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Introduction

In applied mathematics - especially in numerical analysis - a variety of interesting topics
emerge from the problem of approximating high-dimensional functions. A main objective is
the approximation of functions f in a Hilbert space L2(Ω) by a partial sum

f(x) ≈ SIf(x) :=
∑

k∈I
f̂kφk(x), I ⊂ Zd,x ∈ Ω,

with respect to an L2(Ω)-orthonormal system {φk}k∈I and coefficients f̂k := (f, φk)L2(Ω).
Under the assumption that the function f is either continuous or has a continuous repre-
sentative, approximation approaches are usually concerned with at least one of the following
problems:

• estimating the approximation error ∥f−SIf∥, measured in (weighted) L∞(Ω)- or L2(Ω)-
norms,

• minimizing the number of coefficients |I|, when the indices of the largest Fourier coef-
ficients f̂k might be unknown,

• reducing the computation time to evaluate functions values {f(xj)}Mj=1 or to reconstruct

coefficients f̂k,

• minimizing the number M ∈ N of necessary sampling nodes {xj}Mj=1 ,xj ∈ Ω, to re-

construct the coefficients f̂k of a fixed or unknown frequency set I of finite cardinality
|I| <∞.

Various authors developed techniques and algorithms to improve different aspects of the
approximation of periodic functions that are defined on the torus Ω = Td and many results
are known for the multivariate periodic case. The main objective of this work is to study the

above listed problems for the approximation of functions on Ω = Rd and Ω =
[
−1

2 ,
1
2

]d
. In

particular, we investigate which results and techniques of the approximation theory on the
torus Td can be transfered or adapted to these other domains.

In the following, we summarize important milestones and publications concerned with
the approximation on the torus Td. Often, it is assumed that we are given samples of a
multivariate periodic function f , whose Fourier coefficients f̂k ∈ C are absolutely or square
summable and decay at a certain rate, for which there is a well-studied approximation error
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6 1 Introduction

analysis [Tem86, KPV15, BKUV17, Vol17, KMNN21]. However, generally the exact values of
the Fourier coefficients f̂k are not known and can not be calculated analytically. Instead a fast
Fourier transform (FFT), see [CT65], can be applied to a set of given equispaced function
samples which yields approximated Fourier coefficients f̂Λk ∈ C. Then the corresponding
approximated Fourier partial sum SΛ

I f is formed and used as an approximant of the function f
whose samples were initially provided. At the same time, the discretizion of high-dimensional
problems usually leads to a large amount of data in form of sampling values and Fourier
matrices that have to be processed numerically. The exponential growth of necessary samples
to construct a reasonably good approximant is a common problem refered to as the curse
of dimensionality [Bel61]. Especially in higher dimensions, rank-1 lattices Λ(z,M) with a
generating vector z ∈ Zd and the lattice size M ∈ N provide sampling schemes that are
simply structured and can be used to evaluate a d-dimensional Fourier approximation by a
single one-dimensional FFT. An introduction to lattice rules can be found in [Nie78, SJ94]
and a detailed overview is provided in [DKS13, KNP18]. These cubature rules were used
for the approximation of functions on the torus [Tem93], and high-dimensional integrals
have been computed by efficient algorithms based on component-by-component methods
[CN04, CKN10]. For the approximation of high-dimensional functions there are efficient
algorithms - see [Käm14b, Algorithm 3.1 and 3.2] or [KPV15, KMNN21] - based on rank-1
lattice sampling schemes that reduce the evaluation and reconstruction of high-dimensional
trigonometric polynomials supported on some frequency set I ⊂ Z to a single one-dimensional
FFT.

Under mild assumptions, the lattice sizeM is bounded by |I| ≤M ≤ |I|2 for a non-empty
frequency set I ⊂ Z of finite cardinality |I| < ∞, see [Käm14a], [KPV15, Theorem 2.1]. By
using multiple rank-1 lattices [Käm19], the upper bound is improved to M ≲ |I| log |I|.
Furthermore, there are dimension incremental algorithms [Vol15, PV16] - the sparse FFT al-
gorithms - for the reconstruction of sparse multivariate trigonometric polynomials with an un-
known frequency domain I ⊂ Z. Additionally, sublinear-time compressive sensing algorithms
have been developed in [CIK21] for rapidly learning functions of many variables that admit
sparse representations in arbitrary Bounded Orthonormal Product bases. Recently, dimen-
sion incremental algorithms were adapted for multiple rank-1 lattices [KPV20, KKV20]. We
note, that there are various other sampling strategies for periodic signals such as sparse grids
[GH14, BDuSU16, GH19], or interlaced scrambled polynomial lattice rules [GD15, DGSY17].
Randomized least square sampling approaches were discussed in [DTU18, Chapter 5] and
[KUV19, KU20], and [NW12, p. 55 ff.] additionally investigates Monte Carlo methods. In
total, approximation methods on the torus Td have the advantage that there are

• fast algorithms based on rank-1 lattice sampling for the efficient evaluation and stable
reconstruction of multivariate trigonometric polynomials,

• worst case upper L∞- and L2-approximation error bounds for functions in the Sobolev
space Hm(Td),

• dimension incremental construction methods to approximate functions with an un-
known index set I.

A long-standing problem has been to transfer these properties to the approximation of func-

tions defined on Rd or the cube
[
−1

2 ,
1
2

]d
. In the last decade, various authors used pe-

riodization strategies to set up transformed rank-1 lattices for the numerical integration
and approximation of non-periodic functions in order to make use of the efficiency of the
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component-by-component construction methods used for the approximation of periodic sig-
nals. Chebyshev transformed lattices have been used in weighted Lebesgue spaces [PV15] and
tent-transformed lattice rules were used in half-periodic cosine spaces and in Korobov spaces
[DNP14, CKNS16, IKP18, GSY19, KMNN21]. While those two approaches extend the origi-
nal function evenly, a periodization strategy using an odd extension was suggested in [GKL13]
which requires exact information about the original function at the boundary points of its do-
main. The numerical integration of periodized integrands on the cube [SSO83, BH92, NUU17]
have been recently discussed with regards to digital nets [DP21]. Periodized integrands on
Rd have also been investigated from different angles, e.g. by using randomly shifted lattice
rules [KWW06], in terms of Hermite spaces [IKLP15, DILP18] and with the goal to achieve
exponential convergence rates [NN17]. In [KSW07] the approximation of transformed in-
tegrands is investigated and various special cases of transformations and generating lattice
vectors z ∈ Zd are discussed to showcase setups in which such an approach can fail when
d → ∞. Extended orthonormal systems and frames have also been considered to handle
certain types of boundary singularities of non-periodic functions, cf. [AH20]. In [KPPW20]
a periodization approach is developed for the approximation of functions defined on Rd and
Rd+ with bounded Lp-norms of mixed first order partial derivatives with p ∈ {1,∞}, whereas
we’re going to be concerned with functions on Rd or [−1

2 ,
1
2 ]
d with weighted L2-norms and

bounded higher order mixed partial derivatives. An excellent general overview on the ver-
satility of changes of variables can be found in [Boy00, Chapter 16 and 17], where many
practical aspects are discussed.

The aim of this work is to derive two general frameworks for the approximation of non-

period functions defined on Rd and on the cube
[
−1

2 ,
1
2

]d
by means of a specific periodization

strategy. We generalize the idea of applying a change of variables to periodize a function,

approximating it on the torus Td ≃
[
−1

2 ,
1
2

)d
with respect to the Fourier system and finally

reverting the change of variables to obtain an orthonormal system for functions on Rd or on

the cube
[
−1

2 ,
1
2

]d
, respectively. To this end, we introduce new parameterized transformation

mappings and investigate the possibility to transfer the important properties and results from
the classical Fourier approximation methods on the torus Td to other domains.

At first, we consider parameterized measure functions ω(·,µ),µ ∈ Rd+ and functions
h ∈ L2(Rd, ω(·,µ)) ∩ Hm

mix

(
Rd
)
with dominating mixed smoothness of order m ∈ N0. We

define parameterized, invertible torus-to-Rd transformations

ψ(·,η) = (ψ1(·, η1), . . . , ψd(·, ηd)) :
(
−1

2
,
1

2

)d
→ Rd, η ∈ Rd+

so that ∥h∥L2(Rd,ω(·,µ)) = ∥f∥L2(Td) with

f(x,η,µ) = h(ψ(x,η))

√√√√ω(ψ(x,η),µ)
d∏

j=1

ψ′
j(xj , ηj), x ∈ Rd.

We prove sufficient L∞-conditions on the transformation ψ(·,η) and the measure function
ω(·,µ) so that the transformed function f inherits a guaranteed minimal degree of Sobolev
smoothness from the initally chosen function h. Furthermore, we’re able to calculate the pa-
rameter ranges for η,µ ∈ Rd+ for which the periodized function f inherits a specific minimal
degree m̃ = m̃(η,µ) ≤ m of Sobolev smoothness from the given function h. By applying the
inverse torus-to-Rd transformation ψ−1(·,η), the approximation of functions f ∈ L2(Td) with
respect to the Fourier system

{
e2πik(·)

}
k∈Zd by a Fourier partial sum SIf :=

∑
k∈I f̂k e

2πik(·)
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translates into the approximation of functions h ∈ L2

(
Rd, ω

)
by a transformed Fourier partial

sum of the form
∑

k∈I ĥk φk, with the system
{
φk :=

√
(ψ−1)′(·,η)
ω(·,µ) e2πik·ψ

−1(·,η)
}
k∈Zd

being

orthonormal with respect to the L2

(
Rd, ω(·,µ)

)
-scalar product. Consequently, we denote the

transformed trigonometric functions on Rd by ΠI,ψ := span{φk : k ∈ I}. The k-th Fourier

coefficient of h is given by ĥk := (h, φk)L2(Rd,ω(·,µ)). Due to the definition of the torus-to-Rd

transformations ψ, their first derivatives {ψ′
j}dj=1 are always unbounded. Therefore, we must

consider a non-constant measure function ω that counteracts the unboundedness of the first
derivatives {ψ′

j}dj=1 of the transformation ψ, so that the transformed function f is continu-
ously extendable regardless of the particular choice of the transformation ψ. Therefore, the
resulting transformed Fourier system {φk}k∈Zd is always an unbounded orthonormal system
on Rd. Consequently, L∞- and L2-approximation errors are measured in weighted L∞- and
L2-norms, respectively. This derivation highlights the duality of either having a working
periodization strategy or being able to construct bounded orthonormal systems on Rd. At
the same time, this framework allows us to figure out exactly what kinds of transformations
ψ(·,η) are suitable for any given measure function ω(·,µ) to have a working periodization
approach for functions originally defined on Rd. A big advantage of this framework is the
availability of fast algorithms for the evaluation and reconstruction of transformed trigono-
metric functions on Rd by means of transformed rank-1 lattices Λψ(·,η)(z,M) and considering
a specific type of a transformed Fourier matrix. As with the fast algorithms for trigono-
metric polynomials on the torus Td, we determine transformed reconstructing rank-1 lattice
Λψ(·,η)(z,M, I), I ⊂ Zd so that the evaluation and the reconstruction algorithms reduce a
d-variate Fourier problem into a single one-dimensional FFT. In total, for the approximation
on Rd we have

• fast algorithms based on transformed rank-1 lattices Λψ(·,η)(z,M) for the efficient eval-
uation and stable reconstruction of transformed trigonometric functions h ∈ ΠI,ψ on
Rd,

• worst case upper weighted L∞- and L2-approximation error bounds for functions in the
Sobolev space Hm(Rd, ω(·,µ)),

• adapted dimension incremental construction methods to approximate functions with
an unknown frequency domain.

The presented framework is tested in numerical experiments in up to dimension d = 8 for
transformations of algebraic and exponential type. Especially the tests with the algebraic
transformation showcase the great utility of the dimension incremental construction methods,
which we have to rely on in higher dimensions to figure out the distribution of the largest
Fourier coefficients in order to obtain good approximation results without sacrificing too
much computation time on frequencies with very small Fourier coefficients.

Secondly, forming invertible maps of the form ψ−1(η ψ(·)) :
(
−1

2 ,
1
2

)d →
(
−1

2 ,
1
2

)d
,η ∈ Rd+

based on torus-to-Rd transformations ψ :
(
−1

2 ,
1
2

)d → Rd immediately leads to a periodization

strategy on the cube
[
−1

2 ,
1
2

]d
that has a lot of fundamental similarities with the previous

periodization approach on Rd. We consider parameterized measure functions ω(·,µ),µ ∈ Rd+
and functions h ∈ L2

([
−1

2 ,
1
2

]d
, ω(·,µ)

)
∩ Cmmix

([
−1

2 ,
1
2

]d)
of mixed continuous differentia-

bility order m ∈ N0 and proceed analogously as with the torus-to-Rd transformations. We



1 Introduction 9

define invertible torus-to-cube transformations

□□□
ψ(·,η) = (

□□□
ψ1(·, η1), . . . , □□□

ψd(·, ηd)) :
[
−1

2
,
1

2

]d
→
[
−1

2
,
1

2

]d
, η ∈ Rd+,

so that ∥h∥
L2

(
[− 1

2
, 1
2 ]
d
,ω(·,µ)

) = ∥f∥L2(Td) with

f(x,η,µ) = h(
□□□
ψ(x,η))

√√√√ω(
□□□
ψ(x,η),µ)

d∏

j=1

□□□
ψ′
j(xj , ηj), x ∈ Td.

We prove sufficient L∞-conditions on the transformation
□□□
ψ(·,η) and the measure function

ω(·,µ) so that the transformed function f inherits a guaranteed minimal degree of smoothness
from the initally chosen function h. By means of the inverse torus-to-cube transformation

□□□
ψ−1(·,η), the approximation of functions f ∈ L2(Td) with respect to the Fourier system{
e2πik(·)

}
k∈Zd by a Fourier partial sum SIf :=

∑
k∈I f̂k e

2πik(·) is rewritten as the approxima-

tion of functions h ∈ L2

([
−1

2 ,
1
2

]d
, ω(·,µ)

)
by a transformed Fourier partial sum of the form

∑
k∈I ĥk φk with respect to the orthonormal system

{
φk :=

√
(□□□ψ

−1)′(·,η)
ω(·,µ) e2πik·□□□ψ

−1(·,η)
}
k∈Zd

.

Consequently, we denote the transformed trigonometric functions on the cube by ΠI,□□□ψ :=

span{φk : k ∈ I}. The k-th Fourier coefficient of h is given by ĥk := (h, φk)L2

(
[− 1

2
, 1
2 ]
d
,ω(·,µ)

).
In contrast to the torus-to-Rd transformations ψ torus-to-cube transformations

□□□
ψ(·,η) are

defined in such a way, that their first derivatives {
□□□
ψ′
j(·, ηj)}dj=1 are bounded and have to de-

cay to 0 towards each boundary point. Therefore, the density (
□□□
ψ−1)′(·,η) will automatically

be unbounded and yields once again unbounded transformated Fourier systems {φk}k∈Zd
unless the unboundedness is counteracted by a non-constant measure function ω(·,µ). So,
this time it is feasible to consider constant measure functions ω ≡ 1 and still obtain valid
periodizations that are continuously extendable to the torus Td. In specific cases it is also a
good choice to put ω = (

□□□
ψ−1)′, for example to extract the Chebyshev system from this frame-

work of generalized transformed Fourier systems. Nevertheless, L∞- and L2-approximation
errors are measured in weighted L∞- and L2-norms, respectively. There are setups in which
one of these errors ends up being unweighted. For example, for a constant measure function
ω ≡ 1 we have an unweighted L2-approximation error. Once again, this framework deter-
mines the variety of feasible torus-to-cube transformations

□□□
ψ(·,η) for any previously fixed

measure function ω(·,µ) to obtain a working periodization strategy for functions defined on

the cube
[
−1

2 ,
1
2

]d
. A big advantage of this periodization strategy is that it is easy to set up

fast algorithms for the evaluation and reconstruction of transformed trigonometric functions
on the cube ΠI,□□□ψ by means of transformed rank-1 lattices Λ

□□□ψ(·,η)(z,M) and specifically

transformed Fourier matrices. As with the fast algorithms for polynomials on the torus Td,
we determine transformed reconstructing rank-1 lattice Λ

□□□ψ(·,η)(z,M, I), I ⊂ Zd so that the
evaluation and the reconstruction algorithms reduce a d-variate Fourier problem into a single

one-dimensional FFT. In total, for the approximation on the cube
[
−1

2 ,
1
2

]d
we have

• fast algorithms for the efficient evaluation and stable reconstruction of transformed
trigonometric functions on the cube h ∈ ΠI,□□□ψ based on transformed rank-1 lattices
Λ

□□□ψ(·,η)(z,M),

• worst case upper weighted L∞- and L2-approximation error bounds for functions in the

Sobolev space Hm
([

−1
2 ,

1
2

]d
, ω(·,µ)

)
,
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• adapted dimension incremental construction methods to approximate functions with
an unknown frequency domain.

In preparation for the numerics, we compare the structure of our transformed Fourier or-
thonormal systems with the half-periodic cosine system using tent-transformed samples and
the Chebyshev polynomials using Chebyshev transformed samples. We note that both the
tent-transformation and the Chebyshev transformation are not torus-to-cube transforma-
tions. In numerical tests in up to dimension d = 7 we compare the approximation results of

all previously considered orthonormal systems on the cube
[
−1

2 ,
1
2

]d
. For these applications

we use B-splines of first and second order to limit the smoothness degrees that could possibly
be preserved by a torus-to-cube transformation

□□□
ψ. For the first order B-spline, specific trans-

formed Fourier systems are able to produce better approximation results than the Chebyshev
system. For the slightly smoother second order B-spline we found torus-to-cube transforma-
tions so that the transformed Fourier systems are able to match the approximation quality of
the Chebyshev system at least in lower dimensions d ≤ 4. In a specific example we again show
the utility of the dimension incremental construction method used in the adapted sparse FFT
method and the resulting improvements on the approximation errors in dimension d = 7.

Parts of this work were already published in [NP20, NP21a, NP21b].

Outline of the thesis

We provide an overview of the other chapters in this thesis.

Chapter 2: Preliminaries and notations

We introduce notations that will be used repeatedly throughout the rest of this work, such
as the bold notation of constant multi-indices 1 := (1, . . . , 1)⊤. We define certain function
spaces, such as the space of mixed continuous differentiability Cmmix(Ω) and the Sobolev space

Hm
mix(Ω) of dominating mixed smoothness m simultaneously on Ω ∈

{
Rd,Td,

[
−1

2 ,
1
2

]d}
. We

also fix the notation for some finite-dimensional vector spaces. Additionally, we recall the
Leibniz rule and the Faá di Bruno formula for calculating higher derivatives of the product
or composition of two functions, cf. (2.0.1) and (2.0.3).

We refer to the index at the end of this work for a complete list of all occurring objects
and their respective symbols.

Chapter 3: Fourier approximation on the torus

In this section, we summarize crucial objects and properties from the literature concerned
with the theory of approximating periodic functions by classical Fourier methods. At first, we
reflect the definition of functions spaces, whose elements have absolutely summable Fourier
coefficients and we define rank-1 lattice sampling sets. Then, we recall some major worst-case
upper bounds for L∞- and L2-approximation errors. Afterwards, we describe two efficient
algorithms for the evaluation and reconstruction of multivariate trigonometric polynomials.
Furthermore, we outline the ideas of sampling at multiple rank-1 lattices and the idea of not
being given a set of frequencies and the task to detect the most important frequencies of any
given function. Finally, we present combinatorial arguments for the adequate discretization
of the previously mentioned L∞- and L2-approximation errors.
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Chapter 4: Torus-to-Rd transformation mappings

We define invertible torus-to-Rd mappings ψ(·,η) :
(
−1

2 ,
1
2

)d → Rd,η ∈ Rd+ and list im-
portant examples. For a given measure function ω(·,µ),µ ∈ Rd+ and a class of functions
h ∈ L2(Rd, ω(·,µ))∩Hm

mix(Rd), we prove a set of conditions on these transformations ψ(·,η)
for which we obtain a bounded periodization mapping of the form

h ∈ L2(Rd, ω(·,µ)) ∩Hm
mix(Rd)7→

f := h(ψ(·,η))

√√√√ω(ψ(·,η),µ)
d∏

j=1

ψ′
j(·, ηj) ∈ Hm(Td),

so that ∥h∥L2(Rd,ω(·,µ)) = ∥f∥L2(Td), where the Sobolev spacesHm
mix(Rd) andHm(Td) are given

in (2.0.8) and (3.1.7). For a particular torus-to-Rd mapping we calculate the parameter values
η,µ, so that the Sobolev smoothnessm of the original function h is fully transfered to its peri-
odization f under the particular transformation. We apply the approximation techniques for
smooth periodic function on the torus Td from Chapter 3 and transfer the orthonormality of
the Fourier system, important upper approximation error bounds and the efficient algorithms
based on rank-1 lattices by means of the inverse torus-to-Rd transformation ψ−1(·,η) to the
considered non-periodic function class defined on Rd. In particular, we investigate the struc-

ture of the resulting weighted exponential functions
{√

ϱ(·,η)
ω(·,µ) e

2πik·ψ−1(·,η)
}
k∈Zd

that form an

L2(Rd, ω(·,µ))-orthonormal system. Furthermore, we prove weighted upper L2

(
Rd, ω(·,µ)

)
-

and L∞
(
Rd,

√
ω(·,µ)
ϱ(·,η)

)
-approximation error bounds. We propose two efficient algorithms us-

ing transformed rank-1 lattices Λψ(·,η)(z,M) that adapt the idea of reducing a d-dimensional
Fourier transformation into a single one-dimensional FFT from Algorithms 3.4.1 and 3.4.2.
Finally, we compare the discrete approximations errors εM∞(h) and εM2 (h) in up to dimension
d = 7 for a torus-to-Rd transformation of exponential type. We showcase the varying approx-
imation quality of the transformation for a fixed parameter µ ∈ Rd+ and different parameter
values η ∈ Rd+ and apply adapted multiple rank-1 lattice methods as well as an adjusted
sparse FFT algorithm.

Chapter 5: Torus-to-cube transformation mappings

We switch from the domain Rd to the cube
[
−1

2 ,
1
2

]d
and for the most part follow the line

of the previous chapter. We define torus-to-cube mappings
□□□
ψ(·,η) :

[
−1

2 ,
1
2

]d →
[
−1

2 ,
1
2

]d
and list important examples. For a given measure function ω(·,µ),µ ∈ Rd+ and a class of

functions h ∈ L2

([
−1

2 ,
1
2

]d
, ω(·,µ)

)
∩ Cmmix

([
−1

2 ,
1
2

]d)
, we prove a set of conditions on these

transformations ψ(·,η) for which we obtain a bounded periodization mapping of the form

h ∈ L2

([
−1

2
,
1

2

]d
, ω(·,µ)

)
∩ Cmmix

([
−1

2
,
1

2

]d)

7→

f := h(
□□□
ψ(·,η))

√√√√ω(
□□□
ψ(·,η),µ)

d∏

j=1

□□□
ψ′
j(·, ηj) ∈ Hm(Td),
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so that ∥h∥
L2

(
[− 1

2
, 1
2 ]
d
,ω(·,µ)

) = ∥f∥L2(Td), with the function space Cmmix

([
−1

2 ,
1
2

]d)
given in

(2.0.6). For several torus-to-cube transformations
□□□
ψ(·,η) we calculate the parameter val-

ues η,µ, so that the Sobolev smoothness m of the original function h is fully preserved
by its periodization f under the particular transformation. We apply the approximation
techniques for smooth periodic function on the torus Td from Chapter 3 and transfer the
orthonormality of the Fourier system, important upper approximation error bounds and the
efficient algorithms based on rank-1 lattices by means of the inverse torus-to-cube transfor-

mation
□□□
ψ−1(·,η) to the considered function classes in L2

([
−1

2 ,
1
2

]d
, ω(·,µ)

)
. We investigate

the structure of the weighted exponential functions
{√

□□□ϱ(·,η)
ω(·,µ) e

2πik·□□□ψ−1(·,η)
}
k∈Zd

that form

an L2

([
−1

2 ,
1
2

]d
, ω(·,µ)

)
-orthonormal system. Furthermore, we prove weighted worst-case

upper L2

([
−1

2 ,
1
2

]d
, ω(·,µ)

)
- and L∞

([
−1

2 ,
1
2

]d
,
√

ω(·,µ)

□□□ϱ(·,η)

)
-approximation error bounds. We

propose two efficient algorithms using transformed rank-1 lattices Λ
□□□ψ(·,η)(z,M) that adapt

the idea of reducing a d-dimensional Fourier transformation into a single one-dimensional
FFT from Algorithms 3.4.1 and 3.4.2. We compare the transformed Fourier systems with
classical orthonormal systems used for the approximation of functions defined on the cube[
−1

2 ,
1
2

]d
in the form of the half-periodic cosine system which uses tent-transformed rank-1

lattice points as samples and the Chebyshev polynomials which use Chebyshev transformed
rank-1 lattice sampling nodes. We showcase that the transformed Fourier system provides a
generalized framework to create orthonormal systems on the cube. Finally, in two numericals
tests we compare the discrete approximation errors εM∞(h) and εM2 (h) in up to dimension
d = 7 for multiple torus-to-cube transformations. We showcase the varying approximation
quality of all considered transformations for different parameter values η ∈ Rd+ and apply
adapted multiple rank-1 lattice methods as well as an adjusted sparse FFT algorithm.

Chapter 6: Conclusion

We briefly summarize the discussed topics and main results within this work.
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2
Preliminaries and notations

We establish various notations that will be used throughout the rest of this work. More
definitions will be made within this work when necessary. All appearing symbols are listed
in an index at the end of this work.

Let Ω ∈
{
Rd,Td,

[
−1

2 ,
1
2

]d}
with Td ≃ [−1

2 ,
1
2)
d being the d-dimensional torus. The space

(
C(Ω), ∥ · ∥L∞(Ω)

)
denotes the collection of all continuous multivariate functions f : Ω → C.

Furthermore, by (C0(Rd), ∥ · ∥L∞(Rd)) we denote the space of all continuous functions defined

on Rd that vanish at infinity in every direction and

(
C0
([

−1
2 ,

1
2

]d)
, ∥ · ∥

L∞
(
[− 1

2
, 1
2 ]
d
)) denotes

the space of all continuous functions defined on the cube
[
−1

2 ,
1
2

]d
that vanish at the boundary

points
[
−1

2 ,
1
2

]d \
(
−1

2 ,
1
2

)d
.

For a given dimension d ∈ N, we use the bold notation x := (x1, . . . , xd)
⊤, k :=

(k1, . . . , kd)
⊤ as well as k · x := k1x1 + . . .+ kdxd and we also fix the sets

Nd0 :=
{
k ∈ Nd : kj ∈ N ∪ {0}, j ∈ {1, . . . , d}

}
,

Rd+ :=
{
x ∈ Rd : 0 < xj ∈ R, j ∈ {1, . . . , d}

}
.

For numbers k, ℓ ∈ R the Kronecker delta δk,ℓ is defined as

δk,ℓ :=

{
1 for k = ℓ,

0 for k ̸= ℓ.

For the multi-indices α := (α1, . . . , αd)
⊤ ∈ Nd0 we define the differential operator

Dα[f ](x) = D(α1,...,αd)[f ](x1, . . . , xd) :=
∂α1

∂xα1
1

. . .
∂αd

∂xαdd
[f ](x1, . . . , xd).

In the univariate case, we denote the k-th derivative of a function f(x) with respect to x by

one of the equivalent expressions f (k)(x) = dk

dxk
[f ](x), and for k = 1 we most commonly just

write f ′(x).
The n-th derivative of a product of two function f, g ∈ Cn(Ω) is expressed by the gener-

alized Leibniz rule

(fg)(n)(x) =

n∑

k=0

(
n

k

)
f (k)(x) g(n−k)(x). (2.0.1)

13
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The k-th derivative of the composition of functions h, ψ ∈ Ck(Ω) is expressed by the Faá di
Bruno formula

(h ◦ ψ)(k)(x) =
k∑

ℓ=1

h(ℓ)(ψ(x))Bk,ℓ(ψ
′(x), ψ(2)(x), . . . , ψ(k−ℓ+1)(x)) (2.0.2)

with the well-known Bell polynomials Bk,ℓ(z) for k, ℓ ∈ N0 and z = (z1, . . . , zk−ℓ+1)
⊤ given

by

Bk,ℓ(z) :=
∑

j1+j2+...+jk−ℓ+1=ℓ,
j1+2j2+...+(k−ℓ+1)jk−ℓ+1=k

ℓ!

j1! · . . . · jk−ℓ+1!

k−ℓ+1∏

r=1

(zr
r!

)jr
. (2.0.3)

For 0 < p ≤ ∞ we define the finite-dimensional sequence spaces

ℓdp := {x = (xj)
d
j=1, xj ∈ {R,C} : ∥x∥ℓdp <∞} (2.0.4)

with the sequence norm

∥x∥ℓdp :=





(∑d
j=1 |xj |p

) 1
p

for 0 < p <∞,

supj∈{1,...,d} |xj | for p = ∞,

which is a quasi-norm for 0 < p < 1. Accordingly, the d-dimensional unit ball of the sequence
space ℓdp is given by

I
ℓdp
1 := {x ∈ ℓdp : ∥x∥ℓdp ≤ 1} (2.0.5)

and for scaled ℓdp-balls we put we put I
ℓdp
N := N ·Iℓ

d
p

1 for any N ∈ N. Additionally, for sequences
there is the zero-norm given by

∥x∥0 := |{j ∈ {1, . . . , d} : xj ̸= 0}|,

that quantifies the number of non-zero entries in any given sequence.
We define the function space of mixed continuous differentiability of order m ∈ N, see

[ST87, p. 132], as

Cmmix(Ω) :=




f ∈ C(Ω) : ∥f∥Cmmix(Ω) :=

∑

∥α∥
ℓd∞

≤m
∥Dα[f ]∥L∞(Ω) <∞




. (2.0.6)

The corresponding univariate space of m-times continuously differentiable functions are de-
noted by Cm(Ω). The weighted function spaces Lp(Ω, ω) with 1 ≤ p < ∞ an integrable
measure function ω : Ω → [0,∞) are defined as

Lp(Ω, ω) :=
{
h ∈ Lp(Ω) : ∥h∥Lp(Ω,ω) <∞

}
. (2.0.7)

with the norm

∥h∥Lp(Ω,ω) :=





(∫

Ω
|h(x)|p ω(x) dx

) 1
p

for 1 ≤ p <∞,

ess supx∈Ω (|h(x)|p ω(x)) for p = ∞.
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For the constant measure function ω(x) ≡ 1 we have L2(Ω, ω) = L2(Ω).
Finally, we define the Sobolev spaces of dominating mixed natural smoothness of L2(Ω)-

functions with smoothness order m ∈ N0, see [ST87, Ull07, Vyb05], as

Hm
mix(Ω) :=




f ∈ L2(Ω) : ∥f∥Hm

mix(Ω) :=




∑

∥α∥
ℓd∞

≤m
∥Dα[f ]∥2L2(Ω)




1/2

<∞




. (2.0.8)

The corresponding univariate spaces are denoted by Hm(Ω).
For a matrix A = (aij)

m,n
i=1,j=1 ∈ Cm×n, the adjoint matrix A∗ := (aji)

n,m
j=1,i=1 ∈ Cn×m is

obtained by replacing each complex element aij with its complex conjugate aij and forming
the transpose of the resulting matrix.

