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Chapter 1

Introduction

Data gathering is a constant in human history with examples like the use of
tally marks to keep track of live stock, the documentation of the position of
celestial bodies, or equipping everyday items with sensors in an internet-of-
things fashion. Mathematically speaking, the recording of such observations
resemble discrete measurements of a function. With the evergrowing supply
of data, the tabular form is overwhelming for a human to interpret in its raw
form. The field of data science enters here to simplify given data in order to
answer specific questions about their analysis. At the core lies the conversion
of discrete measurements into a function. This can be as simple as connecting
dots in a graph, but as soon as the scenario is a little more advanced, tools
from approximation theory and numerical analysis should be deployed.

In this thesis we have an in-depth look into one approach to tackle this
function approximation problem: the least squares approximation method,
which dates back to around 1800. It approximates functions based on discrete
and possibly noisy function evaluations. Despite its age, it is present in every
numerical toolbox, implemented in embedded systems as well as high-level
computers, and is used countless times on a daily basis. The popularity of the
least squares approximation method gave rise to lots of interesting questions
with many being the goal of current research. More than 200 years after the
discovery of the algorithm there are still over 250 new publications about least
squares approximation listed in the online bibliographic database MathSciNet
on a yearly basis.

Our goal is to give a short introduction to this topic. This allows us to
present the current state of the theory, where we contribute new results in
several different areas aiming to advance the theoretical validation of least
squares approximation being an all around viable method which can be tai-
lored to a broad range of applications. We confirm our theoretical findings
with numerical experiments which are reproducible and publicly available
at https://github.com/felixbartel/dissertation. Next, we
present an outline in a chapter-based form as we touch distinctive areas of
research.
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Outline of the thesis

Chapter 2: Least squares approximation. At the core of this thesis is the
least squares approximation method. For points X = {x1, . . . ,xn}, values
y = (y1, . . . , yn)

T, and a function space V it is defined by

SX
V y := argming∈V

n∑
i=1

|yi − g(xi)|2 .

Looking into the history of least squares approximation, there is a fiery ex-
change of letters about the origins of the method itself, which we will briefly
present. We will touch upon some predecessors of least squares approxima-
tion, address its prevalence over the years, and its impact today. Based on
an introductory example about polynomial approximation to get the idea, we
discuss how to elevate the concept to match today’s requirements and present
the method as we will use it throughout the thesis. Further, we comment
on some details of the implementation and computational complexity of the
underlying algorithm.

Chapter 3: Reproducing kernel Hilbert spaces (RKHS). As a general
function may differ arbitrarily in every single point and in our problem setting
we start from a discrete set of function evaluations, which is either chosen
as in Chapter 7 or given as in Chapter 8, the problem of approximation from
samples cannot be approached without some sort of restriction. We model
the prior assumptions by requiring that the target function belongs to a class
of functions describing the smoothness thereof. In particular, we will shortly
introduce the theory of reproducing kernel Hilbert spaces (RKHSs), which
supply a decisive set of tools under minimal assumptions in order to define a
concept of smoothness. As the name suggests, every RKHS is coupled with a
kernel function. We first construct the RKHS from a given series representation
of the kernel, more specifically from a Mercer representation. As examples
of this sort may be academical, we gather tools from the spectral theory of
compact operators to obtain the reverse direction. With that we show that
RKHSs, which are compactly embedded into the space of square-integrable
functions L2, have a kernel with a weak Mercer representation. This will, in
turn, yield a basis for all common RKHSs which simultaneously is a basis of
L2 up to normalization and usable in least squares approximation.

On this note, we will give examples which will return in the latter ex-
periments. Starting with the one-dimensional setting, we will introduce
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unweighted Sobolev spaces on the torus T and unit interval [0, 1] moti-
vated by the solution of an ordinary differential equation. We pose a basis
for the non-periodic Sobolev space of smoothness two H2([0, 1]) in Theo-
rem 3.27. In theory, this basis was known before but not used in practice
due to its numerical instability, cf. [AIN12, Section 3]. We propose an ap-
proximation consisting of cosine and exponential terms with negative argu-
ment, which is numerically stable. We prove its accuracy in Theorem 3.28
and put it to test in various numerical experiments, cf. Sections 8.3.2, 8.4,
and 9.3.2. This is a practical extension of the popular half-period cosine basis,
cf. [WW09, IN08, Adc10b, AH11, DNP14, SNC16, CKNS16, KMNN21],
and is useful for the approximation of functions with traditional Sobolev
smoothness s ≥ 2 yielding better accuracy for smaller polynomial degree.
Further, we will introduce weighted Sobolev spaces with polynomial basis
on the unit interval. We elevate these spaces to higher dimensions presenting
isotropic Sobolev spaces, Sobolev spaces with dominating mixed smoothness,
as well as the concept of analysis of variance (ANOVA). Each being more
restrictive and more applicable in high-dimensional approximation.

Chapter 4: Concentration inequalities. Since randomness gained popu-
larity by significantly pushing forward results in compressive sensing, the
techniques spread over to other research areas with numerical analysis being
no exception. It often seems to be an indispensable tool to show improved
bounds by abandoning the deterministic component and certainty of results.
Where results stated in expectation give a first idea to what is possible, in the
current state of research one is interested in bounds holding with high probabil-
ity. Even though there exist realizations of the involved random variables such
that the statement would not hold, knowing that it fails, e.g. only in one out of
1 000 cases is often sufficient and can be fine tuned on demand. Bounds of this
from are known as concentration results with the famous Markov inequality
being a basic example. There, the fail probability or tail decreases linearly
whereas an exponentially decaying tail is preferable. In this chapter we present
a small collection of concentration inequalities of this sort, which are key
tools in the proofs of the later approximation results. Next to Bernstein’s
inequality, we prove a complex version of the Hanson-Wright inequality for
quadratic forms Theorem 4.2, and pose McDiarmid’s inequality for general
vector valued functions. Further, we present bounds for the spectral norm of
possibly infinite-dimensional matrices.
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Chapter 5: Subsampling of finite frames. The goal in function approxi-
mation is to achieve a small error in some norm defined on the whole domain,
i.e., a quantity where every single point matters. The discrete set of points, in
which we have given function evaluations for the sampling problem, is a subset
thereof. Therefore, the task can be understood as a subsampling procedure
while trying to keep the inherent information. Abstracting this concept to
basic linear algebra, we formulate the subsampling question in terms of finite
frames, i.e., a set of vectors y1, . . . ,yM ∈ Cm such that for 0 < A ≤ B <∞
it holds

A∥a∥2 ≤
M∑
i=1

|⟨a,yi⟩|2 ≤ B∥a∥2 for all a ∈ Cm ,

where M is the frame size and m the frame dimension. Here, we are interested
in optimal subframes (yi)i∈J in the sense of having only a small number |J |
of frame elements in comparison to the dimension m of the frame, where
m ≤ |J | is a natural limit. With the random tools form Chapter 4 we show
in Theorem 5.1 that a random weighted subframe of size |J | ∼ m logm,
drawn with respect to a special distribution, keeps the condition of the frame
intact. The remaining logarithmic gap can be closed using deterministic
subsampling techniques related to the recent solution of the famous Kadison-
Singer problem to achieve |J | ∼ m. However, this is a pure existence result
and not constructive, cf. [MSS15]. We present the BSS-algorithm (named after
J. D. Batson, D. A. Spielman, and N. Srivastava in [BSS09]), a constructive
approach with polynomial runtime bringing the frame size |J | arbitrarily close
to the frame dimension m in Theorem 5.3.

In order to apply these techniques to the sampling problem the weights
coming from the subsampling present a hurdle. We modify the density of
the random subsampling such that we loose the weights in Theorem 5.7 with
logarithmic oversampling. Further, by constructing an extension of the frame
in Theorem 5.9, we apply the BSS-algorithms in such a way, that we obtain
an unweighted subset of the original frame with linear oversampling whilst
saving the lower frame bound. In particular, for a target oversampling factor
b > 1 + 1

m , we construct a set of indices J ⊆ {1, . . . ,M} in Theorem 5.8
such that |J | ≤ ⌈bm⌉ and

1

M

M∑
i=1

|⟨a,yi⟩|2 ≤ 89
(
√
b+ 1)2

(
√
b− 1)3

1

m

∑
i∈J

|⟨a,yi⟩|2 for all a ∈ Cm .

Consequently, if the original vectors have a lower frame bound, the subset
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(yi)i∈J does as well. We round this section up by testing the proposed algo-
rithms with numerical examples.

