (𝒙)
∑
𝒗⊊𝒖

(−1)|𝒗 |−|𝒘 | 𝛿𝒘⊆𝒗

=
∑
𝒘⊊𝒖

P𝒘 𝑓 (𝒙)
𝑚−1∑
𝑛=|𝒘 |

∑
𝒗⊆𝒖
|𝒗 |=𝑛

(−1)|𝒗 |−|𝒘 |𝛿𝒘⊆𝒗

=
∑
𝒘⊊𝒖

P𝒘 𝑓 (𝒙)
𝑚−1∑
𝑛=|𝒘 |
(−1)𝑛−|𝒘 |

∑
𝒗⊆𝒖
|𝒗 |=𝑛

𝛿𝒘⊆𝒗 .

The application of Lemma 2.15 then yields the direct formula (2.22).

As for the projections P𝒖 𝑓 in Lemma 2.14, we are able to prove a
connection between the ANOVA terms 𝑓𝒖 and the basis expansion (2.19)
of 𝑓 .

Lemma 2.17. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and 𝑓𝒖 , ∅ ≠ 𝒖 ⊆ [𝑑], as in (2.21). Then
for an index ℓ ∈ Z|𝒖 | we have

cℓ( 𝑓𝒖) =
{

c𝒌( 𝑓 ) : ℓ ∈ (Z \ {0})|𝒖 |
0 : otherwise



44 2 The Classical ANOVA Decomposition

where 𝒌 ∈ Z𝑑 is the index with 𝒌𝒖 = ℓ and 𝒌𝒖c = 0. Note that the basis
coefficient cℓ( 𝑓𝒖) is with respect to the basis (𝜑(|𝒖 |)ℓ )ℓ∈Z|𝒖 | in L2(D|𝒖 | , 𝜔(|𝒖 |)).
Moreover, we have

𝑓∅ = P∅ 𝑓 = c0( 𝑓 ) .
Proof. We define 𝒌 ∈ Z𝑑 as the index with 𝒌𝒖 = ℓ and 𝒌𝒖c = 0. Employ-
ing the direct formula (2.22) yields

cℓ( 𝑓𝒖) =
∫
D|𝒖 |

𝑓𝒖(𝒙𝒖)𝜑(|𝒖 |)ℓ (𝒙𝒖)𝜔(|𝒖 |)(𝒙𝒖)d𝒙𝒖

=

∫
D|𝒖 |

[∑
𝒗⊆𝒖
(−1)|𝒖 |−|𝒗 |P𝒗 𝑓 (𝒙𝒗)

]
𝜑(|𝒖 |)ℓ (𝒙𝒖)𝜔(|𝒖 |)(𝒙𝒖)d𝒙𝒖

=
∑
𝒗⊆𝒖
(−1)|𝒖 |−|𝒗 |

∫
D|𝒖 |

P𝒗 𝑓 (𝒙𝒗)𝜑(|𝒖 |)ℓ (𝒙𝒖)𝜔(|𝒖 |)(𝒙𝒖)d𝒙𝒖

=
∑
𝒗⊆𝒖
(−1)|𝒖 |−|𝒗 | c𝒌𝒗 (P𝒗 𝑓 )

∏
ℎ∈𝒖\𝒗

𝛿ℎ,0.

For ℓ ∈ (Z \ {0})|𝒖 | , i.e., supp 𝒌 = 𝒖, we have
∏

ℎ∈𝒖\𝒗 𝛿ℎ,0 = 1⇐⇒ 𝒗 = 𝒖
and it follows that

cℓ( 𝑓𝒖) = (−1)0 c𝒌𝒖 (P𝒖 𝑓 ) = c𝒌( 𝑓 ) .
In the case that supp 𝒌 ⊊ 𝒖, we have

∏
ℎ∈𝒖\𝒗 𝛿ℎ,0 = 1⇐⇒ supp 𝒌 ⊆ 𝒗

and therefore

cℓ( 𝑓𝒖) =
∑
𝒗⊆𝒖

supp 𝒌⊆𝒗

(−1)|𝒖 |−|𝒗 | c𝒌𝒗 (P𝒗 𝑓 ) = c𝒌( 𝑓 )
∑
𝒗⊆𝒖

supp 𝒌⊆𝒗

(−1)|𝒖 |−|𝒗 | .

We show that the appearing sum is zero by the binomial theorem∑
𝒗⊆𝒖

supp 𝒌⊆𝒗

(−1)|𝒖 |−|𝒗 | =
|𝒖 |−|supp 𝒌 |∑

𝑗=0

(|𝒖 | − |supp 𝒌 |
𝑗

)
(−1)|𝒖 |−(|supp 𝒌 |+𝑗) = 0

which yields the result.
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Lemma 2.14 and Lemma 2.17 tell us the following interesting con-
nection between the projections P𝒖 𝑓 and the ANOVA terms 𝑓𝒖 with the
basis expansion of 𝑓 , i.e.,

P𝒖 𝑓 (𝒙) =
∑
ℓ∈Z|𝒖 |

cℓ(P𝒖 𝑓 )𝜑(|𝒖 |)ℓ (𝒙) =
∑
𝒉∈Z𝑑

supp 𝒉⊆𝒖

c𝒉( 𝑓 )𝜑(𝑑)𝒉 (𝒙).

and

𝑓𝒖(𝒙) =
∑

ℓ∈(Z\{0})|𝒖 |
cℓ( 𝑓𝒖)𝜑(|𝒖 |)ℓ (𝒙) =

∑
𝒉∈Z𝑑

supp 𝒉=𝒖

c𝒉( 𝑓 )𝜑(𝑑)𝒉 (𝒙).

We observe the recursive definition of the ANOVA terms directly here
since the difference between the terms and the projections lies only
in the support of the respective indices 𝒉 ∈ Z𝑑. This connection to
the basis expansion allows us to work with these objects in an elegant
manner. An example for this is the proof of the following corollary,
showing the orthogonality of ANOVA terms. This is a well-known fact,
see e.g. [Gri06, KSWW09].

Corollary 2.18. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and 𝒖 , 𝒗 ⊆ [𝑑] with 𝒖 ≠ 𝒗. Then the
ANOVA terms 𝑓𝒖 and 𝑓𝒗 are orthogonal, i.e.,

⟨ 𝑓𝒖 , 𝑓𝒗⟩L2(D𝑑 ,𝜔(𝑑)) = 0.

Proof. We employ Lemma 2.17 to obtain

⟨ 𝑓𝒖 , 𝑓𝒗⟩L2(D𝑑 ,𝜔(𝑑)) =
∑
𝒌∈Z𝑑

supp 𝒌=𝒖

∑
𝒉∈Z𝑑

supp 𝒉=𝒗

c𝒌( 𝑓 ) c𝒉( 𝑓 ) ⟨𝜑(𝑑)𝒌 (𝒙), 𝜑
(𝑑)
𝒉 (𝒙)⟩L2(D𝑑 ,𝜔(𝑑))

=
∑
𝒌∈Z𝑑

supp 𝒌=𝒖

∑
𝒉∈Z𝑑

supp 𝒉=𝒗

c𝒌( 𝑓 ) c𝒉( 𝑓 ) 𝛿𝒌 ,𝒉 = 0.
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We have collected all ingredients and are now prepared to introduce
the classical ANOVA decomposition in our setting, cf. [KSWW09].

Theorem 2.19. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)), the ANOVA terms 𝑓𝒖 as in (2.21)
and the set of coordinate indices [𝑑] = {1, 2, . . . , 𝑑}. Then f can be uniquely
decomposed as

𝑓 (𝒙) = 𝑓∅ +
𝑑∑
𝑖=1

𝑓{𝑖}(𝑥𝑖) +
𝑑−1∑
𝑖=1

𝑑∑
𝑗=𝑖+1

𝑓{𝑖 , 𝑗}(𝒙{𝑖 , 𝑗}) + · · · + 𝑓[𝑑](𝒙) =
∑
𝒖⊆[𝑑]

𝑓𝒖(𝒙𝒖)

(2.23)
which we call analysis of variance (ANOVA) decomposition.

Proof. The statement is well-known and can be proven straightforward
by summation∑

𝒖⊆[𝑑]
𝑓𝒖(𝒙𝒖) =

∑
𝒖⊆[𝑑]

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

c𝒌( 𝑓 )𝜑(𝑑)𝒌 (𝒙) =
∑
𝒌∈Z𝑑

c𝒌( 𝑓 )𝜑(𝑑)𝒌 (𝒙) = 𝑓 (𝒙).

The uniqueness of the decomposition follows from the fact that every
basis coefficient c𝒌( 𝑓 ), 𝒌 ∈ Z𝑑, appears only once in the ANOVA term
𝑓supp 𝒌 .

Multivariate decompositions in general and the ANOVA decomposi-
tion in particular can of course be considered in a much more general
setting. For this, we refer to the article [KSWW09]. In our setting, we
not only have uniqueness of the decomposition, but also our one to one
connection of every basis coefficient c𝒌( 𝑓 ), 𝒌 ∈ Z𝑑, and ANOVA term
𝑓supp 𝒌 . This view of the decomposition in the frequency domain, which
we visualized in Figure 2.5, will be an essential tool in our approxima-
tion method of Chapter 4. It also an interesting observation how the
decomposition reflects the curse of dimensionality trough the number
of terms |𝒫([𝑑])| = 2𝑑 rising exponentially in the spatial dimension.

Remark 2.20. The ANOVA decomposition (2.23) depends strongly on the
projection operator P𝒖 𝑓 from (2.20). The integral operator considered in
this thesis leads to the so called classical ANOVA decomposition. Another
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important variant is the anchored decomposition where one chooses an anchor
point 𝒑 ∈ D𝑑 and the projection operator is then defined as

P𝒖 𝑓 (𝒙𝒖) = 𝑓 (𝒚), 𝒚𝒖 = 𝒙𝒖 , 𝒚𝒖c = 𝒑𝒖c .

This decomposition can for example be used for the integration of high-
dimensional functions, see e.g. [DG14, KNP+17, GKNW18]. However, the
error analysis may again be based on the classical ANOVA decomposition, see
e.g. [GHHR17]. In our scattered data setting, we always focus on the classical
version of the decomposition.

In the end of this section, we discuss how the smoothness of a
function 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) defined by the decay of the basis coefficients
translates to its projections P𝒖 𝑓 and ANOVA terms 𝑓𝒖 . This has also
been discussed for a different setting in [LO06, GKS10, GKS16] and
therein called inheritance of smoothness. In our setting, we consider
smoothness trough the Sobolev type spaces H𝑤(D𝑑 , 𝜔(𝑑)) and weighted
Wiener spaces𝒜𝑤(D𝑑 , 𝜔(𝑑))with weight function 𝑤 : Z𝑑 → [1,∞), see
(2.4) and (2.3).

Theorem 2.21 (Inheritance of smoothness for Sobolev type spaces). Let
𝑓 ∈H𝑤(D𝑑 , 𝜔(𝑑))with weight function 𝑤 : Z𝑑 → [1,∞). Then for any weight
𝑤𝒖 : Z|𝒖 | → [1,∞) with

𝑤𝒖(𝒌𝒖) ≤ 𝑤(𝒌) ∀𝒌 ∈ Z𝑑 , supp 𝒌 ⊆ 𝒖 ,

we have P𝒖 𝑓 ∈ H𝑤𝒖 (D|𝒖 | , 𝜔(|𝒖 |)) and 𝑓𝒖 ∈ H𝑤𝒖 (D|𝒖 | , 𝜔(|𝒖 |)). This holds true
in particular for a weight defined by 𝑤𝒖(ℓ) B 𝑤(𝒉) with 𝒉𝒖 = ℓ and 𝒉𝒖c = 0.

Proof. We show that the norm ∥P𝒖 𝑓 ∥H𝑤𝒖 (D|𝒖 | ,𝜔(|𝒖 |)) is finite by using
Lemma 2.14∑
ℓ∈Z|𝒖 |

𝑤2
𝒖(ℓ) |cℓ (P𝒖 𝑓 )|2 =

∑
𝒌∈Z𝑑

supp 𝒌⊆𝒖

𝑤2
𝒖(𝒌𝒖) |c𝒌( 𝑓 )|2 ≤

∑
𝒌∈Z𝑑

supp 𝒌⊆𝒖

𝑤2(𝒌) |c𝒌( 𝑓 )|2

≤
∑
𝒌∈Z𝑑

𝑤2(𝒌) |c𝒌( 𝑓 )|2 = ∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑)) < ∞.
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(a) The origin as the index 𝒌 ∈ Z3 with
|supp 𝒌 | = 0.

(b) The indices 𝒌 ∈ Z3 with |supp 𝒌 | =
1 belonging to 𝑓{1} in orange, 𝑓{2}
in magenta, and 𝑓{3} in cyan.

(c) The indices 𝒌 ∈ Z3 with |supp 𝒌 | =
2 belonging to 𝑓{1,2} in orange, 𝑓{1,3}
in magenta, and 𝑓{2,3} in cyan.

(d) The indices 𝒌 ∈ Z3 with |supp 𝒌 | =
3 belonging to 𝑓{1,2,3} in orange.

Figure 2.5: The ANOVA decomposition in the frequency domain visu-
alized within the cube [−5, 5]3 ∩ Z3.
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Analogously, we employ Lemma 2.17 to prove 𝑓𝒖 ∈ H𝑤𝒖 (D|𝒖 | , 𝜔(|𝒖 |))∑
ℓ∈Z|𝒖 |

𝑤2
𝒖(ℓ) |cℓ ( 𝑓𝒖)|2 =

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

𝑤2
𝒖(𝒌𝒖) |c𝒌( 𝑓 )|2 ≤

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

𝑤2(𝒌) |c𝒌( 𝑓 )|2

≤
∑
𝒌∈Z𝑑

𝑤2(𝒌) |c𝒌( 𝑓 )|2 = ∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑)) < ∞.

Theorem 2.22 (Inheritance of smoothness for the weighted algebra).
Let 𝑓 be an element of𝒜𝑤(D𝑑 , 𝜔(𝑑)) with weight function 𝑤 : Z𝑑 → [1,∞).
Then for any weight 𝑤𝒖 : Z|𝒖 | → [1,∞) with

𝑤𝒖(𝒌𝒖) ≤ 𝑤(𝒌) ∀𝒌 ∈ Z𝑑 , supp 𝒌 ⊆ 𝒖 ,

we have P𝒖 𝑓 ∈ 𝒜𝑤𝒖 (D|𝒖 | , 𝜔(|𝒖 |)) and 𝑓𝒖 ∈ 𝒜𝑤𝒖 (D|𝒖 | , 𝜔(|𝒖 |)). This holds true
in particular for a weight defined by 𝑤𝒖(ℓ) B 𝑤(𝒉) with 𝒉𝒖 = ℓ and 𝒉𝒖c = 0.

Proof. First, we prove that ∥P𝒖 𝑓 ∥𝒜𝑤𝒖 (D|𝒖 | ,𝜔(|𝒖 |)) is finite with the help of
Lemma 2.14∑

ℓ∈Z|𝒖 |
𝑤𝒖(ℓ) |cℓ (P𝒖 𝑓 )| =

∑
𝒌∈Z𝑑

supp 𝒌⊆𝒖

𝑤𝒖(𝒌𝒖) |c𝒌( 𝑓 )| ≤
∑
𝒌∈Z𝑑

supp 𝒌⊆𝒖

𝑤(𝒌) |c𝒌( 𝑓 )|

≤
∑
𝒌∈Z𝑑

𝑤(𝒌) |c𝒌( 𝑓 )| = ∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑)) < ∞.

In a similar fashion, we use Lemma 2.17 and prove 𝑓𝒖 ∈ 𝒜𝑤𝒖 (D|𝒖 | , 𝜔(|𝒖 |))∑
ℓ∈Z|𝒖 |

𝑤𝒖(ℓ) |cℓ ( 𝑓𝒖)| =
∑
𝒌∈Z𝑑

supp 𝒌=𝒖

𝑤𝒖(𝒌𝒖) |c𝒌( 𝑓 )| ≤
∑
𝒌∈Z𝑑

supp 𝒌=𝒖

𝑤(𝒌) |c𝒌( 𝑓 )|

≤
∑
𝒌∈Z𝑑

𝑤(𝒌) |c𝒌( 𝑓 )| = ∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑)) < ∞.
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Theorem 2.21 and Theorem 2.22 show that the projections P𝒖 𝑓 and
the ANOVA terms 𝑓𝒖 are at least as smooth as 𝑓 itself. In certain cases,
e.g., for kink functions, it has been observed that some ANOVA terms
are indeed smoother than the function itself. Those kink functions arise,
e.g., in financial applications, see [GKS10].
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2.3 Effective Dimensions and the Truncated
ANOVA Decomposition

In this section, we discuss the interpretability of the ANOVA decom-
position based on the well-known Sobol indices or global sensitivity
indices, cf. [Sob90, Sob01, LO06]. We introduce notions of effective
dimensions and the truncated ANOVA decomposition. This helps us
achieve two purposes: We lay the foundation for our interpretable
approximation method from Chapter 4 where the sensitivity indices
play a major role and moreover it helps us discover a way to circumvent
the curse of dimensionality in terms of our decomposition.

We aim to understand the importance of ANOVA terms 𝑓𝒖 , ∅ ≠ 𝒖 ⊆
[𝑑], by considering variances. The variance of a function is defined as
the integral

𝜎2( 𝑓 ) B
∫
D𝑑
( 𝑓 (𝒙) − c0( 𝑓 ))2 𝜔(𝑑)(𝒙) d𝒙

for a real-valued function 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)). In this case, we have the
equivalent formulation

𝜎2( 𝑓 ) = ∥ 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) − |c0( 𝑓 )|2

which yields a sensible definition for complex-valued functions as well.
Subsequently, we obtain that for the ANOVA terms 𝑓𝒖 with ∅ ≠ 𝒖 ⊆ [𝑑]
we have c0( 𝑓𝒖) = 0 by Lemma 2.17 and therefore

𝜎2( 𝑓𝒖) = ∥ 𝑓𝒖 ∥2L2(D|𝒖 | ,𝜔(|𝒖 |)) . (2.24)

The following lemma shows how the ANOVA decomposition works
with regard to the variances of our terms.

Lemma 2.23. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)). Then we have

𝜎2( 𝑓 ) =
∑
∅≠𝒖⊆[𝑑]

𝜎2( 𝑓𝒖).
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Proof. We show that the right-hand side equals the left-hand side by
applying Lemma 2.14 as follows∑
∅≠𝒖⊆[𝑑]

𝜎2( 𝑓𝒖) =
∑
∅≠𝒖⊆[𝑑]

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

|c𝒌( 𝑓 )|2

=
∑
𝒌∈Z𝑑
|c𝒌( 𝑓 )|2 − |c0( 𝑓 )|2 = ∥ 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) − |c0( 𝑓 )|2 .

In order to find a comparable score to rank the importance of ANOVA
terms against each other, we introduce the Sobol indices or global
sensitivity indices (gsi)

𝜚(𝒖 , 𝑓 ) B 𝜎2( 𝑓𝒖)
𝜎2( 𝑓 ) ∈ [0, 1] (2.25)

for a subset of coordinate indices ∅ ≠ 𝒖 ⊆ [𝑑], see e.g. [Sob90,
Sob01, LO06]. The global sensitivity index 𝜚(𝒖 , 𝑓 ) for a term 𝑓𝒖 tells
us how much of the variance 𝜎2( 𝑓 ) is explained by 𝑓𝒖 . We have∑
∅≠𝒖⊆[𝑑] 𝜚(𝒖 , 𝑓 ) = 1 by Lemma 2.23. The sensitivity indices will be an

important tool in the detection of sparsity in the ANOVA decomposition
in Section 4.2.1.

Based on the concept of global sensitivity indices, we introduce the
notions of effective dimensions as proposed, e.g., in [CMO97, Hol11].
Given a fixed 𝛿 ∈ (0, 1], the notion of superposition dimension is
defined as the minimum

𝑑(sp)(𝛿) B min

𝑠 ∈ [𝑑] :
∑
∅≠𝒖⊆[𝑑]
|𝒖 |≤𝑠

𝜎2( 𝑓𝒖) ≥ 𝛿𝜎2( 𝑓 )
 . (2.26)

We observe the equivalence∑
∅≠𝒖⊆[𝑑]
|𝒖 |≤𝑠

𝜎2( 𝑓𝒖) ≥ 𝛿𝜎2( 𝑓 ) ⇐⇒
∑
∅≠𝒖⊆[𝑑]
|𝒖 |≤𝑠

𝜚(𝒖 , 𝑓 ) ≥ 𝛿.
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In other words, 𝛿 percentage of the variance 𝜎2( 𝑓 ) of our function 𝑓
is explained by the ANOVA terms 𝑓𝒖 with |𝒖 | ≤ 𝑑(sp)(𝛿). In general,
if we have a small 𝑑(sp)(𝛿) for a 𝛿 close to one, we call the function of
low-dimensional structure.

The effective dimension in the truncation sense for a 𝛿 ∈ (0, 1] is
defined as

𝑑(t)(𝛿) = min
𝑠 ∈ [𝑑] :

∑
∅≠𝒖⊆[𝑠]

𝜎2( 𝑓𝒖) ≥ 𝛿𝜎2( 𝑓 )
 . (2.27)

In this case, 𝛿 percentage of the variance 𝜎2( 𝑓 ) can be explained by a
part of the variables, i.e., the subset {1, 2, . . . , 𝑑(t)(𝛿)}. In other words, if
𝑑(t)(𝛿) is small for a 𝛿 close to one, only a few variables contribute to a
significant amount of the variance of 𝑓 . In this work, we focus on the
superposition dimension 𝑑(sp)(𝛿).

The concept of effective dimensions motivates the idea of considering
only a part of the ANOVA decomposition of a function which may
yield some interesting benefits. We say that 𝑈 ⊆ 𝒫([𝑑]) is a subset of
ANOVA terms if it is downward closed with regard to set inclusion,
i.e., for 𝒖 , 𝒗 ⊆ [𝑑] it holds that

(𝒗 ⊆ 𝒖 and 𝒖 ∈ 𝑈) =⇒ 𝒗 ∈ 𝑈.

This condition is necessary because of the recursive definition of the
ANOVA terms (2.21). However, it can be relaxed if one assumes 𝑓𝒗 ≡ 0
for all 𝒗 ⊆ [𝑑], 𝒗 ∉ 𝑈 , where there exists a 𝒖 ∈ 𝑈 with 𝒗 ⊆ 𝒖.

For any subset of ANOVA terms 𝑈 ⊆ 𝒫([𝑑]), we define the truncated
ANOVA decomposition as

T𝑈 𝑓 B
∑
𝒖∈𝑈

𝑓𝒖 .

A specific truncation idea can be obtained by relating to the superposi-
tion dimension 𝑑(sp)(𝛿), see (2.26). For a chosen superposition threshold
𝑑𝑠 ∈ [𝑑], we define

𝑈 (𝑑,𝑑𝑠 ) B {𝒖 ⊆ [𝑑] : |𝒖 | ≤ 𝑑𝑠} (2.28)
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and subsequently

T𝑑𝑠 𝑓 B T𝑈 (𝑑,𝑑𝑠 ) 𝑓 =
∑
𝒖⊆[𝑑]
|𝒖 |≤𝑑𝑠

𝑓𝒖 .

As before, we are interested in how this truncation works in the fre-
quency domain and show the relationship between the basis coefficients
of T𝑈 and 𝑓 .

Lemma 2.24. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and 𝑈 ⊆ 𝒫([𝑑]) a subset of ANOVA
terms. Then T𝑈 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and for any index 𝒌 ∈ Z𝑑, the basis
coefficient is given by

c𝒌(T𝑈 𝑓 ) =
{

c𝒌( 𝑓 ) : supp 𝒌 ∈ 𝑈
0 : otherwise.

In particular, for 𝑈 = 𝑈 (𝑑,𝑑𝑠 ) with 𝑑𝑠 ∈ [𝑑], we have

c𝒌(T𝑑𝑠 𝑓 ) =
{

c𝒌( 𝑓 ) : |supp 𝒌 | ≤ 𝑑𝑠
0 : otherwise.

Proof. Let 𝒌 ∈ Z𝑑. Employing linearity and Lemma 2.17 yields

c𝒌(T𝑈 𝑓 ) =
∑
𝑢∈𝑈

∑
𝒉∈Z𝑑

supp 𝒉=𝒖

c𝒉( 𝑓 ) 𝛿𝒌 ,𝒉 =

{
c𝒌( 𝑓 ) : supp 𝒌 ∈ 𝑈
0 : otherwise.

The statement for T𝑑𝑠 𝑓 follows since supp 𝒌 ∈ 𝑈 (𝑑,𝑑𝑠 ) ⇐⇒ |supp 𝒌 | ≤
𝑑𝑠 .

Since there exists a direct formula for the ANOVA terms themselves,
see (2.22), the existence of such formulas for the truncated decom-
position can be assumed. The following theorem and its subsequent
corollary show such a formula for the general case and the superposition
case.
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Theorem 2.25. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and 𝑈 ⊆ 𝒫([𝑑]) a subset of ANOVA
terms. Then we have the direct formula

T𝑈 𝑓 =
∑
𝒖∈𝑈

∑
𝒗∈𝑈
𝒖⊆𝒗

(−1)|𝒗 |−|𝒖 |P𝒖 𝑓 .

Proof. We apply (2.22) and obtain immediately

T𝑈 𝑓 =
∑
𝒖∈𝑈

𝑓𝒖 =
∑
𝒖∈𝑈

∑
𝒗⊆𝒖
(−1)|𝒖 |−|𝒗 |P𝒗 𝑓 =

∑
𝒖∈𝑈

∑
𝒗∈𝑈
(−1)|𝒖 |−|𝒗 |P𝒗 𝑓 𝛿𝒗⊆𝒖

=
∑
𝒗∈𝑈

∑
𝒖∈𝑈
𝒗⊆𝒖

(−1)|𝒖 |−|𝒗 |P𝒗 𝑓 .

Corollary 2.26. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) and 𝑑𝑠 ∈ [𝑑] a superposition threshold.
Then we have the direct formula

T𝑑𝑠 𝑓 =
∑
𝒖⊆[𝑑]
|𝒖 |≤𝑑𝑠


𝑑𝑠∑

𝑛=|𝒖 |
(−1)𝑛−|𝒖 |

(
𝑑 − |𝒖 |
𝑛 − |𝒖 |

) P𝒖 𝑓 .

Proof. Let 𝒖 ∈ 𝑈 (𝑑,𝑑𝑠 ). The statement follows from the equality∑
𝒗∈𝑈 (𝑑,𝑑𝑠 )

𝒖⊆𝒗

(−1)|𝒗 |−|𝒖 | =
𝑑𝑠∑

𝑛=|𝒖 |
(−1)𝑛−|𝒖 |

���{𝒗 ∈ 𝑈 (𝑑,𝑑𝑠 ) : 𝒖 ⊆ 𝒗 , |𝒗 | = 𝑛}
���

=

𝑑𝑠∑
𝑛=|𝒖 |
(−1)𝑛−|𝒖 |

(
𝑑 − |𝒖 |
𝑛 − |𝒖 |

)
,

and Theorem 2.25.

As mentioned before, the number of terms in the ANOVA decompo-
sition is 2𝑑 and therefore grows exponentially in the dimension which
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reflects the curse of dimensionality in the sense of our multivariate
decomposition. Now, we consider how the truncation may impact this
exponential growth. The following well-known lemma from learning
theory shows us that the number of terms in𝑈 (𝑑,𝑑𝑠 ) grows polynomially
in the spatial dimension 𝑑 for a fixed superposition dimension 𝑑𝑠 which
represents an important observation we exploit in our approximation
approach in Chapter 4. In other words, it provides a way around the
curse of dimensionality.

Lemma 2.27. Let 𝑑𝑠 ∈ N. Then for any 𝑑 ∈ N, 𝑑 > 𝑑𝑠 , we estimate the
cardinality of 𝑈 (𝑑,𝑑𝑠 ) by ���𝑈 (𝑑,𝑑𝑠 )��� < (

e · 𝑑
𝑑𝑠

)𝑑𝑠
,

i.e., the number of terms in 𝑈 (𝑑,𝑑𝑠 ) has polynomial growth in 𝑑 for fixed 𝑑𝑠 .

Proof. We estimate the sum as follows���𝑈 (𝑑,𝑑𝑠 )��� = 𝑑𝑠∑
𝑛=0

(
𝑑
𝑛

)
≤

𝑑𝑠∑
𝑛=0

𝑑𝑛𝑑𝑛𝑠
𝑛! 𝑑𝑛𝑠

=

𝑑𝑠∑
𝑛=0

(
𝑑
𝑑𝑠

)𝑛 𝑑𝑛𝑠
𝑛! ≤

(
𝑑
𝑑𝑠

)𝑑𝑠 𝑑𝑠∑
𝑛=0

𝑑𝑛𝑠
𝑛! .

The statement follows from estimating the sum by the Taylor series for
e𝑑𝑠 .

The truncated ANOVA decomposition will play a major role in
our approximation approach since truncating to a subset of ANOVA
terms may maintain a large part of the variance of the function while
simultaneously simplifying a possible approximation model. Therefore,
we are interested in functions that can be approximated well by such a
truncated ANOVA decomposition, i.e., T𝑈 𝑓 ≈ 𝑓 . We are considering
relative truncation errors of the form

∥ 𝑓 − T𝑈 𝑓 ∥𝐻1

∥ 𝑓 ∥𝐻2

(2.29)
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with 𝐻1 ∈ {L2(D𝑑 , 𝜔(𝑑)),L∞(D𝑑)}, 𝐻2 ∈ {H𝑤(D𝑑 , 𝜔(𝑑)),𝒜𝑤(D𝑑 , 𝜔(𝑑))}
for a weight 𝑤 : Z𝑑 → [1,∞). In other words, we try to relate the
truncation of the ANOVA decomposition to the smoothness of the
function characterized by the decay of the basis coefficients. If this
relative error is small, the truncation will be sensible since we have
sparsity in the ANOVA decomposition.

Specifically, we are interested in relating the concept of superposition
dimension to the smoothness of the function. To this end, we modify
the superposition dimension in the sense of this space, cf. in [Owe19].
For H𝑤(D𝑑 , 𝜔(𝑑)) and accuracy 𝛿 ∈ (0, 1] we define the worst-case
superposition dimension as

𝑑(wcsp)(𝛿) B min

𝑠 ∈ [𝑑] : sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∑
𝒖⊆[𝑑]
|𝒖 |>𝑠

𝜎2( 𝑓𝒖) ≤ 1 − 𝛿

 . (2.30)

In contrast to the superposition dimension 𝑑(sp)(𝛿) itself, it is not a state-
ment for a single function, but for the space H𝑤(D𝑑 , 𝜔(𝑑)). The following
lemma shows the connection between the worst-case superposition
dimension and the truncation error (2.29) for 𝑈 = 𝑈 (𝑑,𝑑𝑠 ).

Lemma 2.28. Let H𝑤(D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight function
𝑤 : Z𝑑 → [1,∞). Then for a superposition threshold 𝑑𝑠 ∈ [𝑑], and 𝜀 ∈ [0, 1]
we have the equivalence

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − T𝑑𝑠 𝑓 ∥L2(D𝑑 ,𝜔(𝑑)) ≤ 𝜀 ⇐⇒ 𝑑(wcsp)(1 − 𝜀2) ≤ 𝑑𝑠 .

Proof. We use (2.24) in (2.30) to obtain the equivalent formulation

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∑
𝒖⊆[𝑑]
|𝒖 |>𝑠

𝜎2( 𝑓𝒖) = sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − T𝑑𝑠 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) .

Defining 𝛿 B 1 − 𝜀2 yields our desired result.
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Lemma 2.28 tells us that if we are able to bound the corresponding
truncation error, we immediately obtain a bound on the worst-case
superposition dimension 𝑑(wcsp)(𝛿).
Theorem 2.29. Let H𝑤(D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight function
𝑤 : Z𝑑 → [1,∞) and 𝑈 ⊆ 𝒫([𝑑]) a subset of ANOVA terms. Then

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − T𝑈 𝑓 ∥L2(D𝑑 ,𝜔(𝑑)) ≤
1

min 𝒌∈Z𝑑
supp 𝒌∉𝑈

𝑤(𝒌) .

Proof. We employ Parseval’s identity and Lemma 2.24 to derive

∥ 𝑓 − T𝑈 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) =
∑
𝒌∈Z𝑑
|c𝒌( 𝑓 ) − c𝒌(T𝑈 𝑓 )|2 =

∑
𝒌∈Z𝑑

supp 𝒌∉𝑈

|c𝒌( 𝑓 )|2

=
∑
𝒌∈Z𝑑

supp 𝒌∉𝑈

𝑤2(𝒌)
𝑤2(𝒌) |c𝒌( 𝑓 )|

2

≤ 1
min 𝒌∈Z𝑑

supp 𝒌∉𝑈
𝑤2(𝒌) ∥ 𝑓 ∥

2
H𝑤 (D𝑑 ,𝜔(𝑑)) .

Applying the square root on both sides yields the result.

Theorem 2.30. Let𝒜𝑤(D𝑑 , 𝜔(𝑑)) be a weighted Wiener space with weight
function 𝑤 : Z𝑑 → [1,∞) and 𝑈 ⊆ 𝒫([𝑑]) a subset of ANOVA terms. Then

sup
∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑) ≤
𝐶BOS

min 𝒌∈Z𝑑
supp 𝒌∉𝑈

𝑤(𝒌) .

with 𝐶BOS the constant (2.2). Additionally, for H𝑤(D𝑑 , 𝜔(𝑑)) with weight
function 𝑤 : Z𝑑 → [1,∞) such that {𝑤−1(𝒌)}𝒌∈Z𝑑 ∈ ℓ2, we have

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑) ≤ 𝐶BOS

√√√√ ∑
𝒌∈Z𝑑

supp 𝒌∉𝑈

1
𝑤2(𝒌) .
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Proof. We estimate the L∞-norm by the sum of the absolute values of
the basis coefficients and then use Lemma 2.24 to obtain

∥ 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑) = ess supp
𝒙∈D𝑑

�����∑
𝒌∈Z𝑑
(c𝒌( 𝑓 ) − c𝒌(T𝑈 𝑓 ))𝜑(𝑑)𝒌 (𝒙)

�����
≤ ess supp

𝒙∈D𝑑

∑
𝒌∈Z𝑑

supp 𝒌∉𝑈

|c𝒌( 𝑓 )|
���𝜑(𝑑)𝒌 (𝒙)���

≤ sup
𝒌∈Z𝑑




𝜑(𝑑)𝒌 



L∞(D𝑑)

∑
𝒌∈Z𝑑

supp 𝒌∉𝑈

𝑤(𝒌)
𝑤(𝒌) |c𝒌( 𝑓 )| (2.31)

≤ 𝐶BOS
min 𝒌∈Z𝑑

supp 𝒌∉𝑈
𝑤(𝒌) ∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑)) .