On a different note, we will repeatedly fix certain multivariate parameter vectors that
will have the same number in each entry. We define that any bold number represents a d-
dimensional vector containing itself in each coordinate, e.g. 4 = (4, . . . , 4)⊤. If an argument
in a function remains unspecified, we use a single dot as a place holder, e.g. f(·), that is not
to be confused with the multiplication dot as for example in k · x.
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3
Fourier approximation on the torus

We reflect on the notation and major results for the approximation of multivariate continuous
functions defined on Td by trigonometric polynomials.

In Section 3.1 we introduce the Fourier system
{
e2πik(·)

}
k∈Zd that is orthonormal in

L2

(
Td
)
, cf. (3.1.1). We define the hyperbolic cross IdN based on the measure function ωhc

as an alternative frequency set, whose cardinality is growing much slower than the scaled

ℓdp-balls I
ℓdp
N , p > 0 given in (2.0.5). Afterwards, we introduce function spaces Aβ(Td) and

Hβ(Td) of L2

(
Td
)
-functions with absolutely or square summable Fourier coefficients f̂k, cf.

(3.1.6) and (3.1.7), and reflect on equivalence and embedding properties.

In Section 3.2 we define rank-1 lattices Λ(z,M) in (3.2.2) and state the reconstructing
rank-1 lattice property, for which we have the exact integration property (3.2.3) of multi-
variate trigonometric polynomials. Considering arbitrary functions f ∈ Hβ(Td), we define
approximated Fourier coefficients f̂Λk , cf. (3.2.5), as well as the approximated Fourier partial
sum SΛ

I f .

Afterwards in Section 3.3 we recall two worst case L∞(Td)- and L2(Td)-approximation
error bounds, cf. (3.3.1) and (3.3.2).

In Section 3.4 we reflect the Algorithms 3.4.1 and 3.4.2 based on a single rank-1 lattice for
the efficient evaluation and stable reconstruction of multivariate trigonometric polynomials.
We also highlight the advantages of using multiple rank-1 lattices Λ(z1,M1, . . . , zs,Ms), cf.
(3.4.5), and discuss the basic idea behind the dimension incremental construction of frequency
sets I ⊂ Zd to algorithmically determine a fixed number of the largest frequencies within a
predefined search space in Zd.

Finally in Section 3.5 we provide combinatorial arguments to obtain suitable discretized
relative ℓ∞-approximation errors εM∞ and ℓ2-approximation errors εM2 , cf. (3.5.1) and (3.5.4).

3.1 Fourier analysis on the torus

For x = (x1, . . . , xd)
⊤ ∈ Td and frequencies k = (k1, . . . , kd)

⊤ ∈ Zd, we consider the Fourier
system



e2πik·x =

d∏

j=1

e2πikjxj





k∈Zd
, (3.1.1)

17



18 3 Fourier approximation on the torus

that is orthonormal with respect to the scalar product

(f, g)L2(Td) :=

∫

Td
f(x) g(x) dx,

so that for k1,k2 ∈ Zd we have

(e2πik1(·), e2πik2(·))L2(Td) := δk1,k2 .

For any frequency set I ⊂ Zd of finite cardinality |I| < ∞ we denote the space of all multi-
variate trigonometric polynomials supported on I by

ΠI := span{e2πik(·) : k ∈ I}. (3.1.2)

For all k ∈ Zd, we define the Fourier coefficients f̂k as

f̂k := (f, e2πik(·))L2(Td) =

∫

Td
f(x) e−2πik·x dx, (3.1.3)

and the corresponding Fourier partial sum is given by SIf(·) =
∑

k∈I f̂k e
2πik(·). For all

f ∈ L2(Td), we have

∥f − SIf∥L2(Td) → 0 for |I| → ∞, (3.1.4)

where |I| → ∞ means min(|k1|, . . . , |kd|) → ∞ for k = (k1, . . . , kd)
⊤ ∈ I, see [Wei12, Theo-

rem 4.1].

We define the hyperbolic cross IdN as

IdN :=
{
k ∈ Zd : whc(k) ≤ N

}
with whc(k) :=

d∏

j=1

max(1, |kj |), (3.1.5)

which is illustrated alongside two scaled ℓdp-balls I
ℓdp
N with p ∈ {1

2 , 1} as defined in (2.0.5) for
N = 16 in two dimensions in Figure 3.1.1.

Remark 3.1.1. The size of the frequency set I ⊂ Zd will factor in the overall computation
time. At first, we will focus on hyperbolic cross sets IdN . Later on, we consider functions f
for which the optimal choice for a frequency set I ⊂ Zd of finite cardinality |I| < ∞ that
corresponds to the largest Fourier coefficients f̂k is unknown. The approach of switching to

scaled ℓdp-balls I
ℓdp
N is not feasible in higher dimensions d, because the cardinality |Iℓ

d
p

N | grows
asymptotically like Nd whereas the cardinality |IdN | grows only like N log(N)d−1. Eventually,
we reflect on a dimension incremental construction method [Vol15, PV16] that determines
the |IdN | largest Fourier coefficients in a fixed search space [−N,N ]d ∩ Zd.

For β ≥ 0, we define the space

Aβ(Td) :=



f ∈ L1(Td) : ∥f∥Aβ(Td) :=

∑

k∈Zd
whc(k)

β|f̂k| <∞



 ⊂ C(Td) (3.1.6)
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Figure 3.1.1: The hyperbolic cross IdN as in (3.1.5), two scaled ℓdp-balls I
ℓdp
N , p ∈ {1

2 , 1} as in
(2.0.5) for N = 16, d = 2.

and the Hilbert space

Hβ(Td) :=




f ∈ L2(Td) : ∥f∥Hβ(Td) :=


∑

k∈Zd
whc(k)

2β|f̂k|2



1
2

<∞





⊂ C(Td). (3.1.7)

For β = 0 and the constant measure function whc(k) ≡ 1, we call the space A(Td) := A0(Td)
the Wiener Algebra. For all m ∈ N, it was shown in [KSU15] that

∥ · ∥Hm(Td) ∼ ∥ · ∥Hm
mix(Td)

. (3.1.8)

As shown in [KPV15, Lemma 2.2], for β ≥ 0, λ > 1
2 and fixed d ∈ N there are the continuous

embeddings

Hβ+λ(Td) ↪→ Aβ(Td) ↪→ A(Td) (3.1.9)

and for f ∈ Hβ+λ(Td) we have

∥f∥Aβ(Td) ≤ Cd,λ∥f∥Hβ+λ(Td) (3.1.10)

with a constant Cd,λ := C(d, λ) > 1. Additionally, for each function in A(Td) there exists
a continuous representative, as proven in [Käm14b, Lemma 2.1]. Later on, when we sample
functions f ∈ Hβ+λ(Td) we identify them with their continuous representatives given by their
Fourier series

∑
k∈Zd f̂k e

2πik(·).

3.2 Fourier approximation with rank-1 lattices

We collect some objects and observations from [SK87, CKN10, Käm14b] to discuss the ap-
proximation of functions f ∈ Hβ(Td). For each frequency set I ⊂ Zd there is the difference
set

D(I) := {k ∈ Zd : k = k1 − k2 with k1,k2 ∈ I}. (3.2.1)

The set

Λ(z,M) :=

{
xj :=

(
j

M
z mod 1

)
∈ Td : j = 0, 1, . . .M − 1

}
(3.2.2)
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is called rank-1 lattice with the generating vector z ∈ Zd and the lattice size M ∈ N. A
reconstructing rank-1 lattice Λ(z,M, I) is a rank-1 lattice Λ(z,M) for which the condition

t · z ̸≡ 0 (modM) for all t ∈ D(I) \ {0}

holds. Given a reconstructing rank-1 lattice Λ(z,M, I), we have exact integration for all
multivariate trigonometric polynomials g ∈ ΠD(I), see [SK87], so that

∫

Td
g(x) dx =

1

M

M−1∑

j=0

g(xj), xj ∈ Λ(z,M, I). (3.2.3)

In particular, for f ∈ ΠI and k ∈ I we have f(·) e−2πik(·) ∈ ΠD(I) and

f̂k =

∫

Td
f(x) e−2πik·x dx =

1

M

M−1∑

j=0

f(xj) e
−2πik·xj , xj ∈ Λ(z,M, I). (3.2.4)

For an arbitrary function f ∈ Hβ(Td) we lose the former mentioned exactness and define the
approximated Fourier coefficients f̂Λk of the form

f̂k ≈ f̂Λk :=
1

M

M−1∑

j=0

f(xj) e
−2πik·xj , xj ∈ Λ(z,M, I), (3.2.5)

leading to the approximated Fourier partial sum SΛ
I f given by

SIf(x) ≈ SΛ
I f(x) :=

∑

k∈I
f̂Λk e2πik·x.

3.3 Approximation error bounds on the torus

For functions f in Aβ(Td) and Hβ(Td) we reflect certain upper bounds for approximation

errors of the form
∥∥∥f − SΛ

IdN
f
∥∥∥. First of all, the existence of reconstructing rank-1 lattices is

secured by the arguments provided in [Käm14a, Corollary 1] and [KPV15, Theorem 2.1]:

Lemma 3.3.1. Let I ⊂ Zd be a frequency set of finite cardinality 4 ≤ |I| < ∞ and

with I ⊂ Zd ∩
(
−M

2 ,
M
2

)d
,M ∈ N. For all multivariate trigonometric polynomials f ∈ ΠI

there exists a reconstructing rank-1 lattice Λ(z,M, I) where the lattice size M is bounded by
|I| ≤M ≤ |D(I)| ≤ |I|2, such that f̂k = f̂Λk . The generating vector z ∈ Zd can be constructed
using a component-by-component approach.

Now, there are worst case upper bounds for the L∞-approximation error of functions in
Aβ(Td), as proven in [KPV15, Theorem 3.3]:

Theorem 3.3.2. Let f ∈ Aβ(Td) with β ≥ 0 and d ∈ N, a hyperbolic cross IdN with |IdN | <∞
and N ∈ N as given in (3.1.5), and a reconstructing rank-1 lattice Λ(z,M, IdN ) be given. The
approximation of f by the approximated Fourier partial sum SΛ

IdN
f leads to an approximation

error that is estimated by
∥∥∥f − SΛ

IdN
f
∥∥∥
L∞(Td)

≤ 2N−β∥f∥Aβ(Td). (3.3.1)
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The approximation of functions in the Hilbert spaces Hβ(Td) was investigated in [Tem86,
KPV15]. It was proven that for all β > 1, there exists a reconstructing rank-1 lattice
generated by a vector in Korobov form (1, z, z2, . . . , zd−1)⊤ ∈ Zd such that the L2-truncation
error is bounded above by

∥∥∥f − SΛ
IdN
f
∥∥∥
L2(Td)

≤ N−β(logN)(d−1)/2∥f∥Hβ(Td).

A more general estimate of this error and an upper bound for the corresponding aliasing error
can be found in [BKUV17, Theorem 2], where slightly different frequency sets - the so-called
dyadic hyperbolic cross - are used and a component-by-component approach was applied to
construct the generating vector z ∈ Zd which generally is not of Korobov form anymore.
Furthermore, every dyadic hyperbolic cross is embedded in a hyperbolic cross as defined in
(3.1.5), see [Vol17, Lemma 2.29], so that these error estimates are easily translated in terms
of hyperbolic crosses IdN , see [Vol17, Theorem 2.30]. We will repeatedly use the following
special case:

Theorem 3.3.3. Let β > 1
2 , d ∈ N, f ∈ Hβ(Td), a hyperbolic cross IdN with N ≥ 2d+1, and

a reconstructing rank-1 lattice Λ(z,M, IdN ) be given. Then we have
∥∥∥f − SΛ

IdN
f
∥∥∥
L2(Td)

≤ Cd,βN
−β(logN)(d−1)/2∥f∥Hβ(Td) (3.3.2)

with some constant Cd,β := C(d, β) > 0.

3.4 Algorithms on the torus

3.4.1 Efficient evaluation and reconstruction of trignometric polynomials

The algorithms in [Käm14b, Algorithm 3.1 and 3.2] describe how to efficiently evaluate any
high-dimensional trigonometric polynomial such as the approximated Fourier series SΛ

I f , and

how to reconstruct the approximated Fourier coefficients f̂Λk ,k ∈ I given in (3.2.5), with a
single one-dimensional fast Fourier transform. Both procedures are denoted as matrix-vector-
products of the form

f = Ff̂ and f̂ =M−1F∗f (3.4.1)

with f := (f(xj))
M−1
j=0 for xj ∈ Λ(z,M), f̂ := (f̂k)k∈I and the Fourier matrices F and F∗

given by

F :=
(
e2πik·xj

)
xj∈Λ(z,M),k∈I

∈ CM×|I|, F∗ =
(
e−2πik·xj

)
k∈I,xj∈Λ(z,M)

∈ C|I|×M . (3.4.2)

3.4.1.1 Evaluation of trigonometric polynomials

Given a frequency set I ⊂ Zd of finite cardinality |I| < ∞, we consider the multivariate
trigonometric polynomial f ∈ ΠI as in (3.1.2) with Fourier coefficients f̂k. The evaluation of
f at lattice points xj ∈ Λ(z,M) simplifies to

f(xj) =
∑

k∈I
f̂k e

2πik·xj =
M−1∑

ℓ=0




∑

k∈I,
k·z≡ℓ ( modM)

f̂k


 e2πiℓ

j
M =

M−1∑

ℓ=0

ĝℓ e
2πiℓ j

M , (3.4.3)
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Algorithm 3.4.1 Evaluation at rank-1 lattice

Input: M ∈ N lattice size of Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd frequency set of finite cardinality

f̂ =
(
f̂k

)
k∈I

Fourier coefficients of f ∈ ΠI

ĝ = (0)M−1
ℓ=0

for each k ∈ I do
ĝk·z modM = ĝk·z modM + f̂k

end for
f = iFFT 1D(ĝ)
f =M f

Output: f = Ff̂ = (f(xj))
M−1
j=0 function values of f ∈ ΠI

Algorithm 3.4.2 Reconstruction from sampling values along a transformed reconstructing
rank-1 lattice

Input: I ⊂ Zd frequency set of finite cardinality
M ∈ N lattice size of Λ(z,M, I)
z ∈ Zd generating vector of Λ(z,M, I)

f = (f(xj))
M−1
j=0 function values of f ∈ ΠI

ĝ = FFT 1D(f)
for each k ∈ I do
f̂k = 1

M ĝk·z modM

end for

Output: f̂ =M−1F∗f =
(
f̂Λk

)
k∈I

approximated Fourier coefficients
supported on I

with

ĝℓ =
∑

k∈I,
k·z≡ℓ ( modM)

f̂k.

In total, the evaluation of such a function is realized by simply pre-computing (ĝℓ)
M−1
ℓ=0 and

applying a one-dimensional inverse fast Fourier transform, see Algorithm 3.4.1.

3.4.1.2 Reconstruction of trigonometric polynomials

For the reconstruction of a multivariate trigonometric polynomial f ∈ ΠI as in (3.1.2) from
lattice points xj ∈ Λ(z,M, I), we utilize the exact integration property (3.2.4) and the fact
that we have

M−1∑

j=0

(
e2πi

(k−h)·z
M

)j
=

{
M for k · z ≡ k · h (modM),

0 otherwise,
(3.4.4)

and F∗F = MI with I ∈ C|I|×|I| being the identity matrix. For the reconstruction of the
Fourier coefficients ĥk we use a single one-dimensional fast Fourier transform. The entries
of the resulting vector (ĝℓ)

M−1
ℓ=0 are renumbered by means of the unique inverse mapping

k 7→ k · z modM , see Algorithm 3.4.2.
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3.4.2 Multiple rank-1 lattices

Under mild assumptions it was shown in Lemma 3.3.1 that it is possible to generate a re-
constructing rank-1 lattice Λ(z,M, I) with some frequency set I ⊂ Zd of finite cardinality
|I| < ∞ and with the lattice size M being bounded by |I| ≤ M ≤ |I|2. Usually, the lattice
size M is close to |I|2 and therefore still pretty large, despite the independency on the di-
mension d. To overcome this limitation it was suggested in [Käm18, Käm19] to use multiple
rank-1 lattices that are a union of s rank-1 lattices

Λ(z1,M1, . . . , zs,Ms) :=
⋃

j=1,...,s

Λ(zj ,Mj). (3.4.5)

Then it is possible to determine a reconstructing sampling set for multivariate trigonometric
polynomials in ΠI supported on the given frequency set I, with a probability of at least 1−δs,
where we have constants C1, C2 > 0 and

δs = C1 e
−C2s

as an upper bound on the probability that the approach fails. In [Käm19] it was proven that
the upper bound on the lattice size improves to

M ≤ C|I| log |I| (3.4.6)

for these particular reconstructing lattices.

3.4.3 Sparse fast Fourier transform

A major problem in reconstructing multivariate trigonometric polynomials
∑

k∈I
f̂k e

2πik·x, x ∈ Td,

is to choose a suitable frequency set I ⊂ Zd, which depends on the size and distribution of
the Fourier coefficients f̂k. For example, if f is an element of the Wiener algebra A(Td) given
in (3.1.6), then the largest Fourier coefficients are located along the coordinate axis and form
a hyperbolic cross IdN as in (3.1.5). Without any additional information on f or the Fourier

coefficients f̂k, it is generally not possible to immediately know which frequencies k belong
to the largest Fourier coefficients f̂k. There is the danger of picking frequency sets that do
not include all of the largest Fourier coefficients, and choosing larger frequency sets in order
to catch all the large Fourier coefficients will cause a significant increase in computation time
in higher dimensions.

Alternatively, we find dimension incremental algorithms in [Vol15, PV16] that reconstruct
sparse multivariate trigonometric polynomials with an unknown support in a frequency do-
main I ⊂ Zd – the sparse fast Fourier transforms (sparse FFT). Based on the component-
by-component construction of rank-1 lattices, the approach of [PV16, Algorithm 1 and Algo-
rithm 2] describes a dimension incremental construction of a frequency set I ⊂ Zd belonging
to the approximately |I| largest Fourier coefficients. For such a construction the initial search
space is restricted to a full grid [−N,N ]d ∩ Zd of refinement N ∈ N and it is assumed that
the cardinality of the support of the multivariate trigonometric polynomial is bounded by a
sparsity s ∈ N. Eventually, we end up with up to s non-zero Fourier coefficients f̂k of the
initially given function f .

Furthermore, these techniques were adapted for multiple rank-1 lattices [KPV20, KKV20]
and also found application for solving ordinary differential equations [BKP20].
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3.5 Discrete approximation errors

We discretize the L∞-error in Theorem 3.3.2 and the L2-error appearing in Theorem 3.3.3
in order to evaluate numerical tests on the upper approximation error bounds. In both cases
we use the sample data vector f := (f(xj))

M−1
j=0 with rank-1 lattice nodes xj ∈ Λ(z,M, I)

and apply Algorithm 3.4.2, which yields the vector of approximated Fourier coefficients
f̂ = (f̂k)k∈I =M−1F∗f , so that we can form the approximated Fourier partial sum SΛ

I f .

We provide arguments on the number M of samples that are theoretically needed to
obtain accurate approximated error norms. However, for practical purposes these numbers are
unnecessarily large, so that we resort to a smaller but reasonably large number of randomized
sampling points in our numerical tests later on.

3.5.1 The ℓ∞-approximation error

For the discretization of the L∞-error in Theorem 3.3.2 we utilize combinatorial arguments

from [DTU18] to cover the torus Td ≃
[
−1

2 ,
1
2

]d
by a large enough number of ε-balls. In a

Banach space X the unit ball is defined as BX := {x ∈ X : ∥x∥X ≤ 1}. A ball with radius
ε > 0 centered at y in a Banach space X is denoted by BX(y, ε) := {x ∈ X : ∥y − x∥X ≤ ε}.
For a compact set S we define the n-th entropy number, n ∈ N as

εn(S,X) := inf



ε > 0 : ∃y1, . . . , y2n ∈ X : S ⊆

2n⋃

j=1

BX(yj , ε)



 ,

which quantifies the smallest possible radius ε of at most 2n balls that cover the set S entirely.
In [DTU18, Corollary 6.1.2] it states that for any d-dimensional Banach space X it holds

εn(BX , X) ≤ 3(2−
n
d ),

which is applicable to the torus by choosing X = ℓd∞ with the unit ball Bℓd∞ ≃ Td ≃
[
−1

2 ,
1
2

)d
.

In order to discretize the L∞-error in Theorem 3.3.2 of a d-dimensional function f ∈ C(Td)
we define the relative discrete ℓ∞-approximation error

εM∞(f, {xj}Mj=1) :=
maxj∈{0,...,M−1}

∣∣f(xj)− SΛ
I f(xj)

∣∣
maxj∈{0,...,M−1} |f(xj)|

, xj ∈
[
−1

2
,
1

2

]d
. (3.5.1)

By choosing the sampling points xj to be the center points of the ε-balls Bℓd∞(xj , ε), the

entropy number εn(Td, ℓd∞) provides a lower bound for the number M of ε-balls to cover the
whole domain of f . Hence, if we want the entropy number εn(Td, ℓd∞) to be smaller than
some threshold δ > 0, we need a large enough number M = 2n of ε-balls to cover the whole
domain of f , where

n > d log2

(
3

δ

)
. (3.5.2)

In practice, we want to sample f at random points, e.g. uniformly distributed nodes xj ∼
U
(
−1

2 ,
1
2

)
, where U

([
−1

2 ,
1
2

]d)
denotes the continuous uniform distribution on the cube

[
−1

2 ,
1
2

]d
. If we have a covering of the domain of f and we randomly sample f at a point y0

within an ε-ball BX(y, ε) and f is at least Lipschitz continuous, then ∥f(y)−f(y0)∥L∞(Td) ≤
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L∥y − y0∥L∞(Td) ≤ Lε with some constant L ≥ 0. So, even if we sample somewhere close

to the center points y within an ε-ball BX(y, ε), the discrete ℓ∞-approximation error εM∞
is bounded from above by CεM∞ with some constant C = C(L, d) > 0. In total, the above
arguments show that the L∞-approximation error

∥∥f − SΛ
I f
∥∥
L∞(Td) is discretized well enough

by the ℓd∞- approximation error
∥∥f − SΛ

I f
∥∥
ℓd∞

if the numberM of random function evaluations

{f(xj)}Mj=1 is large enough.

3.5.2 The ℓ2-approximation error

For the discretization of the L2-approximation error in Theorem 3.3.3, we make use of the
Hoeffding’s inequality [CZ07, Proposition 3.5]:

Lemma 3.5.1. Let f ∈ L2(Td) and {ξj := f(Xj)
2}Mj=1 with Xj being independent random

variables in a probability space (Z, ϱ) with means µ := E(ξj) =
∫
[− 1

2
, 1
2 ]
d f(xj)

2 dϱ(xj) sat-

isfying |ξj(z) − µ| ≤ K for each j ∈ {1, . . . ,M} and almost all z ∈ Z. For every ε > 0 it
holds

P


 1

M

M∑

j=1

ξj − µ > ε


 ≤ exp

(
−Mε2

2K2

)
.

Hence, if we want the probability in the previous lemma to be smaller than some δ > 0
for a fixed ε > 0, then we need a large enough number of sampling points M =M(ε) with

M > 2K2 log

(
1

δ

)
1

ε2
, (3.5.3)

so that

∥∥f − SΛ
I f
∥∥2
L2(Td)

≈ 1

M

M−1∑

j=0

∣∣f(xj)− SΛ
I f(xj)

∣∣2

for uniformly distributed sampling nodes xj ∼ U
([

−1
2 ,

1
2

]d)
. Finally, we define the relative

discrete ℓ2-approximation error as

εM2 (f, {xj}Mj=1) :=

∑M−1
j=0

∣∣f(xj)− SΛ
I f(xj)

∣∣2
∑M−1

j=0 |f(xj)|2
, (3.5.4)

where the nodes xj ∈
[
−1

2 ,
1
2

]d
may be generated randomly.

Remark 3.5.2. By Parseval’s equation we have
∥∥f − SΛ

I f
∥∥2
L2(Td)

=
∑

k∈Zd
|f̂k − f̂Λk |2 =

∑

k∈Zd\I
|f̂k|2 +

∑

k∈I
|f̂k − f̂Λk |2

= ∥f∥2L2(Td) +
∑

k∈I

(
|f̂k − f̂Λk |2 − |f̂k|2

)
.

So, if the Fourier coefficients f̂k,k ∈ IdN are known, we can evaluate the L2-approximation

error if we use Algorithm 3.4.2 to reconstruct the approximated Fourier coefficients f̂Λk . How-
ever, our considered functions will be too complicated to calculate the exact Fourier coeffi-
cients.
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Remark 3.5.3. The lower bounds (3.5.2) and (3.5.3) on the number of random sampling
pointsM are worst case bounds to theoretically ensure that the discrete approximation errors
εM∞ and εM2 are below a fixed threshold δ > 0 with high probability. For practical purposes
such as for high dimensional numerical experiments, these lower bounds are unnecessarily
large. We will use a smaller but still reasonable large number of sampling points in our
numerical tests.

Random sample generation

The previous arguments on the discretization of the L∞-error in Theorem 3.3.2 and the
L2-error appearing in Theorem 3.3.3 were based on uniformly distributed sampling nodes
xj ∼ U

([
−1

2 ,
1
2

])
, j ∈ {1, . . . ,M}. But, in higher dimensions d ≥ 5, the straight-forward

evaluation of the errors εM∞ and εM2 ends up being quite time-consuming, even for only
M = 106 or M = 107 nodes.

Therefore, we make use of the dimension-independent efficiency of Algorithm 3.4.1 and
simulate a uniform distribution with a set of different rank-1 lattices. We generate ten random
rank-1 lattices {Λ(zr1 ,Mr1), . . . ,Λ(zr10 ,Mr10)} with Mtotal =

∑10
j=1Mrj and evaluate the

approximated Fourier sums SΛ
IdN
f in the discrete approximation errors

εMtotal∞ (f) and εMtotal
2 (f) (3.5.5)

in (3.5.1) and (3.5.4) with the efficient Algorithm 3.4.1. We try to avoid the evaluation
at the same rank-1 lattice Λ(z,M, I), z = (z1, z2, . . . , zd)

⊤ ∈ Zd that is initially used to
reconstruct the approximated Fourier coefficients f̂Λk . So, for all j ∈ {1, . . . , d} we generate
zrj := (1, z

rj
2 , . . . , z

rj
d )⊤ with z

rj
i ∼ zd + U {1, zd} , i ∈ {2, . . . , d}, where U {1, zd} denotes the

discrete uniform distribution on the integers {1, 2, . . . , zd}, and Mrj ∼ ⌈M2 ⌉+2U {1, 2M}+1.
These distribution choices make it unlikely that we generate the original rank-1 lattice and
we most likely sample at ten completely different rank-1 lattices. Furthermore, it is ensured
that the ten random rank-1 lattices are not arbitrarily large.
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Torus-to-Rd transformation mappings

We introduce the notation of torus-to-Rd mappings ψ = (ψ1, . . . , ψd) :
(
−1

2 ,
1
2

)d → Rd and
prove a set of conditions on the transformations ψ for a given function space L2(Rd, ω) ∩
Hm

mix(Rd) such that we obtain a bounded periodization mapping of the form

L2(Rd, ω) ∩Hm
mix(Rd) ∋ h 7→ h(ψ(·))

√√√√ω(ψ(·))
d∏

j=1

ψ′
j(·) ∈ Hm(Td).

This allows us to freely apply the variety of approximation techniques for smooth periodic
function on the torus Td from Chapter 3 and transfer the orthonormality of the Fourier
system, important upper approximation error bounds and the efficient algorithms based on
rank-1 lattices by means of the inverse torus-to-Rd transformation ψ−1 to the considered
non-periodic function class defined on Rd. Parts of the content in this chapter were already
published in [NP20].

In Section 4.1 we define increasing and invertible torus-to-Rd transformations ψ, cf.
(4.1.1), and fix the notation of the density function ϱ as the derivative of the inverse of
a torus-to-Rd transformation.

Then in Section 4.2 we list and compare important examples of torus-to-Rd transforma-
tions.

Afterwards in Section 4.3 we investigate the structure of weighted exponential func-

tions
{√

ϱ(·)
ω(·) e

2πik·ψ−1(·)
}
k∈Zd

, cf. (4.3.2), that form an orthonormal system in the weighted

L2(Rd, ω)-function space and will often be refered to as the transformed Fourier system.
In Section 4.4 we discuss - at first in one dimension - the periodization approach via torus-

to-R transformations, that map functions h ∈ L2(R, ω) onto functions f ∈ L2(T) of the form
f(x) := h(ψ(x))

√
ω(ψ(x))ψ′(x), so that ∥h∥L2(R,ω) = ∥f∥L2(T). Then, we assume additional

smoothness so that a given function h is additionally in the Sobolev space Hm(R), cf. (2.0.8).
We prove the major Theorem 4.4.1 - with its multivariate analogue in Theorem 4.4.2 - in
which we provide a set of sufficient L∞-conditions on the torus-to-R transformations ψ and
the measure functions ω for which the periodized function f inherits the smoothness from h
so that it is an element of the Sobolev space Hm(T).