Chapter 6: L2-Marcinkiewicz-Zygmund (MZ) inequalities. In this sec-
tion we discuss the equivalence of continuous L2-norms with discrete norms
based on a finite number of function evaluations. This equivalence, known
as L2-Marcinkiewicz-Zygmund (MZ) inequalities, can only hold on a finite-
dimensional function space where it is a crucial tool to show L2-error bounds
when working with discrete samples. A set of points X = {x1, . . . ,xn} and
weights W = diag(ω1, . . . , ωn) fulfill an L2-MZ inequality with constants
0 < A ≤ B <∞ for a finite-dimensional function space V , if

A∥f∥2L2
≤

n∑
i=1

ωi|f(xi)|2 ≤ B∥f∥2L2
for all f ∈ V .

In many specific settings, there are deterministic examples of L2-MZ inequali-
ties with an inherent structure, which makes fast algorithms for computations
with these points applicable, as we will see in Section 6.2. Exact quadra-
ture points also fall into this category, cf. Theorem 6.3. Their existence was
thouroughly studied, see e.g. [Tem18, KKLT22]. We will present a generic
way in Theorem 6.4 to construct points fulfilling these connections based
on a universal random construction with tools from Chapter 4 such that the
number of required points n is logarithmicly more than the dimension of the
underlying function space dim(V ). This gives a vast zoo of available starting
points to use in least squares approximation.

We emphasize on the equivalence between frames, L2-MZ inequalities, and
the condition of the least squares matrix in Theorem 6.2. Switching to the
frame characterization, we are able to apply the subsampling techniques from
Chapter 5 in order to reduce the number of points to merely linear oversampling
n ∼ dim(V ) whilst keeping the approximation properties. In the end, we
use these points in least squares approximation, where the good conditioning,
resembled in the condition of the least squares matrix, cf. Theorem 6.1, yields
good error bounds and limits the necessary number of iterations for a good
solution, cf. Theorem 2.3.

Chapter 7: Least squares in the worst-case setting. In this chapter we
have all tools at hand in order to approach the main task of proving error
bounds for function approximation. We investigate the worst-case setting,
namely, we seek a set of points which is usable to approximate not only one
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function but all elements of a class of functions. For a function class F , this is
quantified by the (linear) sampling width

gn(F,L2(D, ϱT )) := inf
x1,...,xn−1∈D
φ1,...,φn−1∈L2

sup
∥f∥F≤1

∥∥∥f −
n−1∑
i=1

f(xi)φi

∥∥∥
L2

,

which model the best set of points and linear algorithm for approximating
every function f ∈ F . By loosing the restriction to function evaluations
and allowing measurements from arbitrary linear functionals, we obtain a
benchmark called linear width

am(F,L2(D, ϱT )) := inf
ℓ1,...,ℓm−1 : F→C
φ1,...,φm−1∈L2

sup
∥f∥F≤1

∥∥∥f −
m−1∑
k=1

ℓk(f)φi

∥∥∥
L2

.

Showing error bounds in terms of the linear width for least squares approx-
imation yields an upper bound on the sampling width which guarantees the
sharpness thereof. In the RKHS setting we exploit freedom in the way of sub-
sampling L2-MZ inequalities to show a technique to obtain sharp error bounds
up to a logarithm. Our approach uses the polynomial runtime BSS-algorithm
from Chapter 5. We prove the following error bound in the worst-case setting
for RKHSs H(K) in Theorem 7.8:

g2⌈bm⌉(H(K), L2) ≤ C
(b+ 1)2

(b− 1)3
logm

m

∞∑
k=m

a2m(H(K), L2) .

These results are optimal up to a single logarithm, which improves on earlier
results in [MU21, Tem21, LT22] by being constructive and implementable.
A year prior of the publication of this thesis, tight error bounds were proven,
showing that function evaluations are as powerful as measurements from arbi-
trary linear functionals for separable RKHS, i.e., it holds gcn(H(K), L2)

2 ≤
1
n

∑
k≥n ak(H(K), L2)

2, cf. [DKU23]. However, this relies on highly non-
constructive subsampling techniques using the Kadison-Singer Theorem.

Further, we will give basic error bounds in Theorem 7.10 for function
approximation with points from generalL2-MZ inequalities which are worse in
general but the inherent structure of the point sets may be combinable with fast
algorithms. We propose a subsampling of L2-MZ inequalities which exploits
some freedom in the way of subsampling to focus on good approximation
properties in the worst-case setting for RKHS. In that way, we obtain the near-
optimal approximation rates as above while keeping the inherent structure
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from the initial L2-MZ inequality. This is done with a random approach with
logarithmic oversampling in Theorem 7.13 and with a two-step procedure by
further applying the BSS-algorithm in Theorem 7.15 to have merely linear
oversampling.

We apply this general theory for the well-understood rank-1 lattices in
Theorem 7.16, where the subsampling makes it possible to regain the good
approximation properties whilst making it possible to utilize fast Fourier
algorithms for a fast implementation of the involved matrix-vector product.
We confirm its applicability by conducting numerical experiments.

Leaving the RKHS setting we prove error bounds for least squares approxi-
mation in the worst-case setting for arbitrary (not necessarily Hilbert) function
spaces with finite measure in Theorem 7.3. Here we use the Kolmogorov
width in ℓ∞(D)

dm(F, ℓ∞(D)) := inf
V⊆F

dim(V )=m−1

sup
∥f∥F≤1

inf
g∈V

∥∥∥f − g
∥∥∥
∞
,

which includes non-linear approximations in contrast to the linear width. Note,
that these coincide when the error is measured in a Hilbert spaces norm.
With the optimal L2-MZ inequalities available from Chapter 6, this yields a
relation between the sampling width and the Kolmogorov width in the space
of bounded functions ℓ∞(D) in Theorem 7.4:

g⌈bm⌉(F,L2) ≤ C
(b+ 1

b− 1

)3/2
dm(F, ℓ∞(D)) .

This improves on earlier results in [Tem21, LT22] by loosing restrictions on
the involved spaces and lowering the smallest oversampling factor b to be
arbitrarily close to one.

Chapter 8: Least squares in statistical learning. With statistical learning
we enter a framework in machine learning. Instead of having a look at worst-
case errors as in Chapter 7, we investigate individual function approximation.
The model is based on randomness in the points and the function evaluations,
which includes the scenario of noise and makes the probabilistic tools from
Chapter 4 vital. As a benchmark we use the error of the projection from
the ansatz space of the least squares approximation. After introducing the
necessary notion, we show in Theorem 8.3 that the least squares approximation
has the same error as the projection up to a multiplicative constant provided
noise-free samples and logarithmic oversampling. Including noise, our bounds



14 Chapter 1 Introduction

in Theorems 8.4 and 8.5 resemble the classical over- and underfitting behavior
one has to balance to achieve the smallest error. More precisely, in the regime
of logarithmic oversampling m ≲ n log n with m = dim(V ) the number of
ansatz functions and n = |X| the number of points, we bound the error by the
best possible approximation in V plus a term linearly growing in the size of
the ansatz space m = dim(V ) due to noise, i.e.,

∥fq − SX
V y∥2L2

≤ C1∥fq − PV fq∥2L2
+ C2

m

n
,

where fq is the regression function and PV fq the L2-projection onto V . This
improves on earlier result by being statements holding with high probability,
which were previously only known in expectation or with a coarser bound, cf.
[Bar02, CDL13, MNvST14, CM17, KUV21, HNP22, LPU23].

Further, we consider the covariate-shift setting, namely, we consider a
source measure ϱS , with respect to which we draw the samples, and a target
measure ϱT for measuring the error to be different. The relevance of this
setting is given by, e.g. algorithms learning from artificial data with the goal
of performing good in a real world scenario. We investigate different effects
by comparing different combinations of measures and ansatz functions on the
unit interval. The analytical results are confirmed by numerical experiments.
Finally, we conduct experiments on the five-dimensional cube [0, 1]5 to show
the applicability of our theory.

Chapter 9: Cross-validation. In Chapter 8 we observe under- and overfit-
ting behavior which is common in function approximation from noisy samples
and rises the question of parameter choice naturally. In least squares approxi-
mation the reason lies in the choice of which and how many ansatz functions
are used. To know the best ansatz functions with certainty, we would need
to compute the error of the approximation itself. But doing this requires the
knowledge of the target function making the problem obsolete. Instead, we
have to work with what we are given, namely, the samples at hand. We have a
look at such a purely data-driven method named leave-one-out cross-validation.
More precisely, we introduce the importance weighted cross-validation score
CVβ(S

X
V y) in Theorem 9.1, which is suitable also for the covariate-shift

setting. Here, one computes the approximation based on the data with single
samples omitted. Doing this for every single sample, it constructs an estimator
for the error itself. It is widely used in practice but has two fundamental
challenges: (1) the naive way to implement the cross-validation score leads to
a very expensive algorithm as one has to set up as many approximations as
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there are given points and (2) conceptually, the cross-validation score makes
sense but theoretical validation is little.