Employing the Cauchy-Schwarz inequality in (2.31) instead of extracting
the minimum yields

∥ 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑 ,𝜔(𝑑)) ≤ 𝐶BOS

√√√√ ∑
𝒌∈Z𝑑

supp 𝒌∉𝑈

1
𝑤2(𝒌) ∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑)) .

The condition {𝑤−1(𝒌)}𝒌∈Z𝑑 ∈ ℓ2 assures that the sum appearing in the
bound is finite.

In the following, we consider the bounds for our special isotropic
and dominating-mixed smoothness weights

𝑤𝛼,𝛽(𝒌) = 𝛾−1
supp 𝒌 (1 + ∥𝒌∥1)𝛼

𝑑∏
𝑠=1
(1 + |𝑘𝑠 |)𝛽

from (2.5). Specifically, we aim to show that a cut-off based on a
superposition threshold 𝑑𝑠 is sensible for Sobolev type spaces and
weighted Wiener spaces with this weight. We consider the worst-case
truncation as corollaries of the previous results in Theorem 2.29 and
Theorem 2.30.
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Lemma 2.31. Let 𝑛 ∈ [𝑑] and 𝜸 ∈ (0, 1]𝑑. Then∑
𝒖⊆[𝑑]
|𝒖 |=𝑛

∏
𝑠∈𝒖

𝛾2
𝑠 ≤



𝜸

2𝑛
2 .

Proof. We rewrite the sum as follows∑
𝒖⊆[𝑑]
|𝒖 |=𝑛

∏
𝑠∈𝒖

𝛾2
𝑠 =

𝑑∑
𝑖1=1

𝛾2
𝑖1

𝑑∑
𝑖2=𝑖1+1

𝛾2
𝑖2
· · ·

𝑑∑
𝑖𝑛=𝑖𝑛−1+1

𝛾2
𝑖𝑛
.

Then every single sum can be estimated by


𝜸

2

2, i.e.,

𝑑∑
𝑖 𝑗=𝑖 𝑗−1+1

𝛾2
𝑖 𝑗
≤

𝑑∑
𝑖 𝑗=1

𝛾2
𝑖 𝑗
=



𝜸

2
2

for 𝑗 ∈ {2, 3, . . . , 𝑑} with equality for 𝑗 = 1.

Corollary 2.32. Let H𝑤𝛼,𝛽 (D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight
function𝑤𝛼,𝛽 from (2.5) with POD structure (2.6), 𝛽 ≥ 0, 𝛼 > −𝛽, 𝚪 ∈ (0, 1]𝑑,
and 𝜸 ∈ (0, 1]𝑑. Then

sup
∥ 𝑓 ∥

H𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑))≤1
∥ 𝑓 − T𝑑𝑠 𝑓 ∥L2(D𝑑 ,𝜔(𝑑)) ≤ Γ𝑑𝑠+1 (2 + 𝑑𝑠)−𝛼 2−𝛽(𝑑𝑠+1)

𝑑𝑠+1∏
𝑠=1

𝛾∗𝑠

(2.32)
for a superposition threshold 𝑑𝑠 ∈ [𝑑]where 𝜸∗ = (𝛾∗𝑠)𝑑𝑠=1 is the non-increasing
rearrangement of 𝜸. For functions with isotropic smoothness 𝛼 = 0 and
dominating mixed smoothness 𝛽 > 1/2, we have

sup
∥ 𝑓 ∥

H𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑))≤1
∥ 𝑓 − T𝑑𝑠 𝑓 ∥L∞(D𝑑) (2.33)

≤ 𝐶BOS

√√√ 𝑑∑
𝑛=𝑑𝑠+1

2𝑛Γ2
𝑛 (𝜁(2𝛽) − 1)𝑛 

𝜸

2𝑛

2
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where 𝜁 is the Riemann zeta function and 𝐶BOS the BOS constant (2.2).
Assuming exponential decay for Γ𝑠 , i.e., Γ𝑠 = 𝑐𝑠 with 0 < 𝑐 ≤ 1, such that

𝑐


𝜸



2

√
2𝜁(2𝛽) − 2 < 1 (2.34)

yields the bound

sup
∥ 𝑓 ∥

H𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑))≤1
∥ 𝑓 − T𝑑𝑠 𝑓 ∥L∞(D𝑑) (2.35)

≤
𝐶BOS

(
𝑐


𝜸



2

√
2𝜁(2𝛽) − 2

)𝑑𝑠+1√
1 − 2𝑐2



𝜸

2
2 (𝜁(2𝛽) − 1)

.

Proof. We apply Theorem 2.29 and solve the appearing minimization
as follows

min
𝒌∈Z𝑑

|supp 𝒌 |>𝑑𝑠
𝑤𝛼,𝛽(𝒌)

= min
𝒌∈Z𝑑

|supp 𝒌 |>𝑑𝑠
Γ−1
|supp 𝒌 |(1 + ∥𝒌∥1)𝛼

𝑑∏
𝑠=1
(1 + |𝑘𝑠 |)𝛽

∏
𝑠∈supp 𝒌

𝛾−1
𝑠

= (2 + 𝑑𝑠)𝛼 · 2𝛽(𝑑𝑠+1) · min
𝒌∈Z𝑑

|supp 𝒌 |>𝑑𝑠
Γ−1
|supp 𝒌 |

∏
𝑠∈supp 𝒌

𝛾−1
𝑠

= (2 + 𝑑𝑠)𝛼 · 2𝛽(𝑑𝑠+1) · Γ−1
𝑑𝑠+1 ·

𝑑𝑠+1∏
𝑠=1
(𝛾∗𝑠)−1

to obtain (2.32). In order to prove (2.33), we calculate the bound from
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Theorem 2.30 by rearranging the terms∑
𝒌∈Z𝑑

|supp 𝒌 |>𝑑𝑠

1
𝑤2(𝒌) =

∑
𝒖⊆[𝑑]
|𝒖 |>𝑑𝑠

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

1
Γ−2
|𝒖 |

∏
𝑠∈𝒖 𝛾−2

𝑠 (1 + |𝑘𝑠 |)2𝛽

=
∑
𝒖⊆[𝑑]
|𝒖 |>𝑑𝑠

Γ2
|𝒖 |

∑
𝒉∈(Z\{0})|𝒖 |

1(∏
𝑠∈𝒖 𝛾−2

𝑠
) (∏|𝒖 |

𝑠=1(1 + |ℎ𝑠 |)2𝛽
)

=
∑
𝒖⊆[𝑑]
|𝒖 |>𝑑𝑠

Γ2
|𝒖 |

(∏
𝑠∈𝒖

𝛾2
𝑠

) ∑
𝒉∈(Z\{0})|𝒖 |

1∏|𝒖 |
𝑠=1(1 + |ℎ𝑠 |)2𝛽

=
∑
𝒖⊆[𝑑]
|𝒖 |>𝑑𝑠

Γ2
|𝒖 |

(∏
𝑠∈𝒖

𝛾2
𝑠

) ©­«
∑

𝑘∈Z\{0}

1
(1 + |𝑘 |)2𝛽

ª®¬
|𝒖 |

.

Replacing the resulting sum by the Riemann zeta function and applying
Lemma 2.31 yields∑

𝒌∈Z𝑑
|supp 𝒌 |>𝑑𝑠

1
𝑤2(𝒌) =

∑
𝒖⊆[𝑑]
|𝒖 |>𝑑𝑠

Γ2
|𝒖 |

(∏
𝑠∈𝒖

𝛾2
𝑠

)
2|𝒖 | (𝜁(2𝛽) − 1)|𝒖 |

=

𝑑∑
𝑛=𝑑𝑠+1

Γ2
𝑛2𝑛 (𝜁(2𝛽) − 1)𝑛

∑
𝒖⊆[𝑑]
|𝒖 |=𝑛

(∏
𝑠∈𝒖

𝛾2
𝑠

)

≤
𝑑∑

𝑛=𝑑𝑠+1
Γ2
𝑛2𝑛 (𝜁(2𝛽) − 1)𝑛 

𝜸

2𝑛

2

Corollary 2.33. Let𝒜𝑤𝛼,𝛽 (D𝑑 , 𝜔(𝑑)) be a weighted Wiener space with weight
function𝑤𝛼,𝛽 from (2.5) with POD structure (2.6), 𝛽 ≥ 0, 𝛼 > −𝛽, 𝚪 ∈ (0, 1]𝑑,
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and 𝜸 ∈ (0, 1]𝑑. Then

sup
∥ 𝑓 ∥𝒜𝑤𝛼,𝛽 (D𝑑 ,𝜔(𝑑))≤1

∥ 𝑓 − T𝑑𝑠 𝑓 ∥L∞(D𝑑) ≤ 𝐶BOS Γ𝑑𝑠+1 (2+𝑑𝑠)−𝛼 2−𝛽(𝑑𝑠+1)
𝑑𝑠+1∏
𝑠=1

𝛾∗𝑠

(2.36)
for a superposition threshold 𝑑𝑠 ∈ [𝑑] where 𝜸∗ is the non-increasing rear-
rangement of 𝜸 and 𝐶BOS the BOS constant (2.2).

Proof. We use Theorem 2.30 and calculate the bound for the weight
function 𝑤𝛼,𝛽 by computing the minimum as in the proof of Corol-
lary 2.32.

The previous results deliver us a wide range of error estimates for
the truncation of the ANOVA decomposition in different norms. We
specifically point out that for our weights, the bounds (2.32) and (2.36)
are independent of the spatial dimension 𝑑. Similarly, if



𝜸


2 is bounded

then also (2.35) can be considered independently of 𝑑.
Moreover, (2.32) gives us information about the worst-case superpo-

sition dimension 𝑑(wcsp). We fix the weights 𝚪, 𝜸, and a superposition
threshold 𝑑𝑠 ∈ N. Then Lemma 2.28 implies for the worst-case super-
position dimension

𝑑(wcsp)(1 − 𝜀2(𝛼, 𝛽)) ≤ 𝑑𝑠 .

with

𝜀(𝛼, 𝛽) B Γ𝑑𝑠+1 (2 + 𝑑𝑠)−𝛼 2−𝛽(𝑑𝑠+1)
𝑑𝑠+1∏
𝑠=1

𝛾∗𝑠 .

In other words, the worst-case superposition dimension is at most 𝑑𝑠 for
accuracy 1 − 𝜀2(𝛼, 𝛽). In Figure 2.6, we have visualized truncation with
𝑑𝑠 = 3. The figure shows 𝜀2(𝛼, 𝛽) depending on the isotropic smooth-
ness 𝛼 and the dominating-mixed smoothness 𝛽 from the weights 𝑤𝛼,𝛽,
see (2.5). We observe that a high accuracy is obtainable in our setting
even for small smoothness parameters 𝛼, and 𝛽.

In summary, we find that smoothness of this type relates to sparsity
in the ANOVA decomposition in the superposition sense.
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(a) Isotropic smoothness 𝛼 ≥ 0 and
dominating-mixed 𝛽 ≥ 0.

0 1 2 3 4 5
10−12

10−9

10−6

10−3

100

smoothness

𝜀2

(b) Isotropic smoothness 𝛼 ≥ 0 with
𝛽 = 0 (solid) and dominating-mixed
smoothness 𝛽 ≥ 0 with 𝛼 = 0
(dashed).

Figure 2.6: Bound from (2.32) with 𝛼 ≥ 0 and 𝛽 ≥ 0 as well as parameters
Γ = 1 and 𝜸 = 1.



3
Fast Multiplication with Grouped

Transformations

The fast realization of discrete transformations like the fast Fourier trans-
form (FFT), see e.g. [Bri88], play an important role in many applications.
In fact, the FFT is one of the most important algorithms of our time. The
non-equispaced fast Fourier transform (NFFT) and the non-equispaced
fast cosine transform (NFCT), cf. [KKP09, PPST18, KKP], provide the
fast realization of the discrete Fourier transform and the discrete co-
sine transform, respectively, if the spatial nodes are non-equispaced.
However, as an index set, we still need to use full grids that grow
exponentially in the spatial dimension. This can be remedied, e.g.,
with the lattice fast Fourier transform, see [Käm13], but then the nodes
have to be chosen as a rank-1 lattice. With grouped transformations,
we propose a fast realization of a transformation with non-equispaced
scattered nodes and a new form of index set motivated by the ANOVA
decomposition from Chapter 2.

The goal of this chapter is to combine the ideas of the ANOVA
decomposition and specifically its truncation from Section 2.3 with the
concept of fast transformations. This process is always in combination

65
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with a transformation that fits to the chosen basis, e.g., the systems from
Section 2.1.2. We reiterate on the NFFT and the NFCT in Section 3.1. The
core ideas for the grouped transformations from [BPS22] are presented
in Section 3.2 which we simultaneously generalize to new systems.
Section 3.2.1 introduces grouped index sets as a combination of the
index sets we have used to truncate basis expansions in Section 2.1.3 and
the truncated ANOVA decomposition from Section 2.3. Section 3.2.2
is concerned with the fast transformations for non-equispaced data
and matrices that are based on the grouped index sets. Moreover, we
described in detail how the transformations are realized for every one of
the system presented in Section 2.1.2. The grouped transformations are
going to be used as a main part of the ANOVA approximation method
in Chapter 4.

The core concept for grouped transformations was developed by the
author in [PS21a] and later formalized in [BPS22]. The contributions
by F. Bartel were focus on the group lasso regularization and the fast
iterative shrinkage-thresholding algorithm.
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3.1 Non-Equispaced Transformations
In this section, we consider two systems of functions, the Fourier system

𝜉
(exp)
𝒌 (𝒙) = e2𝜋i 𝒌·𝒙 , 𝒌 ∈ Z𝑑 , (3.1)

and the cosine system

𝜉(cos)
𝒌 (𝒙) =

𝑑∏
𝑠=1

cos(2𝜋 𝑘𝑠𝑥𝑠), 𝒌 ∈ N𝑑
0 , (3.2)

for a spatial dimension 𝑑 ∈ N. Subsequently, we take polynomials

𝑝 : D𝑑 → C, 𝑝(𝒙) B
∑
𝒌∈ℐ

𝑝̂𝒌 𝜉𝒌(𝒙) (3.3)

with coefficients 𝑝̂𝒌 ∈ C, 𝒌 ∈ ℐ and a finite index set ℐ ⊆ Z𝑑 for the
Fourier system (𝜉(exp)

𝒌 )𝒌∈ℐ and ℐ ⊆ N𝑑
0 for the cosine system (𝜉(cos)

𝒌 )𝒌∈ℐ .
Here, our domain is the torus, i.e., D = T, which we identify with the
interval T � [−1/2, 1/2) for the Fourier system 𝜉

(exp)
𝒌 . For the cosine

system 𝜉(cos)
𝒌 , we have the domain D = [0, 1/2]𝑑. Our main topic of

interest is the fast evaluation of 𝑝 on a set of nodes𝒳 B {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆
D𝑑, 𝑀 ∈ N. For index sets of a full-grid type, cf. Section 2.1.3, this is
referred to as a non-equispaced discrete transformation. Here, non-
equispaced refers to the nodes 𝒳 since they may lie in our domain in an
arbitrary way. If the nodes are equidistant, we would have a discrete
Fourier transform (DFT) or discrete cosine transform (DCT), see e.g.
[BH95].

Definition 3.1 (Non-equispaced discrete Fourier transform). Let 𝒳 B
{𝒙1 , 𝒙2 , . . . , 𝒙𝑀} with 𝒳 ⊆ [−1/2, 1/2)𝑑, 𝑀 ∈ N a set of nodes and

ℐ(exp)
𝑵 B

{
𝒌 ∈ Z𝑑 : 𝑘𝑠 ∈

[
−𝑁𝑠

2 ,
𝑁𝑠

2 − 1
]
, 𝑠 ∈ [𝑑]

}
(3.4)
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an equispaced full-grid index set with parameter vector 𝑵 ∈ (2N)𝑑. Given
coefficients 𝑝̂𝒌 ∈ C, 𝒌 ∈ ℐ(exp)

𝑵 , the evaluation of

𝑝(𝒙) =
∑

𝒌∈ℐ(exp)
𝑵

𝑝̂𝒌 𝜉
(exp)
𝒌 (𝒙),

at the nodes 𝒳, i.e., 𝑝(𝒙1), 𝑝(𝒙2), . . . , 𝑝(𝒙𝑀), is called non-equispaced
discrete Fourier transform or NDFT. For given coefficients ℎ𝒙 ∈ C, 𝒙 ∈ 𝒳,
we refer to the evaluation of

ℎ̂(𝒌) =
∑
𝒙∈𝒳

ℎ𝒙 𝜉
(exp)
𝒌 (𝒙),

at the frequencies 𝒌 ∈ ℐ(exp)
𝑵 as adjoint non-equispaced discrete Fourier

transform or adjoint NDFT.

Definition 3.2 (Non-equispaced discrete cosine transform). Let 𝒳 B
{𝒙1 , 𝒙2 , . . . , 𝒙𝑀}, 𝒳 ⊆ [0, 1/2]𝑑, with 𝑀 ∈ N a set of nodes and

ℐ(cos)
𝑵 B

{
𝒌 ∈ Z𝑑 : 𝑘𝑠 ∈ [0, 𝑁𝑠 − 1] , 𝑠 ∈ [𝑑]} (3.5)

an equispaced full-grid index set with parameter vector 𝑵 ∈ N𝑑. Given
coefficients 𝑝̂𝒌 ∈ R, 𝒌 ∈ ℐ(cos)

𝑵 , the evaluation of

𝑝(𝒙) =
∑

𝒌∈ℐ(cos)
𝑵

𝑝̂𝒌 𝜉
(cos)
𝒌 (𝒙),

at the nodes 𝒳, i.e., 𝑝(𝒙1), 𝑝(𝒙2), . . . , 𝑝(𝒙𝑀), is called non-equispaced
discrete cosine transform or NDCT. For given coefficients ℎ𝒙 ∈ R, 𝒙 ∈ 𝒳,
we refer to the evaluation of

ℎ̂(𝒌) =
∑
𝒙∈𝒳

ℎ𝒙 𝜉
(cos)
𝒌 (𝒙),

at the frequencies 𝒌 ∈ ℐ(cos)
𝑵 as transposed non-equispaced discrete cosine

transform or transposed NDCT.
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We understand the NDFT and the NDCT as a matrix-vector multi-
plication. In general, we denote with 𝜉𝒌 the functions which can be
the Fourier system 𝜉

(exp)
𝒌 or the cosine system 𝜉(cos)

𝒌 together with the
respective index set ℐ which is of type ℐ(exp)

𝑵 in the former case and
ℐ(cos)
𝑵 in the latter. We write the evaluation of 𝑝 from (3.3) at nodes
𝒳 B {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑 as

𝒑 B

©­­­­«
𝑝(𝒙1)
𝑝(𝒙2)
...

𝑝(𝒙𝑀)

ª®®®®¬
=

©­­­­«
𝜉𝒌1(𝒙1) 𝜉𝒌2(𝒙1) · · · 𝜉𝒌𝑛 (𝒙1)
𝜉𝒌1(𝒙2) 𝜉𝒌2(𝒙2) · · · 𝜉𝒌𝑛 (𝒙2)

...
...

...
...

𝜉𝒌1(𝒙𝑀) 𝜉𝒌2(𝒙𝑀) · · · 𝜉𝒌𝑛 (𝒙𝑀)

ª®®®®¬
©­­­­«
𝑝̂𝒌1
𝑝̂𝒌2
...

𝑝̂𝒌𝑛

ª®®®®¬
C 𝑭𝒳ℐ 𝒇

with 𝒌𝑖 , 𝑖 = 1, 2, . . . , 𝑛, 𝑛 B |ℐ|, a chosen order of the indices in ℐ.
Since this order can be arbitrary, we omit denoting it explicitly, e.g.,
when we write 𝑭𝒳ℐ = (𝜉𝒌(𝒙))𝒙∈𝒳 ,𝒌∈ℐ and 𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ . In a similar way,
we consider the ’adjoint’ or ’transposed’ problem, i.e., the evaluation of

ℎ̂(𝒌) =
∑
𝒙∈𝒳

ℎ𝒙 𝜉𝒌(𝒙)

with coefficients ℎ𝒙 ∈ C, 𝒙 ∈ 𝒳 on the index set ℐ. This translates to
a matrix-vector multiplication with the adjoint (or transposed in the
real-valued cosine case) of 𝑭𝒳ℐ , i.e.,

𝒉̂ B

©­­­­«
ℎ̂(𝒌1)
ℎ̂(𝒌2)
...

ℎ̂(𝒌𝑛)

ª®®®®¬
=

©­­­­­«
𝜉𝒌1(𝒙1) 𝜉𝒌1(𝒙2) · · · 𝜉𝒌1(𝒙𝑀)
𝜉𝒌2(𝒙1) 𝜉𝒌2(𝒙2) · · · 𝜉𝒌2(𝒙𝑀)

...
...

...
...

𝜉𝒌𝑛 (𝒙1) 𝜉𝒌𝑛 (𝒙2) · · · 𝜉𝒌𝑛 (𝒙𝑀)

ª®®®®®¬
©­­­­«
ℎ𝒙1
ℎ𝒙2
...

ℎ𝒙𝑀

ª®®®®¬
C

(
𝑭𝒳ℐ

)H
𝒉.

The NDFT and the NDCT are therefore naive multiplications of the
matrix 𝑭𝒳ℐ with a vector. These multiplications are in the complexity
class 𝒪(𝑛 · 𝑀) with 𝑛 = |ℐ𝑵 | = ∏𝑑

𝑠=1 𝑁𝑠 . Since the cardinalities rise
exponentially in the spatial dimension 𝑑, we observe that the curse of
dimensionality is present.
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The non-equispaced fast Fourier transform or NFFT is a fast algorithm
for the realization of the NDFT. The algorithm approximates the result
of the matrix-vector multiplication 𝑭𝒳ℐ 𝒇 for the Fourier system 𝜉

(exp)
𝒌 . It

is based on the approximation of 𝑑-variate trigonometric polynomials
by linear combinations of translates of a periodic window function. The
NFFT is in the complexity class

𝒪
(

𝑑∏
𝑠=1

𝑁𝑠 log 𝑁𝑠 +
��log 𝜀

��𝑑 |𝒳|) (3.6)

with 𝜀 > 0 being the desired accuracy. This represents a significant
improvement to the naive multiplication. For a detailed description
of the algorithm we refer to [PPST18, Chapter 7] as well as [KKP09].
Similarly, there exists the non-equispaced fast cosine transform or NFCT
which is a fast algorithm for the computation of a NDCT. It approximates
the result of 𝑭𝒳ℐ 𝒇 for the cosine system 𝜉(cos)

𝒌 . The algorithm can be
derived from the NFFT as described in [PPST18, Section 7.4] and it is in
the complexity class (3.6) as well.

The software package NFFT3, cf. [KKP], combines a number of
algorithms including the NFFT and the NFCT as a C library. It can be
included in many different programming languages including Python,
Matlab, and Julia, see [Sch18, Schb].
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3.2 Grouped Transformations
In Chapter 2, we have seen a connection between the support supp 𝒌
of an index 𝒌 ∈ Z𝑑 and the ANOVA term 𝑓𝒖 , 𝒖 ⊆ [𝑑], of a function
𝑓 : D𝑑 → C in a space L2(D𝑑 , 𝜔(𝑑)) with product basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 from
Section 2.1.2. Moreover, we have considered the truncation of the
ANOVA decomposition in Section 2.3 to subsets 𝑈 ⊆ 𝒫([𝑑]) of ANOVA
terms. Grouped index sets bring together the concepts of subsets of
ANOVA terms and the partial sums from Section 2.1.3 with the goal of
a unified approach in truncating both the ANOVA decomposition and
the basis expansion.

The grouped transformations were first introduced in [BPS22] and
have the aim to provide transformations as in Section 3.1 for non-
equispaced data when using grouped index sets which will be intro-
duced in Section 3.2.1. The major idea is to reduce the 𝑑-dimensional
problem to a number of low-dimensional problems trough exploitation
of the grouped ANOVA structure. The algorithms have been applied
successfully in [PS21a, PS21b, PS22a].

3.2.1 Grouped Index Sets
We distinguish between the periodic case with the Fourier system (2.7)
and the non-periodic case with the cosine based systems (2.8), (2.10),
and (2.15). The index sets

ℐ(per)
𝑁 B {−𝑁/2,−𝑁/2 + 1, . . . ,−1, 1, 2, . . . , 𝑁/2 − 1} ⊆ Z (3.7)

for bandwidth parameter 𝑁 ∈ 2N and

ℐ(nper)
𝑁 B {1, 2, . . . , 𝑁 − 1} ⊆ N0 (3.8)

provide the one-dimensional foundation. Note that both sets do not
contain the 0 index. Subsequently, for a given subset of coordinate
indices ∅ ≠ 𝒖 ⊆ [𝑑], we define

ℐ(per)
𝒖 ,𝑁 B

{
𝒌 ∈ Z𝑑 : supp 𝒌 = 𝒖 and 𝒌𝒖 ∈

(
ℐ(per)
𝑁

) |𝒖 |}
(3.9)
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for the periodic case and

ℐ(nper)
𝒖 ,𝑁 B

{
𝒌 ∈ N𝑑

0 : supp 𝒌 = 𝒖 and 𝒌𝒖 ∈
(
ℐ(nper)
𝑁

) |𝒖 |}
for the non-periodic case. The empty set always belongs to the zero
index, i.e., ℐ∅ = ℐ(per)

∅ = ℐ(nper)
∅ = {0}. We observe that these index sets

provide a disjoint decomposition of a cube in their respective domains,
i.e., we have(
ℐ(per)
𝑁

)𝑑
= ℐ∅ ∪

⋃
𝒖⊆[𝑑]
𝒖≠∅

ℐ(per)
𝒖 ,𝑁 and

(
ℐ(nper)
𝑁

)𝑑
= ℐ∅ ∪

⋃
𝒖⊆[𝑑]
𝒖≠∅

ℐ(nper)
𝒖 ,𝑁 .

It remains to show the connection to the ANOVA terms 𝑓𝒖 . To this end,
we recall Lemma 2.14, i.e., the fact that all indices 𝒌 with supp 𝒌 = 𝒖
belong to the ANOVA term 𝑓𝒖 . For our index sets, we observe that
ℐ(per)
𝒖 ,𝑁 ⊆ {𝒌 ∈ Z𝑑 : supp 𝒌 = 𝒖} and ℐ(nper)

𝒖 ,𝑁 ⊆ {𝒌 ∈ N𝑑
0 : supp 𝒌 = 𝒖}. In

terms of partial sums, cf. Section 2.1.3, our index sets therefore provide
a way to truncate the basis expansion of the corresponding ANOVA
term. Therefore, we have

𝑓𝒖 =
∑
𝒌∈Z𝑑

supp 𝒌=𝒖

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌 ≈ Sℐ(per)
𝒖 ,𝑁

𝑓 =
∑

𝒌∈ℐ(per)
𝒖 ,𝑁

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌 (3.10)

𝑓𝒖 =
∑
𝒌∈N𝑑

0
supp 𝒌=𝒖

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌 ≈ Sℐ(nper)
𝒖 ,𝑁

𝑓 =
∑

𝒌∈ℐ(nper)
𝒖 ,𝑁

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌 . (3.11)

In summary, index sets of this type allow for truncation of the basis
expansion for a single ANOVA term.

Finally, bringing together the truncated ANOVA decomposition of
the function with our index, we observe∑

𝒖∈𝑈
𝑓𝒖 ≈

∑
𝒖∈𝑈

∑
𝒌∈ℐ𝒖 ,𝑁

c𝒌( 𝑓 ) 𝜑(𝑑)𝒌
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for a subset of ANOVA terms 𝑈 ⊆ 𝒫([𝑑]) with ℐ𝒖 ,𝑁 = ℐ(per)
𝒖 ,𝑁 in the

periodic case and ℐ𝒖 ,𝑁 = ℐ(nper)
𝒖 ,𝑁 in the non-periodic case. We formalize

this concept as grouped index sets in the sense of ’grouping’ indices with
the same support for the corresponding ANOVA term. In other words,
we construct index sets that fit the chosen ANOVA truncation.

Definition 3.3 (Grouped index set). Let 𝑑 ∈ N be the spatial dimension
and 𝑈 ⊆ 𝒫([𝑑]) a subset of ANOVA terms, cf. Section 2.3. Moreover, we have
a bandwidth parameter 𝑁𝒖 ∈ N for every set of coordinate indices ∅ ≠ 𝒖 ∈ 𝑈 .
In the periodic case, 𝑁𝒖 must be an even number. We define the index sets

ℐ(per)
𝑵 (𝑈) B ℐ∅ ∪

⋃
𝒖∈𝑈\{∅}

ℐ(per)
𝒖 ,𝑁𝒖

(3.12)

ℐ(nper)
𝑵 (𝑈) B ℐ∅ ∪

⋃
𝒖∈𝑈\{∅}

ℐ(nper)
𝒖 ,𝑁𝒖

(3.13)

and call them grouped index sets. Here, 𝑵 = (𝑁𝒖)𝒖∈𝑈\{∅} collects bandwidth
parameters. In the case of superposition cut-off, i.e., 𝑈 = 𝑈 (𝑑,𝑑𝑠 ) with
superposition threshold 𝑑𝑠 ∈ [𝑑], cf. (2.28), we define the grouped index sets
order-dependent, i.e., 𝑁𝒖 = 𝑁𝒗 for 𝒖 , 𝒗 ∈ 𝑈 (𝑑,𝑑𝑠 ) with |𝒖 | = |𝒗 |. Therefore,
the grouped index set ℐ(per)

𝑵 (𝑈 (𝑑,𝑑𝑠 )) or ℐ(nper)
𝑵 (𝑈 (𝑑,𝑑𝑠 )) is well-defined for

𝑵 = (𝑁𝑠)𝑑𝑠𝑠=1.

The cardinalities of the grouped index are considered in the following
lemma.

Lemma 3.4. Let 𝑑 ∈ N be the spatial dimension, 𝑈 ⊆ 𝒫([𝑑]) a subset
of ANOVA terms, and 𝑁𝒖 ∈ N, 𝒖 ∈ 𝑈 , the bandwidth parameters. The
cardinality of the respective grouped index set is���ℐ(per)

𝑵 (𝑈)
��� = ���ℐ(nper)

𝑵 (𝑈)
��� = 1 +

∑
∅≠𝒖∈𝑈

(𝑁𝒖 − 1)|𝒖 | .

For 𝑈 = 𝑈 (𝑑,𝑑𝑠 ) with superposition threshold 1 ≤ 𝑑𝑠 < 𝑑 and order-dependent
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(a) Index set ℐ(per)
𝑵 (𝑈(3,3)) with 𝑁1 =

12, 𝑁2 = 8, 𝑁3 = 4 (ℐ(per)
𝒖 ,𝑁|𝒖 |

in orange
for |𝒖 | = 1, in cyan for |𝒖 | = 2, and
in magenta for |𝒖 | = 3).

(b) Index set ℐ(nper)
𝑵 (𝑈(3,3))with 𝑁1 =

12, 𝑁2 = 8, 𝑁3 = 4 (ℐ(nper)
𝒖 ,𝑁|𝒖 |

in or-
ange for |𝒖 | = 1, in cyan for |𝒖 | = 2,
and in magenta for |𝒖 | = 3).

(c) Index set ℐ(per)
𝑵 (𝑈) with 𝑈 =

{∅, {1}, {2, 3}, {1, 2, 3}}, 𝑁{1} = 12,

𝑁{2,3} = 8, 𝑁{1,2,3} = 4 (ℐ(per)
𝒖 ,𝑁𝒖

in black for 𝒖 = ∅, in orange for
𝒖 = {1}, in cyan for 𝒖 = {2, 3}, and
in magenta for 𝒖 = {1, 2, 3}).

(d) Index set ℐ(nper)
𝑵 (𝑈) with 𝑈 =

{∅, {1}, {2, 3}, {1, 2, 3}}, 𝑁{1} = 12,

𝑁{2,3} = 8, 𝑁{1,2,3} = 4 (ℐ(nper)
𝒖 ,𝑁𝒖

in orange for 𝒖 = {1}, in cyan
for 𝒖 = {2, 3}, and in magenta for
𝒖 = {1, 2, 3}).

Figure 3.1: Visualization of grouped index sets ℐ(per)
𝑵 (𝑈) and ℐ(nper)

𝑵 (𝑈)
from Definition 3.3.
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bandwidth parameters 𝑁𝑠 , 𝑠 = 1, 2, . . . , 𝑑𝑠 , we have���ℐ(per)
𝑵 (𝑈 (𝑑,𝑑𝑠 ))

��� = ���ℐ(nper)
𝑵 (𝑈 (𝑑,𝑑𝑠 ))

��� = 1 +
𝑑𝑠∑
𝑠=1

(
𝑑
𝑠

)
(𝑁𝑠 − 1)𝑠 .

Proof. Clearly, we have���ℐ(per)
𝒖 ,𝑁𝒖

��� = ���ℐ(nper)
𝒖 ,𝑁𝒖

��� = (𝑁𝒖 − 1)|𝒖 | .

The statement follows from the disjointness of the index sets.

Similar to the projection operator P𝒖 𝑓 from (2.20), for an index set
ℐ ⊆ Z𝑑 and a subset of coordinate indices ∅ ≠ 𝒖 ⊆ [𝑑], we define the
discrete projection

P𝒖ℐ B {ℓ ∈ Z|𝒖 | : ∃𝒌 ∈ ℐ with 𝒌𝒖 = ℓ}. (3.14)

with P∅ℐ B {0}. This projection filters the relevant information about
indices with a support of 𝒖, i.e., we have for the grouped index sets
P𝒖ℐ(per)

𝑵 (𝑈) = P𝒖ℐ(per)
𝒖 ,𝑁𝒖

and P𝒖ℐ(nper)
𝑵 (𝑈) = P𝒖ℐ(nper)

𝒖 ,𝑁𝒖
.

3.2.2 Fast Multiplication
In Section 3.1 we have introduced the NDFT and the NDCT and their
fast counterparts, the NFFT and the NFCT. Although the fast trans-
formations provide a significant improvement in complexity, we still
suffer from the curse of dimensionality. However, the transformations
are coupled to the use of full-grid index sets as in (3.4) and (3.5). Here,
we modify the approach to grouped transformations which will be
coupled to the grouped index sets from Section 3.2.1.

We consider a space L2(D𝑑 , 𝜔(𝑑)) as in Definition 2.1 with product
basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 of bounded continuous functions 𝜑(𝑑)𝒌 . Then we take
functions

𝑝 : D𝑑 → C, 𝑝(𝒙) =
∑

𝒌∈ℐ𝑵 (𝑈)
𝑝̂𝒌 𝜑

(𝑑)
𝒌 (𝒙)
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supported on a grouped index set ℐ𝑵 (𝑈) from Definition 3.3 with
𝑈 ⊆ 𝒫([𝑑]) a subset of ANOVA terms and bandwidth parameters
𝑵 ∈ N|𝑈 |−1. We have ℐ𝑵 (𝑈) = ℐ(per)

𝑵 (𝑈) for the periodic Fourier system
or ℐ𝑵 (𝑈) = ℐ(nper)

𝑵 (𝑈) otherwise. The values 𝑝̂𝒌 ∈ C, 𝒌 ∈ ℐ𝑵 (𝑈), are
coefficients. We are again interested in the evaluation of 𝑝 at 𝑀 ∈ N
arbitrary nodes 𝒳 B {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑.