In Section 4.5 we prove weighted upper L∞
(
Rd,

√
ω
ϱ

)
- and L2

(
Rd, ω

)
-approximation

error bounds based on the worst case upper L∞
(
Td
)
- and L2

(
Td
)
-approximation estimates

from Section 3.5.

27
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In Section 4.6 we begin to consider parameterized torus-to-Rd transformations ψ(·,η)
and measure functions ω(·,µ) with η,µ ∈ Rd+. We adapt the Algorithms 3.4.1 and 3.4.2 by
incorporating the inverse torus-to-Rd transformation ψ−1(·,η) and compare some transformed
rank-1 lattices Λψ(·,η)(z,M).

Section 4.7 we consider a parameterized Gaussian measure function ω(·,µ) as well as a
Gaussian function h, cf. (4.7.2) and (4.7.1) and discuss the application of the parameterized
error function transformation (4.7.3). Based on the L∞-conditions (4.4.9) in Theorem 4.4.2
we calculate worst case lower parameter bounds for which the transformed functions f are in
Hm(T) with m ∈ {0, 1, 2, 3}. We calculate the discrete approximations errors εM2 (h, {yj}Mj=1)

and εM∞(h, {yj}Mj=1) given in (4.6.2) in dimensions d ∈ {1, 2} with single rank-1 lattice meth-
ods. For dimensions d ≥ 4 we switch to multiple rank-1 lattices and again compare the
difference in the approximation errors when switching the frequency set from a hyperbolic

cross I4N to a scaled ℓ41-ball I
ℓ41
N . Finally, for dimension d = 8 we again use the sparse FFT

algorithm and highlight the power of the dimension incremental construction of suitable
frequency sets.

In Section 4.8 we summarize the approximation results of the previous two numeric sec-
tions.

4.1 Torus-to-Rd transformations

Following the notation of [NP20, Section 3.1], we call a mapping

ψ :

(
−1

2
,
1

2

)
→ R with lim

x→± 1
2

ψ(x) = ±∞ (4.1.1)

a torus-to-R transformation if it is continuously differentiable and increasing. The inverse
transformation is also continuously differentiable, increasing and is denoted by ψ−1 : R →
(−1

2 ,
1
2) in the sense of y = ψ(x) ⇔ x = ψ−1(y) with ψ−1(y) → ±1

2 as y → ±∞. We call the
derivative of the inverse transformation the density function ϱ of ψ, which is a non-negative
L1(Rd)-function, given by

ϱ(y) := (ψ−1)′(y) =
1

ψ′(ψ−1(y))
.

In multiple dimensions we put

ψ(x) := (ψ1(x1), . . . , ψd(xd))
⊤

with x ∈ (−1
2 ,

1
2)
d and call them torus-to-Rd transformations, where we may use different

transformations ψj in each coordinate j ∈ {1, . . . , d}. The corresponding multivariate inverse
transformation is denoted by ψ−1(y) := (ψ−1

1 (y1), . . . , ψ
−1
d (yd))

⊤ and the density is given by

ϱ(y) :=
d∏

j=1

ϱj(yj), y ∈ Rd. (4.1.2)

Later on, we consider families of parameterized torus-to-Rd transformations

ψ(x,η) := (ψ1(x1, η1), . . . , ψd(xd, ηd))
⊤ (4.1.3)
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with η = (η1, . . . , ηd)
⊤ ∈ Rd+. We only consider parametrizations for which the transfor-

mation ψ, its inverse ψ−1 and the density function ϱ fit into the given definitions above
despite being impacted by the parameter η. In (4.7.3), we will use parameterized torus-to-Rd
transformations of the form

ψ(x,η) := η · ψ(x) (4.1.4)

with η ∈ (0,∞)d, which is a kind of parameterization that is also used in [KPPW20]. As
the transformations are going to be composed with functions defined on Rd, the parameter
η may impact the smoothness of the resulting transformed functions, which we will discuss
in depth later on.

Remark 4.1.1. For now, we omit the parameter in the notation for simplicity and proceed
to just write ψ(·) until we actually consider particular parameterized families of the form
(4.1.3) or (4.1.4).

4.2 Exemplary transformations

We list some feasible univariate transformations ψ with either an exponential or an alge-
braic density function ϱ, some of which were suggested in the literature, see e.g.,[Boy00,
Section 17.6], [STW11, Section 7.5], [Ste93, Example 4.2.8 and 4.2.9] or [NP20]. For now,
with Remark 4.1.1 in mind, we list these transformations for simplicity in their univariate
non-parameterized form with η = 1 and ψ(x) = ψ(x, 1).

Let x ∈ (−1
2 ,

1
2) and y ∈ R. We are particularly interested in the following transforma-

tions:

• error function (torus-to-R) transformation:

ψ(x) = erf−1(2x), ψ′(x) =
√
π e(erf

−1(2x))2 (4.2.1)

ψ−1(y) =
1

2
erf (y) , ϱ(y) =

1√
π
e−y

2

with the error function

erf(x) =
1√
π

∫ x

−x
e−t

2
dt, x ∈ R, (4.2.2)

and erf−1(·) denoting the inverse error function

• logarithmic (torus-to-R) transformation:

ψ(x) =
1

2
log

(
1 + 2x

1− 2x

)
= tanh−1(2x), ψ′(x) =

2

1− 4x2
, (4.2.3)

ψ−1(y) =
1

2

(
e2y − 1

e2y + 1

)
=

1

2
tanh (y) , ϱ(y) =

2e2y

(e2y + 1)2

• algebraic (torus-to-R) transformation:

ψ(x) =
2x

(1− 4x2)
1
2

, ψ′(x) =
2

(1− 4x2)
3
2

, (4.2.4)

ψ−1(y) =
y

2(1 + y2)
1
2

, ϱ(y) =
1

2(1 + y2)
3
2
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(4.2.1) logarithmic transformation

(4.2.2) error function transformation

(4.2.4) algebraic transformation

(4.2.5) tangens transformation

Figure 4.2.1: Plots of exemplary transformations (4.2.1)-(4.2.5).

• tangent (torus-to-R) transformation:

ψ(x) = tan (πx) , ψ′(x) =
π

cos2(πx)
(4.2.5)

ψ−1(y) =
1

π
arctan (y) , ϱ(y) =

1

π

(
1

1 + y2

)

For a side-by-side comparison of their individual slope see Figure 4.2.1.

We will define so-called torus-to-cube transformations in (5.1.1) that are defined in a
similar fashion as the torus-to-R transformations (4.1.1). A specific type of a torus-to-cube
transformation will be induced by torus-to-R transformations. In particular, the error func-
tion logarithmic and the logarithmic (torus-to-R) transformation (4.2.1) and (4.2.3) induce
the the error function and the logarithmic (torus-to-cube) transformation (5.2.2) and (5.2.1).
The center pieces of these names are only denoted in their original definition to emphasize
that there are two different error function and two different logarithmic transformations.
Usually, we omit the specification if a transformation maps to R or the cube as it is clear
from the context about which one is used.

4.3 Weighted Hilbert spaces on Rd

We consider families of parameterized integrable measure functions ω(·,µ),µ ∈ Rd+ of the
form

ω(y,µ) :=

d∏

j=1

ωj(yj , µj), ωj(yj , µj) ∈ C0(R), (4.3.1)

such that for any given torus-to-Rd transformation ψ(·,η),η ∈ Rd+ as in (4.1.3) we have

ω(ψj(·, ηj), µj)ψ′(·, ηj) ∈ C0
([

−1

2
,
1

2

])
with ω

(
ψj

(
±1

2
, ηj

)
, µj

)
ψ′
(
±1

2
, ηj

)
:= 0.
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By putting yj = ψj(xj , ηj) ∈ R, xj ∈
[
−1

2 ,
1
2

]
, this property is equivalently stated as

ω(·,µj)
ϱ(·,ηj) ∈ C0(R). Consequentially, the transformed Fourier system in (4.3.2) will always be an

unbounded system.

For now, we remain in the univariate case and we simplify the notation of the trans-
formation, the weight function, and all related functions by omitting any parameter and
write ψ(·), ω(·), etc. We describe the structure of the univariate weighted L2(R, ω)-function
spaces as defined in (2.0.7). The transformed Fourier system {φk}k∈Z of weighted exponential
functions

φk(y) :=

√
ϱ(y)

ω(y)
e2πikψ

−1(y), y ∈ R, (4.3.2)

forms an orthonormal system with respect to the scalar product

(h1, h2)L2(R,ω) :=

∫

R
h1(y)h2(y)ω(y) dy (4.3.3)

and for k1, k2 ∈ Z we have

(φk1 , φk2)L2(R,ω) = δk1,k2 .

The weighted scalar product (4.3.3) induces the norm

∥h∥L2(R,ω) :=
√

(h, h)L2(R,ω)

and we have Fourier coefficients of the form

ĥk := (h, φk)L2(R,ω) =

∫

R
h(y)

√
ϱ(y)ω(y) e−2πikψ−1(y) dy, (4.3.4)

as well as the respective Fourier partial sum for I ⊂ Z given by

SIh(y) :=
∑

k∈I
ĥk φk(y). (4.3.5)

Example 4.3.1. • For the error function transformation (4.2.1) with the density ϱ(y) =
1√
π
e−y

2
and the Gaussian measure function

ω(y, µ) =
1√
π
e−µ

2y2 , µ ∈ R, (4.3.6)

the orthonormal functions φk as in (4.3.2) are of the form

φk(y) = e
1
2
(µ2−1)y2+πik erf(y), (4.3.7)

with graphs of their real and imaginary parts for µ =
√
2 and k = 0, 1, 2, 3 shown in

Figure (4.3.1). The corresponding weighted scalar product (4.3.3) reads as

(h1, h2)L2(R,ω(·,µ)) =
1√
π

∫

R
e−µ

2y2 h1(y)h2(y) dy.
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−3 −2 −1 0 1 2 3

−4

−2

0

2

4

Re(φk(y)) = e
y2

2 cos (πk erf(y))

k = 0

k = 1

k = 2

k = 3

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

Im(φk(y)) = e
y2

2 sin (πk erf(y))

Figure 4.3.1: Real and imaginary part of the weighted exponential functions φk in (4.3.7) for
k = 0, 1, 2, 3 and the fixed parameter µ =

√
2.

4.4 Smoothness properties of transformed functions

In this section we characterize the smoothness properties of functions h ∈ L2(Rd, ω) and of
their corresponding transformed versions on the torus Td after the application of a torus-
to-Rd transformation ψ given in (4.1.1). We propose specific sufficient conditions for ψ and
ω such that the transformed functions are in Hm(Td) with m ∈ N0. These conditions are
stated for both univariate and multivariate functions. Afterwards, we utilize the embed-
ding Hβ+λ(Td) ↪→ Aβ(Td) in (3.1.9) for λ = 1 to discuss high-dimensional approximation
problems, in which we apply fast Fourier approximation methods based on rank-1 lattices.
Throughout this section we still omit the parameters η,µ ∈ Rd+ in the notation of the torus-
to-Rd transformations ψ and the measure functions ω.

For now we remain in the univariate case. Given a class of functions h ∈ L2(R, ω) with a
measure function ω ∈ C0(R), we consider a torus-to-R transformation y = ψ(x) as defined in
(4.1.1), such that ω(ψ(x))ψ′(x) ∈ T, in order to transform any such function h into a function
f ∈ L2(T) of the form

f(x) := h(ψ(x))
√
ω(ψ(x))ψ′(x), x ∈ T, (4.4.1)

for which we have the identity

∥h∥2L2(R,ω) =

∫

R
|h(y)|2 ω(y) dy =

∫

T
|h(ψ(x))|2 ω(ψ(x))ψ′(x) dx = ∥f∥2L2(T).

This is illustrated schematically in Figure 4.4.1.
Generally, it is rather difficult to check if such a transformed function f is in Hm(T)

for some fixed m ∈ N0 by calculating the Sobolev norm ∥f∥Hm(T). We propose a set of
sufficient conditions such that f ∈ Hm(T) with m ∈ N0, that utilize the product structure of
the functions f in (4.4.1) and eliminate the necessity to be able to calculate either the exact
Fourier coefficients f̂k or the L2-norms of various derivatives of f appearing in the equivalent
Sobolev norm ∥f∥Hm(T). When we use parameterized families of torus-to-R transformations
ψ(·, η) and families of measure functions ω(·, µ), we will calculate how large the parameters
η, µ ∈ R+ have to be in order to preserve the fixed degree of smoothnessm when transforming
h ∈ L2(R, ω(·, µ)) ∩Hm(R) into f ∈ Hm(T) via ψ(·, η).
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T ' [−1
2 ,

1
2) (−1

2 ,
1
2) R

C

⊃
ψ

L2(T)3h(ψ(x))
√
ω(ψ(x))ψ′(x)=:f(x)

h(y)∈L2(R,ω)

ψ−1

Figure 4.4.1: Scheme of the relation between the given function h ∈ L2(Rd, ω) and the
periodization f ∈ L2(T) resulting from applying the torus-to-R transformation ψ.

Now, we propose a set of sufficient univariate conditions such that we obtain smooth
transformed function f ∈ Hm(T).

Theorem 4.4.1 ([NP20, Theorem 3.4]). Let m ∈ N0, a h ∈ L2(R, ω) ∩Hm(R) with a mea-
sure function ω ∈ Cm0 (R) be given. Considering a torus-to-R transformation ψ ∈ Cm((−1

2 ,
1
2))

with the density function ϱ ∈ Cm0 (R), if for all n ∈ {0, 1, . . . ,m} the condition

max
k=0,...,n

∥∥∥∥
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)ψ′(·)max(− 1
2
,2k− 3

2
)

∥∥∥∥
L∞(T)

<∞

holds, then the transformation operator

T : L2(R, ω) ∩Hm(R) → Hm(T)

h 7→ h(ψ(·))
√
ω(ψ(·))ψ′(·) =: f(·)

is bounded, where f of the form (4.4.1).

Proof. For h ∈ L2(R, ω)∩Hm(R) with m ∈ N0 and a torus-to-R transformation ψ as defined
in (4.1.1) we consider the transformed function f of the form (4.4.1). We apply the generalized
Leibniz rule (2.0.1) to the Sobolev norm of f , which leads to

∥f∥2Hm(T) ∼ ∥f∥2Hm(T) =

m∑

n=0

∥f (n)(·)∥2L2(T)

≤
m∑

n=0

(
n∑

k=0

(
n

k

)∥∥∥∥(h ◦ ψ)(k)(·)
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)
∥∥∥∥
L2(T)

)2

. (4.4.2)

We leave h ◦ψ in the term corresponding to k = 0 untouched for now. For k ∈ {1, . . . ,m} we
apply the Faá di Bruno formula (2.0.2) to the k-th derivative of the composition of functions
h and ψ, and provide an upper estimate for the appearing Bell polynomials (2.0.3). By
differentiating both sides of ψ−1(ψ(x)) = x we obtain

ψ′(x) =
1

ϱ(ψ(x))
, ψ(2)(x) = −ϱ

′(ψ(x))ψ′(x)
ϱ(ψ(x))2

= −ϱ′(ψ(x))ψ′(x)3

and we observe that for k ∈ N
d

dx

[
(ψ′)k

]
(x) = kψ′(x)k−1ψ(2)(x) = −kψ′(x)k+2ϱ′(ψ(x)). (4.4.3)
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Consequently, the k-th derivative of ψ can be expressed soley in terms of powers of ψ′ and the
first (k − 1) derivatives of ϱ by repeated insertion of the expression of ψ(2). Formula (4.4.3)
implies that the highest appearing power of ψ′ increases by 2 with each differentiation, which
we indeed observe for the next two derivatives given by

ψ(3)(x) = ψ′(x)5
(
−ϱ

(2)(ψ(x))

ψ′(x)
+ 3ϱ′(ψ(x))

)
,

ψ(4)(x) = ψ′(x)7
(
−ϱ

(3)(ψ(x))

ψ′(x)2
+

4ϱ(2)(ψ(x))ϱ′(ψ(x)) + 6ϱ′(ψ(x))
ψ′(x)

− 15ϱ′(ψ(x))3
)
.

We note that each derivative of ψ is bounded, based on the fact that ϱ is by definition in
C0(R). Hence, ϱ ◦ ψ = 1/ψ′ ∈ C(T) and any power of 1/ψ′ is also bounded. Additionally, we
assumed that the first k derivatives of ϱ are in C0(R), too. Therefore, with constants Ck > 0
and C > 0, for all k ∈ N we estimate

∣∣∣∣
dk

dxk
[ψ](x)

∣∣∣∣ ≤ Ck|ψ′(x)|2k−1

and for the Bell polynomials Bk,ℓ in (2.0.2) we estimate

|Bk,ℓ(ψ′(x), ψ(2)(x), . . . , ψ(k−ℓ+1)(x))| (4.4.4)

≤ C ·Bk,ℓ(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−ℓ+1)−1).

The Bell polynomials were defined according to the rules to partition a number k ∈ N into a
sum of ℓ ∈ {1, 2, . . . , k} natural numbers j1, . . . , jℓ ∈ N, that are given by

j1 + j2 + j3 + . . .+ jk−ℓ+1 = ℓ,

j1 + 2j2 + 3j3 + . . .+ (k − ℓ+ 1)jk−ℓ+1 = k.

By substracting the first rule from two times the second rule we obtain

j1 + 3j2 + 5j3 + . . .+ (2(k − ℓ+ 1)− 1)jk−ℓ+1 = 2k − ℓ

which reveals, that the highest power of |ψ′| in the upper estimate of (4.4.4) is 2k − 1 and
appears for ℓ = 1. By extracting |ψ′(x)|2k−1 from each Bk,ℓ the remaining polynomials
consist only of powers of 1/ψ′, which are all bounded. Hence, in (4.4.4) we estimate further
and obtain

|Bk,ℓ(ψ′(x), ψ(2)(x), . . . , ψ(k−ℓ+1)(x))| (4.4.5)

≤ C

∣∣∣∣∣ψ
′(x)2k−1Bk,ℓ(|ψ′(x)|, |ψ′(x)|3, . . . , |ψ′(x)|2(k−ℓ+1)−1)

ψ′(x)2k−1

∣∣∣∣∣

≤ C ′
∣∣∣ψ′(x)2k−1

∣∣∣

with constants C,C ′ > 0.

Now, for any n we investigate the L2-norms in the previous estimate (4.4.2) of the Sobolev
norm. For k = 0 we insert a productive one term, estimate the second half of the inital
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integrand and apply a change of variables to obtain
∥∥∥∥(h ◦ ψ)(·)

(√
(ω ◦ ψ)ψ′

)(n)
(·)
∥∥∥∥
L2(T)

=

(∫ 1
2

− 1
2

|h(ψ(x)) |2 ψ′(x)ψ′(x)−1

((√
(ω ◦ ψ)ψ′

)(n)
(x)

)2

dx

) 1
2

≤



∫ 1

2

− 1
2

|h(ψ(x)) |2 ψ′(x)

(∥∥∥∥ψ′(·)− 1
2

(√
(ω ◦ ψ)ψ′

)(n)
(·)
∥∥∥∥
L∞(T)

)2

dx




1
2

=

∥∥∥∥ψ′(·)− 1
2

(√
(ω ◦ ψ)ψ′

)(n)
(·)
∥∥∥∥
L∞(T)

(∫ ∞

−∞
|h(y)|2 dy

) 1
2

.

For k > 0 we utilize the upper bound (4.4.5) and estimate in a similar fashion that
∥∥∥∥(h ◦ ψ)(k) (·)

(√
(ω ◦ ψ)ψ′

)(n−k)
(·)
∥∥∥∥
L2(T)

=

(∫ 1
2

− 1
2

∣∣∣(h ◦ ψ)(k)(x)
∣∣∣
2
ψ′(x)ψ′(x)−1

((√
(ω ◦ ψ)ψ′

)(n−k)
(x)

)2

dx

) 1
2

≤
∥∥∥∥
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)ψ′(·)2k− 3
2

∥∥∥∥
L∞(T)



∫ 1

2

− 1
2

∣∣∣∣∣
k∑

ℓ=1

h(ℓ)(ψ(x))

∣∣∣∣∣

2

ψ′(x) dx




1
2

=

∥∥∥∥
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)ψ′(·)2k− 3
2

∥∥∥∥
L∞(T)

k∑

ℓ=1

∥∥∥h(ℓ)(·)
∥∥∥
L2(R)

.

Hence, for arbitrary k ∈ N0 we have
∥∥∥∥(h ◦ ψ)(k) (·)

(√
(ω ◦ ψ)ψ′

)(n−k)
(·)
∥∥∥∥
L2(T)

≤
∥∥∥∥
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)ψ′(·)max(− 1
2
,2k− 3

2
)

∥∥∥∥
L∞(T)

k∑

ℓ=0

∥∥∥h(ℓ)(·)
∥∥∥
L2(R)

. (4.4.6)

Finally, by inserting (4.4.6) into (4.4.2) we obtain

∥f∥Hm(T)

≤




m∑

n=0

(
n∑

k=0

(
n

k

)∥∥∥∥(h ◦ ψ)(k)(·)
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)
∥∥∥∥
L2(T)

)2



1
2

≲




m∑

n=0

(
max

k=0,...,n

∥∥∥∥
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)ψ′(·)max(− 1
2
,2k− 3

2
)

∥∥∥∥
L∞(T)

(n+ 1)∥h∥Hn(R)

)2



1
2

≲ max
n=0,...,m

(
max

k=0,...,n

∥∥∥∥
(√

(ω ◦ ψ)ψ′
)(n−k)

(·)ψ′(·)max(− 1
2
,2k− 3

2
)

∥∥∥∥
L∞(T)

)
(m+ 1)

3
2 ∥h∥Hm(R),

which is by assumption a finite upper bound.
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Next, we prove the multivariate version of Theorem 4.4.1.
Similarly to (4.4.1), a class of functions h ∈ L2(Rd, ω) with a product measure function

ω(y) =
∏d
ℓ=1 ωℓ(yℓ), ωℓ ∈ C0(R) as in (4.3.1) is given. We consider a multivariate torus-to-Rd

transformation y = ψ(x) as defined in (4.1.3), such that ωℓ(ψℓ(xℓ))ψ
′
ℓ(xℓ) ∈ T, in order to

transform any such function h into a function f ∈ L2(Td) of the form

f(x) = h(ψ1(x1), . . . , ψd(xd))
d∏

ℓ=1

√
ωℓ(ψℓ(xℓ))ψ

′
ℓ(xℓ), x ∈ Td, (4.4.7)

for which we have the identity

∥h∥2L2(Rd,ω) =

∫

Rd
|h(y)|2 ω(y) dy (4.4.8)

=

∫

Td
|(h ◦ ψ)(x)|2 (ω ◦ ψ)(x)

d∏

ℓ=1

ψ′
ℓ(xℓ) dx = ∥f∥2L2(Td).

Again, we derive a set of sufficient L∞-conditions on the torus-to-Rd transformation ψ and
the product weight ω for an h ∈ L2(Rd, ω) ∩ Hm

mix(Rd) to be transformed by ψ into an
f ∈ Hm(Td) of form (4.4.7).

Theorem 4.4.2 ([NP20, Theorem 3.5]). Let m ∈ N0, a h ∈ L2(Rd, ω) ∩Hm(Rd) with a
multivariate measure function ω(y) =

∏d
ℓ=1 ωℓ(yℓ) with ωℓ ∈ C0(R) for all ℓ ∈ {1, . . . , d} be

given. Considering a torus-to-Rd transformation ψ = (ψ1, . . . , ψd)
⊤ ∈ Cm((−1

2 ,
1
2)) with the

density function ϱ(y) =
∏d
ℓ=1 ϱℓ(yℓ) ∈ Cm0 (Rd), if for all multi-indices m = (m1, . . . ,md)

⊤ ∈
Nd0, ∥m∥ℓd∞ ≤ m and ℓ ∈ {1, ldots, d} the condition

max
jℓ=0,...,mℓ

∥∥∥∥
(√

(ωℓ ◦ ψℓ)ψ′
ℓ

)(mℓ−jℓ)
(·)ψ′

ℓ(·)max(− 1
2
,2jℓ− 3

2
)

∥∥∥∥
L∞(T)

<∞ (4.4.9)

holds, then the transformation operator

T : L2(Rd, ω) ∩Hm(Rd) → Hm(Td)

h 7→ h(ψ(·))
d∏

ℓ=1

√
ωℓ(ψℓ(·))ψ′

ℓ(·) =: f(·)

is bounded, where f of the form (4.4.7).

Proof. For h ∈ L2(Rd, ω) ∩ Hm
mix(Rd) with m ∈ N0 and a torus-to-Rd transformation ψ as

defined in (4.1.3) we consider the transformed function f as given in (4.4.7). Let m =
(m1, . . . ,md)

⊤ ∈ Nd0 be any multi-index with ∥m∥ℓd∞ ≤ m. We have

∥Dm[f ](·)∥L2(Td) =



∫

Td

∣∣∣∣∣D
m

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′

k

]
(x)

∣∣∣∣∣

2

dx




1
2

. (4.4.10)

The product form of the measure function ω allows the componentwise application of the
Leibniz formula (4.4.2), so that we estimate

Dm

[
(h ◦ ψ)

d∏

k=1

√
(ωk ◦ ψk)ψ′

k

]
(x)

≤
m1∑

j1=0

. . .

md∑

jd=0

D(j1,...,jd)[h ◦ ψ](x)D(m1−j1,...,md−jd)
[

d∏

k=1

√
(ωk ◦ ψk)ψ′

k

]
(x). (4.4.11)



4.4 Smoothness properties of transformed functions 37

Next, we apply the Faá di Bruno formula (2.0.2) to each univariate jk-th derivative of
h ◦ ψ occurring in the term D(j1,...,jd)[h ◦ ψ](x) in (4.4.11). For all ℓ ∈ {1, . . . , d} we put

Bjℓ,iℓ(ψℓ(xℓ)) := Bjℓ,iℓ(ψ
′
ℓ(xℓ), . . . , ψ

(jℓ−iℓ+1)
ℓ (xℓ)) and we have

D(0,...,0,jℓ,0,...,0)[h ◦ ψ](x) =





h(ψ(x)) : jℓ = 0,
jℓ∑

iℓ=1

D(0,...,0,iℓ,0,...,0)[h](ψ(x))Bjℓ,iℓ(ψℓ(xℓ)) : jℓ ∈ N.

(4.4.12)

We combine the norm ∥Dm[f ](x)∥L2(Td) in (4.4.10) with the expression resulting from
applying the Leibniz formula to Dm[f ] in (5.4.7) and the subsequent application of the Faá
di Bruno formula in (4.4.12). We estimate

∥Dm[f ](x)∥L2(Td) ≲
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑

i1=1,...,id=1

(∫

Td
|D(i1,...,id)[h](ψ(x))|2

d∏

ℓ=1

|Bjℓ,iℓ(ψℓ(xℓ))|2 ×

×
∣∣∣∣∣D

(m1−j1,...,md−jd)
[

d∏

k=1

√
(ωk ◦ ψk)ψ′

k

]
(x)

∣∣∣∣∣

2

dx




1
2

. (4.4.13)

Within this multivariate integral we estimate each coordinate separately with the univariate
arguments of the previous proof by fixing all but one coordinate one after another. Recall-
ing the arguments in (4.4.5), if all appearing derivatives of ψℓ are in C

((
−1

2 ,
1
2

))
and the

corresponding derivatives of the density ϱℓ are in C0(R) then for all Bell polynomials Bjℓ,iℓ
with jℓ ≥ 1 appearing in (4.4.12) and (4.4.13) there is some constant C > 0 so that we can
estimate

|Bjℓ,iℓ(ψ′
ℓ(xℓ), ψ

(2)
ℓ (xℓ), . . . , ψ

(jℓ−iℓ+1)
ℓ (xℓ))| ≤ C|ψ′

ℓ(xℓ)|2jℓ−1.

For each coordinate ℓ ∈ {1, . . . , d} we seperate the summand for jℓ = 0 from the summands
corresponding to jℓ ∈ {1, . . . , d} insert a productive one 1 = ψ′

ℓ(xℓ)
1

ψ′
ℓ(xℓ)

and estimate as in

(4.4.6). Applying these arguments for ℓ = 1 to (4.4.13) yields

∥Dm[f ](·)∥L2(Td)

≲ max
j1=0,...,m1

∥∥∥∥∥

(√
(ω1 ◦ ψ1)ψ′

1

)(m1−j1)
(·)ψ′

1(·)max(− 1
2
,2j1− 3

2
)

∥∥∥∥∥
L∞(T)

×

×
m2,...,md∑

j2=0,...,jd=0

j2,...,jd∑

i2=1,...,id=1

(∫

Td−1

∫

T
|D(i1,...,id)[h](ψ(x1), . . . , ψd(xd))|2ψ′

1(x1) dx1 ×

×
d∏

ℓ=2

|Bjℓ,iℓ(ψℓ(xℓ))|2
∣∣∣∣∣D

(m2−j2,...,md−jd)
[

d∏

k=2

√
(ωk ◦ ψk)ψ′

k

]
(x2, . . . , xd)

∣∣∣∣∣

2

d(x2, . . . , xd)




1
2

.
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and after repeating this process for ℓ ∈ {2, . . . , d} and applying the inverse transformations
xℓ = ψ−1

ℓ (yℓ) for all ℓ ∈ {1, . . . , d} we have estimated

≲
d∏

ℓ=1

max
jℓ=0,...,mℓ

∥∥∥∥
(√

(ωℓ ◦ ψℓ)ψ′
ℓ

)(mℓ−jℓ)
(·)ψ′

ℓ(·)max(− 1
2
,2jℓ− 3

2
)

∥∥∥∥
L∞(T)

×

×
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑

i1=1,...,id=1

(∫

Td
|D(i1,...,id)[h](ψ1(x1), . . . , ψd(xd))|2

d∏

ℓ=1

ψ′
ℓ(xℓ) dx

) 1
2

≤
d∏

ℓ=1

max
jℓ=0,...,mℓ

∥∥∥∥
(√

(ωℓ ◦ ψℓ)ψ′
ℓ

)(mℓ−jℓ)
(·)ψ′

ℓ(·)max(− 1
2
,2jℓ− 3

2
)

∥∥∥∥
L∞(T)

m1,...,md∑

j1=0,...,jd=0

∥h∥
Hj

mix(Rd)
,

with j = max{j1, . . . , jd} in the last estimate. The previous estimate is valid for all multi-
indices m = (m1, . . . ,md)

⊤ ∈ Nd0 with ∥m∥ℓd∞ ≤ m, so that we finally estimate

∥f∥Hm(Td) ∼




∑

∥m∥
ℓd∞

≤m
∥Dm[f ](·)∥2L2(Td)




1
2

=




m,...,m∑

m1=0,...,md=0

∥Dm[f ](·)∥2L2(Td)




1
2

≲
d∏

ℓ=1

max
mℓ=0,...,m

(
max

jℓ=0,...,mℓ

∥∥∥∥
(√

(ωℓ ◦ ψℓ)ψ′
ℓ

)(mℓ−jℓ)
(·)ψ′

ℓ(·)max(− 1
2
,2jℓ− 3

2
)

∥∥∥∥
L∞(T)

)
×

× (m+ 1)d∥h∥Hm
mix(Rd)

,

which is finite by assumption.