To address point (1), in Theorems 9.13 and 9.14 we extended a result for
the fast computation in [TW96] from the torus and the point grid to arbitrary
domains with an exact L2-MZ inequality. This allows to reduce the cost of
computing the cross-validation score to the cost of computing the least squares
approximation itself. Since these fast computation formulas only hold for
exact L2-MZ inequalities, we introduced the approximated cross-validation
score in Theorem 9.16. This allows to use the same fast algorithms and we
show bounds on the involved error in Theorem 9.20.

To address point (2), in Theorem 9.2, we combine techniques from [BE02]
and [BH22] in order to show that the cross-validation score is estimating the
error with respect to the target distribution when the weights are chosen from
samples of the Radon-Nikodym derivative β = dϱT

dϱS
, i.e.,

EX,y

(
CVβ(S

X
V y)

)
= EX−1,y−1

(
∥SX−1

V y−1 − fq∥2L2(D,ϱT )

)
+ σ2

q ,

where X−1 and y−1 denotes the omission of the first sample. To not only
know what the importance weighted cross-validation score is estimating but
to rather have a qualitative statement about how good it can estimate the L2-
error, we show the concentration of cross-validation around its expectation in
Theorem 9.10. For that we extended a robustness concept of approximation
algorithms from [BE02] and combine it with an extension of the McDiarmid
concentration inequality to show a guarantee for importance weighted cross-
validation with least squares approximation. This yields a guarantee to use
cross-validation as an a posteriori parameter choice strategy in Theorem 9.11:

∥fq − TKS
X−1

V ∥2L2(D,ϱT ) ≤ CVβ(TKS
X
V y)− σ2

q + C
N3/2(V )√

n
.

We conclude this chapter by confirming our theory by conducting a simple
experiment on the one-dimensional torus T as well as resuming to the numeri-
cal experiment on the five-dimensional unit cube [0, 1]5 from Chapter 8 and
will see, that the proposed fast cross-validation score is viable in the numerical
experiments as the theory suggests.
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Chapter 2

Least squares approximation

Least squares is a method for solving overdetermined systems of equations,
i.e., problems with more conditions than degrees of freedom. We use it by its
original purpose, namely function approximation. We begin with an example.
Imagine we have given data (xi, yi) ∈ [0, 1]×R for i = 1, . . . , n and search
for a quadratic polynomial approximating the data

g(x) = ax2 + bx+ c

which is parameterized by a, b, c ∈ R. We depicted the setting in Figure 2.1.

0

1

0 1

Figure 2.1: Toy example fitting a quadratic polynomial using least squares
approximation.

The idea of least squares approximation is to find a, b, and c such that the
corresponding the polynomial minimizes the sum of squared residuals

n∑
i=1

|g(xi)− yi|2 .

Because the considered residuals g(xi)− yi are linear in the unknowns a, b, c
the method is then called linear least squares approximation.

In this chapter we give some historic remarks on the discovery of the least
squares approximation method, introduce it in the required generality, and
give some insights into the implementation and runtime of the method.
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Figure 2.2: Left: Only known depiction of A. Legendre (1752-1833) (image

source: https://commons.wikimedia.org/wiki/File:Legendre.jpg).
Middle: portrait of C. F. Gauss (1777-1855) (image source:

https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss_

1840_by_Jensen.jpg).
Right: portrait of R. Adrain (1775-1843) (image source:

https://commons.wikimedia.org/wiki/File:Robert_Adrain,_1775_

-_1843.jpg).

2.1 History

The least squares approximation method is more than 200 years old with
predecessors ranging even 300 years back. The first official occurrence of
the method is a publication by A. Legendre where the method was used for
analyzing data concerning the shape of the earth, cf. [Leg05]. The same data
was used by R. J. Boscovich 1757 and P. Laplace in 1799 with the least absolute
deviations method, where one minimizes the absolute value of residuals instead
of their squares. Independently, 1808 R. Adrain discovered the least squares
approximation method, cf. [Adr08]. Raising some tension, 1808 C. F. Gauss
published a book claiming to have discovered the least squares approximation
method as early as 1795 in his mathematical diary for calculating the orbits of
celestial bodies, cf. [Gau11]. This resulted in an exchange of letters with the
intend to determine the righteous inventor of the least squares approximation
method, where a collection can be found in [Pla72, Sti81].

Today, it is agreed that A. Legendre officially discovered and published the
method at first and C. F. Gauss is co-credit as he contributed significant theo-
retical advances. He showed, when the observations come from an exponential
family, the least squares approximation and maximum likelihood estimator
coincide, cf. Theorem 2.2.

https://commons.wikimedia.org/wiki/File:Legendre.jpg
https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg
https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss_1840_by_Jensen.jpg
https://commons.wikimedia.org/wiki/File:Robert_Adrain,_1775_-_1843.jpg
https://commons.wikimedia.org/wiki/File:Robert_Adrain,_1775_-_1843.jpg


2.2 The method 21

A detailed list of 408 related papers collected by M. Merriman, dating
as early as 1722 until 1876, can be found in [Mer77]. Note, that this is
not a complete list as the author did not include literature in the Russian or
Hungarian language. There, 22 titles dated earlier than the official discovery
in 1805 which can be viewed as predecessors and 354 afterwards, which are
counted in 10 year intervals in the table which we copied from [Mer77].

This emphasizes the rapidly growing significance of the least squares approxi-
mation method. As of today, least squares approximation is taught in every
mathematical course, implemented in every numerical linear algebra software
package, and is the standard tool in data fitting with applications in all places.

2.2 The method

Now we formulate the least squares approximation method in a general context
as in [Bjö96, Chapter 8]. For a domain D ̸= ∅ andK ∈ {R,C}, we consider
n ∈ N data tuples (xi, yi) ∈ D × K, i = 1, . . . , n, for which we seek an
approximation g : D → K. For an m − 1 ≤ n dimensional function space
V = span{η1, . . . , ηm−1} ⊆ KD, we make the ansatz as a linear combination

g(x) =

m−1∑
k=1

ĝkηk(x) ,

where we have to determine the coefficients ĝk ∈ K. In general we cannot
guarantee interpolation g(xi) = yi in every point. Instead, the least squares
approximation method minimizes the weighted sum of squared residuals

n∑
i=1

ωi|g(xi)− yi|2 → min ,

with ω1, . . . , ωn ≥ 0. The result is then the weighted least squares approxi-
mation SX

V y = SX
V (ω1, . . . , ωn)y : K

n → KD, where X = {x1, . . . ,xn}
and y = (y1, . . . , yn)

T. When all weights are equal ω1 = · · · = ωn we
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speak of plain least squares approximation. Since the ansatz is linear the
considered least squares approximation is linear. Thus, we may formulate the
optimization problem in terms of matrices: minimize ĝ 7→ ∥Lĝ − y∥2W =
(Lĝ − y)∗W (Lĝ − y) with

L =

η1(x
1) . . . ηm−1(x

1)
...

. . .
...

η1(x
n) . . . ηm−1(x

n)

 ∈ Kn×(m−1) ,

W =

ω1

. . .
ωn

 ∈ [0,∞)n×n , (2.1)

ĝ = (ĝ1, . . . , ĝm−1)
T ∈ Km−1, and y = (y1, . . . , yn)

T ∈ Kn.

Lemma 2.1. Let L ∈ Kn×m−1, W ∈ [0,∞)n×n, and y ∈ Kn be as above
and let L∗WL be invertible. Further, let ĝ⋆ be the minimizer of the least
squares functional ∥Lĝ − y∥2W . Then ĝ⋆ is uniquely determined by

ĝ⋆ = (L∗WL)−1L∗Wy .

Proof. The assumption implies the positive definiteness of W and, therefore,
the strong convexity of the given optimization problem. Thus, by computing
stationary points we find the unique minimizer. For that we compute the root
of the gradient of the least squares functional

∇ĝ(∥Lĝ − y∥2W ) = 2L∗WLĝ − 2L∗Wy
!
= 0 .

Since L∗WL is positive definite, we obtain the explicit formula for ĝ⋆.

So far, we introduced the least squares approximation method without any
guarantee for its quality. In Chapters 7 and 8 we will show error guarantees
for function approximation in different settings. For now, we state that the
maximum likelihood estimator for data with normal (Gaussian) noise coincides
with the least squares estimator which was first observed by C. F. Gauss in
[Gau11].

Lemma 2.2. Let V = span{η1, . . . , ηm−1} ⊆ KD, X = {x1, . . . ,xn} ⊆
D, and σ2 ≥ 0. Further, let Yi ∼ N (

∑m−1
k=1 ĝkηk(x

i), σ2) for i = 1, . . . , n
be random variables, where N denotes the normal distribution with variance
σ2. Or equivalently, Y ∼ N (Lĝ, σ2I). Then the maximum likelihood
estimator coincides with the least squares approximation SX

V (Lĝ).
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Proof. Since Yi are i.i.d., the likelihood function evaluates to

L(ĝ|y) = P(y|ĝ) =
n∏

i=1

1√
2πσ2

exp
(
− |yi − [Lĝ]i|2

2σ2

)
= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

|yi − [Lĝ]i|2
)
.