As in Section 3.1, this evaluation can be understood as a matrix-vector
multiplication as follows

𝒑 B

©­­­­«
𝑝(𝒙1)
𝑝(𝒙2)
...

𝑝(𝒙𝑀)

ª®®®®¬
=

©­­­­­­«

𝜑(𝑑)𝒌1
(𝒙1) 𝜑(𝑑)𝒌2

(𝒙1) · · · 𝜑(𝑑)𝒌𝑛
(𝒙1)

𝜑(𝑑)𝒌1
(𝒙2) 𝜑(𝑑)𝒌2

(𝒙2) · · · 𝜑(𝑑)𝒌𝑛
(𝒙2)

...
...

...
...

𝜑(𝑑)𝒌1
(𝒙𝑀) 𝜑(𝑑)𝒌2

(𝒙𝑀) · · · 𝜑(𝑑)𝒌𝑛
(𝒙𝑀)

ª®®®®®®¬
©­­­­«
𝑝̂𝒌1
𝑝̂𝒌2
...

𝑝̂𝒌𝑛

ª®®®®¬
C 𝑭𝒳ℐ𝑵 (𝑈) 𝒑̂ (3.15)

with 𝒌𝑖 , 𝑖 = 1, 2, . . . , 𝑛, 𝑛 B 1 +∑
∅≠𝒖∈𝑈 (𝑁𝒖 − 1)|𝒖 | , a chosen order of

the indices in ℐ𝑵 (𝑈). Now, we recognize a structure in the matrix
𝑭𝒳ℐ𝑵 (𝑈) which fits our groups, the subsets of coordinate indices 𝒖 ∈ 𝑈 B
{∅, 𝒖1 , 𝒖2 , . . . , 𝒖𝑚}, 𝑚 B |𝑈 | − 1, since

𝑭𝒳ℐ𝑵 (𝑈) 𝒑̂ =

(
𝑭ℐ∅ , 𝑭

𝒳
ℐ𝒖1 ,𝑁𝒖1

, · · · , 𝑭𝒳ℐ𝒖𝑚 ,𝑁𝒖𝑚

) ©­­­­«
𝒑̂∅
𝒑̂𝒖1
...

𝒑̂𝒖𝑚

ª®®®®¬
=

∑
𝒖∈𝑈

𝑭𝒳ℐ𝒖 ,𝑁𝒖
𝒑̂𝒖 . (3.16)

Here, we have grouped the indices belonging to the same set 𝒖 together
yielding the matrices

𝑭ℐ∅ B
©­­­­«
1
1
...
1

ª®®®®¬
, and 𝑭𝒳ℐ𝒖 ,𝑁𝒖

=

(
𝜑(𝑑)𝒌 (𝒙)

)
𝒙∈𝒳 ,𝒌∈ℐ𝒖 ,𝑁𝒖
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as well as the coefficient vectors

𝒑̂∅ = 𝑝̂0 , and 𝒑̂𝒖 = (𝑝̂𝒌)𝒌∈ℐ𝒖 ,𝑁𝒖
.

Note that the order of the indices 𝒌 ∈ ℐ𝒖 ,𝑁𝒖 , 𝒖 ∈ 𝑈 , has to be consistent
across the matrices 𝑭𝒳ℐ𝒖 ,𝑁𝒖

and the coefficient vectors 𝒑̂𝒖 .
In (3.16) we observe that the multiplication of our main matrix 𝑭𝒳ℐ𝑵 (𝑈)

with the coefficient vector 𝒑̂ can be written as sum of the matrix-
vector multiplications 𝑭𝒳ℐ𝒖 ,𝑁𝒖

𝒑̂𝒖 . Moreover, every single multiplication
in this sum is independent, i.e., we are able to parallelize its evaluation
which will be a key factor. For now, we still have matrices 𝑭𝒳ℐ𝒖 ,𝑁𝒖

with 𝑑-dimensional basis functions 𝜑(𝑑)𝒌 , 𝑑-dimensional nodes 𝒙, and
𝑑-dimensional indices 𝒌. Using the ideas of projections and the product
structure of our space, we can reduce the dimensionality of this problem.

The first key observation is that under our assumptions on the space
and the basis, we have

𝜑(𝑑)𝒌 (𝒙) = 𝜑(|𝒖 |)𝒌𝒖
(𝒙𝒖) for every 𝒌 ∈ ℐ𝒖 ,𝑁𝒖 and 𝒙 ∈ 𝒳

since supp 𝒌 = 𝒖 and 𝜑0 ≡ 1. In the multi-set

𝒳𝒖 B {(𝒙1)𝒖 , (𝒙2)𝒖 , . . . , (𝒙𝑀)𝒖}
we collect the 𝒖 part of every node 𝒙 𝑗 ∈ 𝒳, 𝑗 = 1, 2, . . . , 𝑀. Note that
𝒳𝒖 may contain duplicates therefore we defined it as a multi-set. Using
the projection from (3.14), we are also able to collect the relevant part of
the indices with P𝒖ℐ𝒖 ,𝑁𝒖 ⊆ Z|𝒖 | . Bringing these concepts together, we
have the equivalent formulation

𝑭𝒳ℐ𝒖 ,𝑁𝒖
𝒑̂𝒖 = 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖

𝒑̂𝒖 with 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖
=

(
𝜑(|𝒖 |)ℓ (𝒙)

)
𝒙∈𝒳𝒖 ,ℓ∈P𝒖ℐ𝒖 ,𝑁𝒖

.

In summary, we have obtained matrices 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖
with |𝒖 |-dimensional

basis functions 𝜑(|𝒖 |)ℓ , |𝒖 |-dimensional nodes 𝒙𝒖 , and |𝒖 |-dimensional
indices ℓ. So, our 𝑑-dimensional transformation is reduced to |𝑈 | many
low-dimensional transformations.
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The ideas can be translated to the ’adjoint’ or ’transposed’ problem
as well. We consider the function

ℎ : ℐ𝑵 (𝑈) → C, ℎ(𝒌) =
∑
𝒙∈𝒳

ℎ𝒙 𝜑
(𝑑)
𝒌 (𝒙).

with coefficients 𝒉𝒙 ∈ C, 𝒙 ∈ 𝒳. The evaluation of ℎ on the index set
ℐ𝑵 (𝑈) can be understood as the matrix-vector multiplication

𝒉̂ B

©­­­­«
ℎ̂(𝒌1)
ℎ̂(𝒌2)
...

ℎ̂(𝒌𝑛)

ª®®®®¬
=

©­­­­­­«

𝜑(𝑑)𝒌1
(𝒙1) 𝜑(𝑑)𝒌1

(𝒙2) · · · 𝜑(𝑑)𝒌1
(𝒙𝑀)

𝜑(𝑑)𝒌2
(𝒙1) 𝜑(𝑑)𝒌2

(𝒙2) · · · 𝜑(𝑑)𝒌2
(𝒙𝑀)

...
...

...
...

𝜑(𝑑)𝒌𝑛
(𝒙1) 𝜑(𝑑)𝒌𝑛

(𝒙2) · · · 𝜑(𝑑)𝒌𝑛
(𝒙𝑀)

ª®®®®®®¬
©­­­­«
ℎ𝒙1
ℎ𝒙2
...

ℎ𝒙𝑀

ª®®®®¬
C

(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝒉

with 𝑛 B ℐ𝑵 (𝑈). Using the ideas and notation from before, we may
write

(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝒉 =

©­­­­­­­«

(
𝑭ℐ∅

)H 𝒉(
𝑭𝒳ℐ𝒖1 ,𝑁𝒖1

)H
𝒉

...(
𝑭𝒳ℐ𝒖𝑚 ,𝑁𝒖𝑚

)H
𝒉

ª®®®®®®®¬
=

©­­­­­­­­«

(
𝑭P∅ℐ∅,𝑁∅

)H
𝒉(

𝑭
𝒳𝒖1
P𝒖1ℐ𝒖1 ,𝑁𝒖1

)H
𝒉

...(
𝑭𝒳𝒖𝑚P𝒖𝑚ℐ𝒖𝑚 ,𝑁𝒖𝑚

)H
𝒉

ª®®®®®®®®¬
=

©­­­­«
𝒉̂∅
𝒉̂𝒖1
...

𝒉̂𝒖𝑚

ª®®®®¬
= 𝒉̂ ,

𝑚 = |𝑈 | − 1, and therefore reduced the 𝑑-dimensional transformation
to |𝑈 | lower-dimensional transformations which are independent and
can be computed in parallel.

We present a general version of the grouped transformations as
Algorithm 3.1 and its adjoint counterpart as Algorithm 3.2. However,
this algorithm lacks one crucial part which is the fast realization of the
multiplications 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖

𝒑̂𝒖 and (𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖
)H𝒉. This depends on the chosen

basis and will be considered for each of the systems from Section 2.1.2
afterwards.
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Remark 3.5. The error of one NFFT with 𝜉
(exp)
𝒌 , cf. Definition 3.1, can be

estimated as follows������ ∑
𝒌∈ℐ𝒖 ,𝑁𝒖

𝑝̂𝒌 𝜉
(exp)
𝒌 (𝒙) −NFFT(𝒑̂𝒖)

������ ≤ 𝐶(𝑁𝒖) ∥𝒑̂𝒖 ∥ℓ1
.

Here, 𝐶(𝑁𝒖) decays exponentially in 𝑁𝒖 , cf. [PPST18, Theorem 7.8] and
references therein. Since the grouped transformation is a sum of the above, we
can bound the overall error by(

max
𝒖∈𝑈

𝐶(𝑁𝒖)
)
∥𝒑̂∥ℓ1

.

The same statement holds for the NFCT with functions 𝜉(cos)
𝒌 , see Definition 3.2.

3.2.2.1 Grouped Transformations with the Fourier System

We consider the periodic functions 𝑓 : T𝑑 → C in the space L2(T𝑑) with
the Fourier system 𝜑

(𝑑), exp
𝒌 (𝒙) as complete orthonormal system, see

(2.7). For this system, we propose a fast algorithm for the multiplication

𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

𝒑̂ with 𝑁 ∈ 2N, 𝒖 ⊆ [𝑑],𝒳 ⊆ C𝑑 , and

𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ(per)
𝒖 ,𝑁
∈ C(𝑁−1)|𝒖 | .

The index set ℐ(per)
𝒖 ,𝑁 has been defined in (3.9). In the end, it is our goal to

apply a |𝒖 |-variate NFFT from Section 3.1. We observe the connection

P𝒖ℐ(per)
𝒖 ,𝑁 =

{
𝒌 ∈ Z|𝒖 | : 𝒌 ∈ ℐ(exp)

𝑵 and supp 𝒌 = [|𝒖 |]
}

with [|𝒖 |] = {1, 2, . . . , |𝒖 |} to the index set ℐ(exp)
𝑵 from (3.4) with 𝑵 =

(𝑁, 𝑁, . . . , 𝑁) ∈ N|𝒖 | . Since P𝒖ℐ(per)
𝒖 ,𝑁 is a subset of ℐ(exp)

𝑵 , we require
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Algorithm 3.1 Grouped Transformation

Input: 𝑑 ∈ N spatial dimension
(𝜑𝑘) ⊆ L2(D, 𝜔) basis of L2(D, 𝜔)
𝑈 ⊆ 𝒫([𝑑]) subset of ANOVA terms
𝑵 = (𝑁𝒖)𝒖∈𝑈\{∅} ∈ N|𝑈 |−1 bandwidth vector, cf. Def. 3.3
𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑 𝑀 nodes in the domain
𝑝̂𝒌 ∈ C, 𝒌 ∈ ℐ𝑵 (𝑈) coefficients

1: for 𝒖 ∈ 𝑈 \ {∅} do
2: 𝒑̂𝒖 ←− (𝑝̂𝒌)𝒌∈ℐ𝒖 ,𝑁𝒖

3: 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖
←−

(
𝜑(|𝒖 |)ℓ (𝒙)

)
𝒙∈𝒳𝒖 ,ℓ∈P𝒖ℐ𝒖 ,𝑁𝒖

4: end for
5: 𝒑←− (𝑝̂0)𝑀𝑗=1
6: for 𝒖 ∈ 𝑈 \ {∅} do
7: 𝒑←− 𝒑 + 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖

𝒑̂𝒖 ◁ parallelization
8: end for
Output: 𝒑 ∈ C𝑀 result of the multiplication 𝑭𝒳ℐ𝑵 (𝑈)𝒑̂𝒖

Complexity:
∑

𝒖∈𝑈 cost of 𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖
𝒑̂𝒖



3.2 Grouped Transformations 81

Algorithm 3.2 Adjoint Grouped Transformation

Input: 𝑑 ∈ N spatial dimension
(𝜑𝑘) ⊆ L2(D, 𝜔) basis of L2(D, 𝜔)
𝑈 ⊆ 𝒫([𝑑]) subset of ANOVA terms
𝑵 = (𝑁𝒖)𝒖∈𝑈\{∅} ∈ N|𝑈 |−1 bandwidth vector, cf. Def. 3.3
𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑 𝑀 nodes in the domain
ℎ𝒙 ∈ C, 𝒙 ∈ 𝒳 coefficients

1: for 𝒖 ∈ 𝑈 \ {∅} do

2:
(
𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖

)H
←−

(
𝜑(|𝒖 |)ℓ (𝒙)

)
ℓ∈P𝒖ℐ𝒖 ,𝑁𝒖 ,𝒙∈𝒳𝒖

3: end for
4: 𝒉̂∅ ←− ∑

𝒙∈𝒳 ℎ𝑥
5: for 𝒖 ∈ 𝑈 \ {∅} do

6: 𝒉̂𝒖 ←−
(
𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖

)H
𝒑̂𝒖 ◁ parallelization

7: end for
8: 𝒉̂ ←− (𝒉̂𝒖)𝒖∈𝑈
Output: 𝒉̂ ∈ C1+∑∅≠𝒖∈𝑈 (𝑁𝒖−1)|𝒖 | result of multiplication (𝑭𝒳ℐ𝑵 (𝑈))H𝒉
Complexity:

∑
𝒖∈𝑈 cost of

(
𝑭𝒳𝒖P𝒖ℐ𝒖 ,𝑁𝒖

)H
𝒑̂𝒖
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zero-padding in order to apply the NFFT for this special index set. We
define

𝒈̂ B (𝑔̂ℓ)ℓ∈ℐ(exp)
𝑵

with 𝑔̂ℓ B

{
𝑝̂𝒌(ℓ) : supp ℓ = [|𝒖 |]
0 : otherwise

(3.17)

with 𝑝̂𝒌(ℓ) = 𝑝̂𝒌 for the index 𝒌 ∈ Z𝑑 with supp 𝒌 = 𝒖 and 𝒌𝒖 = ℓ. The
process of projection and subsequent zero-padding has been visualized
in Figure 3.2.

Figure 3.2: Visualization of the projection and zero-padding fromℐ(per)
{1,2},3

to ℐ(exp)
(3,3) .

We also notice that our basis functions 𝜑
(𝑑), exp
𝒌 coincide with 𝜉

(exp)
𝒌

from (3.1). If we denote with 𝑭𝒳
ℐ(exp)
𝑵

= (𝜉(exp)
ℓ (𝒙))

𝒙∈𝒳̃ ,ℓ∈ℐ(exp)
𝑵

the NDFT

matrix for 𝒳̃ = 𝒳𝒖 , we have that

𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

𝒑̂ = 𝑭𝒳̃
ℐ(exp)
𝑵

𝒈̂ .

The right-hand side can be computed via a |𝒖 |-variate NFFT which
leads to Algorithm 3.3.

It remains to consider the adjoint multiplication, i.e., the multiplica-
tion of (𝑭𝒳𝒖

P𝒖ℐ(per)
𝒖 ,𝑁

)H with a vector 𝒉 ∈ C𝑀 . We can compute the adjoint
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|𝒖 |-variate NFFT and denote the result as

𝒉̂ =

(
ℎ̂ℓ

)
ℓ∈ℐ(exp)

𝑵

=

(
𝑭𝒳̃
ℐ(exp)
𝑵

)H

𝒉.

This simultaneously provides the result to our original question since

(𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

)H𝒉 =

(
ℎ̂ℓ

)
ℓ∈P𝒖ℐ(per)

𝒖 ,𝑁

.

In other words, we have computed more coefficients than necessary by
using an adjoint NFFT. We present the method as Algorithm 3.4.

3.2.2.2 Grouped Transformations with the Chebyshev System

Now, we consider the Chebyshev system 𝜑(𝑑), cheb
𝒌 (𝒙) from (2.8) as a

basis in the space L2([−1, 1]𝑑 , 𝜔(𝑑), cheb) with non-periodic functions
𝑓 : [−1, 1]𝑑 → R. For this system, we propose a fast algorithm for the
multiplication

𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

𝒑̂ with 𝑁 ∈ 2N, 𝒖 ⊆ [𝑑],𝒳 ⊆ [−1, 1]𝑑 , and

𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ(nper)
𝒖 ,𝑁
∈ C(𝑁−1)|𝒖 | .

While we may reuse some ideas from the Fourier system, the details
differ in some aspects. Similar as for the periodic case, we have

P𝒖ℐ(nper)
𝒖 ,𝑁 =

{
𝒌 ∈ N|𝒖 |0 : 𝒌 ∈ ℐ(cos)

𝑵 and supp 𝒌 = [|𝒖 |]
}

with the index set ℐ(cos)
𝑵 from (3.5), and 𝑵 = (𝑁, 𝑁, . . . , 𝑁) ∈ N|𝒖 | . The

zero-padding also works in the same manner as before in (3.17) and we
obtain

𝒈̂ B (𝑔̂ℓ)ℓ∈ℐ(cos)
𝑵

with 𝑔̂ℓ B

{
𝑝̂𝒌(ℓ) : supp ℓ = [|𝒖 |]
0 : otheriwse
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Algorithm 3.3 Multiplication of 𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

with a coefficient vector 𝒑̂

(Fourier system)

Input: 𝑑 ∈ N spatial dimension
𝒖 ⊆ [𝑑] subset of coordinate indices
𝑁 ∈ 2N even bandwidth parameter
𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ T𝑑 𝑀 nodes in the domain
𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ(per)

𝒖 ,𝑁
∈ C(𝑁−1)|𝒖 | coefficients

1: 𝑵 ←− (𝑁, 𝑁, . . . , 𝑁) ∈ (2N)|𝒖 |
2: 𝒳̃ ←− 𝒳𝒖 = {(𝒙1)𝒖 , (𝒙2)𝒖 , . . . , (𝒙𝑀)𝒖}
3: for ℓ ∈ ℐ(exp)

𝑵 do
4: if supp ℓ = [|𝒖 |] then
5: 𝒌 ←− (0)𝑑𝑠=1
6: 𝒌𝒖 ←− ℓ
7: 𝑔̂ℓ ←− 𝑝̂𝒌
8: else
9: 𝑔̂ℓ ←− 0

10: end if
11: end for
12: 𝒈̂ ←− (𝑔̂ℓ)ℓ∈ℐ(exp)

𝑵

13: 𝒑←− 𝑭𝒳̃
ℐ(exp)
𝑵

𝒈̂ ◁ compute via |𝒖 |-variate NFFT

Output: 𝒑 ∈ C𝑀 result of the multiplication 𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

𝒑̂

Arithmetic cost: 𝑁 |𝒖 | log 𝑁
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Algorithm 3.4 Multiplication of (𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

)H with a coefficient vector 𝒉

(Fourier system)

Input: 𝑑 ∈ N spatial dimension
𝒖 ⊆ [𝑑] subset of coordinate indices
𝑁 ∈ 2N even bandwidth parameter
𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ T𝑑 𝑀 nodes in the domain
𝒉 = (ℎ𝒙)𝒙∈𝒳 ∈ C𝑀 coefficients

1: 𝑵 ←− (𝑁, 𝑁, . . . , 𝑁) ∈ (2N)|𝒖 |
2: 𝒳̃ ←− 𝒳𝒖 = {(𝒙1)𝒖 , (𝒙2)𝒖 , . . . , (𝒙𝑀)𝒖}
3: 𝒉̂ =

(
ℎ̂𝒌

)
𝒌∈ℐ(exp)

𝑵

←−
(
𝑭𝒳̃
ℐ(exp)
𝑵

)H

𝒉 ◁ compute via |𝒖 |-variate adjoint

NFFT
Output:

(
ℎ̂ℓ

)
ℓ∈P𝒖ℐ(per)

𝒖 ,𝑁

∈ C𝑀 result of multiplication (𝑭𝒳𝒖
P𝒖ℐ(per)

𝒖 ,𝑁

)H𝒉
Arithmetic cost: 𝑁 |𝒖 | log 𝑁
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with 𝑝̂𝒌(ℓ) = 𝑝̂𝒌 for the index 𝒌 ∈ N𝑑
0 with supp 𝒌 = 𝒖 and 𝒌𝒖 = ℓ.

However, the basis functions 𝜑(𝑑), cheb
𝒌 do not coincide with the cosine

system 𝜉(cos)
𝒌 from (3.2), but we have

𝜑(𝑑), cheb
𝒌 (𝒙) =

√
2
|supp 𝒌 |

𝜉(cos)
𝒌

(arccos 𝒙
2𝜋

)
where the arccos is applied elementwise to 𝒙. We denote the trans-
formed nodes with

𝒳̃ =

{
1

2𝜋 arccos (𝒙1)𝒖 ,
1

2𝜋 arccos (𝒙2)𝒖 , . . . ,
1

2𝜋 arccos (𝒙𝑀)𝒖
}
.

As a result we have the identity

𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

𝒑̂ =

(
𝑭𝒳̃ℐ(cos)

𝑵

· diag
(√

2
|supp ℓ |)

ℓ∈ℐ(cos)
𝑵

)
𝒈̂ .

Algorithm 3.5 summarizes our method with the most notable change
that the nodes𝒳 have to be transformed and we require a multiplication
with a diagonal matrix. However, both operations are possible in linear
time which is why the complexity of the algorithm is still dominated
by the |𝒖 |-variate NFCT.

For the transposed case, i.e., the multiplication of (𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

)T with

a vector 𝒉 ∈ R𝑀 , we compute the transposed |𝒖 |-variate NFCT and
denote the result as

𝒉̂ =

(
ℎ̂ℓ

)
ℓ∈ℐ(cos)

𝑵

= diag
(√

2
|supp ℓ |)

ℓ∈ℐ(cos)
𝑵

(
𝑭𝒳̃ℐ(cos)

𝑵

)T

𝒉.

As in the periodic case, this provides us with the result of the original
matrix-vector multiplication since

(𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

)T𝒉 =

(
ℎ̂ℓ

)
ℓ∈P𝒖ℐ(nper)

𝒖 ,𝑁

.

The method is summarized in Algorithm 3.6.
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Algorithm 3.5 Multiplication of 𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

with a coefficient vector 𝒑̂

(Chebyshev system)

Input: 𝑑 ∈ N spatial dimension
𝒖 ⊆ [𝑑] subset coordinate indices
𝑁 ∈ N bandwidth parameter
𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ [−1, 1]𝑑 𝑀 nodes in the domain
𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ(nper)

𝒖 ,𝑁
∈ R(𝑁−1)|𝒖 | coefficients

1: 𝑵 ←− (𝑁, 𝑁, . . . , 𝑁) ∈ N|𝒖 |
2: 𝒳̃ ←− 𝒳𝒖 =

{ 1
2𝜋 arccos (𝒙1)𝒖 , 1

2𝜋 arccos (𝒙2)𝒖 , . . . , 1
2𝜋 arccos (𝒙𝑀)𝒖

}
3: for ℓ ∈ ℐ(cos)

𝑵 do
4: if supp ℓ = [|𝒖 |] then
5: 𝒌 ←− (0)𝑑𝑠=1
6: 𝒌𝒖 ←− ℓ

7: 𝑔̂ℓ ←−
√

2
|𝒖 | · 𝑝̂𝒌

8: else
9: 𝑔̂ℓ ←− 0

10: end if
11: end for
12: 𝒈̂ ←− (𝑔̂ℓ)ℓ∈ℐ(cos)

𝑵

13: 𝒑̃←− 𝑭𝒳̃
ℐ(cos)
𝑵

𝒈̂ ◁ compute via |𝒖 |-variate NFCT

Output: 𝒑 ∈ R𝑀 result of the multiplication 𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

𝒑̂

Arithmetic cost: 𝑁 |𝒖 | log 𝑁
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Algorithm 3.6 Multiplication of (𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

)T with a coefficient vector 𝒉

(Chebyshev system)

Input: 𝑑 ∈ N spatial dimension
𝒖 ⊆ [𝑑] subset coordinate indices
𝑁 ∈ N bandwidth parameter
𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ [−1, 1]𝑑 𝑀 nodes in the domain
𝒉 = (ℎ𝒙)𝒙∈𝒳 ∈ R𝑀 coefficients

1: 𝑵 ←− (𝑁, 𝑁, . . . , 𝑁) ∈ N|𝒖 |
2: 𝒳̃ ←− 𝒳𝒖 =

{ 1
2𝜋 arccos (𝒙1)𝒖 , 1

2𝜋 arccos (𝒙2)𝒖 , . . . , 1
2𝜋 arccos (𝒙𝑀)𝒖

}
3: 𝒉̂ =

(
ℎ̂𝒌

)
𝒌∈ℐ(cos)

𝑵

←−
(
𝑭𝒳̃
ℐ(cos)
𝑵

)T

𝒉 ◁ compute via |𝒖 |-variate

transposed NFCT
4: 𝒉̂ ← diag

(√
2
|supp ℓ |)

ℓ∈ℐ(cos)
𝑵

𝒉̂ ◁ in linear time

Output:
(
ℎ̂ℓ

)
ℓ∈P𝒖ℐ(per)

𝒖 ,𝑁

∈ R𝑀 result of multiplication (𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

)T𝒉
Arithmetic cost: 𝑁 |𝒖 | log 𝑁
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3.2.2.3 Grouped Transformations with the Half-Period Cosine System

The half-period cosine system 𝜑(𝑑), cos
𝒌 (𝒙) from (2.10) is a basis in

L2([0, 1]𝑑) with non-periodic functions 𝑓 : [0, 1]𝑑 → R. As for the
other systems, we propose a fast algorithm for the multiplication

𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

𝒑̂ with 𝑁 ∈ 2N, 𝒖 ⊆ [𝑑],𝒳 ⊆ [0, 1]𝑑 , and

𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ(nper)
𝒖 ,𝑁
∈ R(𝑁−1)|𝒖 | .

Here, there is only one difference to the Chebyshev system from
before: We have a different relationship between the basis functions
𝜑(𝑑), cos

𝒌 and the cosine system 𝜉(cos)
𝒌 , i.e.,

𝜑(𝑑), cos
𝒌 (𝒙) =

√
2
|supp 𝒌 |

𝜉(cos)
𝒌

(
1
2𝒙

)
.

As a result, we use Algorithm 3.5 for the multiplication 𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

𝒑̂ and

modify line 2 to

𝒳̃ ←− 𝒳𝒖 =

{
1
2 (𝒙1)𝒖 ,

1
2 (𝒙2)𝒖 , . . . ,

1
2 (𝒙𝑀)𝒖

}
. (3.18)

Similarly, for the transposed multiplication (𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

)T𝒉 we use Algo-

rithm 3.6 and again modify line 2 to (3.18).

3.2.2.4 Grouped Transformations with the Transformed Cosine
System

The transformed cosine system 𝜑(𝑑), std𝒌 (𝒙) from (2.15) is a basis in
L2(R𝑑 , 𝜔(𝑑), std)with non-periodic functions 𝑓 : R𝑑 → R. Here, we also
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propose a fast algorithm for the multiplication

𝑭𝒳𝒖
P𝒖ℐ(nper)

𝒖 ,𝑁

𝒑̂ with 𝑁 ∈ 2N, 𝒖 ⊆ [𝑑],𝒳 ⊆ R𝑑 , and

𝒑̂ = (𝑝̂𝒌)𝒌∈ℐ(nper)
𝒖 ,𝑁
∈ R(𝑁−1)|𝒖 | .

For the relationship between the basis functions 𝜑(𝑑), std𝒌 (𝒙) and the
cosine system 𝜉(cos)

𝒌 we have

𝜑(𝑑), std𝒌 (𝒙) =
√

2
|supp 𝒌 |

𝜉(cos)
𝒌

(
1
2𝜓
−1(𝒙)

)
with the transformation function 𝜓−1 from (2.14). We again use Algo-
rithm 3.5 for the multiplication 𝑭𝒳𝒖

P𝒖ℐ(nper)
𝒖 ,𝑁

𝒑̂ and modify line 2 to

𝒳̃ ←− 𝒳𝒖 =

{
1
2

(
𝜓−1(𝒙1)

)
𝒖
,
1
2

(
𝜓−1(𝒙2)

)
𝒖
, . . . ,

1
2

(
𝜓−1(𝒙𝑀)

)
𝒖

}
.

(3.19)
The transposed multiplication (𝑭𝒳𝒖

P𝒖ℐ(nper)
𝒖 ,𝑁

)T𝒉 can be realized with Algo-

rithm 3.6 where line 2 is again modified as in (3.19).
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3.2.3 Implementation

The grouped transformations have been implemented in the publicly
available package GroupedTransforms.jl for the programming language
Julia, see [SB]. The package uses NFFT3.jl, see [Schb], for the computa-
tion of the low-dimensional transformation and utilizes parallelization
to distribute their computation to different Julia workers depending on
the core count of the machine.

In the following, we show code examples for the usage of the package
on the examples from Figure 3.1. We begin with the subset of ANOVA
terms 𝑈 (3,3) and the bandwidth vector 𝑵 = [12, 8, 4]. The transforma-
tion objects F_exp and F_cos can be used just like matrices although
there is never a matrix constructed explicitly.✞ ☎
using Distributed
addprocs(3) # parallelization with 3 workers

@everywhere using GroupedTransforms
using LinearAlgebra

d = 4
ds = 3

M = 1_000 # number of nodes
X = rand(d, M) .- 0.5 # draw nodes at random
N = [12, 8, 4]

# initalize GroupedTransform with exponential functions
F_exp = GroupedTransform("exp", d, ds, N, X)

# generate coefficient vector (initalized with zeros)
fhat = GroupedCoefficients(F_exp.setting)

for i = 1:length(F_exp.setting)
u = F_exp.setting[i][:u]
fhat[u] = rand(ComplexF64, size(fhat[u])) # generate coefficients

↩→ at random
end

f = F_exp * fhat # apply grouped transform to coefficient vector

h = rand(ComplexF64, length(f))
h_hat = F_exp' * h # adjoint transform

# initalize GroupedTransform with cosine functions
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F_cos = GroupedTransform("cos", d, ds, N, X)

# generate coefficient vector (initalized with zeros)
fhat = GroupedCoefficients(F_cos.setting)

for i = 1:length(F_cos.setting)
u = F_cos.setting[i][:u]
fhat[u] = rand(Float64, size(fhat[u])) # generate coefficients at

↩→ random
end

f = F_cos * fhat # apply grouped transform to coefficient vector

h = rand(Float64, length(f))
h_hat = F_cos' * h # adjoint transform✝ ✆

Now, we show how to apply a grouped transformation with the
subset of ANOVA terms 𝑈 = {∅, {1}, {2, 3}, {1, 2, 3}} and the same
bandwidth vector 𝑵 = [12, 8, 4] as before.✞ ☎
using Distributed
addprocs(3) # parallelization with 3 workers

@everywhere using GroupedTransforms
using LinearAlgebra

d = 4
ds = 3

M = 1_000 # number of nodes
X = rand(d, M) .- 0.5 # draw nodes at random

U = Vector{Vector{Int64}}(undef, 3)
U[1] = []
U[2] = [1]
U[3] = [2, 3]
U[4] = [1,2,3]

N = [12, 8, 4]

# initalize GroupedTransform with exponential functions
F_exp = GroupedTransform("exp", U, N, X)

# generate coefficient vector (initalized with zeros)
fhat = GroupedCoefficients(F_exp.setting)

for i = 1:length(F_exp.setting)
u = F_exp.setting[i][:u]
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fhat[u] = rand(ComplexF64, size(fhat[u])) # generate coefficients
↩→ at random

end

f = F_exp * fhat # apply grouped transform to coefficient vector

h = rand(ComplexF64, length(f))
h_hat = F_exp' * h # adjoint transform

# initalize GroupedTransform with cosine functions
F_cos = GroupedTransform("cos", U, N, X)

# generate coefficient vector (initalized with zeros)
fhat = GroupedCoefficients(F_cos.setting)

for i = 1:length(F_cos.setting)
u = F_cos.setting[i][:u]
fhat[u] = rand(Float64, size(fhat[u])) # generate coefficients at

↩→ random
end

f = F_cos * fhat # apply grouped transform to coefficient vector

h = rand(Float64, length(f))
h_hat = F_cos' * h # adjoint transform✝ ✆





4
High-Dimensional Explainable ANOVA

Approximation

We have collected the main ingredients and are now ready to introduce
our method for the explainable approximation of high-dimensional
functions from scattered data that has been presented in [PS21a, PS21b,
PS22a, PS22b]. The ANOVA decomposition introduced in Chapter 2
represents a crucial building part of the method and the related global
sensitivity indices or Sobol indices will be our main tool for interpretabil-
ity. On the other hand, the grouped transformations from Chapter 3
are important for the realization of fast transformations with the special
grouped index sets in order to achieve a fast approximation method.

In Section 4.1, we go into detail about the central least-squares problem
which we use to approximate the function via the approximation of
its basis coefficients. A main factor in these considerations is the
amount of nodes compared to the amount of coefficients we aim to
recover. This factor is also referred to as oversampling factor. If the
factor is smaller than one, we are in an underdetermined setting
and otherwise overdetermined. For the overdetermined setting, we
investigate properties of the Moore-Penrose inverse and discuss the

95
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necessary oversampling in order to achieve bounds on its spectral norm
with high probability when we have nodes drawn at random. The
results are based on the matrix Chernoff bound by Tropp in [Tro11].
In the underdetermined setting, we discuss the addition of Tikhonov
regularization that simultaneously allows us to incorporate a priori
smoothness information if it is known. Section 4.2 introduces the
method which culminates in Algorithm 4.1. Here, we also discuss
details of the interpretability and multiple ways to determine a subset of
ANOVA terms with large importance to the function. Finally, Section 4.3
is concerned with the errors of the method in the case of function
recovery. We first consider the setting of Sobolev type spaces and
weighted Wiener spaces where we are looking for worst-case bounds on
the L2 error. We extend results from [KUV21, MU21] to our setting for
the Sobolev type space achieve the bound in Theorem 4.10. Moreover,
we are able to prove a new result for the L2 worst-case error in weighted
Wiener spaces in Theorem 4.11. Additionally, we are able to bound the
L2 and L∞ error for individual function approximation in Theorem 4.12
and Theorem 4.13, respectively. Since there are no worst-case bounds
in the L∞ setting, we may use the individual results for functions in
smoothness spaces yielding Corollary 4.14 and Corollary 4.15.