In the following we establish two specific approximation error bounds for functions defined
on Rd based on the approximation error bounds on the torus Td that we recalled in Theo-
rems 3.3.2 and 3.3.3. The corresponding proofs rely heavily on the previously introduced suf-
ficient conditions in Theorem 4.4.2 which guarantee that functions h ∈ L2(Rd, ω) ∩Hm

mix(Rd)
are transformed into Sobolev functions of dominating mixed smoothness on Td of the form
(4.4.7) by torus-to-Rd transformations ψ : (−1

2 ,
1
2)
d → Rd as given in (4.1.3).

4.5 Approximation of transformed functions

Based on the definition of a rank-1 lattice Λ(z,M) in (3.2.2), we define a transformed rank-1
lattice as

Λψ(z,M) := {yj := ψ(xj) : xj ∈ Λ(z,M), j = 0, . . . ,M − 1} . (4.5.1)

A transformed reconstructing rank-1 lattice is denoted by Λψ(z,M, I). Based on the orthonor-
mal functions φk given in (4.3.2) we put

φk(y) :=
d∏

j=1

φkj (yj), k ∈ Zd, (4.5.2)

which form an orthonormal system with respect to the multivariate weighted L2(Rd, ω)-scalar
product , so that

(h1, h2)L2(Rd,ω) :=

∫

Rd
h1(y)h2(y)

d∏

j=1

ωj(yj) dy (4.5.3)
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and for all k1,k2 ∈ Zd we have

(φk1 , φk2)L2(Rd,ω) = δk1,k2 .

The multivariate Fourier coefficients ĥk are naturally given by

ĥk = (h, φk)L2(Rd,ω). (4.5.4)

As in (4.3.5), we define the multivariate Fourier partial sum for any I ⊂ Zd as

SIh(y) :=
∑

k∈I
ĥk φk(y).

Suppose f ∈ L2(Td). For each I ⊂ Zd the system {φk}k∈I spans the space of transformed
trigonometric functions on Rd

ΠI,ψ = span

{√
ϱ(·)
ω(·) e

2πik·ψ−1(·) : k ∈ I

}
. (4.5.5)

As in (3.2.4), for transformed trigonometric functions h ∈ ΠI,ψ on Rd, transformed lattice
nodes yj ∈ Λψ(z,M, I) and all k ∈ I, we have the exact integration property of the form

ĥk =

∫

Rd
h(y)

√
ϱ(y)ω(y) e−2πik·ψ−1(y) dy =

∫

Td
f(x) e−2πik·x dx

=
1

M

M−1∑

j=0

f(xj) e
−2πik·xj =

1

M

M−1∑

j=0

h(yj)

√
ϱ(yj)

ω(yj)
e−2πik·ψ−1(yj) = ĥΛk . (4.5.6)

Generally, for functions h ∈ L2(Rd, ω) ∩Hm
mix(Rd) the multivariate approximated Fourier co-

efficients of the form

ĥΛk :=
1

M

M−1∑

j=0

h(yj)

√
ϱ(yj)

ω(yj)
e−2πik·ψ−1(yj) =

1

M

M−1∑

j=0

h(yj)φk(yj) (4.5.7)

approximate the multivariate Fourier coefficients ĥk. Finally, the multivariate version of the
approximated Fourier partial sum is given by

SΛ
I h(y) :=

∑

k∈I
ĥΛk φk(y). (4.5.8)

Finally, we introduce the analogue of the Hilbert space Hβ(Td) given in (3.1.7) on Rd. We
define the space of weighted L2

(
Rd, ω

)
-functions with square summable Fourier coefficients

ĥk given in (4.5.4) by

Hβ
(
Rd, ω

)
:=
{
h ∈ L2

(
Rd, ω

)
: ∥h∥Hβ(Rd,ω) <∞

}
,

∥h∥Hβ(Rd,ω) :=


∑

k∈Zd
whc(k)

2β|ĥk|2



1
2

.



40 4 Torus-to-Rd transformation mappings

4.5.1 L2-approximation error

Similarly, based on the L2(Td)-approximation error bound (3.3.2) and the conditions proposed

in Theorem 4.4.2 we prove an upper bound for the approximation error
∥∥∥h− SΛ

IdN
h
∥∥∥ in terms

of a weighted L2-norm on Rd.

Theorem 4.5.1 ([NP20, Theorem 3.7]). Let d ∈ N, m ∈ N, a hyperbolic cross IdN with N ≥
2d+1 and a reconstructing rank-1 lattice Λ(z,M, IdN ) and an h ∈ L2(Rd, ω) ∩Hm(Rd) with a

multivariate measure function ω(y) =
∏d
ℓ=1 ωℓ(yℓ) with ωℓ ∈ C0(R) for all ℓ ∈ {1, . . . , d} be

given. We consider a ψ as in (4.1.3) with its corresponding density function ϱ as in (4.1.2)
for all multi-indices m = (m1, . . . ,md)

⊤ ∈ Nd0, ∥m∥ℓd∞ ≤ m and ℓ ∈ {1, ldots, d} the condition

max
jℓ=0,...,mℓ

∥∥∥∥
(√

(ωℓ ◦ ψℓ)ψ′
ℓ

)(mℓ−jℓ)
(·)ψ′

ℓ(·)max(− 1
2
,2jℓ− 3

2
)

∥∥∥∥
L∞(T)

<∞

holds.
Then there is an approximation error estimate of the form

∥∥∥h− SΛ
IdN
h
∥∥∥
L2(Rd,ω)

≲ N−m(logN)(d−1)/2∥h∥Hm(Rd,ω).

Proof. Let m ∈ N, d ∈ N and let h ∈ L2(Rd, ω) ∩Hm
mix(Rd). By assumption are the criteria

in Theorem 4.4.2 fulfilled and the transformed function f of the form (4.4.7) is in Hm(Td)
and has a continuous representative because of the inclusion Hm(Td) ↪→ C(Td) in (3.1.9). For
f ∈ Hm(Td) ∩ C(Td) Theorem 3.3.3 yields the approximation error bound of the form

∥∥∥f − SΛ
IdN
f
∥∥∥
L2(Td)

≤ Cd,βN
−β(logN)(d−1)/2∥f∥Hβ(Td) (4.5.9)

with some constant Cd,β := C(d, β) > 0. With the inverse torus-to-Rd transformation x =
ψ−1(y) we have

ĥk = (h, φk)L2(Rd,ω) = (f, e2πik·)L2(Td) = f̂k,

and

∥h∥2Hm(Rd,ω) =
∑

k∈Zd
whc(k)

2m|ĥk|2 =
∑

k∈Zd
whc(k)

2m|f̂k|2 = ∥f∥2Hm(Td)

as in (4.5.12), as well as

∥∥∥h− SIdN
h
∥∥∥
2

L2(Rd,ω)
=

∫

Rd

∣∣∣∣∣∣
h(y)−

∑

k∈IdN

ĥk φk(y)

∣∣∣∣∣∣

2

ω(y) dy =
∥∥∥f − SIdN

f
∥∥∥
2

L2(Td)
(4.5.10)

and∥∥∥h− SΛ
IdN
h
∥∥∥
L2(Rd,ω)

=
∥∥∥f − SΛ

IdN
f
∥∥∥
L2(Td)

.

In total, by combining (4.5.10), (4.5.9), and (4.5.12) we estimated for f ∈ Hm(Td) ∩ C(Td)
that the approximation error can be bounded by

∥∥∥h− SΛ
IdN
h
∥∥∥
L2

(
Rd,ω

) =
∥∥∥f − SΛ

IdN
f
∥∥∥
L2(Td)

≲ Cd,βN
−β(logN)(d−1)/2∥f∥Hβ(Td)

= Cd,βN
−β(logN)(d−1)/2∥h∥Hm(Rd,ω) <∞

with some constant Cd,β > 0.
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Finally, let us recap the results of this section. We’ve seen that under the assumptions of
Theorem 4.5.2, a function h ∈ L2

(
Rd, ω

)
∩Hm

mix

(
Rd
)
is transformed into a smooth function

f ∈ Hm
(
Rd, ω

)
of the form (4.4.7) and its L∞-approximation error decays with the rate

∥∥∥f − SΛ
IdN
f
∥∥∥
L∞(Td)

=
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞
(
Rd,

√
ω
ϱ

) ≲ N−m+λ → 0

for N → ∞ (or equivalently for |IdN | → ∞) and with λ > 1
2 . Under the same assumptions

we’ve then shown in Theorem 4.5.1 that the L2-approximation error is bounded by
∥∥∥f − SΛ

IdN
f
∥∥∥
L2(Td)

=
∥∥∥h− SΛ

IdN
h
∥∥∥
L2(Rd,ω)

≲ N−m(logN)(d−1)/2 → 0

for N → ∞.

4.5.2 L∞-approximation error

Based on the L∞(Td)-approximation error bound (3.3.1) and the conditions proposed in

Theorem 4.4.2 we prove a similar upper bound for the approximation error
∥∥∥h− SΛ

IdN
h
∥∥∥ in

terms of a weighted L∞-norm on Rd.

Theorem 4.5.2 ([NP20, Theorem 3.6]). Let d ∈ N, m ∈ N, a hyperbolic cross IdN with N ≥
2d+1 and a reconstructing rank-1 lattice Λ(z,M, IdN ) and an h ∈ L2(Rd, ω) ∩Hm(Rd) with a

multivariate measure function ω(y) =
∏d
ℓ=1 ωℓ(yℓ) with ωℓ ∈ C0(R) for all ℓ ∈ {1, . . . , d} be

given. We consider a ψ as in (4.1.3) with its corresponding density function ϱ as in (4.1.2)
for all multi-indices m = (m1, . . . ,md)

⊤ ∈ Nd0, ∥m∥ℓd∞ ≤ m and ℓ ∈ {1, ldots, d} the condition

max
jℓ=0,...,mℓ

∥∥∥∥
(√

(ωℓ ◦ ψℓ)ψ′
ℓ

)(mℓ−jℓ)
(·)ψ′

ℓ(·)max(− 1
2
,2jℓ− 3

2
)

∥∥∥∥
L∞(T)

<∞

holds.
Then there is an approximation error estimate of the form

∥∥∥h− SΛ
IdN
h
∥∥∥
L∞
(
Rd,

√
ω
ϱ

) ≲ N−m+λ∥h∥Hm(Rd,ω).

Proof. Let m ∈ N, d ∈ N and let h ∈ L2(Rd, ω) ∩Hm
mix(Rd). By assumption, Theorem 4.4.2

is applicable, so that the transformed function f of the form (4.4.7) is in Hm(Td) and f has a
continuous representative because of the inclusionHm(Td) ↪→ Am−λ(Td) ↪→ C(Td) with λ > 1

2
as in (3.1.9). Hence, for f ∈ Am−λ(Td) ∩ C(Td) we have the approximation error bound

∥∥∥f − SΛ
IdN
f
∥∥∥
L∞(Td)

≤ 2N−m+λ∥f∥Am−λ(Td) (4.5.11)

as stated in Theorem 3.3.2. With the inverse torus-to-Rd transformation x = ψ−1(y) we have

ĥk = (h, φk)L2(Rd,ω) = (f, e2πik·)L2(Td) = f̂k

and

∥h∥2Hm(Rd,ω) =
∑

k∈Zd
whc(k)

2m|ĥk|2 =
∑

k∈Zd
whc(k)

2m|f̂k|2 = ∥f∥2Hm(Td), (4.5.12)
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as well as

∥∥∥h− SIdN
h
∥∥∥
L∞
(
Rd,

√
ω
ϱ

) = ess supy∈Rd

∣∣∣∣∣∣

√
ω(y)

ϱ(y)


h(y)−

∑

k∈IdN

ĥk φk(y)



∣∣∣∣∣∣

= ess supy∈Rd

∣∣∣∣∣∣
h(y)

√
ω(y)

ϱ(y)
−
∑

k∈IdN

ĥk e
2πik·ψ−1(y)

∣∣∣∣∣∣

= ess supx∈Td

∣∣∣∣∣∣
h(ψ(x))

√√√√ω(ψ(x))

d∏

j=1

ψ′
j(xj)−

∑

k∈IdN

ĥk e
2πik·x

∣∣∣∣∣∣

=
∥∥∥f − SIdN

f
∥∥∥
L∞(Td)

and
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞
(
Rd,

√
ω
ϱ

) =
∥∥∥f − SΛ

IdN
f
∥∥∥
L∞(Td)

. (4.5.13)

In total, by combining (4.5.13), (4.5.11), (3.1.10), and (4.5.12) we estimated for f ∈ Hm(Td)∩
C(Td) that the approximation error can be bounded by

∥∥∥h− SΛ
IdN
h
∥∥∥
L∞
(
Rd,

√
ω
ϱ

) =
∥∥∥f − SΛ

IdN
f
∥∥∥
L∞(Td)

≤ 2N−m+λ∥f∥Am−λ(Td)

≤ 2Cd,λN
−m+λ∥f∥Hm(Td) = 2Cd,λN

−m+λ∥h∥Hm(Rd,ω) <∞

with λ > 1
2 and some constant Cd,λ > 1.

4.6 Fast algorithms and discrete approximation errors on Rd

In this chapter we start denoting the parameters η,µ ∈ Rd+. Families of multivariate measure
functions are denoted by ω(·,µ) as in (4.3.1) and families of torus-to-Rd transformations as
in (4.1.3) are denoted by ψ(·,η).

For the evaluation of transformed multivariate trigonometric functions h ∈ ΠI,ψ(·,η) on Rd

as in (4.5.5) such as the approximated Fourier series SΛ
I h, and for the reconstruction of the

approximated Fourier coefficients ĥΛk as in (4.5.7), we follow [NP20, Section 4] and outline the
necessary adjustments within the efficient algorithms described in [Käm14b, Algorithm 3.1
and 3.2] that were recalled in Algorithms 3.4.1 and 3.4.2. Similarly to (3.4.1) and (3.4.2), for
η,µ ∈ Rd+ we form transformed Fourier matrices FR and F∗

R given by

FR :=
(
e2πik·ψ

−1(yj ,η)
)
yj∈Λψ(·,η)(z,M),k∈I

∈ CM×|I|,

F∗
R =

(
e−2πik·ψ−1(yj ,η)

)
k∈I,yj∈Λψ(·,η)(z,M)

∈ C|I|×M

as well as h :=
(
h(yj)

√
ω(yj ,µ)
ϱ(yj ,η)

)M−1

j=0
for yj ∈ Λψ(·,η)(z,M), ĥ := (ĥk)k∈I with some fre-

quency set I ⊂ Zd of finite cardinality |I| < ∞, so that we have matrix-vector-products of
the form

h = FRĥ and ĥ =M−1F∗
Rh
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A function h ∈ L2(Rd, ω) ∩Hm
mix(Rd) is transformed by a torus-to-Rd transformation yj =

ψ(xj ,η),xj = (xj1, . . . , x
j
d)

⊤ into a periodic function f on the torus Td of the form (4.4.7).
The resulting samples are given by

h(yj)

√
ω(yj ,µ)

ϱ(yj ,η)
= h(ψ(xj ,η))

√√√√ω(ψ(xj ,η),µ)
d∏

k=1

ψ′
k(x

j
k, ηk) = f(xj ,η,µ)

and

√
ω(yj ,µ)

ϱ(yj ,η)
SΛ
I h(yj) = SΛ

I f(xj ,η,µ) (4.6.1)

with the parameters η,µ ∈ Rd+.

So, we now put the coefficient vector ĥ =
(
ĥk

)
k∈I

into Algorithm 3.4.1 and obtain the

function values h = FRĥ =
(
h(yj)

√
ω(yj ,µ)
ϱ(yj ,η)

)M−1

j=0
as the output, while the simplification

idea (3.4.3) of the Fourier partial sum remains the same. Conversely, we put the function

values h =
(
h(yj)

√
ω(yj ,µ)
ϱ(yj ,η)

)M−1

j=0
into Algorithm 3.4.2 observe that the orthogonality prop-

erty (3.4.4) as well as the subsequent arguments remain the same, so that we obtain the

coeffcients ĥ =M−1F∗
Rh =

(
ĥk

)
k∈I

.

Remark 4.6.1. We identify the torus with different cubes. We consider Td ≃ [0, 1)d when
defining rank-1 lattices Λ(z,M) in (3.2.2). However, we consider Td ≃ [−1

2 ,
1
2)
d when applying

a torus-to-Rd transformation ψ to a rank-1 lattice. In this process, we reassign all lattice
points xj ∈ Λ(z,M) via

xj 7→
((

xj +
1

2

)
mod 1

)
− 1

2

for all j = 0, . . . ,M − 1.

We already showcased in Figure 4.2.1 that the definition of ψ in (4.1.1) allows a range
of functions with different slopes. Now, in Figure 4.6.1 we show different two-dimensional
transformed rank-1 lattices Λψ(·,η)(z,M) as defined in (4.5.1), generated by z = (1, 3)⊤ and
M = 31. We compare the lattices transformed by the the algebraic transformation (4.2.4)
and the error function transformation (4.2.1) of the form (4.1.4) with the parameter vector
η = 1. The graphs in the center and on the right of Figure 4.6.1 reveal that the algebraic
transformation causes a wider spread of the lattice nodes close to the center, whereas the slope
of the error function transformation increases hugely towards the boundary points which we
only notice for larger values M and finer lattices with more nodes closer to the boundary of
the cube (−1

2 ,
1
2)

2.

On a similar note, the discrete approximation errors εM2 and εM∞ as defined in (3.5.1) and
(3.5.4) are slightly adjusted in the sense of the transformed approximation error bounds of
Theorems 4.5.2 and 4.5.1. Under certain assumptions we’ve shown in (4.5.13), (4.5.10) and
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Λ(z,M)

−4 −2 0 2 4
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−2

0

2

4

Λψ(·,1)(z,M) with

ψ(x,1) =

(
2x1√
1−4x21

, 2x2√
1−4x22

)⊤

−4 −2 0 2 4

−4

−2

0

2

4

Λψ(·,1)(z,M) with

ψ(x,1) =
(
erf−1(2x1), erf

−1(2x2)
)⊤

Figure 4.6.1: A two-dimensional lattice Λ(z,M) with z = (1, 3)⊤,M = 31 on the left and the
resulting transformed lattice Λψ(·,η)(z,M) for the algebraic transformation in the center and
for the error function transformation on the right of the parameter form (4.1.4) and both
used with η = 1.

(4.6.1) that we have

εM2 (h, {yj}Mj=1) ≈

∥∥h− SΛ
I h
∥∥2
L2(Rd,ω)

∥h∥2
L2(Rd,ω)

=

∥∥f − SΛ
I f
∥∥2
L2(Td)

∥f∥2L2(Td)
≈ εM2 (f, {xj}Mj=1), (4.6.2)

εM∞(h, {yj}Mj=1) ≈

∥∥h− SΛ
I h
∥∥
L∞

(
Rd,

√
ω
ϱ

)
∥h∥

L∞

(
Rd,

√
ω
ϱ

) =

∥∥f − SΛ
I f
∥∥
L∞(Td)

∥f∥L∞(Td)
≈ εM∞(h, {xj}Mj=1).

4.7 Numerics for the error function transformation

Let the multivariate version of the Gaussian measure function (4.3.6), reading as

ω(y,µ) =
1

π
d
2

d∏

ℓ=1

e−µ
2
ℓy

2
ℓ , µℓ ̸= 0 for all ℓ ∈ {1, . . . , d}, (4.7.1)

and the L2(Rd, ω(·,µ))-function

h(y) =
d∏

ℓ=1

eyℓ

1 + eyℓ
(4.7.2)

be given. We consider the parameterized error function transformation ψ(·,η),η ∈ Rd+ with
the univariate components of the form ψj(xj , ηj) = ηjψj(xj), xj ∈ (−1

2 ,
1
2) and the ψj as in

(4.2.1), which now reads as

ψj(xj , ηj) = ηj erf
−1(2xj), ψ′

j(xj , ηj) = ηj
√
π e(erf

−1(2xj))
2

(4.7.3)

ψ−1(yj , ηj) =
1

2
erf

(
yj
ηj

)
, ϱ(yj , ηj) =

1√
πη2j

e
−
(
yj
ηj

)2

.
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Figure 4.7.1: Plots of the univariate transformed Gaussian function f as in (4.7.4) for various
combinations of the parameter η with fixed µ = 1, the Gaussian measure function ω (4.7.1)
and the parameterized error function transformation (4.7.3).

We have the orthonormal system {φk}k∈Zd as in (4.5.2) with the univariate components
(φkj )

d
j=1 as in (4.3.2), that are of the form

φkj (yj , ηj , µj) =
1

ηj
e

1
2
(µ2j− 1

η2
j

)y2j+πikj erf

(
yj
ηj

)
.

The Fourier coefficients ĥk of an arbitrary function h ∈ L2(Rd, ω(·,µ)) are of the form

ĥk := (h, φk)L2(Rd,ω(·,µ)) =

∫

Rd
h(y)φk(y,η,µ)ω(y,µ) dy

=

∫

Rd
h(y)

d∏

j=1

1

ηj
e

1
2
(µ2j− 1

η2
j

)y2j−πikj erf
(
yj
ηj

)
1√
π
e−µ

2
jy

2
j dy

= π−
d
2

d∏

j=1

1

ηj

∫

Rd
h(y)

d∏

j=1

e
−πikj erf

(
yj
ηj

)
e
− 1

2
(µ2j+

1

η2
j

)y2j
dy.

The considered function h in (4.7.2), the Gaussian measure function (4.7.1) and the error
function transformation (4.7.3) yield transformed functions f in the sense of (4.4.7) of the
form

f(x,η,µ) = h(ψ1(x1, η1), . . . , ψd(xd, ηd))

d∏

j=1

√
ωj(ψj(xj , ηj), µj)ψ′

j(xj , ηj)

=

d∏

j=1

η
1
2
j e

1
2(1−η2j−µ2j η2j )erf−1(2xj)

2

. (4.7.4)

In Figure 4.7.1 we have a side-by-side comparison of the graphs of these transformed functions
in d = 1 for fixed η = 1 with various parameters 1 ≤ µ2 ≤ 10.

We proceed to determine the values η,µ ∈ Rd+ for which f(·,η,µ) as in (4.7.4) is element
ofHm(Td) by checking the conditions (4.4.9) of Theorem 4.4.2. First of all, for all η1, . . . , ηd >
0 we observe that the univariate components ψ1, . . . , ψd of the error function transformation
ψ(·,η) in (4.7.3) are transformations in the sense of (4.1.1) by being increasing, continuously
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differentiable and invertible functions. Furthermore, for all ℓ ∈ {1, . . . , d} it is easy to check
that its first three derivatives of all ψj(·, ηj) are in fact continuous on (−1

2 ,
1
2) for ηj > 0

and that the first three derivatives of ϱj(·, ηj) are in C0(R) for all 0 < ηj ∈ R. Finally, we
check the L∞-conditions (4.4.9) in Theorem 4.4.2 for m ∈ {0, 1, 2, 3}. We suppose that for
ℓ ∈ {1, . . . , d} we have m = mℓ and need to check that the appearing L∞(T)-norms are finite
for all jℓ ∈ {0, . . . ,m}:

• Let m = 0. The L∞(T)-norm of
√
ω(ψ(x, η), µ) = π−

1
4 e−

1
2
η2µ2 erf−1(2x)2

is finite for η2µ2 ≥ 0.

• Let m = 1. We have to check two conditions. For jℓ = 0 the L∞(T)-norm of

∂

∂xℓ

[√
ωℓ(ψℓ(xℓ, ηℓ), µℓ)ψ

′
ℓ(xℓ, ηℓ)

]
ψ′
ℓ(xℓ, ηℓ)

− 1
2

= π
1
4
η2ℓ − µ2ℓ
η2ℓ

erf−1(2xℓ) e
− 1

2
(η2ℓµ

2
ℓ−2) erf−1(2xℓ)

2

is finite for η2ℓµ
2
ℓ > 2. For jℓ = 1 the L∞(T)-norm of

√
ωℓ(ψℓ(xℓ, ηℓ), µℓ)ψ

′
ℓ(xℓ, ηℓ) (ψ

′
ℓ(xℓ, ηℓ))

1
2 = π

1
4 e−

1
2
(µ2ℓη

2
ℓ−2)(erf−1(2xℓ)

2

is finite if the exponent is negative or zero, which is the case for η2ℓµ
2
ℓ ≥ 2.

• Let m = 2. We check three conditions. For jℓ = 0 the L∞(T)-norm of

∂2

∂x2ℓ

[√
ωℓ(ψℓ(xℓ, ηℓ), µℓ)ψ

′
ℓ(xℓ, ηℓ)

]
ψ′
ℓ(xℓ, ηℓ)

− 1
2

is finite for all η2ℓµ
2
ℓ > 4. For jℓ = 1 the L∞(T)-norm of

∂

∂xℓ

[√
ωℓ(ψℓ(xℓ, ηℓ), µℓ)ψ

′
ℓ(xℓ, ηℓ)

]
ψ′
ℓ(xℓ, ηℓ)

1
2

is finite for all η2ℓµ
2
ℓ > 4. For jℓ = 2 the L∞(T)-norm of

√
ωℓ(ψℓ(xℓ, ηℓ), µℓ)ψ

′
ℓ(xℓ, ηℓ) (ψ

′
ℓ(xℓ, ηℓ))

5
2

is finite for all η2ℓµ
2
ℓ ≥ 6.

• For m = 3 the individual conditions for k ∈ {0, 1, 2, 3} are finite in case of η2ℓµ
2
ℓ > 6,

η2ℓµ
2
ℓ > 6, η2ℓµ

2
ℓ > 8 and η2ℓµ

2
ℓ ≥ 10 respectively. Hence, we need η2ℓµ

2
ℓ ≥ 10 in order to

have f ∈ H3
mix(Td) ∼ H3(Td).

In total, for j ∈ {1, . . . , d} we have

f ∈





L2(Td) for η2jµ
2
j ≥ 0,

H1(Td) for η2jµ
2
j > 2,

H2(Td) for η2jµ
2
j ≥ 6,

H3(Td) for η2jµ
2
j ≥ 10.

(4.7.5)

For numerical tests, we start with single rank-1 methods in dimensions d ∈ {1, 2}, switch to
multiple rank-1 methods in dimension d = 4 and finally use the sparse FFT and an unknown
frequency set in dimensions d ≥ 4.
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bounds by Thm. 4.5.1 and 4.5.2 Numerical observation
(4.7.3) erf transf. ψ(·, η) εM2 εM∞ εM2 εM∞
η2 = 1 N−0.5 N0

η2 = 3 N−1 N0 N−1.4 N−0.9

η2 = 6 N−2 N−1 N−2.7 N−2.2

η2 = 10 N−3 N−2 N−4.5 N−4

Table 4.7.1: The observed decay rates of the discrete approximation errors εM2 (h, {yj}Mj=1)

and εM∞(h, {yj}Mj=1) as given in (4.6.2) in comparison with the upper bounds proposed in
Theorems 4.5.2 and 4.5.1 when h is the univariate function in (4.7.2).

4.7.1 Single rank-1 lattices in dimension d = 1

Next, we discuss the application of the weighted L2(Rd)-approximation error bound in The-
orem 4.5.1 and the weighted L∞(Rd)-approximation error bound in Theorem 4.5.2 for d = 1
with the given function h in (4.7.2), the Gaussian measure function (4.7.1), the parameterized
error function transformation (4.7.3) and the resulting transformed functions f of the form
in (4.7.4).

Let a reconstructing rank-1 lattice Λ(z,M, I1N ) with N ≥ 1 be given. In (4.7.5) we
already evaluated the sufficient conditions proposed in Theorem 4.4.2, yielding lower bounds
for η, µ ∈ R+ such that f ∈ Hm(T) for m ∈ {0, 1, 2, 3}. We fix λ = 1 and for m ∈ N we
choose µ, η ∈ R+ such that f ∈ Hm(T) ↪→ Am−1(T) as in (3.1.9). Theorems 4.5.1 and 4.5.2
provide worst case upper bounds for both discrete approximations errors εM2 (h, {yj}Mj=1) and

εM∞(h, {yj}Mj=1) of the form

εM2 (h, {yj}Mj=1) ≈
∥∥∥h− SΛ

IdN
h
∥∥∥
L2(Rd,ω)

≲ N−m,

and εM∞(h, {yj}Mj=1) ≈
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞
(
Rd,

√
ω
ϱ

) ≲ N−m+1

which are valid if the corresponding transformed function f is in Hm(T),m ≥ 1, which is
the case for all parameters η2µ2 > 2 as calculated in (4.7.5). We list these worst case upper
bounds in Table 4.7.1 for µ = 1 accordingly.

For N ∈ {1, . . . , 100}, µ = 1 and η ∈ {1,
√
3,
√
6,
√
10} we generate ten random rank-1

lattices as described in (3.5.5), so that the discrete approximation errors are evaluated at
M ≈ 1.5 · 104 random nodes in

(
−1

2 ,
1
2

)
. Additionally, for each η we repeat the calculations

five times and plot the averages of the errors. As shown in Figure 4.7.2, the decay rates of
both approximation errors increase significantly if the parameter η is chosen large enough.
In Table 4.7.1 we also list the exact approximation errors obtained in the numerical tests.