Using that x 7→ exp(−x) is monotone decreasing, we obtain

argmaxĝ∈Km−1 L(ĝ|y) = argminĝ∈Km−1

n∑
i=1

|yi − [Lĝ]i|2 ,

which is the defining equation of the least squares estimator.

2.3 Implementation

With Theorem 2.2 we covered first theoretical properties of the least squares
approximation method which will be continued in Chapters 7 and 8. This
reasons for the applicability of the method in practice. For the implementation,
one could utilize the explicit solution formula from Theorem 2.1. But this
makes use of a matrix inverse, which is unfeasible to compute when the
problem is large.

Instead, we utilize Krylov subspace iteration methods which were developed
by the naval architect A. N. Krylov (1863-1945) and were elected as one of
the top 10 algorithms of the 20th century by the IEEE Computing in Science
& Engineering Magazine [DS00]. Methods of this type search the solution in
Krylov subspaces

Kr(A, b) := span{b,Ab, . . . ,Ar−1b} ,

where A ∈ Cn×n, b ∈ Cn, and r ∈ N. A famous example is the conjugated
gradient method from M. R. Hestenes and E. Stiefel [HS52]. Analytically
equivalent, but tailored to the least squares problem in regards to numerical
stability is the LSQR algorithm by C. C. Paige and M. A. Saunders [PS82].

Using r = n iterations, these methods exhaust the full search space and
find an exact solution. In general this is not necessary and one may stop
earlier. Since only matrix-vector products are utilized this results in a runtime
of O(rn2), where r is the number of iterations. This can be improved even
further, when the matrix-vector product is computable in a fast manner by
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using, e.g. sparsity in the matrix structure or fast Fourier algorithms, which
are on the list of top 10 algorithms of the 20th century too, cf. [DS00]. This
then reduces the solution of the least squares problem to O(r · nnz(A)) with
nnz(A) the number of non-zero entries of A or O(rn log n) when Fourier
algorithms are applicable. Regardless of the matrix structure, the runtime
depends linear on the number of iterations r. The following lemma gives a
bound on the relative error after r iterations when the extremal singular values
σmin(W

1/2L) = λmin(L
∗WL) and σmax(W

1/2L) = λmax(L
∗WL) are

well-behaved.

Lemma 2.3. Let W 1/2L ∈ K(m−1)×n with singular values 1/2 ≤ σ2
min ≤

σ2
max ≤ 3/2, y ∈ Kn, and ĝ⋆ = argminĝ∈Km−1 ∥Lĝ−y∥2W ∈ Km−1. The

residual ĝ(r) of the LSQR algorithm in the r-th step then satisfies

∥ĝ(r) − ĝ⋆∥2 ≤ 3 · 21−r∥ĝ⋆∥2 .

Proof. Applying the LSQR algorithm is analytically equivalent to applying
the conjugate gradient method to the system of equations L∗Lĝ = L∗y. It
is left to use the error estimate for conjugate gradient method from [Gre97,
Theorem 3.1.1].

In Chapter 6, we show settings and conditions for the matrix W 1/2L
to be well-conditioned as assumed above. Computing in double precision,
Theorem 2.3 guarantees that the relative error ∥ĝ(r)− ĝ⋆∥2/∥ĝ⋆∥2 is smaller
than machine epsilon ε = 10−16 using r = 56 iterations. In our numerical
experiments we set the maximal number of iterations in the range of 10 to 20,
which seems sufficient.

This makes the least squares approximation method fast and we turn our
attention to the task of finding and preparing tools to prove error bounds for
it.



Chapter 3

Reproducing kernel Hilbert spaces (RKHS)

As we work with discrete function evaluations and functions f : D → K,
K ∈ {R,C}, may be very arbitrary, we need some sort of prior. In this
chapter we will have a look at a broad range of function spaces, which allows
us to introduce minimal restrictions to show error bounds for least squares
approximation later on. The concept in question are reproducing kernel Hilbert
spaces H(K), which are obtained by requiring the continuity of function
evaluations in a Hilbert function space. This condition is rather simple but
has far reaching consequences. For instance the existence and correspondence
to kernels, i.e., a function of two variables K(x, y), with the “reproducing
property”

f(x) = ⟨f,K(·, x)⟩H(K) .

The theory of reproducing kernel Hilbert spaces was researched from two
different angles in the beginning of the 20th century:

• One group considered a given kernel and studied it in itself, applying it to
various fields like integral equations, and only using the corresponding
function class as a tool of research. Some representatives are J. Mercer
[Mer09, Mer11], E. H. Moore [Moo16], S. Bochner [Boc22], A. Weil
[Wei40], or R. Godement [God48]. In 1935 E. H. Moore established
a first link by showing that for kernels with certain properties there is
a Hilbert space in which the kernel has the reproducing property, cf.
[Moo35, Moo39].

• The second group had a look at function classes coming primarily from
the solution of partial differential equations. Computing the corre-
sponding reproducing kernel as a tool was used by e.g. S. Zaremba
[Zar07, Zar08], G. Szegő [Sze21], S. Bergmann [Ber22], N. Aronszajn
[Aro35], or S. Bergman and M. Schiffer [BS47b, BS47a, BS48]. In
1939 N. Aronszajn showed that for a class of functions there is a kernel
with a reproducing property, cf. [Aro44] .

It was 1950 when a first systematic study was done by N. Aronszajn in
order to link the two research directions, cf. [Aro50]. Later overviews include
H. Meschkowski [Mes62] or L. Schwartz [Sch64]. More modern approaches
can be found in [BTA04] by A. Berlinet and C. Thomas-Agnan, [Wen05a]
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by H. Wendland, or in [SC08] by I. Steinwart and A. Christmann, where we
orient ourselves on the latter.

In particular, we will start by introducing the RKHSs itself along with some
basic concepts in Section 3.1. Then we focus on the construction of basis
functions from a so-called Mercer-representation of a kernel in Section 3.2.
After introducing auxiliary functional analysis tools in Section 3.3, we use
them in Section 3.4 to show the existence of a weak Mercer-representation of
RKHSs compactly embedded into the space of square integrable functions L2.
This, in turn, yields basis functions for the respective RKHS. Finally, we give
one- and multidimensional examples in Sections 3.5 and 3.6, respectively.

3.1 Basic concepts of RKHSs

In this section we introduce the RKHSs, show selected properties, and repeat
on the connection of RKHSs and kernels. We start with their definitions.

Definition 3.1. Let H be aK-Hilbert function space over a domain D ̸= ∅.

(i) We say H is a reproducing kernel Hilbert space (RKHS) when the
Dirac functional

δx : H → K, f 7→ f(x)

is continuous for all x ∈ D.

(ii) We say K : D ×D → K is a reproducing kernel for H , if

f(x) = ⟨f,K(·, x)⟩H

for all f ∈ H and x ∈ D.

Due to the continuity of the sampling δx in an RKHS, norm convergence
implies pointwise convergence, i.e., for (fn)n∈N ⊆ H with fn → f in H we
have

|fn(x)− f(x)| = |δx(fn − f)| ≤ ∥δx∥H′∥fn − f∥H → 0 ,

where ∥φ∥H′ = supf∈H |φ(f)| is the norm in the dual space H ′ of H . Thus,
the norm in an RKHS is stronger than the pointwise convergence.

Next, we define symmetric positive definite kernels K and show their one-
to-one correspondence to RKHSs.

Definition 3.2. Let K : D ×D → K.
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(i) We say K is symmetric when K(x, y) = K(y, x) for all x, y ∈ D.

(ii) We say K is positive definite when
n∑

i,j=1

αiαjK(xj , xi) ≥ 0

for all α1, . . . , αn ∈ K and x1, . . . , xn ∈ D.

Note, that the reproducing property implies the symmetry and positive
definiteness of the kernel:

Lemma 3.3. A reproducing kernel K is symmetric and positive definite.

Proof. Since K(x, y) = ⟨K(·, y),K(·, x)⟩H the symmetry is inherited from
the scalar product. The positive definiteness follows from

n∑
i,j=1

αiαjK(xj , xi) =
〈 n∑

i=1

αiK(·, xi),
n∑

j=1

αjK(·, xj)
〉
H

≥ 0 .

The next theorem states that every RKHS has a unique reproducing kernel,
which by the above lemma is symmetric and positive definite.

Theorem 3.4. Let H be an RKHS over D. Then

K : D ×D → K, (x, y) 7→ ⟨δx, δy⟩H′

is the unique reproducing kernel of H .

A proof can be found in [SC08, Theorem 4.20]. As it is good to familiarize
ourselves with the reproducing concepts, we state it here as well.