4.1 Least-Squares Approximation with
Regularization

In this section, we discuss the crucial part for our approximation frame-
work which we will present in Section 4.2. We consider a product space
L2(D𝑑 , 𝜔(𝑑)) from Definition 2.1 with an orthonormal basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑
of continuous functions. Note that the we require the system to be a
bounded orthonormal system (BOS) with BOS constant

𝐶BOS B sup
𝒌∈Z𝑑




𝜑(𝑑)𝒌 



L∞(D𝑑)

< ∞ (4.1)

which all of the examples from Section 2.1.2 are. For now, we assume
that there is a fixed subset of ANOVA terms 𝑈 ⊆ 𝒫([𝑑]) and a finite



4.1 Least-Squares Approximation with Regularization 97

grouped index set ℐ𝑵 (𝑈) with parameter vector 𝑵 = (𝑁𝒖)𝒖∈𝑈 , cf.
Definition 3.3. Here, the additional constant

𝐶supp B sup
𝒌∈ℐ𝑵 (𝑈)




𝜑(𝑑)𝒌 



L∞(D𝑑)

< 𝐶BOS (4.2)

which can always be estimated by the BOS constant will be relevant.

Remark 4.1. For the examples from Section 2.1.2, we have

𝐶BOS =


1 : 𝜑(𝑑)𝒌 = 𝜑(𝑑), exp ,√

2
𝑑

: 𝜑(𝑑)𝒌 = 𝜑(𝑑), cheb ,√
2
𝑑

: 𝜑(𝑑)𝒌 = 𝜑(𝑑), cos ,√
2
𝑑

: 𝜑(𝑑)𝒌 = 𝜑(𝑑), std ,

and

𝐶supp =


1 : 𝜑(𝑑)𝒌 = 𝜑(𝑑), exp ,√

2
𝑠

: 𝜑(𝑑)𝒌 = 𝜑(𝑑), cheb ,√
2
𝑠

: 𝜑(𝑑)𝒌 = 𝜑(𝑑), cos ,√
2
𝑠

: 𝜑(𝑑)𝒌 = 𝜑(𝑑), std.

with 𝑠 = maxℐ𝑵 (𝑈) |supp 𝒌 |. In the special case of 𝑈 = 𝑈 (𝑑,𝑑𝑠 ), we get 𝑠 = 𝑑𝑠
for superposition threshold 𝑑𝑠 .

In Section 2.3, we have seen that we are able to truncate the ANOVA
decomposition of a function 𝑓 : D𝑑 → C in L2(D𝑑 , 𝜔(𝑑)) such that

𝑓 ≈ T𝑈 𝑓 =
∑
𝒖∈𝑈

𝑓𝒖 =
∑
𝒌∈Z𝑑

supp 𝒌∈𝑈

c𝒌( 𝑓 )𝜑(𝑑)𝒌 .

However, we have infinitely many indices in the set {𝒌 ∈ Z𝑑 : supp 𝒌 ∈
𝑈} and therefore infinitely many basis coefficients c𝒌( 𝑓 ). Using our
grouped index set

ℐ𝑵 (𝑈) ⊆ {𝒌 ∈ Z𝑑 : supp 𝒌 ∈ 𝑈},



98 4 High-Dimensional Explainable ANOVA Approximation

we truncate the basis expansion of T𝑈 𝑓 to a finite linear combination of
basis functions. This yields the partial sum, cf. Section 2.1.3,

T𝑈 𝑓 ≈ Sℐ𝑵 (𝑈) 𝑓 =
∑

𝒌∈ℐ𝑵 (𝑈)
c𝒌( 𝑓 )𝜑(𝑑)𝒌 .

Here, we have combined the ANOVA truncation with our grouped
index set to a combined truncation operation.

Our scenario is scattered data approximation using a set of 𝑀 ∈ N
arbitrary nodes 𝒳 B {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑 and a vector of function
evaluations 𝒇 = ( 𝑓 (𝒙 𝑗))𝑀𝑗=1 ∈ C𝑀 . It is our goal to find an approximation
for the function 𝑓 , i.e., approximations for the coefficients c𝒌( 𝑓 ), 𝒌 ∈
ℐ𝑵 (𝑈).

First of all, we notice that we may write the evaluation of the partial
sum Sℐ𝑵 (𝑈) 𝑓 at the nodes 𝒳 as a matrix-vector multiplication(

Sℐ𝑵 (𝑈) 𝑓 (𝒙)
)
𝒙∈𝒳 = 𝑭𝒳ℐ𝑵 (𝑈) 𝒄̂

with matrix 𝑭𝒳ℐ𝑵 (𝑈) =
(
𝜑(𝑑)𝒌 (𝒙)

)
𝒙∈𝒳 ,𝒌∈ℐ𝑵 (𝑈)

,

and coefficients 𝒄̂ = (c𝒌( 𝑓 ))𝒌∈ℐ𝑵 (𝑈), see also (3.15). Since we assume
that Sℐ𝑵 (𝑈) 𝑓 ≈ 𝑓 , we may also assume that Sℐ𝑵 (𝑈) 𝑓 (𝒙) ≈ 𝑓 (𝒙) for 𝒙 ∈ 𝒳.
The errors caused by this truncation will be addressed in Section 4.3.
Now, it is our goal to determine the approximation via solving the
least-squares problem

min
𝒇 ∈C|ℐ𝑵 (𝑈)|




 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒇



2

ℓ2
. (4.3)

We denote its solution as 𝒇sol = ( 𝑓𝒌)𝒌∈ℐ𝑵 (𝑈) and call 𝑓𝒌 , 𝒌 ∈ ℐ𝑵 (𝑈),
approximate coefficients since ideally we have 𝑓𝒌 ≈ c𝒌( 𝑓 ). Then the linear
combination

S𝒳ℐ𝑵 (𝑈) 𝑓 B
∑

𝒌∈ℐ𝑵 (𝑈)
𝑓𝒌 𝜑

(𝑑)
𝒌 (4.4)

will be referred to as approximate partial sum since S𝒳ℐ𝑵 (𝑈) 𝑓 ≈ Sℐ𝑵 (𝑈) 𝑓 .
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Solving the problem (4.3) is equivalent to solving the normal equa-
tions (

𝑭𝒳ℐ𝑵 (𝑈)
)H

𝑭𝒳ℐ𝑵 (𝑈) 𝒇sol =
(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝒇 . (4.5)

If the matrix (𝑭𝒳ℐ𝑵 (𝑈))H𝑭
𝒳
ℐ𝑵 (𝑈) is invertible, the unique solution is given

as

𝒇sol =

((
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝑭𝒳ℐ𝑵 (𝑈)

)−1 (
𝑭𝒳ℐ𝑵 (𝑈)

)H

︸                                  ︷︷                                  ︸
C

(
𝑭𝒳ℐ𝑵 (𝑈)

)†
𝒇

with (𝑭𝒳ℐ𝑵 (𝑈))† being the Moore-Penrose inverse. In Section 4.1.1 we con-
sider when the matrix (𝑭𝒳ℐ𝑵 (𝑈))H𝑭

𝒳
ℐ𝑵 (𝑈) is invertible under the condition

that we are in the overdetermined case, i.e., we have |𝒳| ≥ |ℐ𝑵 (𝑈)|. For
the underdetermined case, |𝒳| < |ℐ𝑵 (𝑈)|, we modify the problem (4.3)
and introduce Tikhonov regularization in Section 4.1.2.

For now, we assume that problem (4.3) has a unique solution. We
determine that solution using the well-known iterative LSQR algorithm
from Paige and Saunders, see [PS82, Bjö96]. The algorithm is an adap-
tion of the conjugate gradients method, see e.g. [HS52], for rectangular
matrices. While the residuals are the same as applying the conjugate
gradient method to the normal equations (4.5), LSQR has better nu-
meric properties and is more reliable in this case, cf. [BBC+94]. A main
advantage we are able to exploit is that LSQR does not need the system
matrix 𝑭𝒳ℐ𝑵 (𝑈) itself. We only need two oracle functions: the first function
returns the result of the multiplication of 𝑭𝒳ℐ𝑵 (𝑈) with a given vector
and the second function does the same for the adjoint (or transposed)
(𝑭𝒳ℐ𝑵 (𝑈))H. For this we may rely on the grouped transformation, see
Algorithm 3.1, and its adjoint version, see Algorithm 3.2. One iteration
of the LSQR algorithm is therefore in the same complexity class as the
grouped transformation.
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4.1.1 The Overdetermined Case
In this section, we consider the overdetermined case for problem (4.3),
i.e., we have more nodes in 𝒳 than indices in ℐ𝑵 (𝑈), i.e.,

𝑀 = |𝒳| ≥ |ℐ𝑵 (𝑈)| = 1 +
∑
∅≠𝒖∈𝑈

(𝑁𝒖 − 1)|𝒖 | ,

see Lemma 3.4. The ratio |𝒳| /|ℐ𝑵 (𝑈)| will be referred to as the oversam-
pling factor. In this case, our problem has a unique solution when the

matrix 𝑭𝒳ℐ𝑵 (𝑈) has full rank since we then have that
(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝑭𝒳ℐ𝑵 (𝑈) is

invertible. In the following, we aim to consider requirements on the
nodes 𝒳 and the parameter vector 𝑵 such that we can prove with high
probability that 𝑭𝒳ℐ𝑵 (𝑈) has full rank.

Here, we discuss the properties of our random matrix 𝑭𝒳ℐ𝑵 (𝑈), i.e., the
nodes 𝒳 have been drawn i.i.d. at random according to a probability
distribution. One requirement on the space L2(D𝑑 , 𝜔(𝑑)) from Chapter 2
is that the density 𝜔(𝑑) has to be a probability density. We make the
connection in the sense that we consider the properties of the matrix
𝑭𝒳ℐ𝑵 (𝑈) if the nodes 𝒳 have been drawn according to the distribution
defined by the density 𝜔(𝑑). In the case 𝜔(𝑑) ≡ 1, we would obtain
uniformly distributed nodes. With this setting we are in a special case
of [KUV21] and [MU21] which dealt thoroughly with the properties of
such matrices making use of concentration inequalities and specifically
the matrix Chernoff bound by Tropp, cf. [Tro11].

We approach the problem by considering the matrix

𝑯𝒳ℐ𝑵 (𝑈) B
1
|𝒳|

(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝑭𝒳ℐ𝑵 (𝑈).

If we are able to bound its eigenvalues, we immediately obtain a bound
on the spectral norm of the Moore-Penrose inverse of 𝑭𝒳ℐ𝑵 (𝑈).

Theorem 4.2. Let all of the nodes in 𝒳 be drawn i.i.d. at random according
to the probability density 𝜔(𝑑). For an 𝑟 > 0 the eigenvalues of the matrix
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𝑯𝒳ℐ𝑵 (𝑈) are greater than 1/2 with probability at least 1 − |𝒳|−𝑟 if

|ℐ𝑵 (𝑈)| ≤ |𝒳|
7𝐶2

supp (𝑟 + 1) log |𝒳| (4.6)

with 𝐶supp from (4.2). In particular, we obtain an upper bound on the spectral
norm of the Moore-Penrose inverse



(𝑭𝒳ℐ𝑵 (𝑈))†





ℓ2→ℓ2

≤
√

2
|𝒳| .

Proof. The theorem is an application of [MU21, Theorem 2.3]. They use
the value

𝑁(ℐ𝑵 (𝑈)) B sup
𝒙∈D𝑑

∑
𝒌∈ℐ𝑵 (𝑈)

���𝜑(𝑑)𝒌 (𝒙)���2 ,
see also [Nev79]. In our case, we may estimate it by the constant 𝐶supp
from (4.2) as follows

sup
𝒙∈D𝑑

∑
𝒌∈ℐ𝑵 (𝑈)

���𝜑(𝑑)𝒌 (𝒙)���2 ≤ ∑
𝒌∈ℐ𝑵 (𝑈)

sup
𝒙∈D𝑑

���𝜑(𝑑)𝒌 (𝒙)���2 ≤ ∑
𝒌∈ℐ𝑵 (𝑈)

𝐶2
supp

= 𝐶2
supp · |ℐ𝑵 (𝑈)| .

This yields our desired result.

Clearly, a direct consequence of Theorem 4.2 is that the matrix(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝑭𝒳ℐ𝑵 (𝑈) is invertible. Simultaneously, we have obtained an up-

per bound on the spectral norm of the Moore-Penrose inverse
(
𝑭𝒳ℐ𝑵 (𝑈)

)†
which will be useful when considering approximation errors in Sec-
tion 4.3. The following corollary provides a lower bound on the spectral
norm of the Moore-Penrose inverse.
Corollary 4.3. Let all of the nodes in 𝒳 be drawn i.i.d. at random according
to the probability density 𝜔(𝑑). Let 𝑟 > 0 with

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (𝑟 + 1) log |𝒳| (4.7)
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with 𝐶supp from (4.2). Then we obtain the lower bound on the spectral norm
of the Moore-Penrose inverse



(𝑭𝒳ℐ𝑵 (𝑈))†





ℓ2→ℓ2

≥
√

2
3 |𝒳|

with probability at least 1 − |𝒳|−𝑟 .
Proof. This is the application of [MU21, Corollary 2.4] as a consequence
of [KUV21, Proposition 3.1].

Both results are based on the matrix Chernoff bound by Tropp, see
[Tro11]. The difference between lies in the constant factor 1/7 in (4.6)
and 1/10 in (4.7). In summary, we have shown that the problem has
a unique solution with high-probability if the oversampling factor is
large enough.

The important message from Theorem 4.2 and Corollary 4.3 is that if
the nodes in 𝒳 are distributed according to the probability density 𝜔(𝑑)
of our space L2(D𝑑 , 𝜔(𝑑)), then our matrix is well-conditioned. In our
setting, we even obtain an improvement to [MU21] since we need less
oversampling because of our constant 𝐶supp < 𝐶BOS. In the periodic
case with the Fourier system from Section 2.1.2.1 as well as in the non-
periodic case with the half-period cosine basis from Section 2.1.2.3, we
assume uniformly distributed nodes. For the Chebyshev system from
Section 2.1.2.2, we assume a distribution according to the Chebyshev
density. For the transformed cosine from Section 2.1.2.4, this was a main
motivation to even consider this system. The space has the probability
density function of the standard normal distribution and can therefore
deal with data that has zero mean and variance one. This fact will be
discussed more thoroughly in Section 4.2.

Remark 4.4. In [PS22a] the Chebyshev system from Section 2.1.2.2 was
considered. Here, we need our nodes𝒳 to be distributed according to Chebyshev
probability density

𝜔(𝑑), cheb(𝒙) =
𝑑∏

𝑠=1

1
𝜋
√

1 − 𝑥2
𝑠

.
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However, it was investigated how one could modify the least-squares system in
order to use uniformly distributed nodes𝒳 together with the Chebyshev system.
The idea is to introduce a padding parameter 𝜃 ∈ (0, 1) and use uniformly
distributed data in [−1 + 𝜃, 1 − 𝜃]. Then we apply a preconditioner that has
the Chebyshev density on the diagonal to the system matrix. The choice of 𝜃
influences both the condition of the matrix and the necessary oversampling. A
larger 𝜃 will have a negative effect on the condition number while a smaller
theta requires a higher oversampling.

4.1.2 The Underdetermined Case and Smoothness
Information

In this section, we consider the case of oversampling factor |𝒳| /|ℐ𝑵 (𝑈)|
smaller than one, i.e.,

𝑀 = |𝒳| < |ℐ𝑵 (𝑈)| = 1 +
∑
∅≠𝒖∈𝑈

(𝑁𝒖 − 1)|𝒖 | .

In other words, we aim to reconstruct more coefficients |ℐ𝑵 (𝑈)| than we
have available data points 𝒳. We approach this by modifying problem
(4.3) and add a regularization term, cf. [BPS22], to obtain the new
problem

min
𝒇 ∈C|ℐ𝑵 (𝑈)|




 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒇



2

ℓ2
+ 𝜆




 𝒇 


2

𝑾
(4.8)

for a regularization parameter 𝜆 > 0. Here, for a weight function
𝑤 : ℐ𝑵 (𝑈) → [1,∞), we define the diagonal matrix

𝑾 = diag(𝑤(𝒌) )𝒌∈ℐ𝑵 (𝑈) (4.9)

and the weighted norm 


 𝒇 



𝑾
B

√
𝒇 T 𝑾 𝒇 .

For our diagonal matrix 𝑾 with entries larger than one, we have the
equality 


 𝒇 




𝑾
=

√(√
𝑾 𝒇

)T √
𝑾 𝒇 =




√𝑾 𝒇




ℓ2
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where
√
𝑾 is the element-wise square-root of 𝑾 . This weighted norm

introduces the possibility for us to incorporate a-priori smoothness
information about our problem. If nothing is known, we may choose
𝑤 ≡ 1 and obtain a standard Tikhonov regularization, cf. [ORA16].
However, if we know that 𝑓 is an element of a Sobolev type space,
i.e., 𝑓 ∈ H𝑣(D𝑑 , 𝜔(𝑑)) for a weight 𝑣 : Z𝑑 → [1,∞), we may define
𝑤(𝒌) = 𝑣(𝒌) on ℐ𝑵 (𝑈). Using such a smoothness weight leads to a
smaller search space which can be seen by using the equivalent Ivanov
formulation of the regularization functional, cf. [ORA16], where we
minimize the data fitting term subject to a bound on the Sobolev norm.
This may compensate the lack of information from a small node set, i.e.,
a small oversampling factor.

Problem (4.8) is equivalent to

min
𝒇 ∈C|ℐ𝑵 (𝑈)|






( 𝒇0)
−

(
𝑭𝒳ℐ𝑵 (𝑈)√
𝜆
√
𝑾

)
𝒇






2

ℓ2

.

and therefore the normal equations become((
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝑭𝒳ℐ𝑵 (𝑈) + 𝜆𝑾

)
𝒇sol =

(
𝑭𝒳ℐ𝑵 (𝑈)

)H
𝒇 .

This problem always has a unique solution since the matrix on the
left-hand side is a symmetric positive definite matrix. We have achieved
this trough shifting the eigenvalues away from zero. However, the
solution does now depend on the regularization parameter 𝜆. In the
general case, the optimal choice for 𝜆 will be determined using cross-
validation techniques, e.g., with the methods in [BHP20] which allow
for fast computation of the cross-validation score for leave-one out
cross validation in a periodic setting. This score can then be used to
choose a 𝜆 which will be close to the optimal one, i.e., avoiding over- or
underfitting effects. While we introduced this form of regularization
for the underdetermined setting, it may of course also be beneficial if
we are in the overdetermined setting.
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Remark 4.5. If we apply the method to a synthetic test function 𝑓 : D𝑑 → C,
i.e., we have the norm ∥ 𝑓 ∥L2(D𝑑 ,𝜔(𝑑)) of the function as well as the basis
coefficients c𝒌( 𝑓 ), 𝒌 ∈ ℐ𝑵 (𝑈), available, it is possible to compute the error


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))

= ∥ 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) +
∑

𝒌∈ℐ𝑵 (𝑈)

��� 𝑓𝒌 − c𝒌( 𝑓 )
���2 − ∑

𝒌∈ℐ𝑵 (𝑈)
|c𝒌( 𝑓 )|2 .

Choosing 𝜆 according to this error will clearly yield the better choice. However,
this error is in general not available and the strategy therefore not always
feasible.

If we choose 𝑤 ≡ 1 and therefore a Tikhonov regularization, we have
for the norm of the Moore-Penrose inverse




((𝑭𝒳ℐ𝑵 (𝑈))H

𝑭𝒳ℐ𝑵 (𝑈) + 𝜆𝑰
)−1 (

𝑭𝒳ℐ𝑵 (𝑈)
)H







ℓ2

= max
𝑖=1,2,...,|ℐ𝑵 (𝑈)|

𝜇𝑖

𝜇2
𝑖 + 𝜆

with 𝜇1 , 𝜇2 , . . . , 𝜇|ℐ𝑵 (𝑈)| the singular values of 𝑭𝒳ℐ𝑵 (𝑈).

Remark 4.6. It is possible to use different forms of regularization for our
least-squares problem. In [BPS22] the use of a group lasso approach, see e.g.
[YL06], was discussed. This regularization promotes sparsity in the ANOVA
terms 𝑓𝒖 , 𝒖 ∈ 𝑈 , and may therefore discard unimportant terms.
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4.2 Explainable Method, Attribute Ranking and
Active Set Detection

With every preparation complete and every prerequisite discussed,
we now introduce the explainable ANOVA approximation method
for high-dimensional functions in the scattered data setting. First of
all, we assume that we have a given set of 𝑀 scattered data nodes
𝒳 B {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑 and values 𝒚 = (𝑦𝑖)𝑀𝑖=1 ∈ C𝑀 . We denote
the data also as tuples

𝐷 B {(𝒙1 , 𝑦1), (𝒙2 , 𝑦2), . . . , (𝒙𝑀 , 𝑦𝑀)} ⊆ D𝑑 × C. (4.10)

We then assume that there exists a continuous function 𝑓 : D𝑑 → C in
L2(D𝑑 , 𝜔(𝑑)) such that 𝑓 (𝒙𝑖) ≈ 𝒚𝑖 . This is already a very crucial part
in the method. If we aim to approximate a function 𝑓 and we know
that 𝑓 is in a certain space L2(D𝑑 , 𝜔(𝑑)), the setting is clear. However, in
applications we are provided some form of nodes 𝒳̃ ⊆ R𝑑 and values in
C (or R ⊆ C) and we do not have any information what may be the best
choice of space and subsequently basis. In parts, this issue has been
discussed in [PS21b] and [PS22b]. After some necessary preprocessing,
we have the option to apply normalization.

In machine learning, the scale of our features is a key component
in building models. Let us, e.g., take recommendations in online
shopping. We are only able to analyze the customers that actually exist
and what they bought in the shop. However, the features may lie on
immensely different scales. If we measure, e.g., the time a customer
spent in the shop in seconds as well as their age in years, the result
will be a scale that contains values with thousands of seconds and a
scale ranging from up to 90 years. Bringing those features on similar
scales trough normalization may significantly improve performance
of our model. Two common methods for data normalization are min-
max-normalization and Z-score normalization, see e.g. [HTF13]. The
former method will yield data in the interval [0, 1] and is especially
useful if there is an intrinsic upper and lower bound for the values,
e.g., when considering age. If we come back to our previous example,
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the time a customer spends in the shop would be less suitable since
the values may have a wide range and we will probably have very few
people with a significantly small or large time. In this case, the Z-score
normalization makes much more sense. It tells us how many standard
deviations our value lies away from the mean of the data resulting in
a distribution with zero mean and variance one. In summary, if we
apply min-max-normalization to the nodes 𝒳̃, we obtain 𝒳 ⊆ [0, 1]𝑑
and may use the half-period cosine basis from Section 2.1.2.3. Should
we apply Z-score normalization to 𝒳̃, we obtain 𝒳 ⊆ R𝑑 with mean
zero and variance one resulting in the applicability of the transformed
cosine basis from Section 2.1.2.4.

The first step in our method is to truncate the ANOVA decomposition
of our function 𝑓 : D𝑑 → C. We choose truncation by a superposition
threshold 𝑑𝑠 ∈ [𝑑] such that we obtain

𝑓 =
∑
𝒖⊆[𝑑]

𝑓𝒖 ≈
∑
𝒖⊆[𝑑]
|𝒖 |≤𝑑𝑠

𝑓𝒖 = T𝑑𝑠 𝑓 .

This has been discussed thoroughly in Section 2.3. A truncation of this
type makes sense if the function 𝑓 has a low superposition dimension
𝑑(sp)(𝛿) for high accuracy 𝛿, see (2.26). Then we may choose 𝑑𝑠 = 𝑑(sp).
However, the superposition dimension is in general unknown. Here,
we distinguish again between two main cases. If it is our goal to
approximate a function where the smoothness is known, we may
compute the worst-case superposition dimension (2.30) or use the
bounds on it as in Section 2.3. This works, e.g., for the functions of
dominating-mixed and isotropic smoothness. Then we can assume a
low superposition dimension. If we do not have any a-priori information
about the function, we have to choose a superposition threshold 𝑑𝑠 ∈ [𝑑]
or possibly determine one via cross-validation. The second major case
is real data from applications where we just have the nodes 𝒳 and
values 𝒚. Here, the situation is very different. For the complete
generality of problems one cannot make the assumption that we have a
low superposition dimension. However, there are many application
scenarios where numerical experiments successfully showed that this
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is indeed the case, see e.g. [CMO97, HSS+21]. Moreover, it has been
theorized that most real world applications consist only of low-order
interactions relating to sparsity-of-effects, cf. [WH11], or the Pareto
principle. Since we generally do not have a-priori information in
this scenario, we work with low superposition thresholds 𝑑𝑠 and use
cross-validation to improve the choice.

The next step is to truncate the basis expansion of 𝑓 or T𝑑𝑠 𝑓 to achieve
a finite amount of basis functions 𝜑(𝑑)𝒌 and therefore coefficients c𝒌( 𝑓 ).
To this end, we choose a grouped index set ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) with bandwidth
parameters 𝑵 = (𝑁𝑗)𝑑𝑠𝑗=1 ∈ N𝑑𝑠 according to Definition 3.3. We then
have an approximation by a partial sum

𝑓 ≈ T𝑑𝑠 𝑓 ≈ Sℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) 𝑓 =
∑

𝒌∈ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 ))
c𝒌( 𝑓 )𝜑(𝑑)𝒌 ,

see also Section 2.1.3. The choice of𝑵 is again an interesting issue. Any a-
priori information may possibly help this choice. If we have information
about the smoothness of the function, we can find upper bounds on
the truncation error based on the choice of 𝑵 . This will be discussed in
detail in Section 4.3. In the general case without a-priori information,
this parameter has to be chosen via cross-validation techniques again.
However, experiments with real data from applications show that low
bandwidths achieve good results, cf. the experiments in Chapter 6.

Now, we determine approximations for the basis coefficients c𝒌( 𝑓 ),
𝒌 ∈ ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )), as the solution of the (regularized) least-squares prob-
lem

𝒇sol = ( 𝑓𝒌)𝒌∈ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) = arg min
𝒇 ∈C|ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))|




𝒚 − 𝑭𝒳ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) 𝒇



2

ℓ2
+ 𝜆




 𝒇 


2

𝑾
,

(4.11)
cf. (4.8), such that 𝑓𝒌 ≈ c𝒌( 𝑓 ), 𝒌 ∈ ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )). A detailed description of
the solution can be found in Section 4.1. Depending on the oversampling
factor |𝒳| /��ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 ))�� we can decide if we use regularization, i.e.,
𝜆 > 0, or not. If a priori smoothness information is available, it
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can be incorporated via 𝑾 , see Section 4.1.2. We have obtained the
approximation

𝑓 ≈ T𝑑𝑠 𝑓 ≈ Sℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) 𝑓 ≈ S𝒳ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) 𝑓 =
∑

𝒌∈ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 ))
𝑓𝒌 𝜑

(𝑑)
𝒌 .

In the next step, we interpret our approximation S𝒳ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) 𝑓 using
the techniques presented in Section 4.2.1. The goal is to reduce the
number of ANOVA terms such that we may choose more indices for
important terms. In general, the methods from Section 4.2.1 lead to
a subset 𝑈 (active) ⊆ 𝑈 (𝑑,𝑑𝑠 ). The special case of incremental expansion
does both, remove certain terms and also add others of higher order.
Regardless of the specifics, we have obtained a new subset of ANOVA
terms 𝑈 (active) ⊆ 𝒫([𝑑]). In Figure 4.1 we have visualized the process
for a 4-dimensional function.

Why does it make sense to reduce the number of ANOVA terms? The
oversampling factor |𝒳| /|ℐ𝑵 (𝑈)| directly influences the quality of our
model. If the factor is low, i.e., we have a small number of nodes
compared to our number of indices, the model may not yield a good
approximation error, see also Section 4.3. By reducing the number of
ANOVA terms to an active set𝑈 (active), we increase this factor. Moreover,
if some terms are removed, it is also possible to increase the bandwidth
parameters 𝑁𝒖 for terms 𝒖 ∈ 𝑈 (active). This may bring benefits since
those terms have in some way been determined to be important.

Using the set 𝑈 (active), we perform a refitting, i.e., we solve the new
least-squares problem

𝒈̂sol = (𝑔̂𝒌)𝒌∈ℐ𝑴 (𝑈 (active)) = arg min
𝒈̂∈C|ℐ𝑴 (𝑈(active))|




 𝒇 − 𝑭𝒳ℐ𝑴 (𝑈 (active)) 𝒈̂



2

ℓ2
+ 𝜃 ∥ 𝒈̂ ∥2𝑾 ,

(4.12)
as a modified version of (4.11) with different regularization parameter 𝜃.
Here, we have the grouped index setℐ𝑴 (𝑈 (active))with new bandwidths
𝑴 = (𝑀𝒖)𝒖∈𝑈 (active) ∈ N|𝑈 (active) | as in Definition 3.3. Note that also the
matrix 𝑾 now only contains the weights for the indices in ℐ𝑴 (𝑈 (active)).
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Finally, we have obtained the approximation

𝑓 ≈ S𝒳ℐ𝑴 (𝑈 (active)) 𝑓 =
∑

𝒌∈ℐ𝑴 (𝑈 (active))
𝑔̂𝒌 𝜑

(𝑑)
𝒌 . (4.13)

Algorithm 4.1 describes the complete approximation procedure using
a cut-off for the terms by global sensitivity indices as described in
Section 4.2.1 as an example. Note that it is possible to choose any of
the strategies in Section 4.2.1 for obtaining an active set. Moreover, we
can iterate the procedures to obtain an active set multiple times. In this
case, we have to solve a new least-squares problem for every new active
set 𝑈 (active). The method has been implemented as a Julia package, see
[Scha] with all available bases from Section 2.1.2.
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𝑥1

𝑥2

𝑥3

𝑥4

𝑓{1}
𝑓{2}
𝑓{3}
𝑓{4}

𝑓{1,2}
𝑓{1,3}
𝑓{1,4}
𝑓{2,3}
𝑓{2,4}
𝑓{3,4}

𝑓{2,3,4}
𝑓{1,3,4}
𝑓{1,2,4}
𝑓{1,2,3}

𝜚({1}, 𝑓 )
𝜚({2}, 𝑓 )
𝜚({3}, 𝑓 )
𝜚({4}, 𝑓 )
𝜚({1, 2}, 𝑓 )
𝜚({1, 3}, 𝑓 )
𝜚({1, 4}, 𝑓 )
𝜚({2, 3}, 𝑓 )
𝜚({2, 4}, 𝑓 )
𝜚({3, 4}, 𝑓 )
𝜚({2, 3, 4}, 𝑓 )
𝜚({1, 3, 4}, 𝑓 )
𝜚({1, 2, 4}, 𝑓 )
𝜚({1, 2, 3}, 𝑓 )

∑

Figure 4.1: Explainable ANOVA network of a function 𝑓 : D4 → C for
superposition threshold 𝑑𝑠 = 3. We visualize the different
ANOVA terms 𝑓𝒖 for |𝒖 | = 1 in orange, |𝒖 | = 2 in magenta
and for |𝒖 | = 3 in blue. The related global sensitivity indices
𝜚(𝒖 , 𝑓 ) serve as interpretable quantity for the ANOVA term.
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Algorithm 4.1 ANOVA approximation method

Input: 𝒳 ⊆ D𝑑 finite node set, |𝒳| = 𝑀
𝒚 ∈ C𝑀 function values
𝑑𝑠 ∈ [𝑑] superposition threshold
L2(D𝑑 , 𝜔(𝑑)) space with complete ONS, cf. Sec. 2.1.2

1: Choose bandwidth parameters 𝑵 = (𝑁𝑗 )𝑑𝑠𝑗=1.
2: Choose regularization parameters 𝜆𝑖 ∈ [0,∞), 𝑖 = 1, 2, . . . , 𝑛.
3: if a priori smoothness information via weight 𝑤 : Z𝑑 → [1,∞) is known then
4: 𝒘 ←− (𝑤(𝒌))

𝒌∈ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))
5: else
6: 𝒘 ←− (1)

𝒌∈ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))
7: end if
8: 𝑾 ←− diag𝒘
9: Apply cross-validation to determine best regularization parameter 𝜆 via solving (4.11):

10: 𝒇sol = ( 𝑓𝒌 )𝒌∈ℐ𝑵 (𝑈(𝑑,𝑑𝑠 )) = arg min
𝒇 ∈C

���ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))���




𝒚 − 𝑭𝒳ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))

𝒇





2

ℓ2
+ 𝜆




 𝒇 


2

𝑾

11: Compute global sensitivity indices for approximation S𝒳ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))
𝑓 using (4.14):

12: for 𝒖 ∈ 𝑈 (𝑑,𝑑𝑠 ) \ {∅} do

13: 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈(𝑑,𝑑𝑠 )) 𝑓 ) ←
(∑

𝒌∈ℐ𝒖 ,𝑁𝒖

��� 𝑓𝒌 ���2) /(∑𝒌∈ℐ𝑵 (𝑈(𝑑,𝑑𝑠 ))\{0}
��� 𝑓𝒌 ���2)

14: end for
15: Choose threshold vector 𝜺 ∈ [0, 1]𝑑𝑠 and build active set through thresholding:

16: 𝑈 (gsi,𝜺) ← ∅ ∪
{
𝒖 ∈ 𝑈 (𝑑,𝑑𝑠 ) : 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈(𝑑,𝑑𝑠 )) 𝑓 ) > 𝜀|𝒖 |

}
17: Adjust bandwidth parameters 𝑴 = (𝑀𝑗 )

���𝑈(gsi,𝜺) ���
𝑗=1 .