Remark 4.7.1. The evaluated error are measured in weighted L2 (R, ω)- and L∞
(
R,
√

ω
ϱ

)
-

norms, where the parameter µ of the measure function ω(·, µ) is fixed and the parameter η
in the transformation ψ(·, η) is varied. Therefore, on one hand, the error plots on the left
hand side of Figure 4.7.2 are comparable to each other as they are based on the same norm.
On the other hand, the error plots on the right hand side of the same Figure are based on
different norms due to the variation of the transformations ψ(·, η) and their densities ϱ(·, η).
But for simplicity we still show them in one figure.

The same remark has to be made about the plots for dimension d = 2 in Figure 4.7.3 and
d = 7 in Figure 4.7.7.
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Figure 4.7.2: Comparison of the approximated errors εM2 (h, {yj}Mj=1) and ε
M
∞(h, {yj}Mj=1) at

12.000 ≤ M ≤ 18.000 random samples of the univariate function (4.7.2) combined with the
error function transformation ψ(·, η) in (4.7.3) for η ∈ {1,

√
3,
√
10,

√
16}.

4.7.2 Single rank-1 lattices in dimension d = 2

Next, we discuss the application of the L2(Rd)-approximation error bound in Theorem 4.5.1
and the L∞(Rd)-approximation error bound in Theorem 4.5.2 for d = 2 with the measure
function (4.7.1), the given function in (4.7.2), the parameterized error function transformation
(4.7.3) and the resulting transformed functions f given in (4.7.4).

Let a reconstructing rank-1 lattice Λ(z,M, I2N ) with N ≥ 1 be given. In (4.7.5) we
already evaluated the sufficient conditions proposed in Theorem 4.4.2, yielding lower bounds
for µ,η ∈ R2

+ such that f ∈ Hm(T2) for m ∈ {0, 1, 2, 3}. We fix λ = 1 and for m ∈ N
we choose µ,η ∈ R2

+ such that f ∈ Hm(T2) ↪→ Am−1(T2) as in (3.1.9). According to
Theorems 4.5.1 and 4.5.2, the discrete approximation errors as given in (4.6.2) are bounded
from above by

εM2 (h, {yj}Mj=1) ≲





N−1(logN)
1
2 for η2ℓµ

2
ℓ > 2,

N−2(logN)
1
2 for η2ℓµ

2
ℓ ≥ 6,

N−3(logN)
1
2 for η2ℓµ

2
ℓ ≥ 10,

(4.7.6)

and

εM∞(h, {yj}Mj=1) ≲





N0 for η2ℓµ
2
ℓ > 2,

N−1 for η2ℓµ
2
ℓ ≥ 6,

N−2 for η2ℓµ
2
ℓ ≥ 10,

(4.7.7)

for sufficiently large numbers of random points M ∈ N, ℓ ∈ {1, . . . , d}.
For N ∈ {1, . . . , 100}, µ = 1 and η ∈ {1,

√
3,

√
6,

√
10} we generate ten random rank-1

lattices as described in (3.5.5), so that the discrete approximation errors are evaluated at

M ≈ 105 random nodes in
(
−1

2 ,
1
2

)2
. Additionally, for each η we repeat the calculations five

times and plot the averages of the errors. As shown in Figure 4.7.3, the decay rates of both
approximation errors increase significantly if the parameters η are chosen large enough.
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Figure 4.7.3: Comparison of εM2 (h, {yj}Mj=1) and ε
M
∞(h, {yj}Mj=1) at 100.000 ≤ M ≤ 150.000

random samples of function (4.7.2) in dimension d = 2 combined with the error function
transformation ψ(·,η) in (4.7.3) for η ∈ {1,

√
3,

√
6,

√
10}.

4.7.3 Multiple rank-1 lattices in dimension d = 4

In this section, we apply the techniques of multiple rank-1 lattices [Käm18]. We recalled
in (3.4.5) that a multiple rank-1 lattice is a union of up to t ∈ N single rank-1 lattices
Λ(zj ,Mj), j ∈ {1, . . . , t}. The previously outlined periodization approach is incorporated
easily. After choosing a torus-to-Rd transformation ψ(·,η),η ∈ Rd+ as in (4.1.1), we define a
transformed multiple rank-1 lattice as the union of t transformed rank-1 lattices

Λψ(·,η)(z1,M1, . . . , zt,Mt) :=
⋃

j=1,...,t

Λψ(·,η)(zj ,Mj). (4.7.8)

In particular, we utilize [Käm19, Algorithm 6] on h at a transformed multiple rank-1 lattice
to efficiently reconstruct the approximated Fourier coefficients ĥΛk . This approach has two
major advantages. On one hand, we don’t need to construct the generating vector z via
component-by-component construction methods, which generally takes quite some time. On
the other hand, the upper bound on the lattice size decreases significantly, as pointed out in
(3.4.6), which makes it easier to investigate higher dimensional problems.

For N ∈ {1, . . . , 30}, µ = 1 and η ∈ {1,
√
3,

√
6,

√
10} we initialize [Käm19, Algo-

rithm 6] with the parameters c = 2, n = 4 and δ = 1
2 to efficiently reconstruct the approxi-

mated Fourier coefficients ĥΛk by means of a transformed multiple rank-1 lattice as in (4.7.8)
and to form the approximated Fourier partial sum SΛ

I h. Afterwards, we generate ten random
rank-1 lattices as described in (3.5.5), so that the discrete approximation errors are evalu-

ated at M ≈ 5.3 · 106 random nodes in
(
−1

2 ,
1
2

)2
. Additionally, for each η we repeat the

calculations five times and plot the averages of the errors.
As shown in Figure 4.7.4, the decay rates of both approximation errors increase signif-

icantly if the parameters η are chosen large enough. However, as in the previous example,
for large η we obtain step-like error plots in the top row of Figure 4.7.4, which indicates
that the largest Fourier coefficients of h are not primarily located around the coordinate
axis. At the same time, the hyperbolic cross I4N is defined in such a way that an increase
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Figure 4.7.4: Comparison of εM2 (h, {yj}Mj=1) at 4.0 · 107 ≤ M ≤ 6.6 · 107 random samples of
function (4.7.2) in dimension d = 4 combined with the error function transformation ψ(·,η)
in (4.7.3) for η ∈ {1,

√
3,

√
6,

√
10}, for the hyperbolic cross I4N (left) and the scaled ℓ41-ball

I
ℓ41
N (right).

from N to N + 1 primarily adds frequencies along the coordinate axis. Hence, even tough
the proposed decay behavior in (4.7.6) is still obtained, the results suggest that there are
more suitable choices for frequency sets in this setup. Therefore, we repeat the same tests

for the scaled four-dimensional ℓ41-unit ball I
ℓ41
N and obtain much smoother error plots in the

bottom row of Figure 4.7.4. But, it has to emphasized that the ℓ41-unit ball contains a lot
more frequencies than a hyperbolic cross IdN for the same N ∈ N, which results a significantly
longer computation time.

4.7.4 Suitable frequency sets in up to dimension d = 7

The previous numerical tests for single and multiple rank-1 lattices revealed that it is easy
to create examples in which certain combinations of a given function h ∈ L2(Rd, ω(·,µ)), a
measure function ω(·,µ) and a torus-to-Rd transformation ψ(·,η) lead to transformed func-
tions f = f(·,η,µ) as in (4.4.7), for which a hyperbolic cross IdN might not be the best
choice for a frequency set as the frequencies k belonging to the largest Fourier coefficients
ĥk supposedly are not clustering along the coordinate axis. Generally, we do not have the
exact values of the Fourier coefficients ĥk, so that we must guess an optimal choice for
an initially given frequency set. Alternatively, we use a dimension incremental construction
method [Vol15, PV16] that reconstructs sparse multivariate trigonometric polynomials p with
an unknown support in a frequency domain I ⊂ Zd. Based on the component-by-component
construction of rank-1 lattices, the approach of [PV16, Algorithm 1 and Algorithm 2] de-
termines the s ∈ N approximately largest Fourier coefficients p̂k within a fixed search space
[−N,N ]d ∩ Zd with N ∈ N and s ≪ (2N + 1)d. We adapt these algorithms for transformed
reconstructing rank-1 lattices Λψ(·,η)(z,M, I) by again calculating the relative discretized ap-

proximation errors εM2 (h, {yj}Mj=1) and εM∞(h, {yj}Mj=1) with samples
(
h(yj)

√
ω(yj ,µ)
ϱ(yj ,η)

)M−1

j=0
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Figure 4.7.5: The two-dimensional hyperbolic cross I230 and the sparse frequency set Jds with
sparsity s = |I230| = 565 generated by a dimension incremental construction approach for the
parameterized error function transformation ψ(·,η) as in (4.7.3) with η ∈ {

√
3,

√
6,

√
10}.

and
(√

ω(yj ,µ)
ϱ(yj ,η)

SΛ
I h(yj)

)M−1

j=0
but use an unknown frequency set I with cardinality s = |IdN |

that was constructed via a dimensional incremental construction method as outlined above.

We remain in the initial setup of using the Gaussian function h as in (4.7.2), the Gaussian
measure function (4.7.1) and the error function transformation (4.7.3). In dimension d = 2,
we compare the hyperbolic cross I230 with the frequency set Jds of cardinality s = |I230| = 565
that is constructed in a dimension incremental way. The error plots in Figure 4.7.4 caused
suspicion that larger parameter choices, the largest Fourier coefficients of the transformed
functions (4.7.4) cluster less along the coordinate axis like a hyperbolic cross. Figure 4.7.5
shows that the frequencies belonging to the largest Fourier coefficients vary depending on the
the parameter η and might be an indication as to why the approximation errors with respect
to the two-dimensional ℓ21-unit ball, shown on the right of Figure 4.7.4, are so much better
than when a hyperbolic cross is used on the left of Figure 4.7.4.

Finally, we apply the sparse FFT algorithm [PV16, Algorithm 2] to have an efficient fast
Fourier transformation in combination with a suitable and sparse frequency set Jds for the
transformed function (4.7.4). Again, let d = 4, N ∈ {1, . . . , 60},µ = 1 and η ∈ {1,3,6,10}.
On the left of Figure 4.7.6, we show the results from using multiple rank-1 lattices with the
given hyperbolic cross sets I4N from Figure 4.7.4, but this time the cardinalities of the hyper-
bolic crosses |I4N | are used on the x-axis. On the right of Figure 4.7.6 are the approximation
errors εM∞(h) and εM2 (h) that are the result from applying the algorithm called ’a2r1l’ in
[Vol15] and use the cardinality of the hyperbolic cross I4N as the sparsity parameter ’spar-
sity s’ = s = |I4N |. As it turns out, the sparse FFT algorithm yields the initially proposed
error decay behavior (4.7.6), in which an increase of the parameter η causes a much faster
approximation error decay. Additionally, the computation speed of the sparse FFT method
is slightly slower than the multiple rank-1 method with a fixed hyperbolic cross frequency
set, but also much faster than the multiple rank-1 method with a fixed ℓd1-unit ball. So, the
sparse FFT algorithms trades off a bit computation speed in order to automatically construct
a suitable frequency set for the initially given function. We repeat this test for dimension
d = 7 for N ∈ {1, . . . , 17} as shown in Figure 4.7.7.

4.8 Summary of the numerics on Rd

We presented the approximation results of the transformed Fourier system (4.5.2) for the
error function transformation (4.7.3) in up to dimension d = 7. Numerical tests highlighted
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Figure 4.7.6: Comparison of εM2 (h, {yj}Mj=1) at 4.0 · 106 ≤ M ≤ 6.6 · 106 random samples of
function (4.7.2) in dimension d = 4 combined with the error function transformation ψ(·,η)
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√
6,

√
10} and for the hyperbolic cross I4N (top) and the constructed

sparse index set J4
|I4N | (bottom).
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Figure 4.7.7: Comparison of εM2 (h, {yj}Mj=1) and ε
M
∞(h, {yj}Mj=1) in dimension d = 7 of func-

tion (4.7.2) for the error function transformation ψ(·,η) in (4.7.3) for η ∈ {1,
√
3,

√
6,

√
10}

with the sparse index set Jd|IdN |.

certain limitations of the presented periodization strategy to transform functions from the
function space L2(Rd, ω(·,µ)) ∩Hm(Rd) into smooth functions in Hm(Td) via a torus-to-Rd
transformation ψ(·,η),η ∈ Rd+ as defined in (4.1.3). In lower dimensions d ∈ {1, 2}, we ob-
served good approximation results with the Fourier approach based on a single rank-1 lattice.
For higher dimensions d ≥ 4, we switched to the more efficient Fourier approach based on
multiple rank-1 lattices to save on computation time and on the number of necessary sam-
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pling nodes. The combination of working in a high dimension d ∈ N and having large enough
parameters η,µ ∈ Rd+ smoothened the given functions so much that they are essentially 0
near the boundary points of their domain, so that the hyperbolic cross frequency sets (3.1.5)
started to contain a significant number of Fourier coefficients that are (almost) zero, which
lowered the quality of the approximations. Therefore, we switched to a dimension incremental
construction to determine the frequencies belonging to the largest Fourier coefficients within
a fixed search space before each approximation, which again improved the approximation
results for a slight increase in computation time.

We observed, that even though the L∞-conditions (4.4.9) on ψ(·,η) and ω(·,µ) in Theo-
rem 4.4.2 are rather easy to check, the resulting parameter bounds for η and µ are worst case
bounds and are more or less optimal, which has to be checked individually in any specific ex-
ample. On a similar note, the upper approximation error bounds of Theorems 4.5.1 and 4.5.2
are worst case upper bounds, too, so that the constants appearing after the estimates may
have some bad growth behavior for certain combinations of ψ(·,η) and ω(·,µ), potentially
causing the problematic preasymptotical behavior that we observed in higher dimensions.

Besides studying the structure and growth behavior of the constants in the error estimates,
it might be helpful to extend the impact of the measure function ω(·,µ). For example in
[Suz20] an approximation approach is presented in which each derivative of h is weighted by
an algebraic or exponential weight before being evaluated in some norm.





C
h
a
p
te
r

5
Torus-to-cube transformation mappings

We introduce the notation of torus-to-cube mappings
□□□
ψ :

[
−1

2 ,
1
2

]d →
[
−1

2 ,
1
2

]d
and prove

a set of conditions on the transformation
□□□
ψ and the involved function spaces for which we

obtain a bounded mapping of the form

L2

([
−1

2
,
1

2

]d
, ω

)
∩ Cmmix

([
−1

2
,
1

2

]d)
∋ h 7→ h(

□□□
ψ(·))

√√√√ω(
□□□
ψ(·))

d∏

j=1

□□□
ψ′
j(·) ∈ Hm(Td).

Then, we are able to apply the various approximation techniques for smooth periodic function
on the torus Td from Chapter 3 and transfer the orthonormality of the Fourier system,
important upper approximation error bounds and the efficient Algorithms based on rank-1
lattices by means of the inverse torus-to-cube transformation

□□□
ψ−1 to the considered non-

periodic function class defined on
[
−1

2 ,
1
2

]d
. Parts of the content in this chapter were already

published in [NP21a, NP21b].

In Section 5.1 we define invertible torus-to-cube transformations
□□□
ψ, cf. (5.1.1), and we

fix the notation of the density function
□□□
ϱ as the derivative of the inverse of a torus-to-cube

transformation. We’re mainly interested in classes of torus-to-cube transformations
□□□
ψ that

are induced by torus-to-R transformations ψ and are of the form
□□□
ψ(·, η) = ψ−1(η ψ(x)), η ∈

R+, cf. (5.1.4).

In Section 5.2 we list some examples of torus-to-cube transformations
□□□
ψ, some of which

are induced by torus-to-R transformations ψ. We also show examples of torus-to-R transfor-
mations ψ for which the composition ψ−1(η ψ(x)) is not a torus-to-cube transformation

□□□
ψ

as defined in (5.1.4).

In Section 5.3 we consider measure functions ω(·, µ), µ ∈ R+. We investigate the struc-

ture of weighted exponential functions
{√

□□□ϱ(·,η)
ω(·,µ) e

2πik □□□ψ
−1(·,η)

}
k∈Z

, cf. (5.3.2), that form an

orthonormal system in the weighted L2

([
−1

2 ,
1
2

]d
, ω(·, µ)

)
-function space.

In Section 5.4 we switch to parameter free notation and discuss the periodization approach
via torus-to-cube transformations

□□□
ψ, that map functions h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
onto functions

f ∈ L2(T) of the form f(x) := h(
□□□
ψ(x))

√
ω(

□□□
ψ(x))

□□□
ψ′(x), so that ∥h∥L2([− 1

2
, 1
2 ],ω)

= ∥f∥L2(T).

Afterwards, we assume more smoothness so that the given function h is also in the Sobolev
space Hm

([
−1

2 ,
1
2

])
, cf. (5.5.8). We prove the major Theorem 5.4.1 - with the multivariate

version in Theorem 5.4.2 - in which we state a set of sufficient L∞-conditions on the torus-
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to-cube transformations
□□□
ψ and the measure functions ω for which the periodized function f

inherits the smoothness from h so that it is an element of the Sobolev space Hm(T).

In Section 5.5 we prove weighted upper L2

([
−1

2 ,
1
2

]d
, ω
)
- and L∞

([
−1

2 ,
1
2

]d
,
√

ω

□□□ϱ

)
-

approximation error bounds that are based on the worst case upper L2

(
Td
)
- and L∞

(
Td
)
-

approximation estimates from Section 3.5.

In Section 5.6 we again denote the torus-to-cube transformations
□□□
ψ(·,η) and measure

functions ω(·,µ) with η,µ ∈ Rd+ in their parameterized form. We adapt the two algorithms
3.4.1 and 3.4.2 by incorporating the inverse torus-to-cube transformation

□□□
ψ−1(·,η) and com-

pare some transformed rank-1 lattices Λ
□□□ψ(·,η)(z,M).

In Section 5.7 we reflect on some classical orthonormal systems used for the approxima-

tion of functions defined on the cube
[
−1

2 ,
1
2

]d
. Af first we define the half-periodic cosine

system (5.7.1) which uses tent-transformed rank-1 lattice points (5.7.3) as samples in order
to reduce the approximation of a function by its cosine partial sum to an FFT. Analogously,
we define the Chebyshev polynomials (5.7.6) which use Chebyshev transformed rank-1 lattice
sampling nodes (5.7.9) to reduce the approximation of a function by its Chebyshev partial
sum to an FFT, too. We note that neither of these two transformations are torus-to-cube
transformations. Nevertheless, we showcase that the transformed Fourier system from Sec-
tion 5.3 provides a generalized framework for orthonormal systems. Inserting the Chebyshev
transformation into the weighted exponential functions (5.3.2) yields again the Chebyshev
system (5.7.1).

In Section 5.8 we discuss the obtained numerical results. We consider a constant measure
function ω ≡ 1 and apply the logarithmic torus-to-cube transformation (5.2.1) and the error
function torus-to-cube transformation (5.2.2), as well as the sine transformation (5.2.3) to
the transformed Fourier system (5.3.2). For these transformations we obtain that the peri-
odized functions f = f(·,η) are in Hm(Td) if ηj > 2m + 1, j ∈ {1, . . . , d}. We compare the
approximation quality of these specific transformed Fourier systems for varying values of η
with the cosine and Chebyshev system from Section 5.8 and measure the discrete approxi-
mation errors εM2 (h, {yj}Mj=1) and εM∞(h, {yj}Mj=1) as given in (5.6.2). At first, we consider
the tensored first order B-spline cutout B1 in (5.8.4). As it turns out, even though some of
the actual decay rates are the same, for certain parameter values ηj > 1 the error function
transformation yields by far the best approximation errors in up to dimension d = 7. Sec-
ondly, we consider the tensored second order B-spline cutout B2 in (5.8.5). In this example,
there are parameter values for which the error function transformed Fourier system provides
similar approximation errors as the Chebyshev system in low dimensions d ≤ 4. However, for
dimension d = 7 the Chebyshev system yields by far the best approximation results. Finally,
we showcase one example in which the adapted sparse FFT algorithm once again shows it
is strengths by improving the approximation errors of a 7-dimensional test function because
of the dimension incremental construction of an initially unknown frequency set I ⊂ Zd in
reasonable time.

In Section 5.9 we summarize the obtained approximation results of the previous two
numerical examples.
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5.1 Torus-to-cube transformations

Following [NP21a, Section 3], a torus-to-cube transformation is defined as a mapping

□□□
ψ :

[
−1

2
,
1

2

]
→
[
−1

2
,
1

2

]
with lim

x→± 1
2

□□□
ψ(x) = ±1

2
, (5.1.1)

that is continuously differentiable, increasing and
□□□
ψ′ ∈ C0

([
−1

2 ,
1
2

])
. Its inverse transforma-

tion is also continuously differentiable, increasing and is denoted by
□□□
ψ−1 : [−1

2 ,
1
2 ] → [−1

2 ,
1
2 ]

in the sense of y =
□□□
ψ(x) ⇔ x =

□□□
ψ−1(y) with

□□□
ψ−1(y) → ±1

2 as y → ±1
2 . We call the first

derivative of the inverse transformation the density function
□□□
ϱ of

□□□
ψ, which is given by

□□□
ϱ(y) := (

□□□
ψ−1)′(y) =

1

□□□
ψ′(

□□□
ψ−1(y))

and for which
∫ 1

2

− 1
2

□□□
ϱ(y) dy = 1

holds. In multiple dimensions we put

□□□
ψ(x) := (

□□□
ψ1(x1), . . . , □□□

ψd(xd))
⊤ (5.1.2)

with x ∈ [−1
2 ,

1
2 ]
d and we may use different univariate torus-to-cube transformations

□□□
ψj

in each coordinate j ∈ {1, . . . , d}. The multivariate inverse transformation is denoted by

□□□
ψ−1(y) := (

□□□
ψ−1
1 (y1), . . . , □□□

ψ−1
d (yd))

⊤ and the density is given by

□□□
ϱ(y) :=

d∏

j=1

□□□
ϱj(yj), y ∈

[
−1

2
,
1

2

]d
. (5.1.3)

We introduce a particular class of parameterized torus-to-cube transformations as defined
in (5.1.1) that are based on torus-to-R transformations ψ : (−1

2 ,
1
2) → R with ψ(x) → ±∞ for

x→ ±1
2 that are defined in (4.1.1). We obtain parameterized torus-to-cube transformations

□□□
ψ(·, η) : [−1

2 ,
1
2 ] → [−1

2 ,
1
2 ] with η ∈ R+ by putting

□□□
ψ(x, η) :=

{
ψ−1(η ψ(x)) for x ∈

(
−1

2 ,
1
2

)
,

±1
2 for x = ±1

2 .
(5.1.4)

These transformations form a subset of all torus-to-cube transformations and are in a natural
way continuously differentiable and increasing. Their first derivative, inverse transformation
and density function are given by

□□□
ψ′(x, η) :=

∂

∂x
[
□□□
ψ](x, η),

□□□
ψ−1(y, η) := ψ−1

(
1

η
ψ(y)

)
=

□□□
ψ

(
y,

1

η

)
,

□□□
ϱ(y, η) :=

∂

∂x
[
□□□
ψ−1](x, η) =

□□□
ψ′
(
y,

1

η

)
.

The multivariate torus-to-cube transformation
□□□
ψ(·,η), its inverse

□□□
ψ−1(·,η) and density func-

tion
□□□
ϱ(·,η) with η ∈ Rd+ are simply the parameterized versions of (5.1.2) and (5.1.3) and

share the same properties.
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5.2 Exemplary transformations

Among the torus-to-R transformations (4.1.1), we consider the logarithmic (torus-to-R) trans-
formation (4.2.3) and the error function (torus-to-R) transformation (4.2.1). Both induce a
parameterized torus-to-cube transformation

□□□
ψ (·, η) with η ∈ R+ as in (5.1.4), so that for

x, y ∈ [−1
2 ,

1
2 ] we obtain the following torus-to-cube transformations:

• logarithmic (torus-to-cube) transformation:

□□□
ψ(x, η) =

1

2
tanh(η arctanh(2x)) =

1

2

(1 + 2x)η − (1− 2x)η

(1 + 2x)η + (1− 2x)η
,

□□□
ψ′(x, η) =

4η(1− 4x2)η−1

((1 + 2x)η + (1− 2x)η)2
, (5.2.1)

and we observe that limx→± 1
2

□□□
ψ′(x, η) = 0 for η > 1.

• error function (torus-to-cube) transformation:

□□□
ψ(x, η) =

1

2
erf(η erf−1(2x)),

□□□
ψ′(x, η) = η e(1−η

2)(erf−1(2x))2 (5.2.2)

with the error function erf(·) as given in (4.2.2), and erf−1 denoting the inverse error
function. Again, we observe that limx→± 1

2
□□□
ψ′(x, η) = 0 for η > 1.

We provide an example for a torus-to-cube transformation as defined in (5.1.1) that is not
induced by a torus-to-R transformation:

• sine transformation:

□□□
ψ(x) =

1

2
sin(πx),

□□□
ψ′(x) =

π

2
cos(πx), (5.2.3)

□□□
ψ−1(y) =

1

π
arcsin(2y),

□□□
ϱ(y) =

1

π

1√
1− 4y2

.

Parameterized sine transformation variants have also been considered in [Sid93, AP16]. Later
on, we compare the limited smoothening effect of the sine transformation on any given func-
tion h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
∩Cmmix

([
−1

2 ,
1
2

])
with the logarithmic transformation (5.2.1) and the

error function transformation (5.2.2), for which we can achieve different degrees of smooth-
ness, depending on how large the parameter η ∈ R+ is chosen. In Figure 5.2.1 we compare
the transformation mapping, its inverse and their derivatives of the logarithmic transforma-
tion (5.2.1) for η ∈ {2, 4} and the sine transformation (5.2.3).

For the rest of this section, we omit to point out that the logarithmic and error function
transformations given in (5.2.1) and (5.2.2) map onto the cube. The extended name only
has the purpose to highlight that the logarithmic and the error function transformations
(5.2.1) and (5.2.2) are different from their torus-to-R counterparts in (4.2.3) and (4.2.1), that
induced the torus-to-cube transformations above.
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Remark 5.2.1. The algebraic and the tangent torus-to-R transformation given by

ψ(x) =
2x

(1− 4x2)
1
2

and ψ(x) = tan (πx) ,

are examples of torus-to-R transformations that fail to induce a torus-to-cube transformation.
Composing these ψ with their inverse ψ−1 as in (5.1.4), we obtain the combined algebraic
transformation

□□□
ψ(x, η) =

η x

(1 + 4x2(η2 − 1))
1
2

,
□□□
ψ′(x, η) = η

(
1

1 + 4x2(η2 − 1)

) 3
2

and we observe that

lim
x→± 1

2

□□□
ψ′(x, η) =

1

η2
,

as well as the combined tangent transformation

□□□
ψ(x, η) =

1

π
arctan(η tan (πx)),

□□□
ψ′(x, η) =

1

π

η

cos2(πx) + η2 sin2(πx)
,

for which we similarly obtain that

lim
x→± 1

2

□□□
ψ′(x, η) =

1

η
.

These transformations are continuously differentiable and increasing, but their first deriva-
tives are not equal to 0 at their boundary bounds.

5.3 Weighted Hilbert spaces on the cube

We consider families of parameterized integrable measure functions ω(·,µ),µ ∈ Rd+ of the
form

ω(y,µ) :=

d∏

j=1

ωj(yj , µj), y ∈
[
−1

2
,
1

2

]d
,µ ∈ Rd+, (5.3.1)

such that for any given torus-to-cube transformation
□□□
ψ(·,η) as in (5.1.2) we have

ω(
□□□
ψj(·, ηj), µj) □□□

ψ′(·, ηj) ∈ C0
([

−1

2
,
1

2

])
.

For now, we remain in the univariate setting and simplify the notation of the transforma-
tion, the measure function, and all related functions by omitting any parameter and write

□□□
ψ(·), ω(·), etc. The transformed Fourier system {φk}k∈Z of weighted exponential functions

φk(y) :=

√
□□□
ϱ(y)

ω(y)
e2πik □□□ψ

−1(y), y ∈
[
−1

2
,
1

2

]
(5.3.2)
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Figure 5.2.1: Comparison of the logarithmic transformation (5.2.1) with η ∈ {2, 4} and the
sine transformation (5.2.3).

forms an orthonormal system with respect to the scalar product

(h1, h2)L2([− 1
2
, 1
2 ],ω)

:=

∫ 1
2

− 1
2

h1(y)h2(y)ω(y) dy, (5.3.3)

so that we have

(φk1 , φk2)L2([− 1
2
, 1
2 ],ω)

= δk1,k2 , k1, k2 ∈ Z.

The weighted scalar product (5.3.3) induces the norm

∥h∥L2([− 1
2
, 1
2 ],ω)

:=
√
(h, h)L2([− 1

2
, 1
2 ],ω)

.

In a natural way we have Fourier coefficients of the form

ĥk := (h, φk)L2([− 1
2
, 1
2 ],ω)

=

∫ 1
2

− 1
2

h(y)
√

□□□
ϱ(y)ω(y) e−2πik □□□ψ

−1(y) dy, (5.3.4)

as well as the respective Fourier partial sum for I ⊂ Z given by

SIh(y) :=
∑

k∈I
ĥk φk(y). (5.3.5)
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Figure 5.3.1: Real and imaginary part of the weighted exponential functions φk in (5.3.6) for
k = 0, 1, 2, 3 and the fixed parameters η = µ = 2.

Example 5.3.1. We consider the constant measure function ω(y) = ω(y, µ) ≡ 1.

• For η = 2, the logarithmic transformation (5.2.1) and its density function simplify to

□□□
ψ(x, 2) =

2x

1− 4x2
, and

□□□
ϱ(y, 2) =

2

1− 4y2 + 2
√

1− 4y2
.

The orthonormal functions φk as in (5.3.2) are of the form

φk(y) =

√
2

1− 4y2 + 2
√

1− 4y2
e
πik

√
1+2x−√

1−2x√
1+2x+

√
1−2x . (5.3.6)

The graphs of their real and imaginary parts of these φk are shown for k = 0, 1, 2, 3 in
Figure 5.3.1.