Proof. Step 1. Showing the reproducing property. By the Riesz representer
theorem there exists ϕx ∈ H such that δx(f) = ⟨f, ϕx⟩H for all f ∈ H and
x ∈ D. For x, y ∈ D, we obtain

K(x, y) = ⟨δx, δy⟩H′ = ⟨ϕx, ϕy⟩H = ϕy(x) ,

and, thus,
f(y) = δy(f) = ⟨f, ϕy⟩H = ⟨f,K(·, y)⟩H .

Step 2. Showing the uniqueness. Assume we have two reproducing kernels
K and K ′. Then

⟨f,K(·, x)−K ′(·, x)⟩H = f(x)− f(x) = 0

for all f ∈ H . In particular for f = K(·, x)−K ′(·, x) we obtain ∥K(·, x)−
K ′(·, x)∥H = 0 for all x ∈ D, i.e., K = K ′.
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The direction of showing that every symmetric, positive definite kernel has
a corresponding RKHS is known as Moore-Aronszajn Theorem.

Theorem 3.5 (Moore-Aronszajn). Let K : D ×D → K be a positive definite
symmetric function. Then there exists a unique Hilbert function space H(K)
with K as reproducing kernel.

The proof is available in [BTA04, Theorem 3] or [Wen05a, Theorems 10.10
and 10.11] and is constructive.

Now we have established the one-to-one connection of RKHSs and symmet-
ric, positive definite kernels. This justifies the notation H(K) for the RKHS
corresponding to the kernel K known from the literature, which we adapt.
Further, various problems for a function spaceH(K) become transparent from
the kernel perspective and vice versa. The following two lemmata are on the
construction of new RKHSs and the connection of different kernel properties
to properties of the functions in the corresponding RKHS.

Lemma 3.6. Let Hi(Ki) be RKHSs on Di with reproducing kernels Ki for
i = 1, 2. Then

(i) for D1 = D2 the kernel K = K1 +K2 : D1 ×D1 → K is the repro-
ducing kernel of the space H(K) = H1(K1)⊕H2(K2) = {f : D1 →
K : f = f1 + f2, f1 ∈ H1(K1), f2 ∈ H2(K2)}.

(ii) the kernelK = K1⊗K2 : (D1×D2)×(D1×D2) → K is the reproduc-
ing kernel of the spaceH(K) = H1(K1)⊗H2(K2) = {f : D1×D2 →
K : f = f1 ⊗ f2, f1 ∈ H1(K1), f2 ∈ H2(K2)}.

Proof. Theorems 5 and 13 of [BTA04].

Lemma 3.7. Let H(K) be an RKHS on D with reproducing kernel K.

(i) Then K is bounded if and only if every f ∈ H(K) is bounded.

(ii) Let (D,Σ) be a measurable space. Then K(·, x) : D → K is measur-
able for all x ∈ D if and only if every f ∈ H(K) is measurable.

(iii) Let D be a topological space. Then K(·, x) : D → K is continuous and
bounded for x ∈ D if and only if every f ∈ H(K) is continuous and
bounded.

(iv) Let D ⊆ Rd be an open subset and m ≥ 0. If

∂∥α∥1

∂xα

∂∥α∥1

∂yα
K(x,y) =

∂∥α∥1

∂xα1
1 · · · ∂xαd

d

∂∥α∥1

∂yα1
1 · · · yαd

d

K(x,y)
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exists and is continuous for all multi-indices α = (α1, . . . , αd)
T ∈ Nd

0

with ∥α∥1 ≤ m, then ∂∥α∥1

∂xα f(x) exists and is continuous for all f ∈
H(K) and all multi-indices α ∈ Nd

0 with |α| ≤ m.

Proof. The statements are found in Lemmata 4.23, 4.24, 4.28, and Corol-
lary 4.36 of [SC08].

3.2 Constructing RKHSs from a given Mercer
representation

A Mercer representation of a kernel K is an expansion in terms of an
orthonormal system {[η1]∼, [η2]∼, . . . } ⊆ L2 of the space of square integrable
functions L2, cf. Theorem 3.9. In particular, we then construct

K(x, y) :=

∞∑
k=1

σ2
kηk(y)ηk(x)

for a sequence σ1 ≥ σ2 ≥ · · · ≥ 0 which defines an RKHS H(K), cf.
Theorem 3.11 or [SC08, Formula (3)]. Given such a representation yields
insights to approximation of functions f ∈ H(K) when the error is measured
in L2 which we cover in this section. Further, we will answer the question of
the best possible finite rank approximation of the embedding IK : H(K) →
L2. This is an indicator on how good finite discretization can perform which
will be a benchmark when we work with finitely many samples. The quantity
of interest is modeled by the approximation numbers am of an operator, cf.
[Pie87, Definition 2.3.1].

Definition 3.8. For H1, H2 Hilbert spaces, and T ∈ L(H1, H2) an operator,
we define the m-th approximation number am(T ) via

am(T ) := inf{∥T −A∥L(H1,H2) : rank(A) < m}

= inf
L1,...,Lm−1∈H′

1
φ1,...,φm−1∈H2

sup
∥f∥H1

≤1

∥∥∥Tf −
m−1∑
k=1

Lk(f)φk

∥∥∥
H2

.

In our case H1 will be the RKHS H(K) and H2 the space of square
integrable functions L2. At the end of this section we specify L1, . . . , Lm−1

and φ1, . . . , φm−1 realizing the infimum.
Strictly speaking L2 is not a function space but rather a Hilbert space of

equivalence classes. Because this brings some problems, we pay special
attention to this in this section starting with the definition of L2.
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Definition 3.9. Let (D,Σ, ϱT ) be a measure space,

L2 = L2(D, ϱT ) :=
{
f : D → K : ∥f∥2L2

=

∫
D

|f |2 dϱT <∞
}
,

and N = N (D, ϱT ) := {f : D → K : f = 0 ϱT -almost everywhere} .

The Lebesgue space of square-integrable functions is the quotient space
L2 = L2(D, ϱT ) := L2(D, ϱT )/N consisting of equivalence classes [f ]∼ :=
{g ∈ L2(D, ϱT ) : ϱT ({f ̸= g}) = 0} with the norm ∥[f ]∼∥L2

= ∥f∥L2
.

Often the notation is abused by writing f ∈ L2 or ∥f∥L2 for functions
f : D → K for convenience of readability. We do the same everywhere but
this chapter, where we have a close look at the consequences of the ϱT -null
sets.

The first intricacy is the embedding operator itself, as it has to map functions
to equivalence classes. The substitute in this case is the operator

IK : H(K) → L2, f 7→ [f ]∼ , (3.1)

which does the same up to ϱT -null sets and is well-defined for kernels with
finite Frobenius-norm ∥K∥2F :=

∫
D

∫
D
K(x, y) dϱT (x) dϱT (y) <∞.

The embedding operator is connected with an integral operator, which will
be a useful tool for our analysis and is introduced in the next lemma.

Lemma 3.10. Let K be a kernel with finite Frobenius norm ∥K∥F <∞ and
TK be the following Fredholm integral operator of first kind

TK : L2 → L2, [f ]∼ 7→
[ ∫

D

K(·, x)f(x) dϱT (x)
]
∼
, (3.2)

IK the inclusion operator (3.1), and SK = I∗K its adjoint. Then the following
diagram commutes:

L2(D, ϱT ) L2(D, ϱT )

H(K)

SK

TK

IK .

Proof. With the finite Frobenius-norm of the kernel, we have that the Fred-
holm integral operator is well-defined. Further, we have ⟨SK [f ]∼, g⟩H(K) =
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⟨[f ]∼, IKg⟩L2
=
∫
D
fg dϱT . In particular, for g = K(·, y)

(SK [f ]∼)(y) = ⟨SK [f ]∼,K(·, y)⟩H(K) =

∫
D

K(y, x)f(x) dϱT (x) .

Thus, TK = IKSK .

Now we use the integral operator TK to show that the Mercer representation
does define an RKHS.

Lemma 3.11. We consider a kernel with a given Mercer representation

K(x, y) :=

∞∑
k=1

ek(y)ek(x) ,

such that for numbers σ1 ≥ σ2 ≥ · · · ≥ 0 and ek := σkηk we have an
orthonormal system {[η1]∼, [η2]∼, . . . } ⊆ L2. Then K defines an RKHS
H(K) with the orthonormal basis {e1, e2, . . . }.

Proof. By definition the kernel K is symmetric and positive definite, which
implies the unique existence of an RKHS H(K) with K as reproducing kernel
by the Moore-Aronzajn Theorem 3.5. By the constructive nature of the proof,
we know that ek is a basis of H(K). It remains to show the orthonormality.