18: Adjust regularization parameters 𝜃𝑖 ∈ [0,∞), 𝑖 = 1, 2, . . . , 𝑛.
19: if a priori smoothness information via weight 𝑤 : Z𝑑 → [1,∞) is known then
20: 𝒘 ←− (𝑤(𝒌))

𝒌∈ℐ𝑴 (𝑈(gsi,𝜺))
21: else
22: 𝒘 ←− (1)

𝒌∈ℐ𝑴 (𝑈(gsi,𝜺))
23: end if
24: 𝑾 ←− diag𝒘
25: Apply cross-validation to determine best regularization parameter 𝜃 via solving (4.12):

26: 𝒈̂sol = (𝑔̂𝒌 )𝒌∈ℐ𝑴 (𝑈(gsi,𝜺)) = arg min
𝒈̂∈C

���ℐ𝑴 (𝑈(gsi,𝜺))
���




𝒚 − 𝑭𝒳

ℐ𝑴 (𝑈(gsi,𝜺))
𝒈̂





2

ℓ2
+ 𝜃 ∥ 𝒈̂ ∥2𝑾

Output: 𝑔̂𝒌 ∈ C, 𝒌 ∈ ℐ𝑴 (𝑈 (active)) approximations to
basis coefficients c𝒌 ( 𝑓 )
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4.2.1 Attribute Ranking and Active Set Detection
This section is concerned with the question: How can we interpret the
approximation and which insights does it give us into the data? The following
statements hold for a general 𝑈 ⊆ 𝒫([𝑑])with 𝑈 = 𝑈 (𝑑,𝑑𝑠 ) as a special
case. The grouped index set is a union such that we have

ℐ𝑵 (𝑈) = ℐ∅ ∪
⋃

𝒖∈𝑈\{∅}
ℐ𝒖 ,𝑁𝒖

as in Definition 3.3. Therefore, we can directly compute the global
sensitivity indices or Sobol indices of the approximation S𝒳ℐ𝑵 (𝑈) 𝑓 as

𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 ) =
∑

𝒌∈ℐ𝒖 ,𝑁𝒖

��� 𝑓𝒌 ���2∑
𝒌∈ℐ𝑵 (𝑈)

��� 𝑓𝒌 ���2 . (4.14)

Since all sensitivity indices add up to one, we may choose a dimension-
wise cut-off percentage 𝜺 = (𝜀𝑠)max𝒖∈𝑈 |𝒖 |

𝑠=1 ∈ (0, 1)max𝒖∈𝑈 |𝒖 | such that we
choose the active set

𝑈 (gsi,𝜺) B ∅ ∪
{
𝒖 ∈ 𝑈 : 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 ) > 𝜀|𝒖 |

}
⊆ 𝑈. (4.15)

In other words, this throws away every ANOVA term with a small
contribution to the variance of the approximation with respect to 𝜺. A
dimension-dependent choice of 𝜺 may be favourable in some cases, but
it is always possible to choose every entry to be equal.

If we are interested in how much one variable 𝑖 ∈ [𝑑] adds to the
variance of the function, i.e., how important it is, we sum over all of the
contributing sensitivity indices 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 )with 𝑖 ∈ 𝒖. This leads to
the sum ∑

𝒖∈{𝒗∈𝑈 : 𝑖∈𝒗}
𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 ).

In order to obtain a ranking score, we weigh the sensitivity indices by
the number of sets 𝒗 ∈ 𝑈 with |𝒖 | = |𝒗 | and 𝑖 ∈ 𝒗. This counteracts
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an effect that makes a variable seem important if it occurs in many
unimportant terms of the same order in contrast to other variables with
some terms of that order not appearing in 𝑈 . We obtain the ranking
score

𝑟(𝑖) =
∑

𝒖∈{𝒗∈𝑈 : 𝑖∈𝒗} |{𝒗 ∈ 𝑈 : |𝒖 | = |𝒗 | , 𝑖 ∈ 𝒗}|−1 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 )∑
𝒖∈𝑈

(∑
𝑖∈𝒖 |{𝒗 ∈ 𝑈 : |𝒖 | = |𝒗 | , 𝑖 ∈ 𝒗}|−1

)
𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 )

. (4.16)

In the denominator we added normalization such that
∑

𝑖∈[𝑑] 𝑟(𝑖) = 1.
Computing every score 𝑟(𝑖), 𝑖 ∈ [𝑑] provides an attribute ranking with
respect to 𝑈 showing the percentage that every variable adds to the
variance of the approximation. This allows for the conclusion that if we
have a good approximation S𝒳ℐ𝑵 (𝑈) 𝑓 , its attribute ranking will be close
to the attribute ranking of the function 𝑓 . The obvious option is now to
reduce the dimensionality of the problem by removing the influence of
variables with a low attribute ranking score. Choosing a cut-off 𝜀 > 0,
this yields a subset

𝑈 (ar,𝜀) B ∅ ∪ {𝒖 ∈ 𝑈 : 𝑟(𝑖) > 𝜀 for all 𝑖 ∈ 𝒖} ⊆ 𝑈. (4.17)

This idea is related to the concept of truncation dimension (2.27).
A final method we propose is incremental expansion. This method

is advantageous if the model function is already very complex with a
small superposition threshold 𝑑𝑠 which may occur if we are dealing
with an especially large spatial dimension 𝑑. Here, we start with a
small 𝑑𝑠 , e.g., 𝑑𝑠 = 1 or 𝑑𝑠 = 2. A reduction in the ANOVA terms can be
performed by either of the two previous approaches. Now, one chooses
a 𝜃 ∈ (0, 1) and determines the subset

𝒗 B {𝑖 ∈ [𝑑] : 𝑟(𝑖) > 𝜃} .
If we assume that additional interactions of the important variables
might also be significant to the variance, we may add interactions of
size up to 𝑛 ∈ [𝑑], 𝑛 > 𝑑𝑠 . This translates to considering the subset

𝑈 (ie,𝜃,𝑛) B 𝑈 ∪ {𝒖 ∈ 𝒫(𝒗) : 𝑑𝑠 < |𝒖 | ≤ 𝑛} .
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This will be a beneficial way to improve the accuracy of the model if
higher-order interactions play a role. However, if this method is used
without reducing the complexity with any of the previous approaches,
the overall complexity of the model will be significantly larger.
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4.3 Approximation Errors
In this section, we consider the approximation error of the ANOVA
approximation method in the case of approximating a function 𝑓 : D𝑑 →
C. Mainly, we are interested in the errors


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L2(D𝑑 ,𝜔(𝑑))

and



 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

.

Here, S𝒳ℐ𝑵 (𝑈) 𝑓 is the approximate partial sum we have obtained by
approximating our coefficients c𝒌( 𝑓 ) with the least-squares method.
This error can be considered in different ways. If we are aware of
the regularity, e.g., considering Sobolev type spaces H𝑤(D𝑑 , 𝜔(𝑑)) or
weighted Wiener spaces𝒜𝑤(D𝑑 , 𝜔(𝑑)) with a weight function 𝑤 : Z𝑑 →
[1,∞), we may ask for the worst-case error in this respective space. For
the L2 error, this will be considered in Section 4.3.1 for both spaces. If we
do not have regularity information, we are interested in the individual
error of approximating one function which we consider in Section 4.3.2.
Since we do not have bounds for the L∞ error in the worst-case setting,
we use the results in the individual setting to obtain such statements
again, but there is an difference in the node set 𝒳. In the worst-case
setting, we need to draw our nodes at random only once for the entire
class. However, in the individual setting, we need to draw them for
each function. In the setting of reproducing kernel Hilbert spaces,
similar worst-case errors have been considered in [KUV21, MU21]. An
individual approximation error for hyperbolic wavelet regression and
scattered data was proposed in [LPU21]. If we consider sparse grids as
a sampling scheme, we have the results in [Boh17] for the individual
error as well as the recent work [KLT21] for weighted Wiener spaces in
the worst-case setting.

4.3.1 Worst-Case Error
We begin by considering the worst-case L2 error for Sobolev type
spaces H𝑤(D𝑑 , 𝜔(𝑑)) and weighted Wiener spaces 𝒜𝑤(D𝑑 , 𝜔(𝑑)) with
weight function 𝑤 : Z𝑑 → [1,∞). In the periodic case, this has been
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done for Sobolev type spaces in [PS21a]. Here, we generalize the
results. We assume a product space L2(D𝑑 , 𝜔(𝑑)) as in Definition 2.1
with orthonormal basis (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 that is a bounded orthonormal system
(BOS) with BOS constant𝐶BOS from (4.1). This if fulfilled for all examples
in Section 2.1.2. We also assume a fixed set of ANOVA terms𝑈 ⊆ 𝒫([𝑑])
and a corresponding grouped index set ℐ𝑵 (𝑈) from Definition 3.3 with
bandwidths 𝑵 = (𝑁𝒖)𝒖∈𝑈 ∈ N|𝑈 | . The infinite complement of this finite
index set will be denoted as

ℐC
𝑵 (𝑈) B Z𝑑 \ ℐ𝑵 (𝑈).

A key part will be the necessary oversampling of our function where
the additional constant 𝐶supp from (4.2) plays a role. This constant
can always be estimated by the BOS constant, but may be significantly
smaller which yields an improvement in the required oversampling of
Theorem 4.2 which we are going to need in this section.

The error caused by the truncation with our index set ℐ𝑵 (𝑈) is going
to play a major part in the approximation error. In the following two
lemmas, we are considering the worst-case truncation error for L2 in a
Sobolev type space and L∞ in the weighted Wiener space.

Lemma 4.7. Let H𝑤(D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight function
𝑤 : Z𝑑 → [1,∞). Then

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1



 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L2(D𝑑 ,𝜔(𝑑)) ≤
1

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤

2(𝒌) .

Proof. For the proof, we apply Parseval’s identity and incorporate our
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weight function 𝑤 to obtain

 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L2(D𝑑 ,𝜔(𝑑)) =
∑

𝒌∈ℐC
𝑵 (𝑈)
|c𝒌( 𝑓 )|2 =

∑
𝒌∈ℐC

𝑵 (𝑈)

𝑤2(𝒌)
𝑤2(𝒌) |c𝒌( 𝑓 )|

2

≤ 1
inf𝒌∈ℐC

𝑵 (𝑈) 𝑤
2(𝒌)

∑
𝒌∈ℐC

𝑵 (𝑈)
𝑤2(𝒌) |c𝒌( 𝑓 )|2

=
∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑))

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤

2(𝒌) .

The result follows by taking the supremum.

Lemma 4.8. Let 𝒜𝑤(D𝑑 , 𝜔(𝑑)) be a weighted Wiener space with weight
function 𝑤 : Z𝑑 → [1,∞). Then

sup
∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))≤1



 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑 ,) ≤
𝐶BOS

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

with the BOS constant 𝐶BOS from (4.1).

Proof. For the proof, we estimate the absolute values of the basis
functions by the BOS constant and incorporate our weight function 𝑤
to obtain

 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑 ,𝜔(𝑑)) = ess supp

𝒙∈D𝑑

������ ∑
𝒌∈ℐC

𝑵 (𝑈)
c𝒌( 𝑓 )𝜑(𝑑)𝒌 (𝒙)

������
≤ 𝐶BOS

∑
𝒌∈ℐC

𝑵 (𝑈)
|c𝒌( 𝑓 )|

= 𝐶BOS
∑

𝒌∈ℐC
𝑵 (𝑈)

𝑤(𝒌)
𝑤(𝒌) |c𝒌( 𝑓 )|

≤
𝐶BOS ∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

.
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The result follows by taking the supremum.

For the least-squares error, we rely on similar techniques as in [MU21]
and [KUV21] that have been used for the setting of reproducing kernel
Hilbert spaces. We consider the case where the nodes 𝒳 are drawn
i.i.d. at random according to the probability density 𝜔(𝑑) of our space
and we have given function values 𝒇 = ( 𝑓 (𝒙))𝒙∈𝒳 . Before we consider
the actual L2 error bound, it is necessary to discuss properties of the
infinite matrix

𝚽𝒳ℐC
𝑵 (𝑈)
B

(
1

𝑤(𝒌) 𝜑
(𝑑)
𝒌 (𝒙)

)
𝒙∈𝒳 ,𝒌∈ℐC

𝑵 (𝑈)
(4.18)

that will play an important role in the proof. Specifically, we are
interested in the spectral norm of this operator. In order to determine a
bound for this norm, we require the use concentration inequalities.

Lemma 4.9. Let H𝑤(D𝑑 , 𝜔(𝑑)) be a Sobolev type space with weight function
𝑤 : Z𝑑 → [1,∞) such that ∑

𝒌∈Z𝑑

1
𝑤2(𝒌) < ∞.

Moreover, let 𝒳 ⊆ D𝑑 be a set of |𝒳| > 3 nodes drawn i.i.d. at random
according to the probability density 𝜔(𝑑), and let 𝑟 > 0. Then for the infinite
matrix 𝚽𝒳ℐC

𝑵 (𝑈)
from (4.18), we have

P

(



(𝚽𝒳ℐC
𝑵 (𝑈)

)H
𝚽𝒳ℐC

𝑵 (𝑈)
−𝚲






ℓ2→ℓ2

≥ 𝐹
)
≤ 2

3
4 |𝒳|−𝑟

where

𝚲 B E
((
𝚽𝒳ℐC

𝑵 (𝑈)

)H
𝚽𝒳ℐC

𝑵 (𝑈)

)
= diag

(
1

𝑤2(𝒌)
)
𝒌∈ℐC

𝑵 (𝑈)
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and

𝐹 B max


8(𝑟 + 1) log |𝒳|
|𝒳| 𝐶2

BOS 𝜅
2

∑
𝒌∈ℐC

𝑵 (𝑈)

1
𝑤2(𝒌) , sup

𝒌∈ℐC
𝑵 (𝑈)

1
𝑤2(𝒌)


with 𝜅 = (1 + √5)/2, and constant 𝐶BOS from (4.1).

Proof. For the details of this proof we refer to [MU21, Proposition
3.8]. This lemma is an application of the proposition for our special
setting.

The following theorem considers the L2 approximation error in a
Sobolev type space where the basis coefficients are approximated by
least-squares. Here, we incorporate the bound on the spectral norm of
the Moore-Penrose inverse from Theorem 4.2 as well as the bound on
the spectral norm of our infinite matrix 𝚽𝒳ℐC

𝑵 (𝑈)
from Lemma 4.9.

Theorem 4.10. Let H𝑤(D𝑑 , 𝜔(𝑑)) be a Sobolev type space with a square-
summable weight function 𝑤 : Z𝑑 → [1,∞) such that (𝑤−1(𝒌))𝒌∈Z𝑑 ∈ ℓ2.
Moreover, let 𝒳 ⊆ D𝑑 be a set of |𝒳| > 3 nodes each drawn i.i.d. at random
according to the probability density 𝜔(𝑑) such that

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (𝑟 + 1) log |𝒳| (4.19)

for an 𝑟 > 0 with 𝐶supp from (4.2). Let 𝒇 = ( 𝑓 (𝒙))𝒙∈𝒳 be evaluations of
𝑓 ∈ H𝑤(D𝑑 , 𝜔(𝑑)), and let S𝒳ℐ𝑵 (𝑈) 𝑓 be the approximate partial sum obtained
by approximating the basis coefficients c𝒌( 𝑓 ) via solving the least-squares
system (4.3). Then we have for the error

sup
∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))≤1




 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓



2

L2(D𝑑 ,𝜔(𝑑))
(4.20)

≤ 5 max


4𝐶2
BOS 𝜅

2

5𝐶2
supp |ℐ𝑵 (𝑈)|

∑
𝒌∈ℐC

𝑵 (𝑈)

1
𝑤2(𝒌) ,

1
inf𝒌∈ℐC

𝑵 (𝑈) 𝑤
2(𝒌)





4.3 Approximation Errors 121

with probability at least 1 − (23/4 + 1) |𝒳|−𝑟 for 𝜅 = (1 + √5)/2, and 𝐶BOS
the BOS constant from (4.1).

Proof. Let 𝒇 ∈ C|ℐ𝑵 (𝑈)| be the approximate coefficients obtained by
solving the least-squares problem (4.3), i.e.,

𝒇 = ( 𝑓𝒌)𝒌∈ℐ𝑵 (𝑈) =
(
𝑭𝒳ℐ𝑵 (𝑈)

)†
𝒇 .

Moreover, we collect the exact coefficient as 𝒄̂ = (c𝒌( 𝑓 ))𝒌∈ℐ𝑵 (𝑈). Then
we may rewrite the error and apply Theorem 4.2 to obtain


Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))
=

∑
𝒌∈ℐ𝑵 (𝑈)

��� 𝑓𝒌 − c𝒌( 𝑓 )
���2 =




 𝒇 − 𝒄̂



2

ℓ2

=





(𝑭𝒳ℐ𝑵 (𝑈))† 𝒇 − 𝒄̂





2

ℓ2

=





(𝑭𝒳ℐ𝑵 (𝑈))† ( 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒄̂
)



2

ℓ2

≤




(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2




 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒄̂



2

ℓ2
.

In the next step, we consider the quantity

1
|𝒳|




 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒄̂



2

ℓ2
=

1
|𝒳|

∑
𝒙∈𝒳

�� 𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙)
��2 .

Using the basis 𝜑̃(𝑑)𝒌 (𝒙) B 1
𝑤(𝒌) 𝜑

(𝑑)
𝒌 (𝒙), 𝒌 ∈ Z𝑑, of H𝑤(D𝑑 , 𝜔(𝑑)), we can

write
𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙) =

∑
𝒌∈ℐC

𝑵 (𝑈)
⟨ 𝑓 , 𝜑̃(𝑑)𝒌 ⟩H𝑤 (D𝑑 ,𝜔(𝑑))𝜑̃

(𝑑)
𝒌

with coefficients

˜̂𝒄 B
(
⟨ 𝑓 , 𝜑̃(𝑑)𝒌 ⟩H𝑤 (D𝑑 ,𝜔(𝑑))

)
𝒌∈ℐC

𝑵 (𝑈)
.
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Using the infinite matrix 𝚽𝒳ℐC
𝑵 (𝑈)

from (4.18), we obtain

1
|𝒳|




 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒄̂



2

ℓ2
=

1
|𝒳|




𝚽𝒳ℐC
𝑵 (𝑈)
˜̂𝒄



2

ℓ2
≤ 1
|𝒳|




𝚽𝒳ℐC
𝑵 (𝑈)




2

ℓ2→ℓ2



 ˜̂𝒄

2
ℓ2

=
1
|𝒳|





(𝚽𝒳ℐC
𝑵 (𝑈)

)H
𝚽𝒳ℐC

𝑵 (𝑈)






ℓ2→ℓ2



 ˜̂𝒄

2
ℓ2
.

We then define two random events

𝐴 B
 1
|𝒳|





(𝚽𝒳ℐC
𝑵 (𝑈)

)H
𝚽𝒳ℐC

𝑵 (𝑈)






ℓ2→ℓ2

≤ 𝐹 + sup
𝒌∈ℐC

𝑵 (𝑈)

1
𝑤2(𝒌)


𝐵 B

{



(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2

≤ 2
|𝒳|

}
.

From Theorem 4.2 we know that P(𝐵C) ≤ |𝒳|−𝑟 . Moreover, Lemma 4.9
implies that

P

(
1
|𝒳|





(𝚽𝒳ℐC
𝑵 (𝑈)

)H
𝚽𝒳ℐC

𝑵 (𝑈)






ℓ2→ℓ2

> 𝐹 + ∥𝚲∥ℓ2

)
≤ P

(



(𝚽𝒳ℐC
𝑵 (𝑈)

)H
𝚽𝒳ℐC

𝑵 (𝑈)
−𝚲






ℓ2→ℓ2

≥ 𝐹
)
≤ 2

3
4 |𝒳|−𝑟

and therefore P(𝐴C) ≤ 2 3
4 |𝒳|−𝑟 . In total, we have

1 − P(𝐴 ∩ 𝐵) ≤ P(𝐴C) + P(𝐵C) ≤
(
1 + 2

3
4

)
|𝒳|−𝑟 .
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If the events 𝐴 and 𝐵 happen simultaneously, we have for the error


Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓



2

L2(D𝑑 ,𝜔(𝑑))
≤





(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2




 𝒇 − 𝑭𝒳ℐ𝑵 (𝑈) 𝒄̂



2

ℓ2

≤ 2
|𝒳|




𝚽𝒳ℐC
𝑵 (𝑈)




2

ℓ2→ℓ2



 ˜̂𝒄

2
ℓ2
≤ 2 ©­«𝐹 + sup

𝒌∈ℐC
𝑵 (𝑈)

1
𝑤2(𝒌)

ª®¬ ∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑))

≤ 4 ∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑))

·max


8(𝑟 + 1) log |𝒳|
|𝒳| 𝐶2

BOS 𝜅
2

∑
𝒌∈ℐC

𝑵 (𝑈)

1
𝑤2(𝒌) , sup

𝒌∈ℐC
𝑵 (𝑈)

1
𝑤2(𝒌)

 .

By the requirement on the oversampling, we get the estimate

log |𝒳|
|𝒳| ≤

1
10𝐶2

supp (𝑟 + 1) |ℐ𝑵 (𝑈)|
.

Finally, we may combine this with the truncation error result of
Lemma 4.7 to obtain


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))

=


 𝑓 − Sℐ𝑵 (𝑈) 𝑓



2
L2(D𝑑 ,𝜔(𝑑)) +




Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓



2

L2(D𝑑 ,𝜔(𝑑))

≤
∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑))

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤

2(𝒌) +



Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))

≤ 5 ∥ 𝑓 ∥2H𝑤 (D𝑑 ,𝜔(𝑑))

·max


8(𝑟 + 1) log |𝒳|
|𝒳| 𝐶2

BOS 𝜅
2

∑
𝒌∈ℐC

𝑵 (𝑈)

1
𝑤2(𝒌) ,

1
inf𝒌∈ℐC

𝑵 (𝑈) 𝑤
2(𝒌)

 .
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Theorem 4.10 gives us insight into our approximation error if we can
guarantee the necessary oversampling (4.19), i.e., logarithmic oversam-
pling. We also have detailed knowledge about our constants.

Under the same requirements on the oversampling and with a similar
approach, we are able to achieve a new bound on the L2 error in the least-
squares setting if we are in the weighted Wiener space 𝒜𝑤(D𝑑 , 𝜔(𝑑)),
i.e., we require more regularity.

Theorem 4.11. Let𝒜𝑤(D𝑑 , 𝜔(𝑑)) be a weighted Wiener space with weight
function 𝑤 : Z𝑑 → [1,∞). Moreover, let 𝒳 ⊆ D𝑑 be a set of |𝒳| > 3 nodes
each drawn i.i.d. at random according to the probability density 𝜔(𝑑) such that

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (𝑟 + 1) log |𝒳|

for an 𝑟 > 0 and 𝐶supp from (4.2). Let 𝒇 = ( 𝑓 (𝒙))𝒙∈𝒳 be evaluations of
𝑓 ∈ 𝒜𝑤(D𝑑 , 𝜔(𝑑)), and let S𝒳ℐ𝑵 (𝑈) 𝑓 be the approximate partial sum obtained
by approximating the basis coefficients c𝒌( 𝑓 ) via solving the least-squares
system (4.3). Then we have for the error

sup
∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))≤1




 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L2(D𝑑 ,𝜔(𝑑))
≤

√
3 𝐶BOS

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

(4.21)

with probability at least 1 − (23/4 + 1) |𝒳|−𝑟 for 𝜅 = (1 + √5)/2, and 𝐶BOS
the BOS constant (4.1).

Proof. From the proof of Theorem 4.10, we know that


Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓



2

L2(D𝑑 ,𝜔(𝑑))

≤




(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2

∑
𝒙∈𝒳

�� 𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙)
��2 .
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The sum can be estimated by the L∞ norm as follows∑
𝒙∈𝒳

�� 𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙)
��2 ≤∑

𝒙∈𝒳



 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L∞(D𝑑)

= |𝒳| 

 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L∞(D𝑑) .

Lemma 4.8 tells us that

 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑) ≤
𝐶BOS ∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

.

Moreover, Theorem 4.2 implies that



(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2

≤ 2
|𝒳|

with probability 1 − |𝒳|−𝑟 . In summary, we obtain

sup
∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))≤1




 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓



2

L2(D𝑑 ,𝜔(𝑑))

=


 𝑓 − Sℐ𝑵 (𝑈) 𝑓



2
L2(D𝑑 ,𝜔(𝑑)) +




Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓



2

L2(D𝑑 ,𝜔(𝑑))
≤ 

 𝑓 − Sℐ𝑵 (𝑈) 𝑓



2
L∞(D𝑑) + 2



 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L∞(D𝑑)

≤ 3𝐶2
BOS

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤

2(𝒌)

also with probability 1 − |𝒳|−𝑟 .
In the recent paper [KLT21], L2 error bounds have been considered

for weighted Wiener spaces using sparse grids as sampling schemes.
Here, we have collected counterparts for these results in our setting for
least-squares approximation with Theorem 4.11 being a wholly new
result. It shows that the L∞ truncation error from Lemma 4.8 and the
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L2 approximation error from Theorem 4.11 are of the same order in
weighted Wiener spaces.

Let us consider the previous bounds in a special setting to better
understand their impact. We consider space L2(T𝑑) of periodic functions
with spatial dimension 𝑑 ∈ N and the Fourier system 𝜑

(𝑑), exp
𝒌 , 𝒌 ∈ Z𝑑, as

an orthonormal basis such that 𝐶BOS = 𝐶supp = 1 for the constants (4.1)
and (4.2). The functions of dominating-mixed smoothness represent an
important class of functions used in many different applications, see
e.g. [DTU18], which is why we choose the weights

𝑤(𝒌) B 𝑤𝛽(𝒌) B
𝑑∏

𝑠=1
(1 + |𝑘𝑠 |)𝛽

with dominating-mixed smoothness parameter 𝛽 > 0. Note that this is a
special setting of our more general weights from (2.5). For the ANOVA
truncation, we choose a subset of ANOVA terms 𝑈 = 𝑈 (𝑑,𝑑𝑠 ) with
superposition threshold 𝑑𝑠 ∈ [𝑑] and a grouped index set ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 ))
with bandwidths 𝑵 ∈ (2N)𝑑𝑠 , cf. Definition 3.3.

We first consider the sum appearing in the bound in Theorem 4.10
which we split as follows∑

𝒌∈ℐC
𝑵 (𝑈 (𝑑,𝑑𝑠 ))

1
𝑤2(𝒌) =

∑
𝒌∈Z𝑑

|supp 𝒌 |>𝑑𝑠

1
𝑤2(𝒌) +

𝑑𝑠∑
𝑛=1

(
𝑑
𝑛

) ∑
𝒌∈(Z\{0})𝑛\ℐ𝑛

𝑁𝑛

1
𝑤2(𝒌)

with index sets ℐ𝑛
𝑁𝑛

from (3.7). The first sum is only related to the
ANOVA truncation and appeared already in L∞ bound in Corollary 2.32.
It can be expressed explicitly as∑

𝒌∈Z𝑑
|supp 𝒌 |>𝑑𝑠

1
𝑤2

𝛽(𝒌)
=

𝑑∑
𝑛=𝑑𝑠+1

𝜁𝑛𝛽 =
𝜁𝑑𝑠+1
𝛽 − 𝜁𝑑+1

𝛽

1 − 𝜁𝛽
, 𝜁𝛽 B 2𝜁(2𝛽) − 2,

with 𝜁 being the Riemann zeta function. The second sum appears in
the truncation of the basis expansion to our index set ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) which
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we can express as follows∑
𝒌∈(Z\{0})𝑛\ℐ𝑛

𝑁𝑛

1
𝑤2

𝛽(𝒌)
=

∑
𝒌∈(Z\{0})𝑛

1
𝑤2

𝛽(𝒌)
−

∑
𝒌∈ℐ𝑛

𝑁𝑛

1
𝑤2

𝛽(𝒌)

= 𝜁𝑛𝛽 − ©­«
∑
𝑘∈ℐ𝑁𝑛

1
(1 + |𝑘 |)2𝛽

ª®¬
𝑛

.

The remaining quantity can be expressed using the generalized har-
monic numberℋ𝑁

2 ,2𝛽 to obtain

∑
𝑘∈ℐ𝑁𝑛

1
(1 + |𝑘 |)2𝛽

= 2
𝑁/2−1∑
𝑘=1

1
(1 + 𝑘)2𝛽

+ 1
(𝑁2 + 1)2𝛽 = 2ℋ𝑁

2 ,2𝛽−2+ 1
(𝑁2 + 1)2𝛽 .

In summary, we get an explicit form

𝒮(𝛽, 𝑑𝑠 , 𝑑,𝑵 ) B
∑

𝒌∈ℐC
𝑵 (𝑈𝑑,𝑑𝑠 )

1
𝑤2(𝒌) (4.22)

=
𝜁𝑑𝑠+1
𝛽 − 𝜁𝑑+1

𝛽

1 − 𝜁𝛽

𝑑𝑠∑
𝑛=1

(
𝑑
𝑛

) [
𝜁𝑛𝛽 −

(
2ℋ𝑁

2 ,2𝛽 − 2 + 1
(𝑁2 + 1)2𝛽

)𝑛 ]
.

Considering the bound (4.20), we obtain for the first quantity in the
maximum

ℬ1(𝛽, 𝑑𝑠 , 𝑑,𝑵 ) B 4𝜅2𝒮(𝛽, 𝑑𝑠 , 𝑑,𝑵 )
1 +∑𝑑𝑠

𝑖=1
(𝑑
𝑖

)(𝑁𝑖 − 1)𝑖
. (4.23)

The second part of the maximum in (4.20) can be computed as follows

ℬ2(𝛽, 𝑑𝑠 ,𝑵 ) B 5
inf𝒌∈ℐC

𝑵 (𝑈) 𝑤
2(𝒌)

=
5

min{22𝛽(𝑑𝑠+1) , (1 + 𝑁1
2 )2𝛽 , (1 + 𝑁2

2 )4𝛽 , . . . , (1 + 𝑁𝑑𝑠
2 )2𝑑𝑠𝛽}

(4.24)
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since the minimum is either attained through the ANOVA truncation
which yields the term 22𝛽(𝑑𝑠+1) or through the index set truncation which
yields (1 + 𝑁𝑖

2 )2·𝑖𝛽, 𝑖 = 1, 2, . . . , 𝑑𝑠 . Note that this quantity does not
depend on the spatial dimension 𝑑 which is fact was already discovered
in Section 2.3 for the ANOVA truncation part. If the minimum is attained
at 22𝛽(𝑑𝑠+1), the bound ℬ2 is dominated by the ANOVA truncation and
is therefore of the same order. Note that the quantity ℬ2 appears up to
a constant also in our L∞ error bound (4.21) in Theorem 4.11.

Figure 4.2 shows the quantity ℬ1(𝛽, 𝑑𝑠 , 𝑑,𝑵 ) from Theorem 4.10
and ℬ2(𝛽, 𝑑𝑠 ,𝑵 ) from Theorem 4.10 and Theorem 4.10. We visualize
them depending on the smoothness 𝛽 for exemplary choices of spatial
dimension 𝑑, superposition threshold 𝑑𝑠 and bandwidths 𝑵 . We
observe the dependence of ℬ1 on the choice of the bandwidths where a
larger choice of bandwidth leads to a steeper descent. However, except
for a small interval near 𝛽 = 1, the maximum in the bound (4.20) is
always dominated by the dimension independent ℬ2. In general, we
notice a good worst-case bound for our approximation error which
implies the applicability of our methods for the important class of
functions with dominating-mixed smoothness.

4.3.2 Individual Error
In the following, we leave the area of worst-case error and consider
the recovery of individual functions. Note that there is an important
difference in the approximation operator S𝒳ℐ𝑵 (𝑈) . In the previous
Section 4.3.1, we may draw the node set 𝒳 once for the entire class
of functions and now we draw the node set 𝒳 once for each function
to be exact. As an assumption, we always use that our function 𝑓 is
an element of the Lebesgue product space L2(D𝑑 , 𝜔(𝑑))with complete
orthonormal system (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 . Here, we do not necessarily require
it to be a bounded orthonormal system unless stated explicitly in the
respective theorem. We additionally assume that 𝑓 is continuous and if
the domain is D = R, we require 𝑓 to be bounded such that we always
ensure 𝑓 ∈ L∞(D𝑑).

We begin by proving a general probabilistic result using Bernstein’s
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1 2 3 4 5
10−15

10−12

10−9

10−6

10−3

𝛽

Figure 4.2: Bound ℬ1(𝛽, 4, 9,𝑵 ) from (4.23) for 𝑵1 = [128, 32, 16, 4]
(solid), and 𝑵2 = [64, 24, 12, 4] (dashed), 𝑵3 = [32, 16, 8, 4]
(dotted) in orange and bound ℬ2(𝛽, 4, 9,𝑵 ) from (4.24)
for 𝑵1, 𝑵2 (solid), and 𝑵3 (dashed) in cyan. Note that
ℬ2(𝛽, 4, 9,𝑵1) = ℬ2(𝛽, 4, 9,𝑵2) since the minimum in (4.24)
is realized at 210𝛽.

inequality, see [SC08, Chapter 6]. A similar approach was first used in
[LPU21] for hyperbolic wavelet regression. For independent random
variables 𝜉1 , 𝜉2 , . . . , 𝜉𝑀 , 𝑀 ≥ 1, with ∥𝜉𝑖 ∥∞ ≤ 𝐶 and E(𝜉2

𝑖 ) ≤ 𝜎2,
Bernstein’s inequality states that

P

(
1
𝑀

𝑀∑
𝑖=1

𝜉𝑖 ≥
√

2𝜎2𝜏
𝑀
+ 2𝐶𝜏

3𝑀

)
≤ e−𝜏 for any 𝜏 > 0. (4.25)

In the following, we denote the individual truncation errors in L2 and
L∞ as

𝑒2 B


 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L2(D𝑑 ,𝜔(𝑑)) and 𝑒∞ B



 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑) .
(4.26)

Theorem 4.12. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) be a bounded and continuous function,
let 𝒳 ⊆ D𝑑 be a set of |𝒳| > 3 nodes each drawn i.i.d. at random according to
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the probability density 𝜔(𝑑) such that

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (𝑟 + 1) log |𝒳|
for 𝑟 > 0 and 𝐶supp < ∞ from (4.2). Let 𝒇 = ( 𝑓 (𝒙))𝒙∈𝒳 be evaluations of 𝑓 ,
and let S𝒳ℐ𝑵 (𝑈) 𝑓 be the approximate partial sum obtained by approximating
the basis coefficients c𝒌( 𝑓 ) via solving the least-squares system (4.3). Then we
have for the error


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))
≤ 3𝑒2

2 +
2𝑒2𝑒∞

𝐶supp
√

5 |ℐ𝑵 (𝑈)|
+ 2𝑒2∞

15𝐶2
supp |ℐ𝑵 (𝑈)|

with probability at least 1 − 2 |𝒳|−𝑟 .
Proof. In order to apply Bernstein’s inequality (4.25), we introduce the
random variables

𝜂𝑖 B
�� 𝑓 (𝒙𝑖) − Sℐ𝑵 (𝑈) 𝑓 (𝒙𝑖)

��2 , E (𝜂𝑖) = 𝑒2
2 ,

𝜉𝑖 B 𝜂𝑖 − E (𝜂𝑖) , E (𝜉𝑖) = 0.

We proceed to bound the variance of 𝜉𝑖 as follows

E
(
𝜉2
𝑖

)
= E

(
𝜂2
𝑖

)
− E (𝜂𝑖)2 =



 𝑓 − Sℐ𝑵 (𝑈) 𝑓


4

L4(D𝑑 ,𝜔(𝑑)) − 𝑒4
2

≤ 𝑒2∞𝑒2
2 − 𝑒4

2 ≤ 𝑒2
2

(
𝑒2∞ − 𝑒2

2

)
≤ 𝑒2

2 𝑒
2∞.

For the infinity norm, i.e., the constant 𝐶 in (4.25), we get

∥𝜉𝑖 ∥∞ = ∥𝜂𝑖 − E (𝜂𝑖)∥∞ ≤ e2∞.