• For the sine transformation (5.2.3), the orthonormal functions φk as in (5.3.2) are of
the form

φk(y) =

√
1√

1− 4y2
e2ik arcsin(2y), (5.3.7)

with graphs of their real and imaginary parts for k = 0, 1, 2, 3 shown in Figure 5.3.2.

5.4 Smoothness properties of transformed functions

We investigate the smoothness properties of functions h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)

and of their

corresponding transformed versions on the torus Td after the application of a torus-to-cube
transformation

□□□
ψ as defined in (5.1.4). We also discuss the possibility to continuously extend

the derivatives of these transformed functions f to the torus Td. Eventually, we propose spe-
cific sufficient conditions for

□□□
ψ and ω such that a transformed function f is in the Sobolev

space Hm
(
Td
)
,m ∈ N0. These conditions are stated for both univariate and multivariate
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Figure 5.3.2: Real and imaginary part of the weighted exponential functions φk in (5.3.7) for
k = 0, 1, 2, 3.
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L2(T)3h(ψ(x))
√
ω(ψ(x))ψ′(x)=:f(x) h(y)∈L2([− 1

2
, 1
2 ],ω)

ψ−1(y)

Figure 5.4.1: Scheme of the relation between f and h caused by a transformation
□
ψ.

functions. Afterwards, we utilize the embedding Hβ+λ(Td) ↪→ Aβ(Td) in (3.1.9) for all λ > 1
2

to discuss high-dimensional approximation problems, in which we apply fast Fourier ap-
proximation methods based on rank-1 lattices. Throughout this section we still omit the
parameters η,µ ∈ Rd+ in the notation of the torus-to-cube transformations

□□□
ψ and of the

measure functions ω.
For now, we consider univariate transformed functions f ∈ L2 (T) of the form

f(x) := h(
□□□
ψ(x))

√
ω(

□□□
ψ(x))

□□□
ψ′(x), x ∈ T, (5.4.1)

that are the result of applying a torus-to-cube transformation y =
□□□
ψ(x) as defined in (5.1.1)

to a given function h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
so that we have the identity

∥h∥2
L2([− 1

2
, 1
2 ],ω)

=

∫ 1
2

− 1
2

|h(y)|2 ω(y) dy =

∫ 1
2

− 1
2

|h(
□□□
ψ(x))|2 ω(

□□□
ψ(x))

□□□
ψ′(x) dx = ∥f∥2L2(T).

This is illustrated schematically in Figure 5.4.1.
Generally, it is rather difficult to check if such transformed functions f are elements

of Hm
([
−1

2 ,
1
2

])
for some fixed m ∈ N0 by calculating the Sobolev norm ∥f∥Hm([− 1

2
, 1
2 ])

.

We propose a set of sufficient conditions such that f ∈ Hm
([
−1

2 ,
1
2

])
with m ∈ N0, that

utilize the product structure of the functions f in (5.4.1) and eliminate the necessity to be
able to calculate either the Fourier coefficients f̂k or the L2-norms of various derivatives
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of f appearing in the equivalent Sobolev norm ∥f∥Hm(T). Once we consider parameterized
families of torus-to-cube transformations

□□□
ψ(·, η) and families of measure functions ω(·, µ),

we will calculate how large the parameters η, µ ∈ R+ have to be in order to preserve the
fixed degree of smoothnessm when transforming h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
∩ Cm

([
−1

2 ,
1
2

])
into f ∈

Hm
([
−1

2 ,
1
2

])
via

□□□
ψ(·, η). In general, by additionally assuming a certain vanishing behavior

of the derivatives of the transformed measure function
√

(ω(
□□□
ψ(·))

□□□
ψ′(·) the transformed

functions f are continuously extendable to the torus T and we finally have smooth transformed
functions f ∈ Hm(T) due to the norm equivalence (3.1.8).

Now, we propose a set of sufficient univariate conditions such that we obtain smooth
transformed functions f ∈ Hm(T).

Theorem 5.4.1 ([NP21a, Theorem 3]). Let m ∈ N0, an h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
∩ Cm

([
−1

2 ,
1
2

])
,

a torus-to-cube transformation
□□□
ψ and the resulting transformed function f of the form (5.4.1)

be given.
We have f ∈ Hm (T) if for all n = 0, 1, . . . ,m we have

□□□
ψ ∈ Cm

([
−1

2
,
1

2

])
and

(√
(ω ◦

□□□
ψ)

□□□
ψ′
)(n)

∈ C0
([

−1

2
,
1

2

])
. (5.4.2)

Proof. For h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
∩ Cm

([
−1

2 ,
1
2

])
with m ∈ N0 and a torus-to-cube transforma-

tion
□□□
ψ as defined in (5.1.1), we consider the transformed function f as given in (5.4.1). We

apply the generalized Leibniz rule (2.0.1) to the Sobolev norm of f , which leads to

∥f∥2
Hm([− 1

2
, 1
2 ])

=
m∑

n=0

∥f (n)(·)∥2
L2([− 1

2
, 1
2 ])

≤
m∑

n=0

(
n∑

k=0

(
n

k

)∥∥∥∥(h ◦
□□□
ψ)(k)(·)

(√
(ω ◦

□□□
ψ)

□□□
ψ′
)(n−k)

(·)
∥∥∥∥
L2([− 1

2
, 1
2 ])

)2

.

(5.4.3)

In the term corresponding to k = 0 we leave the composition h ◦
□□□
ψ untouched for now.

For k = 1, . . . ,m we apply the Faá di Bruno formula (2.0.2) to the k-th derivative of the
composition h ◦

□□□
ψ and estimate

∥f∥2
Hm([− 1

2
, 1
2 ])

≲
m∑

n=0




n∑

k=0

∥∥∥∥∥
k∑

ℓ=1

h(ℓ)(
□□□
ψ(·))Bk,ℓ(□□□

ψ(·))
(√

(ω ◦
□□□
ψ)

□□□
ψ′
)(n−k)

(·)
∥∥∥∥∥
L2([− 1

2
, 1
2 ])




2

where we used the simplified notation Bk,ℓ(□□□
ψ(x)) := Bk,ℓ(□□□

ψ′(x), . . . ,
□□□
ψ(k−ℓ+1)(x)) for the

Bell polynomial Bk,ℓ given in (2.0.3). All derivatives of
□□□
ψ are bounded on the interval [−1

2 ,
1
2 ]

by assumption, so that each Bell polynomial Bk,ℓ is bounded, too. It was also assumed that
h is m-times continuously differentiable. Hence, the appearing L2-norms are estimated by
their respective L∞-norms, so that

∥∥∥∥∥
k∑

ℓ=1

h(ℓ)(
□□□
ψ(·))Bk,ℓ(□□□

ψ(·))
(√

(ω ◦
□□□
ψ)

□□□
ψ′
)(n−k)

(·)
∥∥∥∥∥
L2([− 1

2
, 1
2 ])

≲
k∑

ℓ=1

∥∥∥∥
(√

(ω ◦
□□□
ψ)

□□□
ψ′
)(n−k)

(·)
∥∥∥∥
L∞([− 1

2
, 1
2 ])

.
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Consequentially, the norm ∥f∥Hm([− 1
2
, 1
2 ])

is finite, if the firstm derivatives of
√
(ω(

□□□
ψ(·))

□□□
ψ′(·)

have a finite L∞-norm. We also assumed that the first m derivatives of
√

(ω(
□□□
ψ(·))

□□□
ψ′(·)

vanish at the boundary points, which implies that the first m derivatives of the transformed
function f vanish at the boundary points, too. Hence, f ∈ Hm (T) ∼ Hm (T) due to the
norm equivalence (3.1.8).

Next, we prove the multivariate version of Theorem 5.4.1. Similarly to (5.4.1), we consider

multivariate transformed functions f ∈ L2

([
−1

2 ,
1
2

]d)
of the form

f(x) = h(
□□□
ψ1(x1), . . . , □□□

ψd(xd))
d∏

k=1

√
ωk(□□□

ψk(xk)) □□□
ψ′
k(xk), x ∈ Td, (5.4.4)

that are the result of applying a torus-to-cube transformation y =
□□□
ψ(x) as defined in (5.1.2)

to a function h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
with a product weight ω as in (5.3.1). For these we have

the identity

∥h∥2
L2

(
[− 1

2
, 1
2 ]
d
,ω
) =

∫

[− 1
2
, 1
2 ]
d
|h(y)|2ω(y) dy

=

∫

Td
|(h ◦

□□□
ψ)(x)|2(ω ◦

□□□
ψ)(x)

d∏

j=1

□□□
ψ′
j(xj) dx = ∥f∥2

L2(Td)
.

Again, we derive a set of sufficient L∞-conditions on the torus-to-cube transformation
□□□
ψ and

the product weight ω for an h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩Cmmix

([
−1

2 ,
1
2

]d)
to be transformed by

□□□
ψ

into an f ∈ Hm
(
Td
)
of form (5.4.4).

Theorem 5.4.2 ([NP21a, Theorem 4]). Let d ∈ N, m ∈ N0, a d-variate torus-to-cube trans-

formation
□□□
ψ, an h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
and the corresponding transformed

functions f of the form (5.4.4) be given.

We have f ∈ Hm
(
Td
)
if for all multi-indices m ∈ Nd0, ∥m∥ℓd∞ ≤ m, we have

□□□
ψ ∈ Cmmix

([
−1

2
,
1

2

]d)
and Dm

[
d∏

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
∈ C0

([
−1

2
,
1

2

]d)
. (5.4.5)

Proof. For h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩Cmmix

([
−1

2 ,
1
2

]d)
with m ∈ N0 and a multivariate torus-to-

cube transformation
□□□
ψ as defined in (5.1.2) we consider the transformed function f as given

in (5.4.4).

At first we verify that f ∈ Hm
mix

([
−1

2 ,
1
2

]d)
, so for all multi-indices m ∈ Nd0 with ∥m∥ℓd∞ ≤

m we have to show that ∥Dm[f ]∥
L2

(
[− 1

2
, 1
2 ]
d
) < ∞. For a multivariate transformed function

f of the form (5.4.4) we have

∥Dm[f ](x)∥2
L2

(
[− 1

2
, 1
2 ]
d
) =

∫

[− 1
2
, 1
2 ]
d

∣∣∣∣∣D
m

[
(h ◦

□□□
ψ)

d∏

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
(x)

∣∣∣∣∣

2

dx. (5.4.6)
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Utilizing the product measure function in the transformed function f in (5.4.4), we apply the
Leibniz formula (5.4.3) componentwise and estimate

Dm

[
(h ◦

□□□
ψ)

d∏

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
(x) (5.4.7)

≤
m1∑

j1=0

. . .

md∑

jd=0

D(j1,...,jd)[h ◦
□□□
ψ](x)D(m1−j1,...,md−jd)

[
d∏

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
(x).

Next, we apply the Faá di Bruno formula (2.0.2) to each univariate jℓ-th derivative occurring
in the term D(j1,...,jd)[h ◦

□□□
ψ](x) in (5.4.7). For all ℓ = 1, . . . , d we put Bjℓ,iℓ(□□□

ψℓ(xℓ)) :=

Bjℓ,iℓ(□□□
ψ′
ℓ(xℓ), . . . , □□□

ψ
(jℓ−iℓ+1)
ℓ (xℓ)) and we have

D(0,...,0,jℓ,0,...,0)[h ◦
□□□
ψ](x) =





h(
□□□
ψ(x)) for jℓ = 0,

jℓ∑

iℓ=1

D(0,...,0,iℓ,0,...,0)[h](
□□□
ψ(x))Bjℓ,iℓ(□□□

ψℓ(xℓ)) for jℓ ∈ N.

(5.4.8)

After combining (5.4.6), (5.4.7) and (5.4.8), we estimate the occurring summands by their
L2-norm, after these norms are estimated by their L∞-norm and finally we utilize the bound-
edness of the Bell polynomials Bjℓ,iℓ as well as the assumption that h is a Cmmix-function, so
that we end up with

∥Dm[f ](x)∥
L2

(
[− 1

2
, 1
2 ]
d
)

≲
m1,...,md∑

j1=0,...,jd=0

j1,...,jd∑

i1=1,...,id=1

(∫

[− 1
2
, 1
2 ]
d
|D(i1,...,id)[h](

□□□
ψ(x))|2 ×

×
d∏

ℓ=1

|Bjℓ,iℓ(□□□
ψℓ(xℓ))|2

∣∣∣∣∣D
(m1−j1,...,md−jd)

[
d∏

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
(x)

∣∣∣∣∣

2

dx




1
2

≲
m1,...,md∑

j1=0,...,jd=0

∥∥∥∥∥D
(m1−j1,...,md−jd)

[
d∏

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
(·)
∥∥∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
) .

By assumption, the derivatives Dm
[∏d

k=1

√
(ωk ◦ □□□

ψk) □□□
ψ′
k

]
vanish towards the boundary

points of their domains for all m ∈ Nd0, ∥m∥ℓd∞ ≤ m. Thus, the derivatives Dm[f ] of the

transformed function f vanish at their boundary points, too, and f is in Hm
(
Td
)
due to the

equivalence (3.1.8).

We establish two specific approximation error bounds for functions defined on the cube[
−1

2 ,
1
2

]d
based on the approximation error bounds on the torus Td that we recalled in The-

orems 3.3.2 and 3.3.3. The corresponding proofs rely heavily on the previously introduced

sufficient conditions in Theorem 5.4.2 which guarantee that functions h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩

Cmmix

([
−1

2 ,
1
2

]d)
are transformed into Sobolev functions of dominating mixed smoothness on

Td of the form (5.4.4) by multivariate torus-to-cube transformations
□□□
ψ :
[
−1

2 ,
1
2

]d →
[
−1

2 ,
1
2

]d
as given in (5.1.2).
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5.5 Approximation of transformed functions

Based on the definition of a rank-1 lattice Λ(z,M) in (3.2.2), we define a transformed rank-1
lattice as

Λ
□□□ψ(z,M) := {yj := □□□

ψ(xj) : xj ∈ Λ(z,M), j = 0, . . . ,M − 1} . (5.5.1)

A transformed reconstructing rank-1 lattice is denoted by Λ
□□□ψ(z,M, I). Based on the univari-

ate orthonormal functions φk given in (5.3.2) we put

φk(y) :=
d∏

j=1

φkj (yj), k ∈ Zd, (5.5.2)

forming an orthonormal system with respect to the multivariate weighted L2

([
−1

2 ,
1
2

]d
, ω
)
-

scalar product, so that

(h1, h2)L2

(
[− 1

2
, 1
2 ]
d
,ω
) :=

∫

[− 1
2
, 1
2 ]
d
h1(y)h2(y)

d∏

j=1

ωj(yj) dy (5.5.3)

and for all k1,k2 ∈ Zd we have

(φk1 , φk2)L2

(
[− 1

2
, 1
2 ]
d
,ω
) = δk1,k2 .

The multivariate Fourier coefficients ĥk are naturally given by

ĥk := (h, φk)L2

(
[− 1

2
, 1
2 ]
d
,ω
). (5.5.4)

The multivariate Fourier partial sum for any I ⊂ Zd is defined as

SIh(y) :=
∑

k∈I
ĥk φk(y).

Suppose f ∈ L2

(
Td
)
. For each I ⊂ Zd the system {φk}k∈I spans the space of transformed

trigonometric functions on the cube

ΠI,□□□ψ := span

{√
□□□
ϱ(·)
ω(·) e2πik·□□□ψ

−1(·) : k ∈ I

}
. (5.5.5)

As in (3.2.4), for any transformed trigonometric functions on the cube h ∈ ΠI,□□□ψ, transformed
lattice nodes yj ∈ Λ

□□□ψ(z,M, I) and all k ∈ I, we have the exact integration property of the
form

ĥk =

∫

[− 1
2
, 1
2 ]
d
h(y)

√
□□□
ϱ(y)ω(y) e−2πik·□□□ψ−1(y) dy =

∫

Td
f(x) e−2πik·x dx

=
1

M

M−1∑

j=0

f(xj) e
−2πik·xj =

1

M

M−1∑

j=0

h(yj)

√
ω(yj)

□□□
ϱ(yj)

e−2πik·□□□ψ−1(yj) = ĥΛk . (5.5.6)
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For an arbitrary function h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
we lose the former men-

tioned exactness and have multivariate approximated transformed Fourier coefficients of the
form

ĥΛk :=
1

M

M−1∑

j=0

h(yj)

√
ω(yj)

□□□
ϱ(yj)

e−2πik·□□□ψ−1(yj) =
1

M

M−1∑

j=0

ω(yj)

□□□
ϱ(yj)

h(yj)φk(yj)

that only approximate the multivariate Fourier coefficients ĥk. Finally, the multivariate
version of the approximated Fourier partial sum is given by

SΛ
I h(y) :=

∑

k∈I
ĥΛk φk(y). (5.5.7)

Finally, we introduce the analogue of the Hilbert space Hβ(Td), β ≥ 0 given in (3.1.7) on

the cube
[
−1

2 ,
1
2

]d
. We define the space of weighted L2

([
−1

2 ,
1
2

]d
, ω
)
-functions with square

summable Fourier coefficients ĥk given in (5.5.4) by

Hβ
([

−1
2 ,

1
2

]d
, ω
)
:=

{
h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
: ∥h∥Hβ

(
[− 1

2
, 1
2 ]
d
,ω
) <∞

}
, (5.5.8)

∥h∥Hβ
(
[− 1

2
, 1
2 ]
d
,ω
) :=


∑

k∈Zd
whc(k)

2β|ĥk|2



1
2

.

Analogously, the counterpart to the space Aβ(Td), β ≥ 0 as in (3.1.6) is given on the cube[
−1

2 ,
1
2

]d
by

Aβ
([

−1
2 ,

1
2

]d
, ω
)
:=

{
h ∈ L1

([
−1

2 ,
1
2

]d
, ω
)
: ∥h∥Aβ

(
[− 1

2
, 1
2 ]
d
,ω
) <∞

}
, (5.5.9)

∥h∥Aβ
(
[− 1

2
, 1
2 ]
d
,ω
) :=

∑

k∈Zd
whc(k)

β|ĥk|.

5.5.1 L∞-approximation error

Based on the L∞(Td)-approximation error bound (3.3.1) and the conditions proposed in

Theorem 5.4.2 we prove a similar upper bound for the approximation error
∥∥∥h− SΛ

IdN
h
∥∥∥ in

terms of a weighted L∞-norm on
[
−1

2 ,
1
2

]d
.

Theorem 5.5.1 ([NP21a, Theorem 5]). Let d ∈ N, m ∈ N, a hyperbolic cross IdN with

N ≥ 2d+1 and a reconstructing rank-1 lattice Λ(z,M, IdN ) be given. Let h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩

Cmmix

([
−1

2 ,
1
2

]d)
with ω as in (5.3.1),

□□□
ψ as in (5.1.2), and let λ > 1

2 . For all multi-indices

m = (m1, . . . ,md)
⊤ ∈ Nd0 with ∥m∥ℓd∞ ≤ m we assume that

□□□
ψ ∈ Cmmix

([
−1

2
,
1

2

]d)
and Dm

[
d∏

ℓ=1

√
(ωℓ ◦ □□□

ψℓ) □□□
ψ′
ℓ

]
∈ C0

([
−1

2
,
1

2

]d)
.

Then there is an approximation error estimate of the form
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

) ≲ N−m+λ∥h∥Hm
(
[− 1

2
, 1
2 ]
d
,ω
).
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Proof. Let d ∈ N,m ∈ N and h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
. By assumption, the

criteria of Theorem 5.4.2 are fulfilled and the transformed function f of the form (5.4.4)
is Hm(Td) and has a continuous representative, because for λ > 1

2 there is the inclusion
Hm(Td) ↪→ Am−λ(Td) ↪→ C(Td) as in (3.1.9). Hence, for f ∈ Am−λ(Td) ∩ C(Td) we have the
approximation error bound

∥∥∥f − SΛ
IdN
f
∥∥∥
L∞(Td)

≤ 2N−m+λ∥f∥Am−λ(Td) (5.5.10)

as stated in Theorem 3.3.2. With the inverse torus-to-cube transformation x =
□□□
ψ−1(y) we

have

ĥk = (h, φk)L2

(
[− 1

2
, 1
2 ]
d
,ω
) = (f, e2πik(·))L2(Td) = f̂k

and

∥h∥2
Hm

(
[− 1

2
, 1
2 ]
d
,ω
) =

∑

k∈Zd
whc(k)

2m|ĥk|2 =
∑

k∈Zd
whc(k)

2m|f̂k|2 = ∥f∥2Hm(Td), (5.5.11)

as well as

∥∥∥h− SIdN
h
∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

) = esssup
y∈[− 1

2
, 1
2 ]
d

∣∣∣∣∣∣

√
ω(y)

□□□
ϱ(y)


h(y)−

∑

k∈IdN

ĥk φk(y)



∣∣∣∣∣∣

= esssup
y∈[− 1

2
, 1
2 ]
d

∣∣∣∣∣∣
h(y)

√
ω(y)

□□□
ϱ(y)

−
∑

k∈IdN

ĥk e
2πik·□□□ψ−1(y)

∣∣∣∣∣∣

= esssupx∈Td

∣∣∣∣∣∣
h(

□□□
ψ(x))

√√√√ω(
□□□
ψ(x))

d∏

j=1

□□□
ψ′
j(xj)−

∑

k∈IdN

ĥk e
2πik·x

∣∣∣∣∣∣

=
∥∥∥f − SIdN

f
∥∥∥
L∞(Td)

and
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

) =
∥∥∥f − SΛ

IdN
f
∥∥∥
L∞(Td)

. (5.5.12)

In total, by combining (5.5.12), (5.5.10), (3.1.10) and (5.5.11) we estimate for the function
f ∈ Hm(Td) ∩ C(Td) that

∥∥∥h− SΛ
IdN
h
∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

) =
∥∥∥f − SΛ

IdN
f
∥∥∥
L∞(Td)

≤ 2N−m+λ∥f∥Am−λ(Td)

≤ 2Cd,λN
−m+λ∥f∥Hm(Td)

= 2Cd,λN
−m+λ∥h∥Hm

(
[− 1

2
, 1
2 ]
d
,ω
) <∞

with λ > 1
2 and some constant Cd,λ > 1.
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5.5.2 L2-approximation error

Based on the L2(Td)-approximation error bound (3.3.2) and the conditions proposed in The-

orem 5.4.2 we prove an upper bound for the approximation error
∥∥∥h− SΛ

IdN
h
∥∥∥ in terms of a

weighted L2-norm on
[
−1

2 ,
1
2

]d
.

Theorem 5.5.2 ([NP21a, Theorem 6]). Let d ∈ N, m ∈ N, a hyperbolic cross IdN with

N ≥ 2d+1 and a reconstructing rank-1 lattice Λ(z,M, IdN ) be given. Let h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩

Cmmix

([
−1

2 ,
1
2

]d)
with ω as in (5.3.1) and

□□□
ψ as in (5.1.2). For all multi-indices m =

(m1, . . . ,md)
⊤ ∈ Nd0 with ∥m∥ℓd∞ ≤ m we assume that

□□□
ψ ∈ Cmmix

([
−1

2
,
1

2

]d)
and Dm

[
d∏

ℓ=1

√
(ωℓ ◦ □□□

ψℓ) □□□
ψ′
ℓ

]
∈ C0

([
−1

2
,
1

2

]d)
.

Then there is an approximation error estimate of the form

∥∥∥h− SΛ
IdN
h
∥∥∥
L2

(
[− 1

2
, 1
2 ]
d
,ω
) ≲ N−m(logN)(d−1)/2∥h∥Hm

(
[− 1

2
, 1
2 ]
d
,ω
).

Proof. Let m ∈ N, d ∈ N and h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
. By assumption are

the criteria of Theorem 5.4.2 fulfilled and the transformed function f of the form (5.4.4) is
in Hm(Td) and has a continuous representative because of the inclusion Hm(Td) ↪→ C(Td) as
in (3.1.9). For f ∈ Hm(Td) ∩ C(Td) Theorem 3.3.3 yields the approximation error bound of
the form

∥∥∥f − SΛ
IdN
f
∥∥∥
L2(Td)

≤ Cd,βN
−β(logN)(d−1)/2∥f∥Hβ(Td) (5.5.13)

with some constant Cd,β := C(d, β) > 0. With the inverse torus-to-cube transformation
x =

□□□
ψ−1(y) we have

ĥk = (h, φk)L2

(
[− 1

2
, 1
2 ]
d
,ω
) = (f, e2πik·)L2(Td) = f̂k,

and

∥h∥2
Hm

(
[− 1

2
, 1
2 ]
d
,ω
) =

∑

k∈Zd
whc(k)

2m|ĥk|2 =
∑

k∈Zd
whc(k)

2m|f̂k|2 = ∥f∥2Hm(Td)

as in (5.5.11), as well as

∥∥∥h− SIdN
h
∥∥∥
2

L2

(
[− 1

2
, 1
2 ]
d
,ω
) =

∫

[− 1
2
, 1
2 ]
d

∣∣∣∣∣∣
h(y)−

∑

k∈IdN

ĥk φk(y)

∣∣∣∣∣∣

2

ω(y) dy =
∥∥∥f − SIdN

f
∥∥∥
2

L2(Td)

(5.5.14)

and
∥∥∥h− SΛ

IdN
h
∥∥∥
L2

(
[− 1

2
, 1
2 ]
d
,ω
) =

∥∥∥f − SΛ
IdN
f
∥∥∥
L2(Td)

.
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In total, by combining (5.5.14), (5.5.13), and (5.5.11) we estimate for f ∈ Hm(Td) ∩ C(Td)
that

∥∥∥h− SΛ
IdN
h
∥∥∥
L2

(
[− 1

2
, 1
2 ]
d
,ω
) =

∥∥∥f − SΛ
IdN
f
∥∥∥
L2(Td)

≲ Cd,βN
−β(logN)(d−1)/2∥f∥Hβ(Td)

= Cd,βN
−β(logN)(d−1)/2∥h∥Hm

(
[− 1

2
, 1
2 ]
d
,ω
) <∞

with some constant Cd,β > 0.

Finally, let us recap the results of this section. We’ve seen that under the assumptions

of Theorem 5.5.1, a function h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
is transformed into a

smooth function f ∈ Hm
([

−1
2 ,

1
2

]d
, ω
)
of the form (5.4.4) and its L∞-approximation error

decays with the rate
∥∥∥f − SΛ

IdN
f
∥∥∥
L∞(Td)

=
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

) ≲ N−m+λ → 0

for N → ∞ (or equivalently for |IdN | → ∞) and with λ > 1
2 . Under the same assumptions

we’ve then shown in Theorem 5.5.2 that the L2-approximation error is bounded by
∥∥∥f − SΛ

IdN
f
∥∥∥
L2(Td)

=
∥∥∥h− SΛ

IdN
h
∥∥∥
L2

(
[− 1

2
, 1
2 ]
d
,ω
) ≲ N−m(logN)(d−1)/2 → 0

for N → ∞.

5.6 Fast algorithms and discrete approximation errors on the cube

In this section we start denoting the parameters η,µ ∈ Rd+. Families of multivariate mea-
sure functions are denoted by ω(·,µ) as in (5.3.1) and families of multivariate torus-to-cube
transformations as in (5.1.2) are denoted by

□□□
ψ(·,η).

For the evaluation of transformed multivariate trigonometric functions on the cube h ∈
ΠI,□□□ψ(·,η) as in (5.5.5) such as the approximated Fourier series SΛ

I h, and for the reconstruc-

tion of the approximated Fourier coefficients ĥΛk as in (5.5.7), we follow [NP21a, Section 4]
and outline the necessary adjustments within the efficient algorithms described in [Käm14b,
Algorithm 3.1 and 3.2] that were recalled in Algorithms 3.4.1 and 3.4.2. Similarly to (3.4.1)
and (3.4.2), for η,µ ∈ Rd+ we form transformed Fourier matrices Fcube and F∗

cube given by

Fcube :=
(
e2πik·□□□ψ

−1(yj ,η)
)
yj∈Λ□□□ψ(·,η)(z,M),k∈I

∈ CM×|I|,

F∗
cube =

(
e−2πik·□□□ψ−1(yj ,η)

)
k∈I,yj∈Λ□□□ψ(·,η)(z,M)

∈ C|I|×M ,

as well as h :=
(
h(yj)

√
ω(yj ,µ)

□□□ϱ(yj ,η)

)
j=0,...,M−1

for yj ∈ Λ
□□□ψ(·,η)(z,M), ĥ := (ĥk)k∈I with some

frequency set I ⊂ Zd of finite cardinality |I| <∞, so that we have matrix-vector-products of
the form

h = Fcubeĥ and ĥ =M−1F∗
cubeh
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We transform a function h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
by a torus-to-cube trans-

formation
□□□
ψ(xj ,η) = yj ,xj = (xj1, . . . , x

j
d)

⊤ into a periodic function f on the torus Td of the
form (5.4.4). The resulting samples are given by

h(yj)

√
ω(yj ,µ)

□□□
ϱ(yj ,η)

= h(
□□□
ψ(xj ,η))

√√√√ω(
□□□
ψ(xj ,η),µ)

d∏

k=1

□□□
ψ′
k(x

j
k, ηk) = f(xj ,η,µ)

and

√
ω(yj ,µ)

□□□
ϱ(yj ,η)

SΛ
I h(yj) = SΛ

I f(xj ,η,µ) (5.6.1)

with the parameters η,µ ∈ Rd+.

By putting the coefficient vector ĥ =
(
ĥk

)
k∈I

into Algorithm 3.4.1, we obtain the func-

tion values h = Fcubeĥ =
(
h(yj)

√
ω(yj ,µ)

□□□ϱ(yj ,η)

)M−1

j=0
as the output, while the regrouping idea

(3.4.3) in the Fourier partial sum remains the same, so that we can rewrite the initial d-
variate discrete Fourier transform into a 1-dimensional one. Conversely, we put the function

values h =
(
h(yj)

√
ω(yj ,µ)

□□□ϱ(yj ,η)

)M−1

j=0
into Algorithm 3.4.2 and observe that the orthogonality

property (3.4.4) as well as the subsequent arguments remain the same, so that we obtain the

coeffcients ĥ =M−1F∗
cubeh =

(
ĥk

)
k∈I

.