For the integral operator TK from (3.2) we have

TK [f ]∼ =
[ ∫

D

∞∑
k=1

ek(x)ekf(x) dϱT (x)
]
∼

=

∞∑
k=1

∫
D

f(x)ek(x) dϱT (x)[ek]∼

=

∞∑
k=1

σ2
k⟨f, [ηk]∼⟩L2

[ηk]∼ .

Thus, σ2
k is an eigenvalue with eigenfunction [ηk]∼. With

SK [ηk]∼ =

∫
D

∞∑
ℓ=1

eℓ(x)eℓηk(x) dϱ(x) =

∞∑
ℓ=1

⟨ηk, eℓ⟩L2
eℓ = σkek

we obtain the orthonormality of {ek}∞k=1:

⟨ek, eℓ⟩H(K) =
⟨SK [ηk]∼, SK [ηℓ]∼⟩H(K)

σkσℓ
=

⟨TK [ηk]∼, [ηℓ]∼⟩L2

σkσℓ
= δkℓ .
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Having an RKHS from a Mercer representation of K, we next quantify
the approximation numbers am from Theorem 3.8 giving insights to the
discretization properties of H(K).

Lemma 3.12. Let the assumptions from Theorem 3.11 hold. Then

am(IK : H(K) → L2) = sup
∥f∥H(K)≤1

∥∥∥[f ]∼ − Pmf
∥∥∥ = σm ,

where Pmf =
∑m−1

k=1 ⟨f, ek⟩H(K)[ek]∼ is the projection.

Proof. Since [ek]∼ = σk[ηk]∼, we have

sup
∥f∥H(K)≤1

∥∥∥f − Pmf
∥∥∥ = sup

∥f∥H(K)≤1

( ∞∑
k=m

σ2
k|⟨f, ek⟩H(K)|2

)1/2
= σm ,

which shows the worst-case error for the projection. It remains to show that the
projection is the minimizer over all Lk ∈ H ′ and φk ∈ H as in the definition
of the approximation number am:

sup
∥f∥H≤1

∥∥∥[f ]∼ −
m−1∑
k=1

Lk(f)φk

∥∥∥
L2

.

Step 1. Showing that the minimum is attained for φk = [ek]∼, k =
1, . . . ,m−1. Assuming eℓ /∈ span{φ1, . . . , φm−1} for some 1 ≤ ℓ ≤ m−1,
we obtain

sup
∥f∥H(K)≤1

∥∥∥[f ]∼ −
m−1∑
k=1

Lk(f)φk

∥∥∥
L2

≥ ∥[eℓ]∼∥L2
= σℓ .

Since we have the monotonicity σ1 ≥ σ2 ≥ . . . , this is bigger or equal σm
yielding a contradiction.

Step 2. Showing that the minimum is attained for Lk(f) = ⟨f, ek⟩H(K).
With the L2-orthogonality of [ek]∼, we obtain∥∥∥[f ]∼ −

m−1∑
k=1

Lk(f)[ek]∼

∥∥∥
L2

=
∥∥∥m−1∑

k=1

(Lk(f)− ⟨f, ek⟩H(K))[ek]∼

∥∥∥
L2

+
∥∥∥ ∞∑

k=m

⟨f, ek⟩H(K)[ek]∼

∥∥∥
L2

,

where Lk does not influence the latter summand and the projection eliminates
the first summand.
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The above lemma shows that the functions [ek]∼ corresponding to the
largest σk give the optimal finite rank approximation with error σm in case we
have given a Mercer representation. This will motivate to use these functions
constructing the ansatz for the least squares approximation.

Having constructed an RKHS from a given Mercer representation the natural
question arises whether the reverse is also true, i.e., if every kernel of an RKHS
has a Mercer representation. To answer this question, we first need some tools
from spectral theory, which we will cover in the next section.

3.3 Interlude on spectral theory of compact operators

In this section we state some general results from functional analysis in order
to apply them to RKHSs later on.

The first result is the spectral theorem, which is often stated for self-adjoint
or normal compact operators T ∈ L(H1) in a K-Hilbert space for K ∈
{R,C}, respectively. We use a general version for compact operators T ∈
L(H1, H2) mapping from one Hilbert space H1 into another H2.

Theorem 3.13 (general spectral theorem). Let H1, H2 be Hilbert spaces and
T ∈ L(H1, H2) compact. Then there exist non-negative numbers σ1 ≥ σ2 ≥
. . . and orthonormal systems {e1, e2, . . . } ⊆ H1 and {η1, η2, . . . } ⊆ H2

such that

Tx =

∞∑
k=1

σk⟨x, ek⟩H1
ηk for all x ∈ H1 ,

H1 = ker(T )⊕H1
span{e1, e2, . . . } ,

and H2 = ker(T ∗)⊕H2
span{η1, η2, . . . } .

We call σ1, σ2, . . . the singular numbers, e1, e2, . . . and η1, η2, . . . the
left- and right-singular functions of T , respectively.

Proof. Since T ∗T : H1 → H1 is compact and self-adjoint, we apply the
common spectral theorem, cf. [Wer00, Theorem VI.3.2]. We obtain a zero
sequence σ2

1 , σ
2
2 , · · · ≥ 0 (since T ∗T is positive) and an orthonormal system

{e1, e2, . . . } ⊆ H1 such that

T ∗Tx =

∞∑
k=1

σ2
k⟨x, ek⟩H1

ek for all x ∈ H1

and H1 = ker(T ∗T )⊕H1
span{e1, e2, . . . }.
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With ⟨T ∗Ty, y⟩H1
= ⟨Ty, Ty⟩H2

= ∥Ty∥H2
, we obtain ker(T ∗T ) =

ker(T ), which shows the second equation. Doing the same for TT ∗, we obtain
the third equation. It remains to show the spectral representation.

The functions ηk := Tek/
√
σ2
k form an orthonormal system in H2 since

⟨Tek, T eℓ⟩H2
= ⟨T ∗Tek, eℓ⟩H1

= σ2
k⟨ek, eℓ⟩H1

= σ2
kδkℓ .

For x = y +
∑∞

k=1⟨x, ek⟩H1ek with y ∈ ker(T ), we obtain

Tx = Ty +

∞∑
k=1

⟨x, ek⟩H1
Tek =

∞∑
k=1

√
σ2
k⟨x, ek⟩H1

ηk .

Note, that the spectral theorem is the infinite-dimensional generalization
of the singular value decomposition of matrices. For Banach spaces there are
many generalizations for singular values of an operator, which all coincide
in the Hilbert case. For an overview we refer to [Pie87]. In our case, the
approximation numbers am from Theorem 3.8 are closest to our interest.

Lemma 3.14 ([Pie87, Proposition 2.11.6]). Let H1, H2 be Hilbert spaces,
and T ∈ L(H1, H2) compact. Then the singular numbers σ1, σ2, . . . of T
and its approximation numbers coincide, i.e., am(T ) = σm.

This shows immediately that the truncated singular value decomposition is
the best finite rank approximation of T . Using approximation numbers, we
introduce the Schatten-von Neumann operators, cf. [Pie87, Definition 2.11.15].

Definition 3.15. For H1 and H2 Hilbert spaces, we define the Schatten-von
Neumann classes for 0 < p by

Sp(H1, H2) :=

{
{T ∈ L(H1, H2) :

∑∞
m=1 am(T )p <∞} : 0 < p <∞ ,

L(H1, H2) : p = ∞ .

In particular, if T ∈ S1(H1, H2) we say T is nuclear and if T ∈ S2(H1, H2)
we say T is Hilbert-Schmidt.

The Schatten-von Neumann classes generalize the trace-class operators and
are compact for p <∞ as well.

Lemma 3.16. If T ∈ Sp(H1, H2) for p <∞, then T is compact.

Proof. T ∈ Sp(H1, H2) for p < ∞ implies that ak(T ) → 0 for k → ∞.
Thus, there is a sequence of finite rank operators converging to T . The
compactness of T follows from [Con90, Theorem 4.4].
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Lemma 3.17. Let H1, H2 be Hilbert spaces, T ∈ L(H1, H2) a linear op-
erator, and {ek}k∈I ⊆ H1 an orthonormal system in H1 for a possible
uncountable index set I . If

∑
k∈I ∥Tek∥2H2

< ∞ then
∑

k∈I ∥Tek∥2H2
=∑∞

k=1 ak(T )
2. In particular, T ∈ S2(H1, H2).

Proof. Step 1. We show J := {k ∈ I : ∥Tek∥2H2
> 0} is at most countable.

For An := {k ∈ I : ∥Tek∥2H2
≥ 1/n}, we have

|An|
n

=
∑
k∈An

1

n
≤
∑
k∈An

∥Tek∥2H2
≤
∑
k∈I

∥Tek∥2H2
<∞ .