Now, the application of Bernstein’s inequality yields

P
©­« 1
|𝒳|

|𝒳|∑
𝑖=1

𝜉𝑖 ≥
√

2𝑒2
2 𝑒

2∞(𝑟 + 1) log |𝒳|
|𝒳| + 2𝑒2∞(𝑟 + 1) log |𝒳|

3 |𝒳|
ª®¬ ≤ |𝒳|−𝑟−1

(4.27)
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for 𝑟 > 0. In order to bound the approximation error, we start by
following similar steps as in the proof of Theorem 4.10. Let 𝒇 ∈ C|ℐ𝑵 (𝑈)|
be the approximate coefficients obtained by solving the least-squares
problem (4.3), i.e.,

𝒇 = ( 𝑓𝒌)𝒌∈ℐ𝑵 (𝑈) =
(
𝑭𝒳ℐ𝑵 (𝑈)

)†
𝒇 .

Moreover, we collect the exact coefficients as 𝒄̂ = (c𝒌( 𝑓 ))𝒌∈ℐ𝑵 (𝑈). Then
the error can be estimated as follows


S𝒳ℐ𝑵 (𝑈) 𝑓 − Sℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))

≤




(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2

∑
𝒙∈𝒳

�� 𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙)
��2 ,

see the proof of Theorem 4.10. Now, we define two random events

𝐴 B

{
1
|𝒳|

∑
𝒙∈𝒳

�� 𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙)
��2

≤ 𝑒2
2 +

√√
𝑒2

2 𝑒
2∞

5𝐶2
supp |ℐ𝑵 (𝑈)|

+ 𝑒2∞
15𝐶2

supp |ℐ𝑵 (𝑈)|

}
𝐵 B

{



(𝑭𝒳ℐ𝑵 (𝑈))†



2

ℓ2→ℓ2

≤ 2
|𝒳|

}
.

From Theorem 4.2, we know that P(𝐵) > 1 − |𝒳|−𝑟 for any 𝑟 > 0. Our
oversampling requirement tells us that

𝑒2
2 +

√
2𝑒2

2 𝑒
2∞(𝑟 + 1) log |𝒳|
|𝒳| + 2𝑒2∞(𝑟 + 1) log |𝒳|

3 |𝒳|

≤ 𝑒2
2 +

√√
𝑒2

2 𝑒
2∞

5𝐶2
supp |ℐ𝑵 (𝑈)|

+ 𝑒2∞
15𝐶2

supp |ℐ𝑵 (𝑈)|
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which implies with (4.27) that P(𝐴) > 1 − |𝒳|−𝑟−1 > 1 − |𝒳|−𝑟 . In total,
we get

P(𝐴 ∩ 𝐵) ≥ 1 − P(𝐴C) − P(𝐵C) ≥ 1 − 2 |𝒳|−𝑟 .
If both events happen, we obtain for the approximation error


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))
= 𝑒2

2 +



S𝒳ℐ𝑵 (𝑈) 𝑓 − Sℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))

≤ 𝑒2
2 +

2
|𝒳|

∑
𝒙∈𝒳

�� 𝑓 (𝒙) − Sℐ𝑵 (𝑈) 𝑓 (𝒙)
��2

≤ 𝑒2
2 + 2 ©­«𝑒2

2 +
√√

𝑒2
2 𝑒

2∞
5𝐶2

supp |ℐ𝑵 (𝑈)|
+ 𝑒2∞

15𝐶2
supp |ℐ𝑵 (𝑈)|

ª®¬ .

This is always applicable since we do not make any regularity as-
sumptions in terms of the decay of the coefficients as would be the case
if we assume that the function lies in a Sobolev type space or a weighted
Wiener space. In fact, it can be explicitly computed and compared to the
error if the basis coefficients of the function are known. For a numerical
experiments with a periodic function, we refer to Section 5.1. Now, we
aim to obtain a similar bound error in the L∞ norm.

Theorem 4.13. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) be a bounded and continuous function,
let 𝒳 ⊆ D𝑑 be a set of |𝒳| > 3 nodes each drawn i.i.d. at random according to
the probability density 𝜔(𝑑) such that

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (1 + 𝑟) log |𝒳| (4.28)

for 𝑟 > 0 and 𝐶supp < ∞ from (4.2). Let 𝒚 = ( 𝑓 (𝒙))𝒙∈𝒳 be evaluations of 𝑓 ,
and let S𝒳ℐ𝑵 (𝑈) 𝑓 be the approximate partial sum obtained by approximating
the basis coefficients c𝒌( 𝑓 ) via solving the least-squares system (4.3). Then we
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have for the error


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

≤ 𝑒∞ +
√

2𝐶2
supp |ℐ𝑵 (𝑈)| 𝑒2

2 + 2𝐶supp

√
|ℐ𝑵 (𝑈)|

5 𝑒2𝑒∞ + 2
15 𝑒

2∞

with probability at least 1 − 2 |𝒳|−𝑟 and 𝑒2, 𝑒∞ the truncation errors from
(4.26).

Proof. The idea of the proof is close to the previous theorem. We
estimate the error using the triangle inequality as follows


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

≤ 𝑒∞ +



Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

.

The second part can be bounded by applying the Cauchy-Schwarz
inequality to obtain




Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)
= sup

𝒙∈D𝑑

������ ∑
𝒌∈ℐ𝑵 (𝑈)

(
𝑓𝒌 − c𝒌( 𝑓 )

)
𝜑(𝑑)𝒌 (𝒙)

������
≤

√√ ∑
𝒌∈ℐ𝑵 (𝑈)

��� 𝑓𝒌 − c𝒌( 𝑓 )
���2 sup

𝒙∈D𝑑

√√ ∑
𝒌∈ℐ𝑵 (𝑈)

���𝜑(𝑑)𝒌 (𝒙)���2
≤




Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L2(D𝑑 ,𝜔(𝑑))
·
√
𝐶2

supp |ℐ𝑵 (𝑈)|

Now, we apply the same steps as in the proof of Theorem 4.12 to obtain
the estimate


Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L2(D𝑑 ,𝜔(𝑑))

≤
√

2𝑒2
2 +

2𝑒2𝑒∞
𝐶supp

√
5 |ℐ𝑵 (𝑈)|

+ 2𝑒2∞
15𝐶2

supp |ℐ𝑵 (𝑈)|
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with probability 1 − 2 |𝒳|−𝑟 . This gives us


Sℐ𝑵 (𝑈) 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

≤
√

2𝐶2
supp |ℐ𝑵 (𝑈)| 𝑒2

2 + 2𝐶supp

√
|ℐ𝑵 (𝑈)|

5 𝑒2𝑒∞ + 2
15 𝑒

2∞

which proves our result.

This L∞ bound may help us again in a setting where we know
regularity, e.g., in a Sobolev type space or a weighted Wiener space, but
we do not have any statements about the worst-case error in L∞. In the
following, we consider two corollaries for this setting.

Corollary 4.14. Let 0 ≠ 𝑓 ∈ H𝑤(D𝑑 , 𝜔(𝑑)) with a weight function 𝑤 : Z𝑑 →
[1,∞) that is square-summable, i.e., (𝑤−1(𝒌))𝒌∈Z𝑑 ∈ ℓ2. Moreover, let𝒳 ⊆ D𝑑

be a set of |𝒳| > 3 nodes each drawn i.i.d. at random according to the probability
density 𝜔(𝑑) such that

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (1 + 𝑟) log |𝒳|
for 𝑟 > 0 and 𝐶supp < ∞ from (4.2). Let 𝒇 = ( 𝑓 (𝒙))𝒙∈𝒳 be evaluations of 𝑓 ,
and let S𝒳ℐ𝑵 (𝑈) 𝑓 be the approximate partial sum obtained by approximating
the basis coefficients c𝒌( 𝑓 ) via solving the least-squares system (4.3). Then we
have for the error


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))
≤ 𝐶BOS

√√ ∑
𝒌∈ℐ𝐶

𝑵 (𝑈)

1
𝑤2(𝒌) ·

©­«1 +
√

2𝐶2
supp |ℐ𝑵 (𝑈)| + 2𝐶supp

√
|ℐ𝑵 (𝑈)|

5 + 2
15

ª®¬
with probability at least 1 − 2 |𝒳|−𝑟 and 𝐶BOS < ∞ from (4.1).
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Proof. Following the same arguments as in the proof of Theorem 2.30,
we obtain

e∞ ≤ 𝐶BOS ∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))

√√ ∑
𝒌∈ℐ𝐶

𝑵 (𝑈)

1
𝑤2(𝒌) .

If we roughly estimate the 𝑒2 truncation error by 𝑒∞, we get

e2 ≤ e∞ ≤ 𝐶BOS ∥ 𝑓 ∥H𝑤 (D𝑑 ,𝜔(𝑑))

√√ ∑
𝒌∈ℐ𝐶

𝑵 (𝑈)

1
𝑤2(𝒌) .

Applying this to Theorem 4.13 yields the result.

Corollary 4.15. Let 0 ≠ 𝑓 ∈ 𝒜𝑤(D𝑑 , 𝜔(𝑑))with a weight function 𝑤 : Z𝑑 →
[1,∞), let 𝒳 ⊆ D𝑑 be a set of |𝒳| > 3 nodes each drawn i.i.d. at random
according to the probability density 𝜔(𝑑) such that

|ℐ𝑵 (𝑈)| ≤ |𝒳|
10𝐶2

supp (1 + 𝑟) log |𝒳|
for 𝑟 > 0 and 𝐶supp < ∞ from (4.2). Let 𝒇 = ( 𝑓 (𝒙))𝒙∈𝒳 be evaluations of 𝑓 ,
and let S𝒳ℐ𝑵 (𝑈) 𝑓 be the approximate partial sum obtained by approximating
the basis coefficients c𝒌( 𝑓 ) via solving the least-squares system (4.3). Then we
have for the error


 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L∞(D𝑑)

∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))
≤ 𝐶BOS

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

·

©­«1 +
√

2𝐶2
supp |ℐ𝑵 (𝑈)| + 2𝐶supp

√
|ℐ𝑵 (𝑈)|

5 + 2
15

ª®¬
with probability at least 1 − 2 |𝒳|−𝑟 and 𝐶BOS < ∞ from (4.1).
Proof. We use the same arguments as in the proof of Lemma 4.8 to
obtain

e∞ ≤
𝐶BOS ∥ 𝑓 ∥𝒜𝑤 (D𝑑 ,𝜔(𝑑))

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

.
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If we estimate the truncation error 𝑒2 by 𝑒∞ and apply Theorem 4.13,
we have proven the statement.

Corollary 4.14 and Corollary 4.15 give us bounds on the L∞ error
for Sobolev type spaces and weighted Wiener spaces in an individual
setting where we do not have worst-case results. We observe that these
errors scale in the size of the index set ℐ𝑵 (𝑈). For the well-known case
of dominating-mixed smoothness, the quantities√√ ∑

𝒌∈ℐ𝐶
𝑵 (𝑈)

1
𝑤2(𝒌) and 1

inf𝒌∈ℐC
𝑵 (𝑈) 𝑤(𝒌)

have been computed in the previous Section 4.3.1, see (4.22) and (4.24).
In the following, we study how certain requirements in our ANOVA

language may lead to upper bounds on the errors 𝑒2 and 𝑒∞ from (4.26)
under certain conditions that allow us to separate the truncation of the
ANOVA decomposition and the truncation with the grouped index set
ℐ𝑵 (𝑈). We start by considering 𝑒2 and the superposition dimension as
well as global sensitivity indices.

Theorem 4.16. Let 𝑓 ∈ L2(D𝑑 , 𝜔(𝑑)) with superposition dimension 𝑑𝑠 B
𝑑(sp)(𝛿) ∈ [𝑑] for accuracy 𝛿 ∈ (0, 1). Moreover, we have a subset of ANOVA
terms 𝑈 ⊆ 𝑈 (𝑑,𝑑𝑠 ) with

𝜚(𝒖 , 𝑓 ) ≤ 𝜀|𝒖 | for 𝒖 ∈ 𝑈 (𝑑,𝑑𝑠 ) \𝑈 and 𝜺 ∈ (0, 1)𝑑𝑠 .

Then the error 𝑒2 from (4.26) can be bounded by

𝑒2
2 ≤ ©­«1 − 𝛿 +

∑
𝒖∈𝑈 (𝑑,𝑑𝑠 )\𝑈

𝜀|𝒖 |
ª®¬ 𝜎2( 𝑓 ) + 

T𝑈 𝑓 − Sℐ𝑵 (𝑈) 𝑓



2
L2(D𝑑 ,𝜔(𝑑)) .
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Proof. We use orthogonality to split the error as follows

 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L2(D𝑑 ,𝜔(𝑑))
= ∥ 𝑓 − T𝑈 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) +



T𝑈 𝑓 − Sℐ𝑵 (𝑈) 𝑓


2

L2(D𝑑 ,𝜔(𝑑))
= ∥ 𝑓 − T𝑈 (𝑑,𝑑𝑠 ) 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) + ∥T𝑈 (𝑑,𝑑𝑠 ) 𝑓 − T𝑈 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑))
+ 

T𝑈 𝑓 − Sℐ𝑵 (𝑈) 𝑓



2
L2(D𝑑 ,𝜔(𝑑)) .

The first part is smaller than or equal to (1 − 𝛿)𝜎2( 𝑓 ) by the definition
(2.26). For the second part, we have for 𝒖 ∈ 𝑈 (𝑑,𝑑𝑠 ) \𝑈 that 𝜚(𝒖 , 𝑓 ) ≤ 𝜀|𝒖 |
implies

∥ 𝑓𝒖 ∥2L2(D𝑑 ,𝜔(𝑑)) ≤ 𝜀|𝒖 |𝜎2( 𝑓 ).
As a consequence, we get

∥T𝑈 (𝑑,𝑑𝑠 ) 𝑓 − T𝑈 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑)) =
∑

𝒖∈𝑈 (𝑑,𝑑𝑠 )\𝑈
∥ 𝑓𝒖 ∥2L2(D𝑑 ,𝜔(𝑑))

≤ 𝜎2( 𝑓 )
∑

𝒖∈𝑈 (𝑑,𝑑𝑠 )\𝑈
𝜀|𝒖 |

which yields our desired result.

Finding a bound on 𝑒∞ requires stronger assumptions on our function.
Here, we assume 𝑓 ∈ 𝒜(D𝑑 , 𝜔(𝑑)). In fact, if we define a form of ℓ1
equivalent to the sensitivity indices as

𝜃 (𝒖 , 𝑓 ) B 1
∥ 𝑓 ∥𝒜(D𝑑 ,𝜔(𝑑))

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

|c𝒌( 𝑓 )| ,

we are able to determine similar bounds as in Theorem 4.16.

Theorem 4.17. Let 𝑓 ∈ 𝒜(D𝑑 , 𝜔(𝑑)) with∑
𝒖⊆[𝑑]
|𝒖 |>𝑑𝑠

𝜃 (𝒖 , 𝑓 ) ≤ 1 − 𝛿
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for accuracy 𝛿 ∈ (0, 1). Moreover, we have a subset of ANOVA terms
𝑈 ⊆ 𝑈 (𝑑,𝑑𝑠 ) with

𝜃 (𝒖 , 𝑓 ) ≤ 𝜀|𝒖 | for 𝒖 ∈ 𝑈 (𝑑,𝑑𝑠 ) \𝑈 and 𝜺 ∈ (0, 1)𝑑𝑠 . (4.29)

Then the error 𝑒∞ from (4.26) can be bounded by

𝑒∞ ≤ 𝐶BOS
©­«1 − 𝛿 +

∑
𝒖∈𝑈 (𝑑,𝑑𝑠 )\𝑈

𝜀|𝒖 |
ª®¬ ∥ 𝑓 ∥𝒜(D𝑑 ,𝜔(𝑑))+



T𝑈 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑)

with 𝐶BOS from (4.1).
Proof. We use the triangle inequality to split the error as follows

 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑) ≤ ∥ 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑) +



T𝑈 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑)
≤ ∥ 𝑓 − T𝑈 (𝑑,𝑑𝑠 ) 𝑓 ∥L∞(D𝑑)
+ ∥T𝑈 (𝑑,𝑑𝑠 ) 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑)
+ 

T𝑈 𝑓 − Sℐ𝑵 (𝑈) 𝑓




L∞(D𝑑)

For the first part, we have

∥ 𝑓 − T𝑈 (𝑑,𝑑𝑠 ) 𝑓 ∥L∞(D𝑑) ≤ 𝐶BOS
∑
𝒌∈Z𝑑

|supp 𝒌 |>𝑑𝑠

|c𝒌( 𝑓 )| ≤ 𝐶BOS (1−𝛿) ∥ 𝑓 ∥𝒜(D𝑑 ,𝜔(𝑑))

by (4.29). The second part can be estimated as follows

∥T𝑈 (𝑑,𝑑𝑠 ) 𝑓 − T𝑈 𝑓 ∥L∞(D𝑑) ≤ 𝐶BOS
∑

𝒖∈𝑈 (𝑑,𝑑𝑠 )\𝑈

∑
𝒌∈Z𝑑

supp 𝒌=𝒖

|c𝒌( 𝑓 )|

≤ 𝐶BOS ∥ 𝑓 ∥𝒜(D𝑑 ,𝜔(𝑑))
∑

𝒖∈𝑈 (𝑑,𝑑𝑠 )\𝑈
𝜀|𝒖 |

which yields our desired result.

This concludes our considerations of the least-squares error for worst-
case recovery as well as individual function recovery. In summary, we
obtained bounds in the worst-case setting for the L2 error and in the
individual recovery setting for the L2 and L∞ error.



5
Numerical Experiments with Synthetic Data

In this chapter, we perform numerical experiments on synthetic data,
i.e., we want to approximate a function 𝑓 : D𝑑 → C that is an element
of L2(D𝑑 , 𝜔(𝑑)). The available scattered data is

𝐷 B {(𝒙 , 𝑓 (𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳} ⊆ D𝑑 × C (5.1)

with𝒳 ⊆ D𝑑 being a finite set of nodes drawn i.i.d. at random according
to the probability density 𝜔(𝑑). In some cases, we add Gaussian noise
𝜂𝒙 , otherwise we have 𝜂𝒙 ≡ 0. Our goal is to recover the function 𝑓
from the data 𝐷, i.e., determine approximations for basis coefficients
c𝒌( 𝑓 ) on grouped index sets ℐ𝑵 (𝑈) with bandwidths 𝑵 from Defini-
tion 3.3 by applying the method from Section 4.2. Initially, we choose
a superposition threshold 𝑑𝑠 ∈ [𝑑] and use the set of ANOVA terms
𝑈 (𝑑,𝑑𝑠 ) which we reduce to an active set 𝑈∗ ⊆ 𝑈 (𝑑,𝑑𝑠 ) via one or multiple
ideas from Section 4.2.1. This requires us to compute approximations
of the type

S𝒳ℐ𝑵 (𝑈) 𝑓 =
∑

𝒌∈ℐ𝑵 (𝑈)
𝑓𝒌 𝜑

(𝑑)
𝒌 ,

139
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see e.g. (4.4), for a general 𝑈 ⊆ 𝒫([𝑑]) by solving the least-squares
problem (4.3) or its regularized variant (4.8) with parameters 𝜆 ≥ 0 and
𝑾 a diagonal weight matrix. We specifically choose test functions with
sparse ANOVA decompositions such that we have 𝑓𝒖 ≠ 0 only for a
subset 𝑈∗ ⊆ 𝒫([𝑑]) of ANOVA terms. This has the goal to demonstrate
the applicability of tools from Section 4.2.1.

We are going to use two kinds of error measures. The first one is
the L2 approximation error which can only be calculated if we have an
explicit form for the norm ∥ 𝑓 ∥L2(D𝑑 ,𝜔(𝑑)) and the basis coefficients c𝒌( 𝑓 ).
Then we define the error as

𝑒L2( 𝑓 , 𝐷,ℐ𝑵 (𝑈)) B




 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓





L2(D𝑑 ,𝜔(𝑑))
∥ 𝑓 ∥L2(D𝑑 ,𝜔(𝑑))

(5.2)

=

√√√√√√√
1 −

∑
𝒌∈ℐ𝑵 (𝑈)

(��� 𝑓𝒌 − c𝒌( 𝑓 )
���2 − |c𝒌( 𝑓 )|2)

∥ 𝑓 ∥2L2(D𝑑 ,𝜔(𝑑))
.

This error can be regarded as a generalization error since it measures
the deviation in the basis coefficients of the function 𝑓 , i.e., the error
itself has no random component. However, it is not always possible to
compute it since the norm or the basis coefficients may not be known
explicitly. In this case, we have to consider empirical errors, i.e., errors
computed on a second set of nodes that have not been used in computing
the approximation. We denote this set with

𝐷test B {(𝒙 , 𝑓 (𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳test} ⊆ D𝑑 × C (5.3)

since it is used to test the approximation. Here, 𝒳test is again a finite
set of nodes drawn i.i.d. at random according to 𝜔(𝑑) and 𝜂𝒙 is again
Gaussian noise or 𝜂𝒙 ≡ 0. We define the mean square error (MSE) as

𝑒MSE( 𝑓 , 𝐷,ℐ𝑵 (𝑈), 𝐷test) B 1
|𝐷test |

∑
(𝒙 ,𝑦)∈𝐷test

���S𝒳ℐ𝑵 (𝑈) 𝑓 (𝒙) − 𝑦
���2 . (5.4)
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This error contains a random component since it depends on the test
set 𝐷test. It represents an approximation on the L2 error since we have
for the expected value

E [𝑒MSE( 𝑓 , 𝐷,ℐ𝑵 (𝑈), 𝐷test)] =



 𝑓 − S𝒳ℐ𝑵 (𝑈) 𝑓




2

L2(D𝑑 ,𝜔(𝑑))
.

Table 5.1 provides an overview of our experiments with synthetic
data including references to the functions we used, whether we used
noise and/or regularization, and the spatial dimension as well as the
number of nodes.

𝑑 |𝐷 | noise space regularization references section

9 10000 no L2(T9) 𝑾 ≠ 𝑰 [PV16, PS21a, BPS22] 5.1
8 10000 no L2([−1, 1]8 , 𝜔(𝑑), cheb) no [PV17, PS22a] 5.2
10 200 yes L2([0, 1]10) 𝑾 = 𝑰 [MLH03, PS21b] 5.3.1
4 200 yes L2([0, 1]4) 𝑾 = 𝑰 [MLH03, PS21b] 5.3.2
4 200 yes L2([0, 1]4) 𝑾 = 𝑰 [MLH03, PS21b] 5.3.3

Table 5.1: Overview of the experiments with synthetic data. In the
column regularization, we refer to smoothness weights 𝑾 ≠ 𝑰
as in (4.9) or standard Tikhonov regularization with 𝑾 = 𝑰
otherwise. The spaces and their respective bases have been
considered in Section 2.1.2.

5.1 Periodic B-Spline Function
In this section, we consider the 9-dimensional 1-periodic function

𝑓 : T9 → R,
𝒙 ↦→ 𝐵2(𝑥1)𝐵4(𝑥3)𝐵6(𝑥8) + 𝐵2(𝑥2)𝐵4(𝑥5)𝐵6(𝑥6) + 𝐵2(𝑥4)𝐵4(𝑥7)𝐵6(𝑥9),

(5.5)
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where 𝐵2, 𝐵4 and 𝐵6 are parts of univariate, shifted, scaled, and dilated
B-splines of order 2, 4, and 6, respectively. The function 𝑓 is an element
of the space L2(T9). The Fourier series of the B-splines is given by

𝐵 𝑗(𝑥) B 𝑐 𝑗
∑
𝑘∈Z

sinc𝑗
(
𝜋 · 𝑘
𝑗

)
cos(𝜋 · 𝑘) e2𝜋i𝑘·𝑥 for 𝑗 = 2, 4, 6,

with sinc(𝑥) B sin(𝑥)/𝑥 and the three normalization constants

𝑐2 B

√
3
4 , 𝑐4 B

√
315
604 , and 𝑐6 B

√
277200
655177

such that


𝐵 𝑗




L2(T) = 1, 𝑗 = 2, 4, 6.

For this function, we have an explicit form for the Fourier coefficients
c𝒌( 𝑓 ) and the norm ∥ 𝑓 ∥L2(T9), i.e., the generalization error 𝑒L2 from
(5.2) can be computed. Moreover, the function 𝑓 has superposition
dimension 𝑑(sp)(𝛿) = 3, see (2.26), for 𝛿 = 1, i.e., it can be represented by
at most three-dimensional ANOVA terms with 𝑓 = T3 𝑓 . This leads to
𝑑𝑠 = 3 being the optimal choice for the superposition threshold with no
error caused by the ANOVA truncation. We have the active set of terms

𝑈∗ B 𝒫({1, 3, 8}) ∪ 𝒫({2, 5, 6}) ∪ 𝒫({4, 7, 9})

with 𝑓𝒖 ≡ 0 for 𝒖 ∉ 𝑈∗. The function also has dominating-mixed
smoothness of 3/2 − 𝜀 for every 𝜀 > 0, i.e., 𝑓 ∈ H𝜔𝜀 (T9)with

𝜔𝜀(𝒌) =
∏

𝑗∈supp 𝒌

(1 + ��𝑘 𝑗 ��) 3
2−𝜀.

In [PV16, PS21a, BPS22] a test function similar to 𝑓 was also considered
as a benchmark function for different methods. Note that [PV16] dealt
with the problem of active learning or black-box approximation where the
function is given as a black-box and can be evaluated anywhere. They
made use of rank-1 lattices as sampling schemes.
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The ANOVA terms 𝑓𝒖 can be computed analytically such that we
obtain

𝑓∅ = 3
∏

𝑗∈{2,4,6}
𝑐 𝑗

𝑓{𝑖}(𝑥𝑖) =
∏

𝑗∈{2,4,6} 𝑐 𝑗
𝑐o(𝑖)

(
𝐵o(𝑖)(𝑥𝑖) − 𝑐o(𝑖)

)
(5.6)

for the constant and the one-dimensional terms with 𝑖 = 1, 2, . . . , 9 and

o(𝑖) B


2 : 𝑖 ∈ {1, 2, 4},
4 : 𝑖 ∈ {3, 5, 7},
6 : 𝑖 ∈ {8, 6, 9}.

We find for the two-dimensional terms 𝑓𝒖 , 𝒖 = {𝑖 , 𝑗}, 𝑖 , 𝑗 ∈ {1, 2, . . . , 9},
that 𝑓{𝑖 , 𝑗} ≡ 0 for 𝒖 ∉ 𝑈∗ and

𝑓{𝑖 , 𝑗}(𝑥{𝑖 , 𝑗}) =
∏

𝑗∈{2,4,6} 𝑐 𝑗
𝑐o(𝑖)𝑐o(𝑗)

(
𝐵o(𝑖)(𝑥𝑖) − 𝑐o(𝑖)

) (
𝐵o(𝑗)(𝑥 𝑗) − 𝑐o(𝑗)

)
(5.7)

for 𝒖 ∈ 𝑈∗. Finally, we get for the three-dimensional terms 𝑓𝒖 , 𝒖 =

{𝑖 , 𝑗 , ℓ }, 𝑖 , 𝑗 , ℓ ∈ {1, 2, . . . , 9}, that 𝑓𝒖 ≡ 0 again for 𝒖 ∉ 𝑈∗ and

𝑓{𝑖 , 𝑗 ,ℓ }(𝑥{𝑖 , 𝑗 ,ℓ }) =
(
𝐵o(𝑖)(𝑥𝑖) − 𝑐o(𝑖)

) (
𝐵o(𝑗)(𝑥 𝑗) − 𝑐o(𝑗)

) (
𝐵o(ℓ )(𝑥ℓ ) − 𝑐o(ℓ )

)
(5.8)

for 𝒖 ∈ 𝑈∗.
As available data, we have

𝐷 = {(𝒙 , 𝑓 (𝒙)) : 𝒙 ∈ 𝒳} ,
cf. (5.1), with a node set 𝒳 ⊆ T9 of |𝒳| = 10000 nodes drawn i.i.d.
uniformly at random. Using the ANOVA approximation method from
Chapter 4, we aim to recover the information that 𝑈∗ is the active
set of terms as well as an approximation for 𝑓 . We begin with no
regularization, i.e., we solve least-squares problems of type (4.3). Any
form of attribute ranking will not be able to detect the sparsity in the set
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of ANOVA terms 𝑈 (9,3) since every variable 𝑥1 , 𝑥2 , . . . , 𝑥9 itself plays a
role.

We start by using grouped index sets ℐ𝑵 (𝑈 (9,3)) with different band-
width parameters 𝑵 . Here, we are for now not particularly interested
in the error 𝑒L2( 𝑓 , 𝐷,ℐ𝑵 (𝑈 (9,3))), but the detection of the active set 𝑈∗.
We aim to determine this set via the global sensitivity cut-off from
(4.15). Therefore, we have to check the existence of a threshold vector
𝜺 ∈ (0, 1)3 such that 𝑈 (gsi,𝜺) = 𝑈∗. The choice for the entries of 𝜺 lies in
the intervals

𝜀𝑖 ∈ 𝐼𝑖 B
©­­« max
𝒖∈𝑈 (9,3)\𝑈∗
|𝒖 |=𝑖

𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 ), min
𝒖∈𝑈∗
|𝒖 |=𝑖

𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 )
ª®®¬ , 𝑖 = 1, 2, 3.

(5.9)
In other words, a larger interval 𝐼𝑖 implies that the active terms in𝑈∗ are
better separated from the inactive terms in the complement 𝑈 (9,3) \𝑈∗.

𝑵 |ℐ𝑵 | 𝑒L2 𝐼1 𝐼2 𝐼3

[16, 4, 2] 544 2.7 · 10−1 (0.0, 2.4 · 10−2) (2.2 · 10−4 , 2.1 · 10−2) (6.5 · 10−5 , 2.8 · 10−3)
[32, 4, 2] 688 2.8 · 10−1 (0.0, 2.4 · 10−2) (2.2 · 10−4 , 2.1 · 10−2) (6.8 · 10−5 , 2.8 · 10−3)
[64, 8, 2] 2416 2.5 · 10−1 (0.0, 2.3 · 10−2) (7.5 · 10−4 , 2.1 · 10−2) (4.3 · 10−5 , 2.6 · 10−3)
[64, 8, 4] 4600 1.1 · 10−1 (0.0, 2.2 · 10−2) (1.3 · 10−4 , 2.0 · 10−2) (8.0 · 10−5 , 2.4 · 10−2)
[64, 16, 4] 10936 3.9 · 10−1 (0.0, 1.8 · 10−2) (4.9 · 10−3 , 2.0 · 10−2) (8.0 · 10−4 , 1.9 · 10−2)

Table 5.2: Approximation of 𝑓 from (5.5) with different bandwidth
vectors 𝑵 and grouped index set ℐ𝑵 B ℐ𝑵 (𝑈 (9,3)). The
generalization error is denoted as 𝑒L2 B 𝑒L2( 𝑓 , 𝐷,ℐ𝑵 (𝑈 (9,3)))
and the intervals 𝐼1, 𝐼2, and 𝐼3 from (5.9). All results are the
average of running the experiment on 10 randomly generated
data sets 𝐷.

Table 5.2 shows the results from experiments with different band-
width vectors 𝑵 . Clearly, the approximation error 𝑒L2( 𝑓 , 𝐷,ℐ𝑵 (𝑈 (9,3)))
itself is not great. However, the active terms are well-separated from the
inactive terms for any of the bandwidths and we have large intervals 𝐼𝑖
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(a) 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (9,3)) 𝑓 ) for |𝒖 | = 1,
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(b) 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (9,3)) 𝑓 ) for |𝒖 | = 2,
(9
2
)
=

26 terms. Inactive terms with 𝒖 ∉

𝑈∗ in red.
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(c) 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (9,3)) 𝑓 ) for |𝒖 | = 3,
(9
3
)
=

84 terms. Inactive terms with 𝒖 ∉

𝑈∗ in red.

Figure 5.1: Global sensitivity indices 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (9,3)) 𝑓 ) for bandwidths
𝑵 = [64, 8, 4].
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to choose the threshold parameters 𝜀𝑖 such that we are able to detect the
active set with 𝑈 (gsi,𝜺) = 𝑈∗. In summary, the first step of our method
was successful and we were able to exactly determine 𝑈∗. Figure 5.1
depicts the global sensitivity indices for the experiment from Table 5.2
with bandwidths 𝑵 = [64, 8, 4]. If we compare to the one-dimensional
indices in Figure 5.1a to the definition of the corresponding terms
(5.6), we observe that we have three types of smoothness depending on
the order of involved B-splines which results in the sensitivity indices
being grouped around three values. The same connection between
the smoothness of the terms and the groups can be observed for the
two-dimensional terms (5.7) in Figure 5.1b and the three-dimensional
terms (5.8) in Figure 5.1c.

For the second step, we now aim to obtain a good approximation
on 𝑓 . To this end, we choose to use a grouped index set ℐ𝑴 (𝑈∗) with
larger bandwidths 𝑴 ∈ (2N)3 than before. Note that we would also
be able to choose individual bandwidths for each 𝒖 ∈ 𝑈∗. Table 5.3
shows the results of our experiments. Note that we were able to
significantly increase the bandwidths from the previous experiments
and as a result, we were able to decrease the error 𝑒L2 about one order in
the exponent. Therefore, our two step method was successful, i.e., we
have not only detected the active set of terms 𝑈∗, but also approximated
a 9-dimensional function using only 10000 data points with an error
of about 1.4 · 10−2. For this function, we are also able to compute the
bound from Theorem 4.12 for individual function approximation. The
truncation error 𝑒2 from (4.26) can be computed explicitly while we
estimate the truncation error 𝑒∞ from (4.26) in L∞ as

𝑒∞ B
∑

𝒌∈Z𝑑\ℐ
|c𝒌( 𝑓 )| ≥ 𝑒∞

for an index set ℐ ⊆ Z𝑑. We have visualized the relative 𝑒L2 error
compared to the relative bound

ℬ =
1

∥ 𝑓 ∥L2(T9)

(
3𝑒2

2 +
2𝑒2𝑒∞√

5 |ℐ𝑵 (𝑈)|
+ 2𝑒2∞

15 |ℐ𝑵 (𝑈)|

)
(5.10)
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in Figure 5.2.

𝑴 |ℐ𝑴 (𝑈∗)| 𝑒L2

[80, 16, 12] 6730 1.4 · 10−2

[90, 18, 14] 9994 1.7 · 10−1

[80, 14, 10] 4420 1.5 · 10−2

[80, 10, 10] 3628 1.9 · 10−2

[70, 16, 12] 6640 1.4 · 10−2

Table 5.3: Approximation of 𝑓 from (5.5) with different bandwidth
vectors 𝑴 and grouped index set ℐ𝑴 (𝑈∗). The generalization
error is denoted as 𝑒L2 B 𝑒L2( 𝑓 , 𝐷,ℐ𝑴 (𝑈∗)). All results are the
average over computing the approximation with 10 randomly
generated data sets 𝐷.