Remark 5.6.1. We identify the torus with different cubes. We consider Td ≃ [0, 1)d when
defining rank-1 lattices Λ(z,M) in (3.2.2). However, we consider Td ≃ [−1

2 ,
1
2)
d when applying

a torus-to-cube transformation
□□□
ψ to a rank-1 lattice. In this process, we reassign all lattice

points xj ∈ Λ(z,M) via

xj 7→
((

xj +
1

2

)
mod 1

)
− 1

2

for all j = 0, . . . ,M − 1. For example, in one dimension this reassignment projects the nodes
(0, 19 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9)

⊤ onto the nodes (0, 19 ,
2
9 ,

3
9 ,

4
9 ,−4

9 ,−3
9 ,−2

9 ,−1
9)

⊤.

We already showcased in Figure 5.2.1 that the definition of
□□□
ψ in (5.1.1) allows a variety

of functions with different slopes. Now, in Figure 5.6.1 we show different two-dimensional
transformed rank-1 lattices Λ

□□□ψ(·,η)(z,M) as defined in (5.5.1), generated by z = (1, 7)⊤

and M = 150. We compare the lattices transformed by the sine transformation (5.2.3) and
the logarithmic transformation (5.2.1) with the parameter vector η = 3 with the lattices
transformed by the tent transformation (5.7.2) and the Chebyshev transformation (5.7.8).

On a similar note, the discrete approximation errors εM2 (h, {yj}Mj=1) and ε
M
∞(h, {yj}Mj=1)

as defined in (3.5.1) and (3.5.4) are slightly adjusted in the sense of the transformed approx-
imation error bounds of Theorems 5.5.1 and 5.5.2. Under certain assumptions we’ve shown
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−0.5 0.5

−0.5

0.5

Λ(z,M)

−0.5 0.5

−0.5

0.5

Λ
□□□ψ(·)(z,M) with

□□□
ψ(xj) =

1
2
sin(πxj)

−0.5 0.5

−0.5

0.5

Λ
□□□ψ(·,3)(z,M) with

□□□
ψj(xj , 3) =

1
2

(1+2xj)
3−(1−2xj)

3

(1+2xj)3+(1−2xj)3

−0.5 0.5

−0.5

0.5

Λψ(·)(z,M) with
ψj(xj) =

1
2
− |2xj |

−0.5 0.5

−0.5

0.5

Λψ(·)(z,M) with
ψj(xj) =

1
2
cos(2πxj)

Figure 5.6.1: The two-dimensional lattice Λ(z,M) with z = (1, 7)⊤,M = 150 (top-left), the
transformed lattice the sine transformation (5.2.3) (top-center), the logarithmic transforma-
tion (5.2.1) (top-right) with η = 3, the tent transformation (5.7.2) (bottom-left) and the
Chebyshev transformation (5.7.8) (bottom-right).

in (5.5.12), (5.5.14) and (5.6.1) that we have

εM2 (h, {yj}Mj=1) ≈

∥∥h− SΛ
I h
∥∥2
L2

(
[− 1

2
, 1
2 ]
d
,ω
)

∥h∥2
L2

(
[− 1

2
, 1
2 ]
d
,ω
) =

∥∥f − SΛ
I f
∥∥2
L2(Td)

∥f∥2L2(Td)
≈ εM2 (f, {xj}Mj=1),

εM∞(h, {yj}Mj=1) ≈

∥∥h− SΛ
I h
∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

)
∥h∥

L∞

(
[− 1

2
, 1
2 ]
d
,
√

ω

□□□ϱ

) =

∥∥f − SΛ
I f
∥∥
L∞(Td)

∥f∥L∞(Td)
≈ εM∞(f, {xj}Mj=1).

(5.6.2)

5.7 Half-periodic cosine and Chebyshev approximation

In this section we reflect on the half-periodic cosine functions as well as the Chebyshev
polynomials are classical orthonormal system used for the approximation of non-periodic

functions on the cube
[
−1

2 ,
1
2

]d
. Both systems can be discretized with suitably chosen trans-

formed reconstructing rank-1 lattices in such a way that the Algorithms 3.4.1 and 3.4.2 for
the fast evaluation and reconstruction of multivariate trigonometric polynomials are appli-
cable [PV15, SNC16, KMNN21, NP21b]. We recall the definitions of both systems, their
respective transformations mappings ψ and how they inherit the exact integration property
(3.2.3) of the Fourier system (3.1.1). Additionally, we showcase the connection of the Cheby-
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shev system with the previously introduced general framework of the transformed Fourier
systems (5.3.2). Afterwards, we compare all the considered orthonormal systems on the cube[
−1

2 ,
1
2

]d
, the involved scalar product measure functions and transformations mappings, in

order to in particular highlight the fact that both the tent-transformation (5.7.2) used for
the cosine system and the Chebyshev transformation (5.7.8) used in the Chebyshev system
are not torus-to-cube transformations as in (5.1.2).

5.7.1 Cosine approximation with tent-transformed sampling nodes

The half-periodic cosine system is defined on the cube x = (x1, . . . , xd)
⊤ ∈

[
−1

2 ,
1
2

]d
as



λk(x) :=

√
2
∥k∥0

d∏

j=1

cos

(
πkj

(
xj +

1

2

))


k∈I

, I ⊂ Nd0 (5.7.1)

and was investigated in [Adc10, Adc11, SNC16], has been used as a comparison to certain
worst-case errors in weighted Korobov spaces of smooth periodic functions [CKNS16] and
was considered in the context of various reproducing kernel Hilbert spaces [DNP14, IKP18].

Remark 5.7.1. In [IN08, AIN12] it is pointed out that the univariate version of system (5.7.1)
can be rewritten by the transformation t = 2x into the equivalent system

{
1√
2
, cos(kπt), sin

((
k − 1

2

)
πt

)}

k=1,...,N

, t ∈ [−1, 1],

whose corresponding coefficients decay one order faster than the classical Fourier coefficients.
This modified Fourier system is extended to the multivariate setting [IN09] and was also
enhanced by the polynomial subtraction method [HIN11].

The cosine system (5.7.1) is orthonormal with respect to the scalar product

(h1, h2)L2

(
[− 1

2
, 1
2 ]
d
) :=

∫

[− 1
2
, 1
2 ]
d
h1(y)h2(y) dy,

so that for k1,k2 ∈ Zd we have

(λk1 , λk2)L2

(
[− 1

2
, 1
2 ]
d
,ω
) := δk1,k2 .

For k ∈ Zd the cosine coefficient of a function h ∈ L2

([
−1

2 ,
1
2

]d)
is naturally defined as

ĥcosk := (h, λk)L2

(
[− 1

2
, 1
2 ]
d
) and for I ⊂ Zd the corresponding cosine partial sum is given by

SIh(x) :=
∑

k∈I ĥ
cos
k λk(x). We transfer the crucial properties of the Fourier system (3.1.1)

via the tent transformation

ψ(x) := (ψ1(x1), . . . , ψd(xd))
⊤, ψj(xj) =

{
1
2 + 2xj for − 1

2 ≤ xj < 0,
1
2 − 2xj for 0 ≤ xj ≤ 1

2 ,
(5.7.2)

which is not a torus-to-cube transformation as defined in (5.1.1). We have sampling nodes
in the tent-transformed rank-1 lattice Λψ(z,M) defined as

Λψ(z,M) :=
{
ycos
j := ψ (xj) : xj ∈ Λ(z,M), j = 0, . . . ,M − 1

}
. (5.7.3)
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and we have a reconstructing tent-transformed rank-1 lattice Λψ(z,M, I) if the underlying
rank-1 lattice is a reconstructing one. Recalling the definition of difference sets D(I) in
(3.2.1), multivariate trigonometric polynomials h(·), h(·)λk(·) ∈ ΠD(I) supported on k ∈ I ⊂
Nd0 inherit the exact integration property (3.2.3), because with the tent transformation as
in (5.7.2) and transformed nodes ycos

j = ψ(xj) ∈ Λψ(z,M, I) with xj = (xj1, . . . , x
j
d)

⊤ ∈
Λ(z,M, I) we have

ĥcosk =

∫

[− 1
2
, 1
2 ]
d
h(y)λk(y) dy =

√
2
∥k∥0

∫

Td
h(ψ(x))

d∏

ℓ=1

cos(2πkℓxℓ) dx

=

√
2
∥k∥0

2d

∫

Td
h(ψ(x))

(
e2πik·x + e−2πik·x

)
dx

=

√
2
∥k∥0

2d
1

M

M−1∑

j=0

h(ψ(xj))
(
e2πik·xj + e−2πik·xj

)

=
√
2
∥k∥0 1

M

M−1∑

j=0

h(ψ(xj))
d∏

ℓ=1

cos(2πkℓx
j
ℓ)

=
1

M

M−1∑

j=0

h(ycos
j )λk(y

cos
j ).

For an arbitrary function h ∈ C
([

−1
2 ,

1
2

]d)
, we lose the former mentioned exactness and

define the approximated cosine coefficients ĥcos,Λk of the form

ĥcosk ≈ ĥcos,Λk :=
1

M

M−1∑

j=0

h(ycos
j )λk(y

cos
j ), ycos

j ∈ Λψ(z,M, I),

leading to the approximated cosine partial sum SΛ
I h given by

SIh(x) ≈ SΛ
I h(x) :=

∑

k∈I
ĥcos,Λk λk(x). (5.7.4)

Accordingly, the discrete approximation errors εM2 (h, {yj}Mj=1) and εM∞(h, {yj}Mj=1) given in
(5.6.2) are evaluated with respect to the approximated cosine partial sum in (5.7.4). The
discretization with respect to the tent-transformed lattice points (5.7.9) leads to matrix-
vector-notation of the form

hcos :=
(
h(ycos

j )
)M−1

j=0
, C :=

(
λk
(
ycos
j

))M−1

j=0,k∈I .

Both the evaluation of h and the reconstruction of the approximated cosine coefficients

ĥ :=
{
ĥcos,Λk

}
k∈Icos

are realized by solving the systems

hcos = Cĥ. and ĥ =
1

M
C∗hcos. (5.7.5)

Fast algorithms for the computation of both systems follow the same core ideas as the Al-
gorithms 3.4.1 and 3.4.2 for the Fourier system (3.4.1), because the cosine system at tent-
transformed sampling nodes can be rewritten as a Fourier system sampled at equispaced
points. Therefore, specific regrouping of the cosine coefficients allows the computation of
the d-dimensional matrix-vector-operation (5.7.5) by a single (inverse) FFT. We just have to
incorporate that the frequency sets IdN ∩ Nd0 are now restricted to the first orthant, which is
outlined in [SNC16, KMNN21].
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5.7.2 Chebyshev approximation

For x = (x1, . . . , xd)
⊤ ∈

[
−1

2 ,
1
2

]d
and a finite frequency set k = (k1, . . . , kd)

⊤ ∈ I ⊂ Nd0, we
consider the Chebyshev system

{
Tk(x) :=

√
2
∥k∥0

d∏

ℓ=1

cos (kℓ arccos(2xℓ))

}

k∈I
, (5.7.6)

that is orthonormal with respect to the weighted scalar product

(h1, h2)L2

(
[− 1

2
, 1
2 ]
d
,ω
) =

∫

[− 1
2
, 1
2 ]
d
h1(x)h2(x)ω(x) dx, ω(x) :=

d∏

j=1

2

π
√

1− 4x2j

, (5.7.7)

so that for k1,k2 ∈ Zd we have

(Tk1 , Tk2)L2

(
[− 1

2
, 1
2 ]
d
,ω
) := δk1,k2 .

The Chebyshev coefficients of a function h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)

are naturally defined as

ĥchebk := (h, Tk)L2

(
[− 1

2
, 1
2 ]
d
,ω
),k ∈ Zd and for I ⊂ Zd the corresponding Chebyshev partial

sum is given by SIh(x) :=
∑

k∈I ĥ
cheb
k Tk(x). We transfer some properties of the Fourier

system (3.1.1) via the Chebyshev transformation

ψ(x) := (ψ1(x1), . . . , ψd(xd))
⊤,

ψj(xj) :=
1

2
cos (2πxj) , xj ∈

[
−1

2
,
1

2

]
, (5.7.8)

which is not a torus-to-cube transformation as defined in (5.1.1). We have sampling nodes
in the Chebyshev-transformed rank-1 lattice Λψ(z,M) defined as

Λψ(z,M) :=
{
ycheb
j := ψ (xj) : xj ∈ Λ(z,M), j = 0, . . . ,M − 1

}
(5.7.9)

and we have a reconstructing Chebyshev-transformed rank-1 lattice Λψ(z,M, I) if the un-
derlying rank-1 lattice is a reconstructing one. We note that the Chebyshev-transformed
sampling nodes are fundamentally connected to Padua points and Lissajous curves, as well as
certain interpolation methods that are based on [BCD+06, DE17]. Recalling the definition of
difference sets D(I) in (3.2.1), multivariate trigonometric polynomials h(·), h(·)Tk(·) ∈ ΠD(I)

supported on k ∈ I ⊂ Nd0 inherit the exact integration property (3.2.3), because with the
Chebyshev transformation ψ as in (5.7.8) and transformed nodes ycheb

j = ψ(xj) ∈ Λψ(z,M, I)
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with xj = (xj1, . . . , x
j
d)

⊤ ∈ Λ(z,M, I) we have

ĥchebk =

∫

[− 1
2
, 1
2 ]
d
h(y)Tk(y)ω(y) dy =

√
2
∥k∥0

∫

Td
h(ψ(x))

d∏

ℓ=1

cos(2πkℓxℓ) dx

=

√
2
∥k∥0

2d

∫

Td
h(ψ(x))

(
e2πik·x + e−2πik·x

)
dx

=

√
2
∥k∥0

2d
1

M

M−1∑

j=0

h(ψ(xj))
(
e2πik·xj + e−2πik·xj

)

=
√
2
∥k∥0 1

M

M−1∑

j=0

h(ψ(xj))
d∏

ℓ=1

cos(2πkℓx
j
ℓ)

=
1

M

M−1∑

j=0

h(ycheb
j )Tk(y

cheb
j ).

For an arbitrary function h ∈ L
([

−1
2 ,

1
2

]d
, ω
)
∩ C

([
−1

2 ,
1
2

]d)
, we lose the former mentioned

exactness and define the approximated Chebyshev coefficients ĥcheb,Λk of the form

ĥchebk ≈ ĥcheb,Λk :=
1

M

M−1∑

j=0

h(ycheb
j )Tk(y

cheb
j ), ycheb

j ∈ Λψ(z,M, I),

leading to the approximated Chebyshev partial sum SΛ
I h given by

SIh(x) ≈ SΛ
I h(x) :=

∑

k∈I
ĥcheb,Λk Tk(x). (5.7.10)

Accordingly, the discrete approximation errors εM∞(h) and εM2 (h) given in (5.6.2) are evaluated
with respect to the approximated Chebyshev partial sum in (5.7.10). The discretization with
respect to the tent-transformed lattice points (5.7.9) leads to matrix-vector-notation of the
form

hcheb :=
(
h(ycheb

j )
)M−1

j=0
, T :=

(
Tk(y

cheb
j )

)M−1

j=0,k∈I
.

The evaluation of h as well as the reconstruction of the approximated Chebyshev coefficients

ĥ :=
(
ĥcheb,Λk

)
k∈I

of h are realized by solving the systems

hcheb = Tĥ and ĥ =
1

M
T∗hcheb. (5.7.11)

Fast algorithms for the computation of both systems follow the same core ideas as the Al-
gorithms 3.4.1 and 3.4.2 for the Fourier system (3.4.1), because the Chebyshev system at
tent-transformed sampling nodes can be rewritten as a Fourier system sampled at equispaced
points. Therefore, specific regrouping of the Chebyshev coefficients allows the computation
of the d-dimensional matrix-vector-operation (5.7.5) by a single (inverse) FFT. We just have
to incorporate that the frequency sets IdN ∩ Nd0 are now restricted to the first orthant, which
is outlined in [PV15, SNC16, KMNN21].
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Remark 5.7.2. The Chebyshev system (5.7.6) is the result of a minimally adjusted version
of the classical derivation of the Chebyshev polynomials by a cosine periodization strategy
[PPST18, p. 312 ff.].

We consider the domain
[
−1

2 ,
1
2

]
and any continuous function h :

[
−1

2 ,
1
2

]
→ R. The

change of variable 1
2 cos (2π·) : R →

[
−1

2 ,
1
2

]
, that is invertible when restricted to the interval[

0, 12
]
, yields the even 1-periodic function f(·) := h

(
1
2 cos (2π·)

)
: T ≃

[
−1

2 ,
1
2

)
→ R so that

f(x) = f(−x) holds. Therefore, the Fourier coefficients of f can be written as

f̂k :=

∫ 1
2

− 1
2

f(x) e−2πkix dx =

∫ 1
2

− 1
2

f(x) cos (2πkx) dx = 2

∫ 1
2

0
f(x) cos (2πkx) dx.

On the same note, f can be expressed by a cosine series of the form

f(x) =

∞∑

k=−∞
f̂k e

2πkix = f̂0 + 2

∞∑

k=1

f̂k cos (2πkx) .

By reverting the initial change of variable via arccos(2 ·)
2π

:
[
−1

2 ,
1
2

]
→
[
0, 12
]
, we obtain the

expression

h(y) = ĥ0 + 2

∞∑

k=1

ĥk cos(k arccos(2y)),

ĥk = 2

∫ 1
2

− 1
2

h(y) cos(k arccos(2y))
2

π
√
1− 4y2

dy,

so that f̂k = ĥk and we derived the orthogonal Chebyshev polynomials cos(k arccos(2 ·)) :[
−1

2 ,
1
2

]
→ [0, 1]. Additional scaling yields the orthonormal system (5.7.6) with respect to

the weighted scalar product (5.7.7).

Remark 5.7.3. For any univariate torus-to-R transformation ψ :
(
−1

2 ,
1
2

)
→ R as in (4.1.1),

the first derivative ψ′ is by definition diverging towards their boundary points, so that its
density ϱ is converging to 0 at its boundary points. Therefore, it is necessary to consider
a measure function ω that counteracts the boundary singularities of ψ′ in order to obtain a
bounded periodized function as in (4.4.1) of the form h(ψ(·))

√
ω(ψ(·))ψ′(·) after applying a

torus-to-R transformations ψ to a given function h ∈ L2(R, ω).
In contrast, torus-to-cube transformations

□□□
ψ are defined in (5.1.1) in such a way that the

roles of
□□□
ψ′ and

□□□
ϱ are switched. Hence,

□□□
ψ′ already causes transformed functions to be 0 at

their boundary points, which is why we later on resort to constant measure functions ω ≡ 1 in
our numerical tests. Nevertheless, it is generally feasible to consider a non-constant measure
function ω as long as it does not counteract

□□□
ψ′ and causes singularities. Furthermore,

the transformed Fourier systems {φk}k∈Z as in (5.3.2) and (5.5.2) and the corresponding
L2

([
−1

2 ,
1
2

]
, ω
)
-scalar product given in (5.3.3) and (5.5.3) are intended to be a generalize the

Chebyshev system (5.7.6) and its deduction idea that we recalled in Remark 5.7.2.

To show the connection of the transformed Fourier framework with the Chebyshev system,
we put the Chebyshev transformation (5.7.8) into the transformed Fourier system (5.3.2)
despite the fact that it is not a torus-to-cube transformation as in (5.1.1). We consider a
hyperbolic cross I1N as defined in (3.1.5). For x, y ∈

[
−1

2 ,
1
2

]
we choose ψ to be the Chebyshev

transformation (5.7.8) of the form ψ(x) = 1
2 cos (2πx), with the inverse ψ−1(y) = arccos(2y)

2π and
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orthonormal system
{φk(x)}k∈I

scalar
product
weight ω

sampling transformation frequency
set I

√
2
∥k∥0

cos
(
πk
(
x+ 1

2

))
1 ψ(x) =

{
1
2 + 2x for − 1

2 ≤ x < 0,
1
2 − 2x for 0 ≤ x ≤ 1

2 .
I1N ∩ N0

√
2
∥k∥0

cos (k arccos(2x)) 1
π
√
1−4x2

ψ(x) = 1
2 cos (2πx) I1N ∩ N0√

□□□ϱ(x,η)
ω(x,µ) e

2πik □□□ψ
−1(x,η) ω(x, µ)

□□□
ψ(x, η) as in (5.1.1) I1N

Table 5.7.1: Comparison of the univariate orthonormal system, sampling sets and frequency
sets from the Chebyshev, Cosine and transformed Fourier approximation methods.

the density ϱ(y) = 1

π
√

1−4y2
. By putting ω(y) = ϱ(y), the transformed Fourier system (5.3.2)

turns into

φk(y) = eik arccos(2y) = cos(k arccos(2y)) + i sin(k arccos(2y)), k ∈ {−N, . . . , N}, (5.7.12)

and by combining the positive and negative frequencies we obtain

φk(y) =

{
1 for k = 0,

2 cos(k arccos(2y)) for k ∈ {1, 2, . . . , N},

which is orthogonal with respect to the L2

([
−1

2 ,
1
2

]
, ω
)
-scalar product with ω(y) = 1

π
√

1−4y2
.

With some additional scaling we obtain the orthonormal Chebyshev system (5.7.6).

5.7.3 Comparison of the orthonormal systems

The previously presented approximation approaches are based on very different orthonormal
systems and use differently transformed sampling sets, which is summarized in dimension
d = 1 in Table 5.7.1 with the definition of the hyperbolic cross I1N = {−N, . . . , N}, N ∈ N
provided in (3.1.5).

Applying the univariate tent-transformation ψ in (5.7.2) to a sampling set of equispaced
nodes in

[
−1

2 ,
1
2

]
can be interpreted as mirroring a given function h ∈ Ck

([
−1

2 ,
1
2

])
, k ∈ N

at its right boundary point and approximating the resulting continuous periodic function
h◦ψ ∈ C(T) by means of a 1-periodic cosine system. Similarly, the Chebyshev-transformation

(5.7.8) mirrors the original function h ∈ L2

([
−1

2 ,
1
2

]
, 2

π
√

1−4(·)2

)
∩ Ck

([
−1

2 ,
1
2

])
, k ∈ N at

its right boundary point. But, the Chebyshev transformation (5.7.8) is a C∞(T)-function,
so that it is capable of preserving a high order of smoothness and we obtain transformed
function h ◦ ψ ∈ Ck(T). Parametrized torus-to-cube transformations

□□□
ψ(·, η) as in (5.1.4)

adapt this periodization approach by mirroring the original function h ∈ L2

([
−1

2 ,
1
2

]
, ω
)
∩

Ck
([
−1

2 ,
1
2

])
, k ∈ N into an even, continuous and periodic function, but this time the involved

parameter η ∈ R+ controls the smoothening effect on the periodized function, see [NP21a],
which we discussed earlier in Theorems 5.4.1 and 5.4.2.

In Figure 5.7.1 we provide a side-by-side comparison of all the previously mentioned
transformation mappings. In particular, the center and right plot of Figure 5.7.1 showcase
the effect of the parameter η. For larger η we obtain transformations

□□□
ψ(·, η) that converge

faster, their first derivatives
□□□
ψ′(·, η) decay more rapidly towards 0 and their densities

□□□
ϱ(·, η)
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□□□
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2 sin (πx)

□□□
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2 tanh(2 tanh
−1(2x))

□□□
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2 tanh(4 tanh
−1(2x))

−0.5 0 0.5

0

2

4

6

8

10

□□□
ϱ(x) = 2

π
1√
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□□□
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1
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□□□
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3
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(
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1
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)−2
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Figure 5.7.1: Left: The tent-transformation (5.7.2) and the Chebyshev-transformation
(5.7.8). Center and right: The parameterized logarithmic transformation (5.2.1) in com-
parison with the sine transformation (5.2.3), as well as their respective density functions

□
ϱ(·, η), η ∈ {2, 4}.

diverge faster close to their boundary points {−1
2 ,

1
2}. Furthermore, the transformed Fourier

system is based on an integer frequency set in Z, such as the hyperbolic cross I1N , in contrast
to both the cosine and the Chebyshev systems that work with non-negative frequencies in
N0.

5.8 Numerics on the cube

In this section, we approximate a given function h ∈ L2

([
−1

2 ,
1
2

]d
, ω
)
∩ Cmmix

([
−1

2 ,
1
2

]d)
by

the approximated transformed Fourier partial sum given in (5.5.7), as well as by the Cheby-
shev and cosine partial sums SΛ

I h given in (5.7.4) and (5.7.10). For the transformed Fourier
system we apply the parameterized logarithmic and the error function torus-to-cube trans-
formations (5.2.1) and (5.2.2), as well as the sine transformation (5.2.3).

For now, we consider the constant measure function ω ≡ 1, so that the transformed
functions in the sense of (5.4.4) are of the form

f(x,η) = h(
□□□
ψ(x,η))

d∏

j=1

√
□□□
ψ′
j(xj , ηj). (5.8.1)

Suppose h to be in C∞
([

−1
2 ,

1
2

]d)
. We determine the values ηj ∈ R+, j ∈ {1, . . . , d} for

which the f(·,η) in (5.8.1) are an element of Hm(Td) by investigating the smoothness con-
ditions (5.4.2) in Theorem 5.4.1. First of all, we need ηj > 1 to have torus-to-cube trans-
formations

□□□
ψ(·,η) of the form (5.1.1). Due to the constant measure function, checking

conditions (5.4.2) for a given m ∈ N0 simplifies to the task of determining the values ηj ∈ R+

for which we have
∥∥∥∥
(√

□□□
ψ′
j(·, ηj)

)(k)
(·)
∥∥∥∥
L∞([− 1

2
, 1
2 ])

<∞,

as well as

(√
□□□
ψ′
j(xj , ηj)

)(k)
(xj) → 0 for |xj | →

1

2

for all k ∈ {0, . . . ,m}. We obtain the following:
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• For m = 0 we already mentioned in (5.2.1) that the functions
□□□
ψ′
j(·, ηj) are finite for

ηj ≥ 1 and converge to 0 at the boundary points ±1
2 for ηj > 1.

• For natural degrees of smoothnessm them-th derivative of
√

□□□
ψ′
j(·, ηj) is in C0

([
−1

2 ,
1
2

])

if ηj > 2m+ 1.

• For values 2m+1 < ηj < 2m+3 the (m+1)-th and all higher derivatives of
√

□□□
ψ′
j(·, ηj)

are unbounded and in case of ηj = 2m+ 3 they are bounded but not C0
([
−1

2 ,
1
2

])
.

In total, we have for j ∈ {1, . . . , d} that

f ∈
{
L2(Td) for ηj > 1,

Hm(Td) for ηj > 2m+ 1,
(5.8.2)

for the logarithmic and the error function torus-to-cube transformations (5.2.1) and (5.2.2).
In later references to this conclusion we summarize relations such as ηj > 3 for j ∈ {1, . . . , d}
by using the bold notation η > 3 instead.

Switching to the sine transformation (5.2.3) leads to a transformed function f as given in
(5.4.4) of the form

f(x) = h(
□□□
ψ(x))

d∏

j=1

√
□□□
ψ′
j(xj)

= h

(
1

2
sin(πx)

) d∏

j=1

√
π

2
cos(πxj) ∈ H0(Td) = L2(Td), (5.8.3)

for which we can not achieve any higher order of Sobolev smoothness according to Theo-

rem 5.4.2, because all derivatives of all
√

□□□
ψ′
j(◦) are unbounded.

5.8.1 Approximation of a first-order B-spline in dimensions d ∈ {1, 2, 4, 7}
We define a shifted, scaled and dilated B-spline of first order as

B1(x) :=

{
2x+ 1

2 for − 1
2 ≤ x < 1

4 ,

−2x+ 3
2 for 1

4 ≤ x ≤ 1
2 ,

and refer to it as the B1-cutout that is depicted in Figure 5.8.1 and was also considered in
[PV15, NP21a]. The continuous B1-cutout is an element of H 3

2
−ε ([−1

2 ,
1
2

])
for any ε > 0,

which is due to the fact that the Fourier coefficients ĥk = (B1, e
2πik(·))L2([− 1

2
, 1
2 ])

decay like

|k|−2 for k → ±∞. Considering a constant measure function ω ≡ 1, so thatHβ
([
−1

2 ,
1
2

]
, ω
)
=

Hβ
([
−1

2 ,
1
2

])
, the ∥ · ∥Hβ([− 1

2
, 1
2 ])

-norm given in (5.5.8) of the B1-cutout is finite if

∥B1∥2Hβ([− 1
2
, 1
2 ])

=
∑

k∈Z
whc(k)

2β|ĥk|2 =
∑

k∈Z
max{1, |k|}2β 1

|k|4 <∞,

which is the case for

|k|2β−2 ≤ k−(1+ε) ⇔ β ≤ 3

2
− ε, ε > 0.
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Figure 5.8.1: The univariate B1-cutout h1(x) = B1(x) and the two-dimensional tensored
B1-cutout h2(x1, x2) = B1(x1)B1(x2).

An analogue argument shows that we also have B1 ∈ A1−ε ([−1
2 ,

1
2

])
for any ε > 0. We

consider a constant measure function, so that Aβ
([
−1

2 ,
1
2

]
, ω
)
= Aβ

([
−1

2 ,
1
2

])
as defined in

(5.5.9), and the ∥ · ∥Aβ([− 1
2
, 1
2 ])

-norm of the B1-cutout is finite if

∥B1∥Aβ([− 1
2
, 1
2 ])

=
∑

k∈Z
whc(k)

β|ĥk| =
∑

k∈Z
max{1, |k|}β 1

|k|2 <∞,

which is the case for

|k|β−2 ≤ k−(1+ε) ⇔ β ≤ 1− ε, ε > 0.

The tensored B1-cutout is given by

h(x) =

d∏

j=1

B1(xj) (5.8.4)

and will be approximated by the transformed Fourier, cosine and Chebyshev partial sums SΛ
I h

given in (5.5.7), (5.7.4) and (5.7.10). Consequentially, we have h ∈ H 3
2
−ε
([

−1
2 ,

1
2

]d)
and by

Theorem 5.4.2 the maximum integer degree of Sobolev smoothness m that can be preserved
by any torus-to-cube transformation

□□□
ψ is limited to m = 1, where the sine transformation

restricts it even more as we saw in (5.8.3).