Thus J =
⋃∞

n=1An is at most countable.
Step 2. Showing the compactness of T . Without loss of generality let

J = N. For an element x =
∑

k∈I⟨x, ek⟩H1ek ∈ H1 we define Tm−1x :=∑m−1
k=1 ⟨x, ek⟩H1

Tek. Using triangle inequality, Chauchy-Schwarz inequality,
and Bessel’s inequality, we obtain

∥(T − Tm−1)x∥H2
≤

∑
k∈I\{1,...,m−1}

|⟨x, ek⟩H1
| · ∥Tek∥H2

≤
√ ∑

k∈I\{1,...,m−1}

|⟨x, ek⟩H1
|2
√ ∑

k∈I\{1,...,m−1}

∥Tek∥2H2

≤ ∥x∥H1

√√√√ ∞∑
k=m

∥Tek∥2H2
.

Thus, ∥T − Tm−1∥L(H1,H2) ≤
√∑∞

k=m ∥Tek∥2H2
→ 0, i.e., Tm−1 is a

sequence of finite rank operators converging to T . By [Con90, Theorem 4.4],
this implies the compactness of T .

Step 3. Using the spectral Theorem 3.13 and Theorem 3.14, we have Tx =∑∞
m=1 am(T )⟨x, fm⟩H1

ηm for {f1, f2, . . . } and {η1, η2, . . . } orthonormal
bases in H1 and H2, respectively. In particular,

∥Tek∥2H2
=
∥∥∥ ∞∑

m=1

am(T )⟨ek, fm⟩H1
ηm

∥∥∥2
H2

=

∞∑
m=1

am(T )2|⟨ek, fm⟩H1
|2
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and by Fubini’s theorem

∑
k∈I

∥Tek∥2H2
=

∞∑
m=1

am(T )2
∑
k∈I

|⟨ek, fm⟩H1
|2

=

∞∑
m=1

am(T )2∥fm∥2H1
=

∞∑
m=1

am(T )2 .

We will use the tools presented in this section to construct bases of RKHSs
giving direct insights into the approximation of functions by discretization. It
goes without saying, that this theory has many more applications.

3.4 Weak Mercer representation for RKHSs compactly
embedded into L2

In Section 3.2 we constructed an RKHS from a given Mercer representation.
Now, we show that the finite trace condition (3.4) ensures the compactness of
the embedding into L2, giving us a weak Mercer representation (3.5). This in
turn allows us to use the theorems on approximation from Section 3.2. In par-
ticular, this allows us to construct a system of functions {e1, e2, . . . } ⊆ H(K)
which is simultaneously orthogonal in H(K) and L2. Being the solution of
well-studied Fredholm integral equations (3.2) of first kind, this gives access
to a pool of ansatz functions for approximation.

For {fk}k∈I an orthonormal basis in H(K) with an possibly uncountable
index set I , we have

K(·, x) =
∑
k∈I

⟨K(·, x), fk⟩H(K)fk =
∑
k∈I

fk(x)fk, (3.3)

which holds even pointwise. In general our constructed {e1, e2, . . . } are not
a basis of H(K) and K(x, y) =

∑∞
k=1 ek(y)ek(x) does not hold pointwise

in both components. But requiring separability of H(K) we will ensure the
above representation almost everywhere, which is sufficient for our purposes.
In order to do that, we start with defining properties of embeddings and the
finite trace condition of kernels.

Definition 3.18. Let (D,Σ, ϱT ) be a measure space and H(K) an RKHS
with measurable reproducing kernel K : D × D → K. We say H(K) is
continuously (compactly) embedded into L2 when IK from (3.1) is continuous
(compact).
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Lemma 3.19. Let (D,Σ, ϱT ) be a measure space and H(K) an RKHS with
measurable reproducing kernel K : D ×D → K with finite trace, i.e.,

trace(K) :=

∫
D

K(x, x) dϱT (x) <∞ . (3.4)

Then IK from (3.1), SK := I∗K are Hilbert-Schmidt and TK = IKSK from
(3.2) is nuclear. In particular, H(K) is compactly embedded into L2.

Proof. Step 1. Showing the continuity of the embedding IK . Using the
Cauchy-Schwarz inequality and ∥K(·, x)∥2H(K) = K(x, x), we obtain

∥f∥2L2
=

∫
D

|⟨f,K(·, x)⟩H(K)|2 dϱT (x)

≤
∫
D

∥f∥2H(K)∥K(·, x)∥2H(K) dϱT (x)

= ∥f∥2H(K) trace(K) .

Since the trace is finite by assumption, this gives the continuity of the embed-
ding.

Step 2. Showing the compactness of the embedding IK . Using Fubini’s
theorem, Bessel’s inequality, and ∥K(·, x)∥2H(K) = K(x, x), we obtain

∑
k∈I

∥IKek∥2L2
=
∑
k∈I

∫
D

|ek(x)|2 dϱT (x)

=

∫
D

∑
k∈I

|⟨ek,K(·, x)⟩H(K)|2 dϱT (x)

≤
∫
D

∥K(·, x)∥2H(K) dϱT (x)

=

∫
D

K(x, x) dϱT (x) <∞ .

Thus by Theorem 3.17 we have that IK is Hilbert-Schmidt. Since ak(IK) =
ak(SK), SK is Hilbert-Schmidt too. By Theorem 3.16 IK and SK are com-
pact.

Step 3. TK being nuclear follows from IK and SK being Hilbert-Schmidt
by applying [Pie87, Theorem 2.3.13].

Having the compactness of the embedding operator we will use the spectral
Theorem 3.13 in order to construct basis of the RKHS and L2.
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Theorem 3.20. Let (D,Σ, ϱT ) be a measure space and H(K) an RKHS with
measurable reproducing kernel K : D ×D → K with finite trace (3.4).

Then there are non-negative numbers σ1 ≥ σ2 ≥ . . . and orthonormal
systems {e1, e2, . . . } ⊆ H(K) and {[η1]∼, [η2]∼, . . . } ⊆ L2 with σk[ηk]∼ =
[ek]∼ such that

H(K) = ker(IK)⊕H(K) span{e1, e2, . . . }

and L2 = ker(SK)⊕L2
span{[η1]∼, [η2]∼, . . . } .

Moreover, for IK from (3.1), SK := I∗K , and TK from (3.2) we have

TK =

∞∑
k=1

σ2
k⟨·, [ηk]∼⟩L2 [ηk]∼ , SKIK =

∞∑
k=1

σ2
k⟨·, ek⟩H(K)ek ,

and IK =

∞∑
k=1

σk⟨·, ek⟩H(K)[ηk]∼ .

Proof. We apply Theorem 3.10 and Theorem 3.13 to IK .

When IK is injective, we have ker(IK) = {0}. Then, by Theorem 3.20,
the functions e1, e2, . . . form an orthonormal system in H(K) and we have
a pointwise Mercer representation (3.3). This is ensured by bounded and
continuous kernels K (Mercer kernel), cf. [SC08, Theorem 4.49] or [BTA04,
Theorem 40].

In our application we do not need the pointwise Mercer representation.
Instead, assuming H(K) separable and trace(K) <∞ gives us the represen-
tation almost everywhere as stated in the following lemma.

Lemma 3.21. Let the assumptions from Theorem 3.20 hold and let H(K)
be separable. Then we have trace(K) =

∑∞
k=1 σ

2
k and the weak Mercer

representation, i.e., for ϱT -almost all x ∈ D

K(·, x) =
∞∑
k=1

ek(x)ek . (3.5)

Proof. Let {dk}k∈I be an orthonormal basis of ker(IK) for an index set I and
Nk the support of dk. Since H(K) is separable, I is at most countable and we
use the countable additivity of ϱT

ϱT

( ⋃
k∈I

Nk

)
≤
∑
k∈I

ϱT (Nk) = 0 .
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By (3.3) we obtain

K(·, x) =
∞∑
k=1

ek(x)ek +
∑
k∈I

dk(x)dk ,

where the latter sum vanishes ϱT -almost everywhere.
By Parseval’s equality, we have ϱT -almost everywhere

K(x, x) = ∥K(·, x)∥2H(K) =
∥∥∥ ∞∑

k=1

ek(x)ek

∥∥∥2
H(K)

=

∞∑
k=1

|ek(x)|2 .

Thus,

trace(K) =

∫
D

K(x, x) dϱT (x) =

∫
D

∞∑
k=1

|ek(x)|2 dϱT (x) .

Using Fubini’s theorem the latter evaluates to
∑∞

k=1 σ
2
k.

Note, without separability we have trace(K) ≤
∑∞

k=1 σ
2
k (via Bessel’s

inequality) and the above weak Mercer representation holds on D \Nx where
ϱ(Nx) = 0 and Nx depends on x ∈ D, cf. [SS12, Corollary 3.2]. This shows
further, that the finite trace condition (3.4) is natural in sampling theory. In
fact, it was shown that the sampling problem can be arbitrarily bad otherwise,
cf. [HNV08, Theorem 1].