We conclude our considerations of this test function by repeating the
experiments using the weighted regularization idea from Section 4.1.2.
Since we know that 𝑓 ∈ H𝜔𝜀 (T9), we define the weight matrix

𝑾ℐ = diag ©­«
∏

𝑗∈supp 𝒌

(1 + ��𝑘 𝑗 ��) 3
2
ª®¬𝒌∈ℐ

for a finite index set ℐ. Now, we perform the experiments from
Table 5.2 again, but this time we solve the regularized least-squares
problem (4.8) and also add the larger bandwidths from Table 5.3 to
the test in order to see the effect of reducing the search space with
this type of regularization, cf. Section 4.1.2. In Table 5.4 we see that
the regularization makes an enormous difference when it comes to
the oversampling. While the error slightly improves in comparison to
the results in Table 5.2, we even achieve comparable errors for around
200000 indices, i.e., 20 times more indices than nodes. In Table 5.5 we
repeated the experiments of Table 5.3, showing the same phenomenon
which also allows us to decrease the error slightly.
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𝑵1 𝑵2 𝑵3 𝑵4 𝑵5
0.1
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��ℐ𝑵 (𝑈 (9,3))��
(a) Approximation error

𝑒L2 ( 𝑓 , 𝐷,ℐ𝑵 (𝑈(9,3))) (solid) and
error bound ℬ from (5.10) (dashed)
for bandwidths 𝑁1 = [16, 4, 2],
𝑁2 = [32, 6, 4], 𝑁3 = [64, 8, 2],
𝑁4 = [64, 10, 2], and 𝑁5 = [64, 8, 4].

𝑴1 𝑴2 𝑴3 𝑴4 𝑴5
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|ℐ𝑴 (𝑈∗)|

(b) Approximation error
𝑒L2 ( 𝑓 , 𝐷,ℐ𝑴 (𝑈∗)) (solid) and
error bound ℬ from (5.10)
(dashed) for bandwidths
𝑁1 = [80, 10, 10], 𝑁2 = [80, 14, 10],
𝑁3 = [80, 18, 10], 𝑁4 = [80, 20, 10],
and 𝑁5 = [80, 16, 12].

Figure 5.2: Visualization of approximation errors and the error bounds
from Section 4.3.2.



5.1 Periodic B-Spline Function 149

𝑵 |ℐ𝑵 | 𝜆 𝑒L2 𝐼1 𝐼2 𝐼3

[16, 4, 2] 544 e3 2.7 · 10−1 (0.0, 2.5 · 10−2) (2.1 · 10−4 , 2.1 · 10−2) (6.1 · 10−5 , 2.6 · 10−3)
[32, 4, 2] 688 e4 2.7 · 10−1 (0.0, 2.5 · 10−2) (2.1 · 10−4 , 2.1 · 10−2) (6.0 · 10−5 , 2.5 · 10−3)
[64, 8, 2] 2416 e4 2.4 · 10−1 (0.0, 2.4 · 10−2) (5.1 · 10−4 , 2.0 · 10−2) (3.5 · 10−5 , 2.2 · 10−3)
[64, 8, 4] 4600 e3 1.0 · 10−1 (0.0, 2.3 · 10−2) (9.6 · 10−5 , 2.0 · 10−2) (5.7 · 10−5 , 2.1 · 10−2)
[64, 16, 4] 10936 e3 1.2 · 10−1 (0.0, 2.3 · 10−2) (2.7 · 10−4 , 2.0 · 10−2) (7.2 · 10−5 , 1.9 · 10−2)
[80, 16, 12] 120616 e0 2.3 · 10−1 (0.0, 2.7 · 10−2) (3.0 · 10−4 , 1.6 · 10−2) (2.6 · 10−4 , 9.4 · 10−3)
[90, 18, 14] 195754 e0 2.5 · 10−1 (0.0, 2.7 · 10−2) (3.3 · 10−4 , 1.6 · 10−2) (2.7 · 10−4 , 8.1 · 10−3)

Table 5.4: Approximation of 𝑓 from (5.5) with different bandwidth
vectors 𝑵 and grouped index set ℐ𝑵 B ℐ𝑵 (𝑈 (9,3)). The
generalization error is denoted as 𝑒L2 B 𝑒L2( 𝑓 , 𝐷,ℐ𝑵 (𝑈 (9,3)))
and the intervals 𝐼1, 𝐼2, and 𝐼3 from (5.9). We apply weighted
regularization with 𝑾ℐ𝑵 as in (4.8) with 𝜆 being the best
choice of regularization parameter from e𝑡 , 𝑡 = 0, 1, . . . , 5.
All results are the average of running the experiment on 10
randomly generated data sets 𝐷.

𝑴 |ℐ𝑴 (𝑈∗)| 𝜆 𝑒L2

[80, 16, 12] 6730 e0 1.3 · 10−2

[90, 18, 14] 9994 e0 1.4 · 10−2

[80, 14, 10] 4420 e0 1.5 · 10−2

[80, 10, 10] 3628 e1 1.8 · 10−2

[70, 16, 12] 6640 e0 1.3 · 10−2

[100, 20, 14] 10732 e0 1.4 · 10−2

[120, 24, 16] 15958 e0 1.7 · 10−2

Table 5.5: Approximation of 𝑓 from (5.5) with different bandwidth
vectors 𝑴 and grouped index set ℐ𝑴 (𝑈∗). The generalization
error is denoted as 𝑒L2 B 𝑒L2( 𝑓 , 𝐷,ℐ𝑴 (𝑈∗)). All results are the
average over computing the approximation with 10 randomly
generated data sets 𝐷.
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5.2 Non-Periodic B-Spline Function
In this section, we consider the non-periodic function

𝑓 : [−1, 1]8 → R, (5.11)
𝑓 (𝒙) = 𝐵2(𝑥1)𝐵4(𝑥5) + 𝐵2(𝑥2)𝐵4(𝑥6) + 𝐵2(𝑥3)𝐵4(𝑥7) + 𝐵2(𝑥4)𝐵4(𝑥8),

with 𝐵2 and 𝐵4 being parts of the univariate shifted, scaled and di-
lated B-splines from the previous Section 5.1. We have visualized
the two B-splines in Figure 5.3. The function 𝑓 is an element of
L2([−1, 1]8 , 𝜔(𝑑), cheb) and we have normalized the splines such that
∥𝐵2∥L2([−1,1]8 ,𝜔(𝑑), cheb) = ∥𝐵4∥L2([−1,1]8 ,𝜔(𝑑), cheb) = 1.
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(a) 𝐵2 : [−1, 1] → R highlighted in
bold.
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2.5

(b) 𝐵4 : [−1, 1] → R highlighted in
bold.

Figure 5.3: B-Splines 𝐵2 and 𝐵4 from (5.11).

For this function, we have an active set

𝑈∗ B ∅ ∪ 𝒫({1, 5}) ∪ 𝒫({2, 6}) ∪ 𝒫({3, 7}) ∪ 𝒫({4, 8})
such that 𝑓𝒖 ≡ 0 for 𝒖 ∈ 𝒫([𝑑]) \ 𝑈∗. This implies that we have the
superposition dimension 𝑑(sp)(𝛿) = 2 for 𝛿 = 1, i.e., 𝑓 = T2 𝑓 , see (2.26).
We can also explicitly compute the basis coefficients

c𝒌( 𝑓 ) = ⟨ 𝑓 , 𝜑(𝑑), cheb
𝒌 ⟩L2([−1,1]8 ,𝜔(𝑑), cheb)
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and the norm ∥ 𝑓 ∥L2([−1,1]8 ,𝜔(𝑑), cheb), i.e., the generalization error 𝑒L2 from
(5.2) is available.

As for the periodic function in Section 5.1, it is our goal to recover
the active set 𝑈∗ and obtain a good approximation for 𝑓 from the data

𝐷 = {(𝒙 , 𝑓 (𝒙)) : 𝒙 ∈ 𝒳} .
Here, we have a set 𝒳 ⊆ [−1, 1]8 of |𝒳| = 10000 nodes drawn i.i.d. at
random according to the Chebyshev probability density 𝜔(𝑑), cheb. The
superposition threshold will be set to 𝑑𝑠 = 3, i.e., we start by taking also
3-dimensional terms into account. We do this to show that starting with
a higher superposition threshold 𝑑𝑠 will still lead to the correct active
set 𝑈∗. We use the global sensitivity cut-off method from (4.15), i.e., we
are looking for a threshold vector 𝜺 ∈ (0, 1)3 such that 𝑈 (gsi,𝜺) = 𝑈∗. The
choice for the entries of 𝜺 lie in the intervals

𝜀𝑖 ∈ 𝐼𝑖 B
©­­« max
𝒖∈𝑈 (8,3)\𝑈∗
|𝒖 |=𝑖

𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 ), min
𝒖∈𝑈∗
|𝒖 |=𝑖

𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 )
ª®®¬ , 𝑖 = 1, 2.

(5.12)
A larger interval 𝐼𝑖 implies that the active terms in𝑈∗ are better separated
from the inactive terms in the complement 𝑈 (8,3) \𝑈∗. For |𝒖 | = 3 we
are hoping that the value

𝜚3 B max
𝒖∈𝑈 (8,3)\𝑈∗
|𝒖 |=3

𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈) 𝑓 ) (5.13)

is small in order to correctly recognize that there are no terms 𝒖 ∈ 𝑈∗
with |𝒖 | = 3.

The experiments from Table 5.6 show promising results already
for the generalization error as well as the active set detection. We
have a clear separation of active terms in 𝑈∗ and inactive terms in its
complement yielding large intervals 𝐼1 and 𝐼2. The 3-dimensional terms
are correctly not attributed any importance with the quantity 𝜚3 being
in the range of 10−10. The global sensitivity indices are also visualized
in Figure 5.4.
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Now, we choose to use a grouped index set ℐ𝑴 (𝑈∗) with larger
bandwidths 𝑴 ∈ N2 than before to obtain a better approximation. Note
that 𝑴 now only has two entries since there is no three-dimensional
term in the active set 𝑈∗. The results of the experiments are displayed
in Table 5.7. We observe that we can decrease the generalization
error further obtaining a final approximation with 𝑒L2( 𝑓 , 𝐷,ℐ𝑴 (𝑈∗)) ≈
3.3 · 10−4.

𝑵 |ℐ𝑵 | 𝑒L2 𝐼1 𝐼2 𝜚3

[16, 8, 2] 1549 7.0 · 10−4 (0.0, 8.6 · 10−2) (9.8 · 10−9 , 5.9 · 10−2) 8.2 · 10−10

[16, 16, 2] 6477 4.3 · 10−4 (0.0, 8.6 · 10−2) (6.4 · 10−9 , 5.9 · 10−2) 1.7 · 10−10

[32, 8, 2] 1677 7.0 · 10−4 (0.0, 8.6 · 10−2) (9.4 · 10−9 , 5.9 · 10−2) 8.1 · 10−10

[32, 16, 2] 6605 3.8 · 10−4 (0.0, 8.6 · 10−2) (2.9 · 10−9 , 5.9 · 10−2) 7.2 · 10−11

[16, 8, 4] 3005 7.6 · 10−4 (0.0, 8.6 · 10−2) (1.2 · 10−8 , 5.9 · 10−2) 8.6 · 10−9

Table 5.6: Approximation of 𝑓 from (5.11) with different bandwidth
vectors 𝑵 and grouped index set ℐ𝑵 B ℐ𝑵 (𝑈 (8,3)). The
generalization error is denoted as 𝑒L2 B 𝑒L2( 𝑓 , 𝐷,ℐ𝑵 (𝑈 (8,3)))
and the intervals 𝐼1, 𝐼2 from (5.12), and 𝜚3 from (5.13). All
results are the average of running the experiment on 10
randomly generated sets of nodes 𝒳.
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(b) 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (8,3)) 𝑓 ) for |𝒖 | = 2,
(8
2
)
=

28 terms. Inactive terms with 𝒖 ∉

𝑈∗ in red.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
·10−2

(c) 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (8,3)) 𝑓 ) for |𝒖 | = 3,
(8
3
)
=

56 terms. All terms are inactive
with 𝒖 ∉ 𝑈∗.

Figure 5.4: Global sensitivity indices 𝜚(𝒖 , S𝒳ℐ𝑵 (𝑈 (8,3)) 𝑓 ) for bandwidths
𝑵 = [32, 16, 2].
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𝑴 |ℐ𝑴 (𝑈∗)| 𝑒L2

[60, 30] 3837 3.4 · 10−4

[60, 36] 5373 3.3 · 10−4

[60, 42] 7197 1.0 · 10−3

[80, 30] 3997 3.4 · 10−4

[80, 36] 5533 3.3 · 10−4

[80, 42] 7357 1.4 · 10−3

Table 5.7: Approximation of 𝑓 from (5.11) with different bandwidth
vectors 𝑴 and grouped index set ℐ𝑴 (𝑈∗). The generalization
error is denoted as 𝑒L2 B 𝑒L2( 𝑓 , 𝐷,ℐ𝑴 (𝑈∗)). All results are the
average over computing the approximation with 10 randomly
generated data sets 𝐷.
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5.3 Friedman Functions
The Friedman functions are a class of functions used for benchmarking
scattered data approximation, see e.g. [MLH03, BGM09, BDL11]. We
start by defining the three non-periodic Friedman functions over [0, 1]𝑑.

The Friedman 1 function

𝑓1 : [0, 1]10 → R, 𝑓1(𝒙) = 10 sin(𝜋𝑥1𝑥2) + 20(𝑥3 − 0.5)2 + 10𝑥4 + 5𝑥5

has spatial dimension 𝑑 = 10. However, only five of the ten variables
have any influence on the function which is the most important infor-
mation we aim to find with an attribute ranking. Additionally, we have
the superposition dimension 𝑑(sp)(𝛿) = 2 for 𝛿 = 1, i.e., T2 𝑓 = 𝑓 , see
(2.26). The Friedman 2 function

𝑓2 : [0, 1]4 → R, 𝑓2(𝒙) =
√
𝑠2

1(𝑥1) +
(
𝑠2(𝑥2) · 𝑥3 − 1

𝑠2(𝑥2) · 𝑠4(𝑥4)
)2

has spatial dimension 4 and contains the variable scalings 𝑠1(𝑥1) = 100𝑥1,
𝑠2(𝑥2) = 520𝜋𝑥2 + 40𝜋, and 𝑠4(𝑥4) = 10𝑥4 + 1. The scalings ensure that
we have 𝑥𝑖 ∈ [0, 1], 𝑖 = 1, 2, 3, 4. The third and last Friedman function
is given by

𝑓3 : [0, 1]4 → R, 𝑓3(𝒙) = arctan
(
𝑠2(𝑥2) · 𝑥3 − (𝑠2(𝑥2) · 𝑠4(𝑥4))−1

𝑠1(𝑥1)
)

again with spatial dimension 𝑑 = 4 and the same scalings 𝑠1, 𝑠2, and 𝑠4
as before. Here, every term is (analytically) non-zero which means that
entire function can only be reconstructed for a superposition threshold
𝑑𝑠 = 4 without an ANOVA truncation error.

The three functions 𝑓1, 𝑓2, and 𝑓3 are elements of the space L2([0, 1]𝑑)
for their respective spatial domain 𝑑. However, we do not have access
to an explicit form of the norm ∥ 𝑓 ∥L2([0,1]𝑑) and the basis coefficients
c𝒌( 𝑓 ) = ⟨ 𝑓 , 𝜑(𝑑), cos

𝒌 ⟩L2([0,1]𝑑), i.e., we have to rely on the empirical error.
Since it is our goal to compare to the results in [MLH03], we use the
mean square error (MSE) 𝑒MSE( 𝑓 , 𝐷,ℐ𝑵 (𝑈), 𝐷test) from (5.4). As in
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[MLH03], our data 𝐷, cf. (5.1), will always consist of 200 nodes and
noisy function evaluations. For the test data 𝐷test, cf. (5.3), we validate
our model on 1000 nodes and also apply noise to the evaluations.

Table 5.8 shows benchmark data from [MLH03] with a support vector
machine (SVM), a linear model (LM), a neural network (MNET) and a
random forest (RFORST) together with the results from our method
(ANOVAapprox). In the following sections we present the detailed
procedure on how to obtain the models for ANOVAapprox.

SVM LM MNET RFORST ANOVAapprox

Friedman 1 4.36 7.71 9.21 6.02 1.43
Friedman 2 (· 103) 18.13 36.15 19.61 21.50 17.18
Friedman 3 (· 10−3) 23.15 45.42 18.12 22.21 20.69

Table 5.8: Mean squared errors (MSE) for different methods when
approximating Friedman functions in [MLH03] compared to
ANOVAapprox. The value for ANOVAapprox was obtained
by computing the approximation on 100 randomly generated
data sets 𝐷 and validating them on 100 randomly generated
test sets 𝐷test. All values are the medians of the mean square
errors and the best value for every function is highlighted.

The results show that the ANOVA approximation method is compet-
itive to the other approaches and delivers the best MSE for Friedman
1 and 2 as well as a close second best MSE for Friedman 3. Note that
a set with 200 data points is rather small and other experiments used
significantly more data, but we aimed to stay in the exact setting of
[MLH03].

5.3.1 Friedman 1

The function 𝑓1 provides a particular challenge for attribute ranking
since it has spatial dimension 10, but only the variables 𝑥1 to 𝑥5 have an
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influence on the function value. Moreover, we have an active set

𝑈∗1 = {∅} ∪ {{1}, {2}, {3}, {4}, {5}, {1, 2}}, (5.14)

i.e., only one two-dimensional term is relevant to the function. For
obtaining the approximation, we use the data

𝐷 = {(𝒙 , 𝑓1(𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳}
𝐷test = {(𝒙 , 𝑓1(𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳test} ,

cf. (5.1) with a set 𝒳 ⊆ [0, 1]10 of |𝒳| = 200 uniformly distributed
nodes drawn i.i.d. at random. Here, 𝜂𝒙 is random Gaussian noise with
expected value 0 and variance 1. For computing the MSE, we use a test
set 𝒳test ⊆ [0, 1]10 of |𝒳test | = 1000 uniformly distributed nodes drawn
i.i.d. at random.

We choose as superposition threshold 𝑑𝑠 = 2 and apply regularization,
i.e., we solve problem (4.8) unweighted with regularization parameter
𝜆 ≥ 0 and 𝑾 = 𝑰 the identity. Our first goal is to approximate the
function with a grouped index set ℐ𝑵 (𝑈 (10,2)) for bandwidths 𝑵 ∈ N2.
Here, we aim to find the information that the variables 𝑥6 to 𝑥10 do
not contribute to the function. The active set detection with attribute
ranking provides a method for this, i.e., we want to find an 𝜀 > 0 such
that

𝑈 (ar,𝜀) = {𝒖 ⊆ {1, 2, 3, 4, 5} : |𝒖 | ≤ 2} = 𝑈 (5,2) ,

see (4.17). Since the emphasis lies on computing the attribute ranking,
we choose small bandwidths 𝑵 = [4, 2] such that

��ℐ𝑵 (𝑈 (10,2))�� = 76 and
compute the approximation S𝒳ℐ𝑵 (𝑈 (10,2)) 𝑓1 with regularization parameter
𝜆 ∈ [0, 1, 2, 3, 4, 5]. We then choose the 𝜆 that yields the lowest MSE.
This procedure is iterated with 10 randomly generated pairs of data
sets 𝐷 and 𝐷test in order to account for the variance in the data. The
average of the mean square errors 𝑒MSE( 𝑓1 , 𝐷,ℐ𝑵 (𝑈 (10,2)), 𝐷test) is 4.99
with 𝜆 = 1 turning out to be the choice for the regularization parameter.
The average attribute ranking

𝒓 = [0.22, 0.21, 0.090, 0.36, 0.099, 0.005, 0.003, 0.004, 0.004, 0.004]
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is depicted in Figure 5.5a. The scores 𝑟𝑖 , 𝑖 = 1, 2, . . . , 10, were computed
according to (4.17). This implies a clear separation of active variables
𝑥1 to 𝑥5 and inactive variables 𝑥6 to 𝑥10 such that we may choose the
cut-off at 1% with 𝜀 = 0.01 and

𝑈 (ar,0.01) = {𝒖 ⊆ {1, 2, 3, 4, 5} : |𝒖 | ≤ 2} = 𝑈 (5,2).

Now, we want to detect the active set of terms 𝑈∗1 ⊆ 𝑈 (ar,0.01) from
(5.14). To this end, we compute the approximation S𝒳ℐ𝑵 (𝑈 (ar,0.01)) 𝑓1 with
bandwidths 𝑵 = [6, 4], i.e., an increase to the previous experiment, and
𝜆 ∈ [0, 1, 2, 3, 4, 5] again. The approximation yields an average MSE
𝑒MSE( 𝑓1 , 𝐷,ℐ𝑵 (𝑈 (ar,0.01)), 𝐷test) of 3.17 on the 10 randomly generated
pairs of data sets 𝐷 and 𝐷test with 𝜆 = 1. We depicted the global
sensitivity indices in Figure 5.5b. Clearly, the active sets 𝑈∗1 are well-
separated from the inactive sets such that we may apply a sensitivity
cut-off with 𝑈 (gsi,[0.01,0.01]) = 𝑈∗1, cf. (4.15).

Finally, we have to determine a good choice of bandwidths 𝑵 for
the approximation S𝒳ℐ𝑵 (𝑈∗1)

𝑓1. From the experiments in Table 5.9,
we obtain that this choice is 𝑵 = [6, 4] yielding an average MSE
𝑒MSE( 𝑓1 , 𝐷,ℐ𝑵 (𝑈∗1), 𝐷test) of 1.47 on the 10 randomly generated pairs
of data sets 𝐷 and 𝐷test with 𝜆 = 0. In order to obtain the value for
Table 5.8, we have computed S𝒳ℐ[6,4](𝑈∗1)

𝑓1 on 100 randomly generated
data sets 𝐷 and took the MSE on 100 randomly generated data sets
𝐷test. This is a replication of the setting in [MLH03] which yielded a
median MSE of 1.43 for our setting. This is a significant improvement
to the results obtained by the other methods, see Table 5.8.

There exist a number of other methods for attribute rankings or
feature selection, see e.g. [GE03]. We conclude this section with a
comparison to the well-known method of the estimation of mutual
information. The mutual information between two random variables
represents a measure for the dependency between the variables. For a
pair of jointly continuous random variables (𝑍,𝑌) with values over the
space𝒵 ×𝒴, it is defined as

𝐼(𝑍,𝑌) B
∫
𝒵

∫
𝒴
𝑝(𝑍,𝑌)(𝑧, 𝑦) log

𝑝(𝑍,𝑌)(𝑧, 𝑦)
𝑝𝑍(𝑧) 𝑝𝑌(𝑦) d𝑧 d𝑦
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(a) Average of attribute rankings 𝑟(𝑖),
𝑖 = 1, 2, . . . , 10, of approximation
S𝒳ℐ[4,2](𝑈 (10,2)) 𝑓1 on 10 randomly gen-
erated data sets 𝐷. Active variables
𝑥1 to 𝑥5 in orange and inactive vari-
ables 𝑥6 to 𝑥10 in red.
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(b) Average global sensitivity indices
𝜚(𝒖 , S𝒳ℐ[6,4](𝑈 (ar,0.01)) 𝑓1) on 10 ran-
domly generated data sets 𝐷. Ac-
tive sets 𝒖 ∈ 𝑈∗1 in orange and inac-
tive sets 𝒖 ∉ 𝑈∗1 in red.

Figure 5.5: Analysis of the Friedman 1 function using attribute ranking
and global sensitivity cut-off.
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𝑵
��ℐ𝑵 (𝑈∗1)�� 𝜆 𝑒MSE

[4, 4] 25 0.0 1.65
[6, 4] 35 0.0 1.47
[8, 4] 45 0.0 1.52
[10, 4] 55 1.0 1.59
[4, 6] 41 0.0 1.71
[6, 6] 51 0.0 1.52
[8, 6] 61 0.0 1.63
[10, 6] 71 0.0 1.70

Table 5.9: Approximation of 𝑓1 with different bandwidth vectors 𝑵 ,
grouped index set ℐ𝑵 (𝑈∗1) and regularization parameter 𝜆.
The mean square error 𝑒MSE B 𝑒MSE( 𝑓1 , 𝐷,ℐ𝑵 (𝑈∗1), 𝐷test) is
the average over 10 randomly generated pairs of data sets 𝐷
and 𝐷test.

with 𝑝(𝑍,𝑌) the joint probability density function of 𝑍 and 𝑌, and 𝑝𝑍 , 𝑝𝑌
the marginal probability density functions of 𝑍 and 𝑌, respectively. We
use the function sklearn.feature_selection.mutual_info_regression
from the scikit-learn Python library for the computations, see [PVG+11].
The estimation of the mutual information is based on the estimation of
entropy from 𝑘-nearest neighbor distances, cf. [KSG04, Ros14].

Table 5.10 shows the results of our experiments with different values
for the number of nearest neighbors 𝑘. The method has been applied to
the data set𝐷 with noisy evaluations. We observe that it is not possible to
clearly distinguish the active variables. The active variables 𝑥3 and 𝑥5 get
attributed only a small influence while some unimportant variables get
attributed a higher influence, e.g., the variable 𝑥10 in the test with 𝑘 = 5.
In contrast to the experiments with mutual information estimation,
our model-based approach by estimating the global sensitivity indices
delivers a clear distinction of the active variables.
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𝑘 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

3 0.14 0.15 0.00 0.21 0.10 0.00 0.00 0.01 0.04 0.05
5 0.17 0.11 0.05 0.23 0.07 0.00 0.00 0.00 0.00 0.11
7 0.14 0.12 0.04 0.25 0.05 0.00 0.03 0.02 0.00 0.04

Table 5.10: Attribute ranking obtained by mutual information estima-
tion using the scikit-learn library. The parameter 𝑘 repre-
sents the number of neighbors to use in the entropy estima-
tion.

5.3.2 Friedman 2
Now, we consider the second Friedman function 𝑓2 with spatial di-
mension 𝑑 = 4. For this function, we do not have a clear active set of
terms from an analytical viewpoint which means that we are going to
determine one empirically from the approximation. As the data, we
use a set 𝒳 ⊆ [0, 1]4 of |𝒳| = 200 uniformly distributed nodes drawn
i.i.d. at random. For computing the mean square error, we use a test set
𝒳test ⊆ [0, 1]4 of |𝒳test | = 1000 uniformly distributed nodes also drawn
i.i.d. at random. This gives us the data

𝐷 = {(𝒙 , 𝑓2(𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳}
𝐷test = {(𝒙 , 𝑓2(𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳test} ,

cf. (5.1), where 𝜂𝒙 is Gaussian noise with mean zero and variance 125
as in [MLH03].

In order to determine an active set, we choose as superposition
threshold 𝑑𝑠 = 2 and compute the approximation S𝒳ℐ[4,2](𝑈 (4,2)) 𝑓2 by
solving the unweighted regularized least-squares problem (4.8) with
regularization parameter 𝜆 ∈ [0, 1, 2, 3, 4, 5], 𝑾 = 𝑰 the identity, and
grouped index set ℐ[4,2](𝑈 (4,2)). This yielded an average for the mean
square error 𝑒MSE( 𝑓2 , 𝐷,ℐ[4,2](𝑈 (4,2)), 𝐷test) of 18.2 · 103 on 10 randomly
generated pairs of data sets 𝐷 and 𝐷test with 𝜆 = 3. The average global
sensitivity indices are depicted in Figure 5.6. This is a rather surprising
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result since the terms involving the variables 𝑥1 and 𝑥4 do not seem
to contribute significantly to the variance of the function. We decided
for a global sensitivity cut-off at 1% and subsequently obtained as the
active set

𝑈 (gsi,[0.01,0.01]) = {∅, {2}, {3}, {2, 3}} C 𝑈∗2

cf. (4.15).

1 3 5 7 9
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0.2

0.3
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{3}

{2, 3}

Figure 5.6: Average global sensitivity indices 𝜚(𝒖 , S𝒳ℐ[4,2](𝑈 (4,2)) 𝑓2) on 10
randomly generated data sets 𝐷. Active sets 𝒖 ∈ 𝑈∗2 in
orange and inactive sets 𝒖 ∉ 𝑈∗2 in red.

For finding a good choice of bandwidths 𝑵 in the approximation
S𝒳ℐ𝑵 (𝑈∗2)

𝑓2, we performed the experiments in Table 5.11. The bandwidths
𝑵 = [4, 2] yielded the best average MSE 𝑒MSE( 𝑓2 , 𝐷,ℐ𝑵 (𝑈∗2), 𝐷test) of
17.3 · 103 with regularization parameter 𝜆 = 2. Computing the approx-
imation S𝒳ℐ[4,2](𝑈∗2)

𝑓2 on 100 randomly generated data sets 𝐷 yielded a
median MSE 𝑒MSE( 𝑓2 , 𝐷,ℐ𝑵 (𝑈∗2), 𝐷test) of 17.18 · 103 on 100 randomly
generated test sets 𝐷test which represents the value for Friedman 2 in
Table 5.8.
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𝑵
��ℐ𝑵 (𝑈∗2)�� 𝜆 𝑒MSE

[2, 2] 4 3.0 18.3 · 103

[2, 4] 12 2.0 18.5 · 103

[2, 6] 28 4.0 20.1 · 103

[4, 2] 8 2.0 17.3 · 103

[4, 4] 16 1.0 17.5 · 103

[4, 6] 32 2.0 19.0 · 103

[6, 2] 12 3.0 17.6 · 103

[6, 4] 20 3.0 17.9 · 103

[6, 6] 36 4.0 19.3 · 103

Table 5.11: Approximation of 𝑓2 with different bandwidth vectors 𝑵 ,
grouped index set ℐ𝑵 (𝑈∗2) and regularization parameter 𝜆.
The mean square error 𝑒MSE B 𝑒MSE( 𝑓2 , 𝐷,ℐ𝑵 (𝑈∗2), 𝐷test) is
the average over 10 randomly generated pairs of data sets 𝐷
and 𝐷test.

5.3.3 Friedman 3
Finally, we consider the third Friedman function 𝑓3 with spatial dimen-
sion 𝑑 = 4. This function is special since the inverse tangent arctan
causes that we neither have an intrinsic sparsity in the ANOVA decom-
position nor in the number of variables. As for Friedman 2, we have
to determine an active set of terms empirically. The data will again
be a set 𝒳 ⊆ [0, 1]4 of |𝒳| = 200 uniformly distributed nodes drawn
i.i.d. at random. The mean square error will be computed on a test set
𝒳test ⊆ [0, 1]4 of |𝒳test | = 1000 uniformly distributed nodes also drawn
i.i.d. at random. As data we use

𝐷 = {(𝒙 , 𝑓3(𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳}
𝐷test = {(𝒙 , 𝑓3(𝒙) + 𝜂𝒙) : 𝒙 ∈ 𝒳test} ,

cf. (5.1), where 𝜂𝒙 is Gaussian noise with mean zero and variance 0.1 as
in [MLH03].



164 5 Numerical Experiments with Synthetic Data

We start our experiments by choosing to use the full set of ANOVA
terms𝑈 (4,4) = 𝒫([4]) and aim to determine an active set𝑈∗3 ⊆ 𝑈 (4,4) from
there. We use bandwidths 𝑵 = [4, 2, 2, 2] and compute the approxima-
tion S𝒳ℐ[4,2,2,2](𝑈 (4,4)) 𝑓3 by solving the unweighted regularized least-squares
problem (4.8) with regularization parameter𝜆 ∈ [1, 2, 3, 4, 5] and𝑾 = 𝑰
the identity. When computed on 10 randomly generated data sets 𝐷, the
approximation yielded an average MSE 𝑒MSE( 𝑓3 , 𝐷,ℐ[4,2,2,2](𝑈 (4,4)), 𝐷test)
of 33.3 · 10−3 on 10 randomly generated test sets 𝐷test. Figure 5.7 shows
the average attribute ranking

𝒓 = [0.166, 0.209, 0.612, 0.013]
for the approximation with 𝑟𝑖 computed according to (4.16). We observe
that the variable 𝑥4 seems to have very little influence on the variance
of the approximation. If we cut off at 5% importance, we get

𝑈 (ar,0.05) = 𝒫([3]),
see (4.17). However, we want to limit the interactions with superposition
threshold 𝑑𝑠 = 2 such that we choose the active set

𝑈∗3 B {𝒖 ⊆ [3] : |𝒖 | ≤ 2} = 𝑈 (3,2).

Now, we only need to find a suitable choice of bandwidths 𝑵 in
the final approximation S𝒳ℐ𝑵 (𝑈∗3)

𝑓 . Table 5.12 shows the results of our
experiments with different 𝑵 ∈ N2. Here, 𝑵 = [12, 2] yielded the
best average MSE 𝑒MSE( 𝑓3 , 𝐷,ℐ𝑵 (𝑈∗3), 𝐷test) of 21.0 · 10−3 with regu-
larization parameter 𝜆 = 4. Finally, we compute the approximation
S𝒳ℐ[12,2](𝑈∗3)

𝑓3 on 100 randomly generated data sets 𝐷 yielding a median
MSE 𝑒MSE( 𝑓3 , 𝐷,ℐ𝑵 (𝑈∗3), 𝐷test) of 20.69 ·10−3 on 100 randomly generated
test sets 𝐷test which is the value for Friedman 3 in Table 5.8.
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Figure 5.7: Average attribute ranking 𝑟(𝑖), 𝑖 = 1, 2, 3, 4, for
S𝒳ℐ[4,2,2,2](𝑈 (4,4)) 𝑓3 computed on 10 randomly generated data
sets 𝐷. Active variables 𝑥1 to 𝑥3 in orange and inactive
variable 𝑥4 in red.

𝑵
��ℐ𝑵 (𝑈∗3)�� 𝜆 𝑒MSE

[8, 2] 25 3.0 22.2 · 10−3

[8, 4] 49 2.0 22.7 · 10−3

[10, 2] 31 4.0 21.3 · 10−3

[10, 4] 55 3.0 21.8 · 10−3

[12, 2] 37 4.0 21.0 · 10−3

[12, 4] 61 3.0 21.6 · 10−3

Table 5.12: Approximation of 𝑓3 with different bandwidth vectors 𝑵 ,
grouped index set ℐ𝑵 (𝑈∗3), and regularization parameter 𝜆.
The mean square error 𝑒MSE B 𝑒MSE( 𝑓3 , 𝐷,ℐ𝑵 (𝑈∗3), 𝐷test) is
the average over 10 randomly generated pairs of data sets 𝐷
and 𝐷test.