We discuss the application of the weighted L∞
([

−1
2 ,

1
2

]d)
-approximation error bound in

Theorem 5.5.1 and the weighted L2

([
−1

2 ,
1
2

]d)
-approximation error bound in Theorem 5.5.2

for dimensions d ∈ {1, 2, 4, 7} with the function h as the tensored first-order B-spline cutout
in (5.8.4), a constant measure function, the logarithmic transformation (5.2.1), the error
function transformation (5.2.2), the sine transformation (5.2.3) and the resulting transformed
functions f of the form (5.8.1). We compare the results with the approximation of h by the
cosine system (5.7.1) and the Chebyshev system (5.7.6). Accordingly, we use the hyperbolic
frequency set IdN as defined in (3.1.5) for all considered transformed Fourier systems, but only
consider the non-negative frequencies of a hyperbolic cross IdN ∩ Nd0 for the Chebyshev and
cosine approximation.

For each transformed system, we generate ten random rank-1 lattices as described in
(3.5.5). We repeat the calculations five times and plot the averages of the errors in Fig-
ure 5.8.2. In each dimension we consider the parameters η ∈ {1.75,2,2.5}. We use
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N ∈ {1, . . . , 140} for d = 1, N ∈ {1, . . . , 80} for d = 2, N ∈ {1, . . . , 50} for d = 4 and
N ∈ {1, . . . , 30} for d = 7. In dimensions d ≥ 4 we initialize [Käm19, Algorithm 6] with
the parameters c = 2, n = 4 and δ = 1

2 to efficiently reconstruct the approximated Fourier

coefficients ĥΛk by means of a transformed multiple rank-1 lattice as in (4.7.8) and to form
the approximated Fourier partial sum SΛ

I h, whereas in dimensions d ∈ {1, 2} we apply Algo-
rithm 3.4.2 based on a single rank-1 lattice as outlined in (5.6.1).

The discrete approximation errors εM2 (h, {yj}Mj=1) and ε
M
∞(h, {yj}Mj=1) as given in (5.6.2)

reveal slightly different behaviors for the various approximation systems with increasing di-
mensions. We begin with the discussion of the error εM∞(h, {yj}Mj=1). In dimension d = 1
only the sine transformed Fourier system stands out by providing the worst error, whereas
the other systems provide a similar error, with the error function Fourier system being the
best. In dimension d = 2 the sine transformed Fourier system improves by being better than
the Chebyshev system, and the error function Fourier system remains the best. In dimension
d = 4 the errors diverge significantly for the first time. The Chebyshev system is now clearly
the worst, followed by the cosine and logarithmically transformed Fourier system. This time,
the sine transformed Fourier system is as good as the error function Fourier system. Finally,
in dimension d = 7 the results are very similar to the ones in dimension d = 4, but the
sine transformed Fourier system turned out to be even better than the error function Fourier
system. We note, that we tested a variety of parameters η ∈ Rd+ and settled on η = 1.75 for
the error function Fourier system as well as on η = 2.5 for the logarithmically transformed
Fourier system because they produced the best approximation results.

For the ℓ2-approximation error εM2 (h, {yj}Mj=1), the results show the major difference
that the error function Fourier system yields the best errors in each dimension. Apart from
that, the other approximations behave quite similar throughout the increasing dimensions.
In particular, the cosine and Chebyshev systems yield identical errors in dimensions d ∈
{1, 2} and the cosine system turns out be slightly better in dimensions d ∈ {4, 7}. The
logarithmically transformed Fourier system is better than both of them in all dimensions.
The error function Fourier system turns out to be the best system throughout all dimensions.
Finally, the sine transformed Fourier system is again the worst one in dimension d ∈ {1, 2},
but it becomes the second best of the considered systems in higher dimensions d ≥ 4.

But it has to be emphasized that the tensored B1-cutout (5.8.4) is transformed into a func-
tion f ∈ H0(Td) of the form (5.4.4) for all considered torus-to-cube transformations

□□□
ψ(·,η)

with these parameter choices according to (5.8.2) and (5.8.3). Therefore, the weighted L∞-
approximation error provided in Theorem 5.5.1 and the weighted L2-approximation error
bound in Theorem 5.5.2 are not applicable as f would have to be at least an H1(Td)-function.
Consequentially, Table 5.8.1 only lists the numerically observed decay rates for d = 1.

Next, we have a look at the error decay rates of εM2 (h, {yj}Mj=1) and εM∞(h, {yj}Mj=1) for
the univariate case d = 1 that were numerically observed. In this specific setup, h is still
the continuous first-order B-spline cutout given in (5.8.4) that is both in A1−ε ([−1

2 ,
1
2

])
and

in H 3
2
−ε ([−1

2 ,
1
2

])
. Hence, theoretically we can achieve at most εM2 (h, {yj}Mj=1) ≲ N− 3

2
+ε

and εM∞(h, {yj}Mj=1) ≲ N−1+ε for any ε > 0 when approximating h with respect to any
transformed Fourier system. As it turns out, we achieve these decay rates numerically for
both errors when using the cosine and the Chebyshev system and are furthermore able to
match these rates with the transformed Fourier system when considering the logarithmic
transformation with η = 2.5 and the error function transformation with η = 1.75. On the
other hand, the sine transformed and the logarithmically transformed Fourier system with
η = 2 lose half an order in both error decay observations. In total, we observe that some
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Figure 5.8.2: Comparison of εM2 (h, {yj}Mj=1) and εM∞(h, {yj}Mj=1) of the tensored first-order
B-spline (5.8.4) approximated by various orthonormal systems in dimensions d ∈ {1, 2, 4, 7}.

transformed Fourier systems are able to achieve the same decay rates as the Chebyshev
system, when we use parameterized torus-to-cube transformations

□□□
ψ(·, η) and pick a large
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Numerical observation
transformation εM2 εM∞
(5.7.1) cosine system N− 3

2 N−1

(5.7.6) Chebyshev system N− 3
2 N−1

(5.2.3) sine transf. Fourier N−1 N− 1
2

(5.2.1) log transf. Fourier, η = 2 N−1 N− 1
2

(5.2.1) log transf. Fourier, η = 2.5 N− 3
2 N−1

(5.2.2) error fct. transf. Fourier, η = 1.75 N− 3
2 N−1

Table 5.8.1: The observed decay rates of the discrete approximation errors εM2 (h, {yj}Mj=1)

and εM∞(h, {yj}Mj=1) as given in (5.6.2) when h is the univariate first order B-spline cutout B1

as defined in (5.8.4).

enough parameter η ∈ R+. The results are summarized in Table 5.8.1.
It is particularly interesting to observe that the sine transformed Fourier system has the

slowest decay rate of all considered orthonormal system, while it yields the best or second
best approximation errors in Figure 5.8.2. In total, the obtained error decay rates emphasize
that the smoothness properties (5.8.2) only provide worst case lower parameter bounds.

5.8.2 Approximation of a second-order B-spline in dimensions d ∈ {1, 2, 4, 7}
We define a shifted, scaled and dilated B-spline of second order as

B2(x) :=

{
−x2 − x+ 1

2 for − 1
2 ≤ x < 0,

x2

2 − x+ 1
2 for 0 ≤ x ≤ 1

2 ,

and call it B2-cutout, that is depicted in Figure 5.8.3 and was also considered in [PV15,

NP21b]. The continuous B2-cutout is an element of H 5
2
−ε ([−1

2 ,
1
2

])
for any ε > 0, which

is due to the fact that the Fourier coefficients ĥk = (B2, e
2πik(·))L2([− 1

2
, 1
2 ])

decay like |k|−3

for k → ±∞. Considering a constant measure function ω ≡ 1, so that Hβ
([

−1
2 ,

1
2

]d
, ω
)
=

Hβ
([

−1
2 ,

1
2

]d)
, the ∥ · ∥Hβ

(
[− 1

2
, 1
2 ]
d
)-norm, given in (5.5.8), of the B2-cutout is finite if

∥B2∥2Hβ
(
[− 1

2
, 1
2 ]
d
) =

∑

k∈Z
whc(k)

2β|ĥk|2 =
∑

k∈Z
max{1, |k|}2β 1

|k|6 <∞,

which is the case for

|k|2β−6 ≤ k−(1+ε) ⇔ β ≤ 5

2
− ε, ε > 0.

An analogue argument shows that we also have B2 ∈ A2−ε ([−1
2 ,

1
2

])
for any ε > 0. We

consider a constant measure function ω ≡ 1, so that Aβ
([

−1
2 ,

1
2

]d
, ω
)
= Aβ

([
−1

2 ,
1
2

]d)
as

defined in (5.5.9), and the ∥ · ∥Aβ
(
[− 1

2
, 1
2 ]
d
)-norm of the B2-cutout is finite if

∥B2∥Aβ
(
[− 1

2
, 1
2 ]
d
) =

∑

k∈Z
whc(k)

β|ĥk| =
∑

k∈Z
max{1, |k|}β 1

|k|2 <∞,
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Figure 5.8.3: The univariate B2-cutout h1(x) = B2(x) and the two-dimensional tensored
B2-cutout h2(x1, x2) = B2(x1)B2(x2).

which is the case for

|k|β−3 ≤ k−(1+ε) ⇔ β ≤ 2− ε, ε > 0.

The tensored B2-cutout is given by

h(x) =
d∏

j=1

B2(xj) (5.8.5)

and will be approximated by the transformed Fourier, cosine and Chebyshev partial sums SΛ
I h

given in (5.5.7), (5.7.4) and (5.7.10). Consequentially, we have h ∈ H 5
2
−ε
([

−1
2 ,

1
2

]d)
and by

Theorem 5.4.2 the maximum integer degree of Sobolev smoothness m that can be preserved
by any torus-to-cube transformation

□□□
ψ is limited to m = 2, where the sine transformation

restricts it even more as we saw in (5.8.3).

We discuss the application of the weighted L∞
([

−1
2 ,

1
2

]d)
-approximation error bound in

Theorem 5.5.1 and the weighted L2

([
−1

2 ,
1
2

]d)
-approximation error bound in Theorem 5.5.2

for d ∈ {1, 2, 4} with the given function h in (5.8.5), a constant measure function ω, the
logarithmic transformation (5.2.1), the error function transformation (5.2.2), the sine trans-
formation (5.2.3) and the resulting transformed functions f of the form (5.8.1). We compare
the results with the approximation of h by the cosine system (5.7.1) and the Chebyshev
system (5.7.6). Accordingly, we use the hyperbolic frequency set IdN as defined in (3.1.5) for
all considered transformed Fourier system, but only consider the non-negative frequencies of
a hyperbolic cross IdN ∩ Nd0 for the Chebyshev and cosine approximation.

For each transformed system, we generate ten random rank-1 lattices as described in
(3.5.5). We repeat the calculations five times and plot the averages of the errors in Fig-
ure 5.8.4. In each dimension we consider the parameters η ∈ {2,4}. We use N ∈ {1, . . . , 140}
for d = 1, N ∈ {1, . . . , 80} for d = 2, N ∈ {1, . . . , 50} for d = 4 and N ∈ {1, . . . , 30} for d = 7.
In dimension d = 4 we initialize [Käm19, Algorithm 6] with the parameters c = 2, n = 4 and
δ = 1

2 to efficiently reconstruct the approximated Fourier coefficients ĥΛk by means of a trans-
formed multiple rank-1 lattice as in (4.7.8) and to form the approximated Fourier partial sum
SΛ
I h, whereas in dimensions d ∈ {1, 2} we apply Algorithm 3.4.2 based on a single rank-1

lattice as outlined in (5.6.1).
For both discrete approximation errors εM2 (h, {yj}Mj=1) and εM∞(h, {yj}Mj=1) as given in

(5.6.2) we obtain a similar behavior in each dimension. In dimensions d = 1 and d = 2 we
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observe the proposed behavior in (5.8.2) as the approximation errors are significantly better
for η = 4 than for η = 2, indicating the increased smoothening effect of both the logarithmic
and the error function transformation. In dimension d = 4, the errors for η = 4 turn out to
be worse than for η = 2. On the other hand, the sine transformation yields the worst error
decays in each dimension as we expected. The Chebyshev approximation turns out to be a
solid candidate to approximate the B-spline cutout (5.8.5).

In this specific setup, we also checked the error behavior for other parameters η ∈
{2.1,2.2, . . . ,3.8,3.9,4.1,4.2, . . . ,4.9,5}. As it turns out, η = 4 is the best choice for
the logarithmic transformation and for the error function transformation the best choice is
η = 2.5. However, only the error function transformation is able to match the approximation
error of the Chebyshev approximation.

But it has to be emphasized that the tensored B2-cutout (5.8.5) is transformed into a func-
tion f ∈ H0(Td) of the form (5.4.4) for all considered torus-to-cube transformations

□□□
ψ(·,η)

with parameters 1 < η ≤ 3, and into a function f ∈ H1(Td) for parameters η > 3 ac-
cording to (5.8.2) and (5.8.3). Therefore, the weighted L∞-approximation error provided in
Theorem 5.5.1 and the weighted L2-approximation error bound in Theorem 5.5.2 are of the
form

εM2 (h, {yj}Mj=1) ≈
∥∥∥h− SΛ

IdN
h
∥∥∥
L2

(
[− 1

2
, 1
2 ]
d
) ≲ N−1(logN)(d−1)/2 for η > 3,

and

εM∞(h, {yj}Mj=1) ≈
∥∥∥h− SΛ

IdN
h
∥∥∥
L∞

(
[− 1

2
, 1
2 ]
d
,
√

1

□□□ϱ(·,η)

) ≲ N0 for η > 3,

which is listed in Table 5.8.2 for d = 1, accordingly.
Again, we investigate the error decay rates of εM2 (h, {yj}Mj=1) and ε

M
∞(h, {yj}Mj=1) for the

univariate case d = 1 that were numerically observed. In this specific setup, h is still the
continuous second-order B-spline cutout given in (5.8.5) that is both in A2−ε ([−1

2 ,
1
2

])
and

in H 5
2
−ε ([−1

2 ,
1
2

])
. Hence, theoretically we can achieve at most εM2 (h, {yj}Mj=1) ≲ N− 5

2
+ε

and εM∞(h, {yj}Mj=1) ≲ N−2+ε for any ε > 0 when approximating h with respect to any trans-
formed Fourier system. In contrast to the previous case with the B1 cutout, we only achieve
these decay rates numerically with the Chebyshev system and with the transformed Fourier
system when considering the logarithmic transformation with η ∈ {2.5, 4}. Interestingly, the
decay rates of the cosine system remain at N−1 and N−1.5, respectively, even though the
approximated function h gained a smoothness order. In comparison, the sine transformed
Fourier system loses one and a half orders, whereas the logarithmically transformed Fourier
system with η = 2 loses half an order in both error decay observations, which is slightly
improved for η = 4. In total we observe that some transformed Fourier systems are able to
achieve the same decay rates as the Chebyshev system, when we use parameterized torus-
to-cube transformations

□□□
ψ(·, η) and pick a large enough parameter η ∈ R+. The results are

summarized in Table 5.8.2.

5.8.3 Sparse frequency sets

In Figure 4.7.5 we saw that torus-to-Rd transformations are capable of distorting any given
signal so much, that the frequency set of the periodized function changes fundamentally. For
torus-to-cube transformations the same effect might occur. Therefore, we again incorporate
a dimension incremental construction method [Vol15, PV16] to reconstruct a multivariate
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Figure 5.8.4: Comparison of εM2 (h, {yj}Mj=1) and ε
M
∞(h, {yj}Mj=1) of the tensored second-order

B-spline (5.8.5) approximated by various orthonormal systems in dimensions d ∈ {1, 2, 4, 7}.

trigonometric polynomial h with an unknown support in a frequency domain I ⊂ Zd by some
partial sum SIh(·) =

∑
k∈I ĥk φk(·) with some orthonormal system {φk}k∈I . As a reminder,
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upper bound by
Thm. 5.5.1 and

Thm. 5.5.2 Numerical observation
transformation εM2 εM∞ εM2 εM∞
(5.7.1) cosine system N−1.5 N−1

(5.7.6) Chebyshev system N−2.45 N−2

(5.2.3) sine transf. Fourier N−1 N−0.5

(5.2.1) log transf. Fourier, η = 2 N−1 N−0.5

(5.2.1) log transf. Fourier, η = 4 N−1 N0 N−2.25 N−1.5

(5.2.2) error fct. transf. Fourier, η = 2 N−1.9 N−1.4

(5.2.2) error fct. transf. Fourier, η = 2.5 N−2.55 N−2

(5.2.2) error fct. transf. Fourier, η = 4 N−1 N0 N−2.5 N−2

Table 5.8.2: The worst case upper bounds proposed in Theorems 5.5.1 and 5.5.2 in compar-
ison with the observed decay rates of the discrete approximation errors εM2 (h, {yj}Mj=1) and

εM∞(h, {yj}Mj=1) as given in (5.6.2) when h is the univariate second order B-spline cutout B2

as defined in (5.8.5).

the approach of [PV16, Algorithm 1 and Algorithm 2] determines the s ∈ N approximately
largest Fourier coefficients p̂k within a fixed search space [−N,N ]d∩Zd with N ∈ N and s≪
(2N + 1)d. For transformed reconstructing rank-1 lattices Λ

□□□ψ(·,η)(z,M, I) these algorithms

are adapted by calculating the relative discretized approximation errors εM2 (h, {yj}Mj=1) and

εM∞(h, {yj}Mj=1) with samples
(
h(yj)

√
ω(yj ,µ)

□□□ϱ(yj ,η)

)M−1

j=0
and

(√
ω(yj ,µ)

□□□ϱ(yj ,η)
SΛ
I h(yj)

)M−1

j=0
and by us-

ing an unknown frequency set I = Jds with cardinality s = |IdN | that was constructed via a
dimensional incremental construction method as outlined above.

For this application we consider the function

h(y) = y1 + y2 + y23 + y24 + y5y6y7, (5.8.6)

which indicates some structure of the underlying frequency set. We know, that the frequency
set of the function h1(y1, y2) = y1 + y2 is a scaled ℓ21-ball, the frequency set of the function
h2(y3, y4) = y23 + y24 is a scaled ℓ22-ball and the frequency set of the function h3(y5, y6, y7) =
y5y6y7 is a hyperbolic cross I3N . However, we will not use this information and let the
dimension incremental construction method [Vol15, PV16] determine a suitable frequency
set J7

s . We consider the error function Fourier system (5.2.2) with parameters η ∈ {2,3} for
both the hyperbolic cross I7N and the constructed sparse frequency sets J7

s with s = |I7N | for
N ∈ {1, . . . , 15}. The resulting ℓ2-errors ε

M
2 (h, {yj}Mj=1) in Figure 5.8.5 show, that we obtain

a slightly better approximation error for η = 2, whereas the error improves significantly for
η = 3 when using the sparse frequency set J7

s .

5.9 Summary of the numerics on the cube

We compared the approximation results of the half-periodic cosine system (5.7.1) and Cheby-
shev system (5.7.6) with the transformed Fourier systems given in (5.3.2) and (5.5.2), that we
derived within a specific periodization strategy to transform functions in the function space

L2(
[
−1

2 ,
1
2

]d
, ω(·,µ)) ∩ Cmmix

([
−1

2 ,
1
2

]d)
into smooth functions in Hm(Td) via a torus-to-cube

transformation
□□□
ψ :
[
−1

2 ,
1
2

]d →
[
−1

2 ,
1
2

]d
as given in (5.1.1). Similarly to the numerics on Rd,
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Figure 5.8.5: Comparison of εM2 (h, {yj}Mj=1) of the function (5.8.6) approximated by the error

function Fourier systems with η = 2 and η = 3 for the hyperbolic cross set I7N and the sparse
frequency set J7

s .

a main objective was to define variable torus-to-cube transformations
□□□
ψ(·,η),η ∈ Rd+, which

leads to parameterized transformed Fourier systems, and to determine the parameter values
for which we obtain the best ℓ2- and ℓ∞-approximation results. A first experiment in up to
dimension d = 7 with the first order B-spline cutout B1 in (5.8.4) showed, that the error
function transformation (5.2.2) is capable to induce a transformed Fourier system, which re-
sulted in a significantly better ℓ2-approximation error εM2 (·, {yj}Mj=1) as defined in (5.6.2) than
the Chebyshev system, as shown in Figure 5.8.2. At the same time, the ℓ∞-approximation
error εM∞(·, {yj}Mj=1) as given in (5.6.2) of the Chebyshev system remained the best of all
considered. A second experiment in up to dimension d = 7 with the smoother second or-
der B-spline cutout B2 in (5.8.5) showed that in lower dimensions, the transformed Fourier
system induced by the error function transformation is capable to match the approximation
errors of the Chebyshev system. In higher dimensions d ≥ 4, the Chebyshev system yielded
significantly better approximation results than any other considered orthonormal system. In
a third test in dimension d = 7 with the polynomial (5.8.6), we again adapted a dimension
incremental construction method to determine sparse frequency sets and indeed obtained
significant improvements for the ℓ2-approximation with the error function transformation, as
showcased in Figure (5.8.5).

We observed, that even though the L∞-conditions (5.4.5) on
□□□
ψ(·,η) and ω(·,µ) in The-

orem 5.4.2 are rather easy to check, the resulting parameter bounds for η and µ are worst
case bounds and are only more or less optimal, which has to be checked individually in any
specific example. On a similar note, the upper approximation error bounds of Theorems 5.5.1
and 5.5.2 are worst case upper bounds, too, so that the constants occurring in the error esti-
mates may have some bad growth behavior for certain combinations of

□□□
ψ(·,η) and ω(·,µ),

potentially causing some problematic decay behavior.

Even though we overall obtained that it is possible to create orthonormal systems that
yield better approximation results than the Chebyshev system, the structure and growth
behavior of the constants in the error estimates has to be studied more thoroughly. Also,
the measure function ω needs more attention. We highlighted in (5.7.12) that the induced
transformed Fourier systems are a generalization of the well-known orthonormal systems such
as the Chebyshev system, but there could be other relevant orthonormal systems in which
the density

□□□
ϱ and measure function ω are not the same. Afterwards. extending the influence
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of the measure function on the derivatives of h might be interesting, too.
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p
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6
Conclusion

In this work, we consider the approximation of functions f : Ω → C define on the domains Ω ∈
{Td,Rd,

[
−1

2 ,
1
2

]d} by trigonometric and transformed trigonometric functions, respectively.
We investigate which of the many results known from the approximation theory on the torus

Td can be transfered to the domains {Rd,
[
−1

2 ,
1
2

]d}.
We establishe invertible torus-to-Rd transformations ψ(·,η) :

(
−1

2 ,
1
2

)d → Rd,η ∈ Rd+ and
prove conditions for which we obtaine a periodization mapping of the form

L2(Rd, ω(·,µ)) ∩Hm
mix(Rd) ∋ h 7→ f ∈ Hm(Td)

with f := h(ψ(·,η))
√
ω(ψ(·,η),µ) ∏d

j=1 ψ
′
j(·, ηj), µ ∈ Rd+, so that ∥h∥L2(Rd,ω) = ∥f∥L2(Td).

We evaluate these periodization conditions for two specific mappings ψ(·,η) and calculate the
parameter values η,µ for which the Sobolev smoothness m of the function h was preserve un-
der the transformation ψ(·,η). By means of the inverse torus-to-Rd transformations ψ−1(·,η)
we transfer crucial properties and algorithms for the approximation of periodic functions on
the torus Td to the considered function class on Rd. In particular, we prove weighted worst
case upper approximation error bounds and described fast algorithms for the evaluation and
reconstruction of transformed trigonometric functions on Rd based on transformed rank-1
lattices Λψ(·,η)(z,M). In numerical tests in up to dimension d = 8 we calculate discrete ℓ2-

and ℓ∞-approximation errors for torus-to-Rd transformations of algebraic and exponential
type. Both setups confirm the theoretical proposition that a sufficient increase of the pa-
rameters µ,η leads to more Sobolev smoothness being preserve by the particular torus-to-Rd
transformation and to a faster approximation error decay. However, in higher dimensions
d ≥ 4 we face the problem that the considered periodiziation strategy distort the originally
considered function h too much, resulting in the constants appearing in the error estimates
to grow too fast. So, we switch to an adapted dimension incremental construction method to
obtain an initially unknown optimal frequency set I ⊂ Zd containing the largest frequencies
of the periodized function. Afterwards, we apply an adapted sparse FFT algorithm for which
the numerical results improve and again showcase the previously expected behavior of faster
error decays for larger parameters.

Based on the insight we got from torus-to-Rd transformations ψ(·,η), we extend the core

ideas of this periodization strategy to non-periodic signals on the cube
[
−1

2 ,
1
2

]d
and pro-

ceeded in a similar fashion. We introduce invertible torus-to-cube transformations
□□□
ψ(·,η) :[

−1
2 ,

1
2

]d →
[
−1

2 ,
1
2

]d
and prove conditions for which we obtain a periodization mapping of
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the form

L2

([
−1

2
,
1

2

]d
, ω(·,µ)

)
∩ Cmmix

([
−1

2
,
1

2

]d)
∋ h 7→ f ∈ Hm(Td)

with f := h(
□□□
ψ(·,η))

√
ω(

□□□
ψ(·,η),µ) ∏d

j=1 □□□
ψ′
j(·, ηj), so that ∥h∥

L2

(
[− 1

2
, 1
2 ]
d
,ω
) = ∥f∥L2(Td).

We evaluate these periodization conditions for two specific mappings
□□□
ψ(·,η) and calculate

the parameter values η,µ ∈ Rd+ for which the Sobolev smoothness m of the function h are
preserved by the transformation

□□□
ψ(·,η). By means of the inverse torus-to-cube transfor-

mations
□□□
ψ−1(·,η) we adapt certain properties and fast algorithms for the approximation of

periodic functions on the torus Td to the considered function class on the cube
[
−1

2 ,
1
2

]d
.

In particular, we prove weighted worst case upper approximation error bounds and describe

fast algorithms for the evaluation and reconstruction of trigonometric functions on
[
−1

2 ,
1
2

]d
based on transformed rank-1 lattices Λ

□□□ψ(·,η)(z,M). In multiple numerical tests in up to di-
mension d = 7 we calculate discrete ℓ2- and ℓ∞-approximation errors for three torus-to-cube
transformed Fourier systems in comparison with the classical half-periodic cosine system and
the Chebyshev polynomials. As it turns out, for specific parameter choices the error function
transformed Fourier system was able to match the approximation quality of the Chebyshev
system, and even yielding better approximation results in some cases.

In both frameworks we observe that the parameter ranges for η,µ ∈ Rd+ are comparably
coarse for our particular examples. However, the strength of our periodization approach lies
in its generality as it was valid for the whole considered function spaces. Furthermore, a
huge advantage is the availability of fast algorithms for the calculation of the discretized
approximation errors.
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[BDuSU16] G. Byrenheid, D. Dũng, W. Sickel, and T. Ullrich. Sampling on energy-norm based
sparse grids for the optimal recovery of Sobolev type functions in Hγ . J. Approx. Theory,
207:207–231, 2016. (Cited on page 6.)

[Bel61] R. E. Bellman. Adaptive control processes — A guided tour. Princeton University Press,
Princeton, New Jersey, U.S.A., 1961. (Cited on page 6.)

[BH92] M. Beckers and A. Haegemans. Transformation of Integrands for Lattice Rules, pages
329–340. Springer Netherlands, Dordrecht, 1992. (Cited on page 7.)

[BKP20] M. Bochmann, L. Kämmerer, and D. Potts. A sparse FFT approach for ODE with
random coefficients. Adv. Comput. Math., 46(5):1–21, 2020. (Cited on page 23.)

[BKUV17] G. Byrenheid, L. Kämmerer, T. Ullrich, and T. Volkmer. Tight error bounds for rank-1
lattice sampling in spaces of hybrid mixed smoothness. Numer. Math., 136:993–1034,
2017. (Cited on pages 6 and 21.)

[Boy00] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Press, New York, NY, USA,
second edition, 2000. (Cited on pages 7 and 29.)

[CIK21] B. Choi, M. A. Iwen, and F. Krahmer. Sparse Harmonic Transforms: A New Class of
Sublinear-Time Algorithms for Learning Functions of Many Variables. Found. Comput.
Math., 21(2):275–329, 2021. (Cited on page 6.)

[CKN10] R. Cools, F. Y. Kuo, and D. Nuyens. Constructing lattice rules based on weighted degree
of exactness and worst case error. Computing, 87:63–89, 2010. (Cited on pages 6 and 19.)

93



94 Bibliography

[CKNS16] R. Cools, F. Y. Kuo, D. Nuyens, and G. Suryanarayana. Tent-transformed lattice rules
for integration and approximation of multivariate non-periodic functions. J. Complexity,
36:166–181, 2016. (Cited on pages 7 and 73.)

[CN04] R. Cools and D. Nuyens. Fast algorithms for component-by-component construction of
rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput.,
75:903–920, 2004. (Cited on page 6.)

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for machine calculation of complex Fourier
series. Math. Comput., 19:297–301, 1965. (Cited on page 6.)

[CZ07] F. Cucker and D. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cam-
bridge monographs on applied and computational mathematics. Cambridge University
Press, 2007. (Cited on page 25.)

[DE17] P. Dencker and W. Erb. Multivariate polynomial interpolation on Lissajous-Chebyshev
nodes. J. Approx. Theory, 219:15–45, 2017. (Cited on page 75.)

[DGSY17] J. Dick, T. Goda, K. Suzuki, and T. Yoshiki. Construction of interlaced polynomial lattice
rules for infinitely differentiable functions. Numer. Math., 137(2):257–288, 2017. (Cited
on page 6.)

[DILP18] J. Dick, C. Irrgeher, G. Leobacher, and F. Pillichshammer. On the optimal order of
integration in hermite spaces with finite smoothness. SIAM J. Numer. Anal., 56(2):684–
707, 2018. (Cited on page 7.)

[DKS13] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte
Carlo way. Acta Numer., 22:133–288, 2013. (Cited on page 6.)

[DNP14] J. Dick, D. Nuyens, and F. Pillichshammer. Lattice rules for nonperiodic smooth inte-
grands. Numer. Math., 126:259–291, 2014. (Cited on pages 7 and 73.)

[DP21] J. Dick and F. Pillichshammer. Weighted integration over a hyperrectangle based on
digital nets and sequences. J. Comput. Appl. Math., 393:113509, 2021. (Cited on page 7.)
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