166 5 Numerical Experiments with Synthetic Data

5.3.4 Runtime
We conclude this section with a runtime comparison of our methods
for the experiments conducted with the Friedman functions. Here,
we distinguish between an init step, i.e., the initialization and pre-
computations of the grouped transform, and solving the regularized
least-squares problem (4.8) with LSQR. Table 5.13 shows the runtimes
for computing the approximations. Note that this is the computation
for one specific choice of parameters 𝜆, and 𝑵 . However, solving for
additional regularization parameters 𝜆 does not require a repetition of
the initialization. The experiments were conducted on a computer with
an Intel Xeon Gold 6240 R CPU at 2.4 gigahertz. We used 12 cores for the
parallelization of the grouped transformations. One observes a direct
correlation from the number of involved ANOVA terms to the time for
both the initialization and computation step. This is especially evident
when comparing Friedman 1 with 𝑑 = 10 to the other experiments.

function 𝑈 ⊆ 𝒫([𝑑]) 𝑵 init time LSQR time

Friedman 1 𝑈 (10,2) [4, 2] 31.6 ms 2.1 s
Friedman 1 𝑈 (ar,0.01) [6, 4] 6.2 ms 0.89 s
Friedman 1 𝑈∗1 [6, 4] 1.4 ms 54.0 ms
Friedman 2 𝑈 (4,2) [4, 2] 2.7 ms 85.3 ms
Friedman 2 𝑈∗2 [4, 2] 1.3 ms 15.1 ms
Friedman 3 𝑈 (4,4) [4, 2, 2, 2] 7.1 ms 0.17 s
Friedman 3 𝑈∗3 [12, 2] 1.8 ms 61.1 ms

Table 5.13: Runtimes of experiments with the Friedman functions using
the ANOVAapprox method. The pre-computations and
initialization is measured as init time and computing the
solution of the corresponding least-squares problem as LSQR
time (𝑵 = [𝑁1 , 𝑁2] or 𝑵 = [𝑁1 , 𝑁2 , 𝑁3 , 𝑁4]).
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Numerical Experiments with Real Data

Now that we have shown the performance of the ANOVA approximation
method from Chapter 4 for the recovery of functions, we focus on known
data sets from applications. In this case, we have given data

𝐷 B {(𝒙1 , 𝑦1), (𝒙2 , 𝑦2), . . . , (𝒙𝑀 , 𝑦𝑀)} , 𝑀 ∈ N, (6.1)

with a set of nodes 𝒳 = {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ R𝑑 and values 𝑦𝑖 ∈ R,
𝑖 = 1, 2, . . . , 𝑀. The spatial dimension 𝑑 is here the number of features
of the data set. Note that we always apply a Z-score transformation or a
min-max normalization beforehand, see e.g. [HTF13], such that we may
assume that the nodes 𝒙𝑖 are either from a standard normal distribution
or uniformly distributed in [0, 1]𝑑. In order to apply our method
from Section 4.2, we assume that there exists either a continuous
𝑓 : R𝑑 → R from L2(R𝑑 , 𝜔(𝑑), std), i.e., we use the transformed basis
functions 𝜑(𝑑), std from Section 2.1.2.4, or a continuous 𝑓 : [0, 1]𝑑 →
R from L2([0, 1]𝑑), i.e., we use the half-period cosine basis 𝜑(𝑑), cos

from Section 2.1.2.3. Moreover, 𝑓 should fit our data in the sense
that 𝑓 (𝒙𝑖) ≈ 𝑦𝑖 , 𝑖 = 1, 2, . . . , 𝑀. We use the ANOVA approximation
method to approximate this function 𝑓 . We always start by choosing
a low superposition threshold 𝑑𝑠 ∈ [𝑑] to compute an approximation

167
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S𝒳ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )) 𝑓 with grouped index set ℐ𝑵 (𝑈 (𝑑,𝑑𝑠 )), and bandwidths 𝑵 ∈ N,
see Definition 3.3, via solving the regularized least-squares problem
(4.8) with regularization parameter 𝜆 ≥ 0 and 𝑾 = 𝑰 the identity. Then
we perform an analysis using the methods from Section 4.2.1, e.g.,
via attribute ranking or global sensitivity indices, to obtain a subset
𝑈∗ ⊆ 𝑈 (𝑑,𝑑𝑠 ). In the end, we have to determine bandwidths 𝑴 ∈ N and
obtain the final approximation S𝒳ℐ𝑴 (𝑈∗) 𝑓 .

Since we only have the data set 𝐷 available, we need to use it for
training, i.e., obtaining the approximation, as well as for testing, i.e.,
evaluating the performance of the model. To this end, we apply a
cross-validation procedure. For each data set we choose a split of the
data into training and test set with the value 𝑝test ∈ (0, 1) such that we
have ⌊𝑝test ·𝑀⌋ data points for evaluating the model and 𝑀 − ⌊𝑝test ·𝑀⌋
for obtaining the approximation. A common example is to reserve 10%
for testing, i.e., 𝑝test = 0.1. This yields a training set 𝐷train ⊆ 𝐷 and
a test set 𝐷test ⊆ 𝐷 such that 𝐷train ∩ 𝐷test = ∅ and 𝐷train ∪ 𝐷test = 𝐷.
However, it will not be sufficient to perform this procedure only once
since it depends on which specific points we choose for 𝐷train and 𝐷test.
We are going to apply a form of cross-validation where we randomly
draw 𝐷train and 𝐷test from 𝐷 a number of times. Cross-validation with
10 iterations therefore refers to drawing the training set and the test set
10 times at random.

In order to evaluate the model, we consider empirical generalization
errors. The root mean square error (RMSE) is defined as

𝑒RMSE(𝐷,ℐ𝑵 (𝑈), 𝐷test) B
√√

1
|𝐷test |

∑
(𝒙 ,𝑦)∈𝐷test

���S𝒳ℐ𝑵 (𝑈) 𝑓 (𝒙) − 𝑦
���2.

The mean absolute deviation (MAD) is an ℓ1 error and given by

𝑒MAD(𝐷,ℐ𝑵 (𝑈), 𝐷test) B 1
|𝐷test |

∑
(𝒙 ,𝑦)∈𝐷test

���S𝒳ℐ𝑵 (𝑈) 𝑓 (𝒙) − 𝑦
��� .
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Finally, we have the relative ℓ2 error

𝑒rel(𝐷,ℐ𝑵 (𝑈), 𝐷test) B

√√√√√∑
(𝒙 ,𝑦)∈𝐷test

���S𝒳ℐ𝑵 (𝑈) 𝑓 (𝒙) − 𝑦
���2∑

(𝒙 ,𝑦)∈𝐷test |𝑦 |2
.

Note that we are minimizing the ℓ2 norm which corresponds to the
RMSE and the relative ℓ2 error. We do not minimize an ℓ1 norm and
therefore the MAD is more of a byproduct.

In order to compare our performance to other well-known methods,
we chose data sets from the UCI machine learning repository [DG17]
and the website [Tor]. An overview is provided in Table 6.1 with
references where the data sets originate from and where else they
have been considered. Note that the forest fires data set has been
investigated with our method in [PS22b] and the other data sets in
[PS21b]. Table 6.2 summarizes our numerical results from the following
sections in comparison to the results from the literature. Our method
does not only provide interpretable results, it also outperforms the
other methods in the model accuracy.

Name dimension data points references

Forest Fires (FIRES) 12 517 [CM07, DG17, PS22b]
Energy Efficiency Heating (ENH) 8 768 [GPT20, DG17, PS21b]
Energy Efficiency Cooling (ENC) 8 768 [GPT20, DG17, PS21b]

Airfoil Self-Noise (ASN) 5 1503 [HSS+21, DG17, PS21b]
California Housing (CH) 8 20640 [KM15, Tor, PS21b]

Ailerons (AIL) 40 13750 [KM15, Tor, PS21b]

Table 6.1: Application data sets for benchmarking the ANOVAapprox
method with sources.
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data set error (type) method (reference) ANOVAapprox

FIRES 12.71 (MAD) Support Vector Machine ([CM07]) 12.65
ENC 1.79 (RMSE) Gradient Boosting Machine ([GPT20]) 1.49
ENH 0.48 (RMSE) Random Forest ([GPT20]) 0.44
ASN 0.0277 (relative ℓ2) Sparse Random Features ([HSS+21]) 0.0161
CH 0.11450 (RMSE) Local Learning Reg. NN ([KM15]) 0.10899

Ailerons 0.04601 (RMSE) Local Learning Reg. NN ([KM15]) 0.04569

Table 6.2: Result comparison for different data sets and approaches.
The models for ANOVAapprox where validated using 100
random splits of training and test set. More details are
discussed in the corresponding section. The ANOVAapprox
error is compared to the best error found in the mentioned
source together with the method used therein.
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6.1 Forest Fires

The forest fires data set from the UCI repository [DG17] contains
information about forest fires in the Montesinho national park in the
Trás-os-Montes northeast region of Portugal from 2002 to 2003. The
data set has 𝑑 = 12 attributes about every fire with the target variable
being the area of the forest that was destroyed. An efficient model for
the prediction of this area can be used in predicting the occurrence
of fires and preparing appropriate countermeasures. It is our goal to
compare to the results from [CM07] and where this data set has been
considered.

group name description

spatial (S) X x-coordinate (1 to 9)
Y y-coordinate (1 to 9)

temporal (T) month month of the year (1 to 12)
day day of the week (1 to 7)

FWI

FFMC FFMC code
DMC DMC code
DC DC code
ISI ISI index

meteorological (M)

temp outside temperature in °C
RH outside relative humidity in %

wind outside wind speed in km/h
rain outside rain in mm/m2

Table 6.3: Attributes and their corresponding groups

Here, the 12 attributes are grouped into 4 categories as in [CM07], i.e.,
spatial, temporal, FWI system, and meteorological data, see Table 6.3.
The Trás-os-Montes northeast region of Portugal has been divided into
a 9 by 9 grid and the spatial attributes describe the location of the fire
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in this grid. As temporal attributes, we have the month of the year and
the day of the week when the fire occurred. The forest fire weather index
(FWI), cf. [TA06], is the Canadian system for rating fire danger. The
FWI group contains four of its component, the FFMC code, the DMC
code, the DC code, and the ISI index. Moreover, the meteorological
group collects the four attributes temperature, humidity, wind, and
rain.

For pre-processing, we apply a Z-score transformation to the the
variables and the logarithmic transformation log(1+·) to the burned area.
The Z-score transformation achieves that we may assume our data stems
from a standard normal distribution. The logarithmic transformation
on the target is helpful since the variable shows a positive skew with a
large number of fires that have a small size. We denote the data with 𝐷,
cf. (6.1), and split it into 90% for the training set 𝐷train and 10% for the
test set 𝐷test. In the following, we do not use all of the variables, but
build models based only on some groups as denoted in Table 6.3, e.g.,
STM means that we use spatial, temporal and meteorological attributes
without the FWI.

Table 6.4 shows the overall results of our experiment (ANOVA)
combined with the benchmark data from [CM07]. Each value, our
ANOVA results as well as the others, were obtained by averaging over
executing a 10-fold cross-validation 30 times. This results in a total
of 300 experiments. We used a superposition threshold of 𝑑𝑠 = 2
and therefore needed to detect optimal choices for the bandwidths
𝑵 ∈ N in the grouped index sets ℐ𝑵 (𝑈 (𝑑,2)), see Table 6.5. We are
able to outperform the previously applied methods for every subset of
attributes in both average MAD 𝑒MAD(𝐷,ℐ𝑵 (𝑈 (𝑑,2)), 𝐷test) and average
RMSE 𝑒RMSE(𝐷,ℐ𝑵 (𝑈 (𝑑,2)), 𝐷test) error. We also observe a significant
better result in the RMSE which penalizes larger deviations stronger.

We replicated the setting of [CM07] for benchmark purposes. How-
ever, with our method, we should be able to detect the most important
attributes for the forest fires ourselves. To this end, we use all 12
attributes of the data set in obtaining our approximation and subse-
quently interpret the results. Figure 6.1 shows the attribute ranking
𝑟(𝑖), 𝑖 = 1, 2, . . . , 12, as well as the global sensitivity indices for an
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attribute selection
model S T FWI S T M FWI M
Naive 18.61 (63.7) 18.61 (63.7) 18.61 (63.7) 18.61 (63.7)
MR 13.07 (64.5) 13.04 (64.4) 13.00 (64.5) 13.01 (64.5)
DT 13.46 (64.4) 13.43 (64.6) 13.24 (64.4) 13.18 (64.5)
RF 13.31 (64.3) 13.04 (64.5) 13.38 (64.0) 12.93 (64.4)
NN 13.09 (64.5) 13.92 (68.9) 13.08 (64.6) 13.71 (66.9)
SVM 13.07 (64.7) 13.13 (64.7) 12.86 (64.7) 12.71 (64.7)

ANOVA 12.75 (45.77) 12.81 (46.7) 12.76 (46.09) 12.65 (45.69)

Table 6.4: MAD and RMSE (in brackets) for the best performing model
in the corresponding attribute subset (underline - overall best
result, bold - best result for this selection).

attribute selection 𝑁1 𝑁2 |𝐼 | 𝜆

S T FWI 2 6 149 e9

S T M 2 10 261 e10

FWI 2 4 23 e8

M 2 8 47 e7

Table 6.5: Optimal parameter choices for the experiments from Table 6.4.



174 6 Numerical Experiments with Real Data

approximation with grouped index set ℐ[2,2](𝑈 (12,2)) and regularization
parameter 𝜆 = 1.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

Figure 6.1: Attribute ranking 𝑟(𝑖), 𝑖 = 1, 2, . . . , 12, from (4.16) of our
final model obtained for the prediction of the forest fire area.

We observe that the attributes 3, 7, and 9 are of the most importance
to the prediction such that we have 𝑈 (ar,0.1) C 𝑈∗fires ⊆ 𝑈 (12,2), see (4.17).
They represent the month of the year (3), the DC code of the FWI
(7) and the outside temperature (9). We subsequently computed an
approximation with only these three attributes and a superposition
threshold 𝑑𝑠 = 2. Here, we used the grouped index set ℐ[2,10](𝑈∗fires)
and regularization parameter 𝜆 = e8. The resulting model yielded
an average MAD 𝑒MAD(𝐷,ℐ[2,10](𝑈∗fires), 𝐷test) of 12.64 and an average
RMSE 𝑒RMSE(𝐷,ℐ[2,10](𝑈∗fires), 𝐷test) of 45.57 with 30 times of 10-fold
cross validation as before. In summary, we know that the most impor-
tant information of our problem is contained in only three attributes
and we also obtained a better performing model using only these three
attributes.
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6.2 Energy Efficiency
This data set from the UCI repository [DG17] describes the energy
efficiency of houses by 𝑑 = 8 attributes and two values to predict, the
cooling load and the heating load. Therefore, we have two problems
ENC to predict the cooling load and ENH for the heating load. The
data set 𝐷 contains 768 data points from sample houses in both cases
which we split 70% for the training set 𝐷train and 30% for the test set
𝐷test, i.e., 𝑝test = 0.3. The data points have been normalized into the
interval [0, 1], i.e., we use the half-period cosine basis.

We start by considering the prediction of the heating load with a
superposition threshold of 𝑑𝑠 = 2. We have taken one randomly drawn
pair of data sets 𝐷train and 𝐷test to detect an initial bandwidth vector
𝑵 ∈ N2 with

𝑁1 − 1 = (𝑁2 − 1)2 (6.2)

for the grouped index set ℐ𝑵 (𝑈 (8,2)) as well as the threshold vector
𝜺 ∈ (0, 1)2 for the cut-off of the global sensitivity indices 𝑈 (gsi,𝜺), see
(4.15). Note that we use (6.2) in order to have all ANOVA terms with
the same number of indices which may create better conditions for the
active set detection if no information is known. Here, it turned out that
the bandwidths 𝑵 = [26, 6] and the threshold vector 𝜺 = [0.001, 0.001]
are opportune choices. This leads to an active set

𝑈 (gsi,𝜺) = 𝑈∗heating ⊆ 𝑈 (8,2) with
���𝑈∗heating

��� = 28

terms. Subsequently, we aim to determine bandwidths 𝑴 for an
approximation with grouped index ℐ𝑴 (𝑈∗heating). This is done via
cross-validation with 20 iterations. The resulting bandwidth choice is
𝑴 = [100, 6] and for the regularization parameter we have 𝜆 = 20. The
model has then been trained on 100 randomly generated training sets
𝐷train and validated on 100 corresponding test sets 𝐷test which yielded
a median for the RMSE 𝑒RMSE(𝐷,ℐ𝑴 (𝑈∗heating), 𝐷test) of 0.44.

For the cooling problem, we proceed in a similar fashion. We set the
superposition threshold to 𝑑𝑠 = 2 and determine the bandwidths 𝑵
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with (6.2) for the grouped index set ℐ𝑵 (𝑈 (8,2)) as well as the threshold
vector 𝜺 ∈ (0, 1)2 for the global sensitivity cut-off using one data pair
𝐷train and 𝐷test. Here, we obtain 𝑵 = [10, 4], and 𝜺 = [0.002, 0.002]
yielding the active set

𝑈 (gsi,𝜺) = 𝑈∗cooling ⊆ 𝑈 (8,2) with
���𝑈∗cooling

��� = 22

terms. Then we use 20 iterations of our cross-validation to obtain a
good choice of bandwidths 𝑴 for an approximation with grouped
index set ℐ𝑴 (𝑈∗cooling). This yielded a bandwidth vector 𝑴 = [30, 6]
with regularization parameter 𝜆 = 50. As a result we obtained a
model with a median RMSE 𝑒RMSE(𝐷,ℐ𝑴 (𝑈∗cooling), 𝐷test) of 1.49 trained
on 100 randomly generated training sets 𝐷train and validated on 100
corresponding test sets 𝐷test.

Figure 6.2 shows attribute rankings for our obtained models. For
both problems Figure 6.2a, and Figure 6.2b, we notice that the attribute
5, i.e., the overall height of the building, is especially important for the
prediction of the load.

6.3 Airfoil Self-Noise
This data set from the UCI repository [DG17] is provided by the NASA
and describes experiments with airfoil blade section. The aerodynamic
and acoustic tests have been conducted in an anechoic wind tunnel
with different speeds and angles of attack. We aim to find a model that
is able to predict the scaled sound pressure level of the self-noise in
decibels, see [DG17]. The data set 𝐷 has 𝑑 = 5 attributes and contains
1503 nodes. We reserve 80% for the training set 𝐷train and 20% for the
test set 𝐷test such that 𝑝test = 0.2. The data points have been normalized
into the interval [0, 1], i.e., we use the half-period cosine basis. Since this
data set has recently been used in [HSS+21] for experiments with sparse
random features, we choose the same split to compare the results.

We use the same general procedure as before in Section 6.2. First,
we approximate with a grouped index set ℐ𝑵 (𝑈 (5,2)) and determine
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(a) Attribute ranking 𝑟(𝑖), 𝑖 =

1, 2, . . . , 8, from (4.16) of our fi-
nal model obtained for the heating
problem.
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(b) Attribute ranking 𝑟(𝑖), 𝑖 =

1, 2, . . . , 8, from (4.16) of our fi-
nal model obtained for the cooling
problem.

Figure 6.2: Attribute rankings for the energy efficiency data set.

a good choice of bandwidths on a single pair of data sets 𝐷train and
𝐷test which yielded 𝑵 = [170, 14] under condition (6.2). Analyzing the
global sensitivity indices shows that it is best to choose a cut-off with
𝜺 = [0.01, 0.01] such that we obtain an active set

𝑈 (gsi,𝜺) = 𝑈∗airfoil ⊆ 𝑈 (5,2) with
��𝑈∗airfoil

�� = 15

terms. This means that we have only removed one term from 𝑈 (5,2).
Then we draw 20 pairs of 𝐷train and 𝐷test to use cross-validation in order
to determine a good choice of bandwidths 𝑴 for an approximation
with grouped index set ℐ𝑴 (𝑈∗airfoil). This resulted in 𝑴 = [200, 30]
and regularization parameter 𝜆 = 100. The obtained model was then
validated on 100 random pairs of training data 𝐷train and test data 𝐷test
yielding a median relative error 𝑒rel(𝐷,ℐ𝑴 (𝑈∗airfoil), 𝐷test) of 1.61%. In
Figure 6.3 we have visualized the attribute ranking for our model. It
shows that attributes 3 and 4, i.e., the chord length and the free-stream
velocity have a large influence on the predictions.
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Figure 6.3: Attribute ranking 𝑟(𝑖), 𝑖 = 1, 2, . . . , 8, from (4.16) of our final
model obtained for the prediction of the sound pressure
level of airfoil blade sections.

6.4 California Housing
The data set from [Tor] describes the prices for houses in California
from data about the block groups from the 1990 census. We have a
data set 𝐷 with 𝑑 = 8 attributes and 20460 data points. It is our goal
to create a model that is able to predict the median house price for
the geographic area. Since we want to compare our results to [KM15],
we split the data in 50% for the training set 𝐷train and 50% for the
test set 𝐷test such that 𝑝test = 0.5. Here, the nodes as well as the values
have been transformed into [0, 1] via a min-max-normalization. The
normalization of the values is replicated from [KM15].

We start with a superposition threshold of 𝑑𝑠 = 2 to obtain an
approximation with the grouped index set ℐ𝑵 (𝑈 (8,2)). Using one
randomly drawn pair of data sets 𝐷train, and 𝐷test, we obtained 𝑵 =

[82, 10] under condition (6.2) for the bandwidth and 𝜺 = [0.02, 0.02] for
the sensitivity cut-off yielding an active set

𝑈 (gsi,𝜺) = 𝑈∗housing ⊆ 𝑈 (8,2) with
���𝑈∗housing

��� = 21

terms. Subsequently, we computed an approximation with 𝑴 ∈ N2
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and the grouped index set ℐ𝑴 (𝑈∗housing)where 𝑴 was determined via
cross-validation using 20 randomly drawn pairs of data sets 𝐷train, and
𝐷test. This yielded 𝑴 = [120, 10] and the regularization parameter
𝜆 = 100. The model was subsequently validated on 100 randomly
drawn pairs of training and test data which yielded a median for the
RMSE

𝑒RMSE(𝐷,ℐ𝑴 (𝑈∗housing), 𝐷test)
of 0.10899.

Figure 6.4a shows an attribute ranking for the obtained model. We
observe that the variables 1, 2, and 6, i.e., the geographical longitude,
the latitude, and the population count, are most important for the
prediction. It is also evident from the global sensitivity indices, see
Figure 6.4b, that the ANOVA term 𝑓{1,2} has significant importance
which seems very plausible from an interpretation view since variable 1
is the longitude and variable 2 the latitude, i.e., together they represent
the geographical location.

6.5 Ailerons
The Ailerons data set from [Tor] describes the control problem of flying
an F16 aircraft. The attributes describe the status of the aircraft and it
is our goal to predict the control action on its ailerons. The data set
has 𝑑 = 40 attributes and 13750 data points. We aim to replicate the
setting in [KM15], which separates the data into 50% for the training
set 𝐷train and 50% for the test set 𝐷test such that 𝑝test = 0.5. Here,
the nodes as well as the values have been transformed into [0, 1] via a
min-max-normalization. The normalization of the values is replicated
from [KM15].

As a first step, we aim to consider an attribute ranking for superposi-
tion threshold 𝑑𝑠 = 1 in order to determine whether some variables have
little influence and can be omitted for the model. To this end, we are
using the grouped index set ℐ10(𝑈 (40,1)) for approximation and average
the attribute ranking over 100 randomly drawn pairs of data sets 𝐷train
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(a) Attribute ranking 𝑟(𝑖), 𝑖 =

1, 2, . . . , 8, from (4.16) of our final
model obtained for the prediction
of median house prices in Califor-
nia.
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(b) Global sensitivity indices for the
house price model. The geograph-
ical location term {1, 2} is high-
lighted in orange.

Figure 6.4: Analysis of the ANOVAapprox model for the prediction of
house prices.

and 𝐷test. This lead us to eliminate 29 variables with a contribution
smaller than 𝜀 = 0.0185 such that

𝑈 (ar,𝜀) C 𝑈 (ar)
ail with

���𝑈 (ar)
ail

��� = 12

terms, see (4.17).
We proceeded with the 𝑑∗ = 11 active variables and 𝑑𝑠 = 2 such that

we have the set of terms

𝑈 B {𝒖 ⊆ [11] : |𝒖 | ≤ 2}.

We perform sensitivity analysis on an approximation with grouped
index set ℐ[12,2](𝑈) which leads to an optimal cut-off vector 𝜀 =

[0.001, 0.001] such that we have an active set

𝑈 (gsi,𝜺) = 𝑈∗ail ⊆ 𝑈 with
��𝑈∗ail

�� = 43
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terms. The model was subsequently validated on 100 randomly drawn
pairs of training set 𝐷train and test set 𝐷test yielding a median RMSE
of 0.04569. In Figure 6.5 we have visualized the attribute ranking for
our model. We observe that the variables 1, 2,and 8 are of greater
importance. They correspond to the control variables 7, 3, and 30 of the
original problem.
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Figure 6.5: Attribute ranking 𝑟(𝑖), 𝑖 = 1, 2, . . . , 11, from (4.16) of our
final model obtained for the prediction of the control actions
on the ailerons of an F16 aircraft.





7
Conclusion

The main focus of this work was the introduction and analysis of the
ANOVA approximation method. It includes considerations of the
ANOVA decomposition in connection to orthonormal bases in the
Lebesgue product space L2(D𝑑 , 𝜔(𝑑)) as well as the introduction of
grouped transformations as a general concept for the extension of the
non-equispaced fast Fourier and fast cosine transforms to grouped
index sets. The method is applicable for the approximation of functions
as well as for regression problems with scattered data where one
approximates an unknown underlying function that maps input data
to output. Our main assumption is that the sparsity-of-effects principle
is applicable, i.e., the function is dominated by low-order interactions
which we related to both scenarios.

We considered the classical ANOVA decomposition with the inte-
gral projection operator in weighted Lebesgue spaces L2(D𝑑 , 𝜔(𝑑)) with
probability measures 𝜔(𝑑) and found a new connection to complete or-
thonormal systems (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 with relationships to the basis coefficients.
This connection provided a new access to the decomposition that simpli-
fied understanding properties like the inheritance of smoothness. With
the goal of our approximation method in mind, we considered sparsity

183
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of the decomposition and its truncation. Specifically, we focused on
the concept of low superposition dimension, i.e., a large part of the
variance is explained by interactions of low order. Since the number
of ANOVA terms grows exponentially in the spatial dimension, this
truncation provided us with a way to reduce it to polynomial growth
as a way to circumvent the curse. We discussed how smoothness may
be related to a low superposition dimension or its worst-case version.
For Sobolev type spaces H𝑤(D𝑑 , 𝜔(𝑑)) and weighted Wiener spaces
𝒜𝑤(D𝑑 , 𝜔(𝑑)) with smoothness weight 𝑤 : Z𝑑 → [1,∞), we were able
to prove worst-case truncation bounds that directly give insight into
the worst-case superposition dimension. We found that the important
special case of isotropic and dominating-mixed smoothness is related
to a low worst-case superposition dimension with error bounds for
L2 and L∞ ANOVA truncation. The error bounds even suggested an
independence of the spatial dimension for the worst-case error in many
cases.

We were then interested in linking the ANOVA truncation together
with the approximation by partial sums in the Lebesgue space L2(D𝑑 , 𝜔(𝑑)).
To this end, we introduced a new form of index set, the grouped in-
dex set ℐ𝑵 (𝑈) with bandwidths 𝑵 ∈ N and the set of ANOVA terms
𝑈 ⊆ 𝒫([𝑑]). The fast evaluations of such partial sums on a number
of nodes 𝒳 B {𝒙1 , 𝒙2 , . . . , 𝒙𝑀} ⊆ D𝑑 can always be interpreted as a
matrix-vector multiplication for matrices of type

𝑭𝒳ℐ =

©­­­­­­«

𝜑(𝑑)𝒌1
(𝒙1) 𝜑(𝑑)𝒌2

(𝒙1) · · · 𝜑(𝑑)𝒌𝑛
(𝒙1)

𝜑(𝑑)𝒌1
(𝒙2) 𝜑(𝑑)𝒌2

(𝒙2) · · · 𝜑(𝑑)𝒌𝑛
(𝒙2)

...
...

...
...

𝜑(𝑑)𝒌1
(𝒙𝑀) 𝜑(𝑑)𝒌2

(𝒙𝑀) · · · 𝜑(𝑑)𝒌𝑛
(𝒙𝑀)

ª®®®®®®¬
with (𝜑(𝑑)𝒌 )𝒌∈Z𝑑 being the orthonormal basis, and the index set ℐ B
{𝒌1 , 𝒌2 , . . . , 𝒌𝑛} ⊆ Z𝑑. Depending on the basis functions 𝜑𝒌 , index set
ℐ, and the nodes 𝒳, there are different fast algorithms available that
produce a fast matrix-vector multiplication such as the fast Fourier
transform (FFT), the non-equispaced fast Fourier transform (NFFT)
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or the lattice fast Fourier transform, cf. Table 7.1. While the lattice
FFT is applicable for high-dimensional functions, one has to be able
to evaluate the function on a reconstructing rank-1 lattice. In our
case of scattered data nodes, it is not applicable. Then we have the
issue that the NFFT relies on a full grid index set and the curse of
dimensionality quickly prevents its efficient application. We proposed
the grouped transformations as an extension to the non-equispaced
transformations that are able to harvest the advantages of the NFFT
for grouped index sets ℐ𝑵 (𝑈). The main idea was the decomposition
of the high-dimensional matrix-vector multiplication into one low-
dimensional multiplication for each ANOVA term in 𝑈 by exploiting
the connection between basis coefficients and ANOVA terms. Since
all of these multiplications are independent of each other, they can
be parallelized and the grouped transformation provide an efficient
algorithm for this type of high-dimensional transformation. Since the
NFFT and its counterpart for the cosine, the NFCT, are a main building
block of the algorithm, we are for now restricted to bases built from
the exponential function or the cosine. However, the algorithm can be
extended to other bases. The algorithm is implemented in the publicly
available Julia package GroupedTransforms.jl.

𝒳 ℐ functions algorithm reference

equispaced full grid exponential fast Fourier transform [Bri88]
equispaced full grid cosine fast Fourier transform (real part) [Bri88]
scattered full grid exponential non-equispaced fast Fourier transform [PPST18]
scattered full grid cosine non-equispaced fast cosine transform [PPST18]

lattice any exponential lattice fast Fourier transform [Käm13]
Lissajou any cosine lattice fast Fourier transform [PV17]
scattered grouped index set exponential grouped transformations [BPS22]
scattered grouped index set cosine grouped transformations [BPS22]

Table 7.1: Fast algorithms to compute the multiplication of matrix 𝑭𝒳ℐ
and a vector.

We combined all previous results to the ANOVA approximation
method. Our given data is represented by scattered the data nodes
𝒙1 , 𝒙2 , . . . , 𝒙𝑀 ∈ D𝑑 and the corresponding labels 𝑦1 , 𝑦2 , . . . , 𝑦𝑀 ∈ C.
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Then we assume there is a continuous function in our Lebesgue space
L2(D𝑑 , 𝜔(𝑑)) which fulfills 𝑓 (𝒙𝑖) ≈ 𝑦𝑖 , 𝑖 = 1, 2, . . . , 𝑀. Applying our
main assumption, i.e., we have a low superposition dimension, led
to the truncation of the ANOVA decomposition with a superposition
threshold and then the truncation of the series expansion of each term
which yielded an approximand that is supported on a finite grouped
index set. Depending on the specific problem, a sensible choice for the
superposition threshold may have to be determined via cross-validation.
While our approximand is supported on a finite index set, the basis
coefficients are unknown and we determined approximations for them.
To this end, we made use of regularized least-squares with iterative
LSQR and applied the grouped transformations algorithm for the
necessary matrix-vector multiplications. The regularization approach
additionally allowed for the incorporation of a priori smoothness
information if available. We analyzed the properties of the arising
matrices and found that they are well-conditioned if the data nodes 𝒙𝑖
are distributed according to the probability density of 𝜔(𝑑) of the space
L2(D𝑑 , 𝜔(𝑑)). However, we proposed multiple examples for systems that
cover a number of scenarios such as the very common cases of uniformly
distributed data or standard normal distributed data. In a application
setting, one may perform well-known min-max normalization or Z-
score normalization techniques and then assume such distributions.
Bounds for the singular values of the Moore-Penrose inverse in the
overdetermined case were obtained with high probability if there is
sufficient oversampling. We showed that in our setting we require less
oversampling than in the results of [KUV21, MU21].

An analysis of the global sensitivity indices of the initial approx-
imand yielded a method to obtain structural information about the
function. Through a number of techniques we suggested, e.g., attribute
ranking or global sensitivity cut-off, one is able to reduce the number
of involved ANOVA terms further. Moreover, this information may
lead to interesting insights into the data. A refitting with the modified
approximand, i.e., solving a new least-squares problem, may also bring
improvement in the accuracy of the model by laying more emphasis
on the important parts of the function. In the end, we obtained an
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interpretable approximation of the function.
We analyzed the method and proved bounds on the worst-case L2

error for functions from Sobolev type spaces and weighted Wiener
spaces. While the bound for the Sobolev type spaces has a counterpart
in the reproducing kernel Hilbert space setting of [MU21], the L2 bound
for the weighted Wiener spaces is a completely new result. While here
the nodes can be drawn once for the entire class, one may also consider
individual approximation errors where the nodes are drawn for each
function. We have applied Bernstein’s inequality, see [SC08, Chapter 6],
to obtain such bounds for the L2 and L∞ errors. Since bounds on the
L∞ error in the worst-case setting have not yet been proven, we have
used the individual bounds to still get results for this setting in Sobolev
type spaces and weighted Wiener spaces. The ANOVA approximation
method has been implemented in the publicly available Julia package
ANOVAapprox.jl.

Experiments with synthetic data, i.e., the approximation of functions,
showed that the method is able to determine sparsity in the ANOVA de-
composition correctly and subsequently produce good approximations.
We have considered examples in the periodic and the non-periodic
setting. Specifically, we have used sums of products of B-splines as
well as the well-known Friedman benchmark functions. The numerical
results of the experiments with the Friedman 1 function showed that
we are able to determine an approximation for this 10-dimensional
function using as few as 200 nodes. Moreover, our attribute ranking
as analysis tool yielded better results than experiments with mutual
information estimation. A comparison to benchmark results with other
well-known machine learning methods showed that we are able to
outperform them for Friedman 1 and Friedman 2. Only for Friedman 3,
we obtained a second place.

The experiments with publicly available real data sets also showed
very promising results. Our method was in most cases able to out-
perform even ensemble machine learning methods such as gradient
boosting machines. The insights from the data analysis proved signifi-
cant, e.g., for the forest fires data set we were able to reduce the model
to 3 important attributes yielding better approximation results than
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all other models. The obtained structural information also delivers
sensible results. Let us take the California housing data as an example.
Here, we detected a two-dimensional interaction between latitude and
longitude forming the geographical location. The information obtained
by the attribute ranking also fits with the intuitive notion, e.g., what
quantities influence the house price.

The idea of the ANOVA approximation method has already been
extended to hyperbolic wavelet regression, see [LPU21], and hyperbolic
cross approximation. An interesting open problem is the L∞ worst-case
error which would require probabilistic bounds on the ℓ1 operator norm
of the Moore-Penrose inverse.
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