With that we have a base ground of priors for functions suitable in function
approximation and reasoned for minimal necessary conditions, i.e., having a
separable RKHS with finite trace.

3.5 Examples in one dimension

In this section we give examples for RKHSs in dimension d = 1. An important
class of functions are Sobolev spaces. They were originally introduced in
1950 by S. L. Sobolev in order to give a natural smoothness characterization
for solving partial differential equations, cf. [Sob50]. It turned out that the
smoothness in terms of existence of continuous derivatives is too harsh in
this context. Instead, derivatives in a suitable weak sense are considered with
respect to an Lp norm. As our goal is to approximate functions in the L2 norm,
Sobolev spaces fit our application as well.

For domains we focus on the torus D = T and the unit interval D = [0, 1].
We will take the approach from a given Mercer representation following



40 Chapter 3 Reproducing kernel Hilbert spaces (RKHS)

Section 3.2 and also from a given Sobolev space where we apply the techniques
from Section 3.4 giving different perspectives and generalizations.

An in-depth overview on Sobolev and related functions spaces is available
in the book series by H. Triebel starting with [Tri10]. For a collection of
RKHSs and corresponding kernels we refer to [BTA04, Chapter 7].

3.5.1 Sobolev spaces on the torus T

To begin with, we use the one-dimensional torus for the domain D = T =
R/Z. As the analysis is easy, this is a good starting point. The periodic Sobolev
spaces on T arise naturally from a family of differential equations of the form

y(2s) = (−1)s
1− σ2

σ2
y, y ∈ L2(T) (3.6)

for s ∈ N and σ2 ≤ 1. They have the well-known solutions

yr(x) = exp
(
ωr
2s

2s

√
1− σ2

σ2
x
)
, r = 0, . . . , 2s− 1 for even s

(3.7)

and yr(x) = exp
(
ωr
4s

2s

√
1− σ2

σ2
x
)
, r = 1, 3, . . . , 4s− 1 for odd s ,

(3.8)

where ωN = exp(2πi/N) is the N -th root of unity. The torus enforces the
periodicity of the solutions and, thus, we end up with

y1,2(x) = exp
(
±2s

√
1− σ2

σ2
ix
)
.

Next, we consider the corresponding weak formulation to use integration
by parts. I.e., for a test function φ ∈ C∞

0 (T) (infinitely differentiable and
vanishing at the border) we are having a look at

⟨y(2s), φ⟩L2 =
〈
(−1)s

1− σ2

σ2
y, φ

〉
L2

⇔ ⟨y, φ⟩L2 = σ2(⟨y, φ⟩L2 + (−1)s⟨y(2s), φ⟩L2)

= σ2(⟨y, φ⟩L2
+ ⟨y(s), φ(s)⟩L2

) ,

where we used the fact, that we are able to transfer the derivatives in the inner
product via integration by parts:

⟨y′, φ′⟩L2
= y′(x)φ(x)|1x=0 −

∫
T

y′′φ dϱT = −⟨y′′, φ⟩L2
.
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The right-hand side of the above equation defines an inner product of the form
⟨y, φ⟩Hs := ⟨y, φ⟩L2

+ ⟨y(s), φ(s)⟩L2
with a corresponding norm and Hilbert

space

Hs(T) :=
{
f ∈ L2(T) : ∥f∥2Hs = ∥f∥2L2

+ ∥f (s)∥2L2
<∞

}
,

which we call Sobolev space of smoothness s on the torus T. Considering the
embedding IK : Hs(T) → L2(T) from (3.1) and its adjoint SK = I∗K , we
have

σ2⟨y, φ⟩Hs = ⟨y, φ⟩L2
= ⟨SKIKy, φ⟩Hs .

Thus, every eigenfunction of SKIK is a weak solution of (3.6). Since eigen-
functions of a symmetric operator corresponding to different eigenvalues have
to be orthogonal, we obtain eigenpairs forming a basis in Hs(T):

Theorem 3.22. The Sobolev space Hs(T) with s ∈ N has the orthonormal
basis {e1, e2, . . . } = {σ1η1, σ2η2, . . . } where

σ2
k = (1 + (2π⌊k/2⌋)2s)−1 and ηk = exp(2πi(−1)k⌊k/2⌋·) .

Further {ηk}∞k=1 is an orthonormal basis in L2(T).

Proof. Step 1. Showing {ek}∞k=1 is a basis Hs(T). We consider the embed-
ding operator IK : Hs(T) → L2(T), f 7→ [f ]∼ and its adjoint SK = I∗K . The
operator SKIK : Hs(T) → Hs(T) is surjective, since for e ∈ Hs(T) \ {0}
we have

⟨SKIKe, e⟩Hs = ⟨IKe, IKe⟩L2
= ∥e∥2L2

̸= 0 .

Thus, computing all eigenpairs of SKIK we obtain a basis of Hs(T).
Step 2. With the preceding discussion it is left to find the orthonormal eigen-

functions. The functions {ηk}∞k=1 are the well-known Fourier orthonormal
basis of L2. The functions {ek}∞k=1 inherit the orthonormality using the eigen
property:

⟨ηk, ηℓ⟩L2
= ⟨SKIKηk, ηℓ⟩Hs = σ2

k⟨ηk, ηℓ⟩Hs = ⟨ek, eℓ⟩Hs .

So far we defined the Sobolev smoothness for integer smoothness s. This
concept extends as follows for arbitrary s ≥ 0.

Theorem 3.23. Let s ≥ 0 and

Ks(x, y) :=

∞∑
k=1

exp(2πi(−1)k⌊k/2⌋(x− y))

1 + (2π⌊k/2⌋)2s
.

ThenKs has finite trace for s > 1/2. Furthermore, if s ∈ N the corresponding
RKHS H(Ks) coincides with Hs(T).
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Proof. For σk and ηk as in Theorem 3.22 the given kernel Ks is of the form
Ks(x, y) =

∑∞
k=1 σ

2
kηk(y)ηk(x). The finite trace statement for s > 1/2

follows immediately from the L2(T)-orthonomality of ηk.
With the given Mercer representation we apply Theorem 3.11 and obtain

H(Ks) with orthonormal basis {σkηk}∞k=1. For s ∈ N this orthonormal basis
coincides with the orthonormal basis {ek}∞k=1 of Hs(T) from Theorem 3.22
and, thus, H(Ks) = Hs(T).

The coefficients ⟨f, exp(2πi(−1)k⌊k/2⌋·)⟩L2
are called Fourier coeffi-

cients, which are the same independent of the smoothness s of the Sobolev
space. As a result we obtain a characterization of the Sobolev smoothness in
terms of the decay of the Fourier coefficients:

Corollary 3.24. Let s ≥ 0. Then f ∈ Hs(T) if and only if
∞∑
k=1

k2s
∣∣∣〈f, exp(2πi(−1)k

⌊k
2

⌋
·
)〉

L2

∣∣∣2 <∞ .

Proof. By Theorem 3.11 and Theorem 3.23 we have the orthonormal ba-
sis {e1, e2, . . . } = {σ1η1, σ2η2, . . . } in Hs(T) where {η1, η2, . . . } form
an orthonormal basis in L2(T) with σk = (1 + (2π⌊k/2⌋)2s)−1/2 and
ηk = exp(2πi(−1)k⌊k/2⌋·). By Parseval’s equality, we have f ∈ Hs(T)
if and only if

∥f∥2Hs =

∞∑
k=1

|⟨f, ek⟩Hs |2 <∞ .

We know that σ2
k and ek is an eigenpair of SKIK with IK : Hs(T) →

L2(T), f 7→ [f ]∼ and its adjoint SK = I∗K . Thus,
∞∑
k=1

|⟨f, ek⟩Hs |2 =

∞∑
k=1

|⟨f, σ−2
k SKIKek⟩Hs |2

=

∞∑
k=1

σ−2
k |⟨[f ]∼, [ηk]∼⟩L2(T)|

2 ,

where ek = σkηk was used in the last equality. We obtain the assertion by
plugging in ηk = exp(2πi(−1)k⌊k/2⌋·).

3.5.2 Sobolev spaces on the interval [0, 1]

Another example domain we consider is the unit interval D = [0, 1]. It is often
needed in applications. Even though it only differs from the torus T at the
border, it yields to some interesting effects in the analysis.
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Similar to the torus T, where we gave a basis for the Sobolev spaces
Hs(T) in Theorem 3.22, we do the same here in Theorems 3.26 and 3.27
for smoothness s = 1, 2. With the approach from Section 3.5.1, the basis
was independent of the smoothness and the spaces could be characterized by
the decay of the Fourier coefficients of a function, cf. Theorem 3.24. Using
the same approach on the unit interval, the basis is not independent of the
smoothness and has to be computed for different smoothnesses separately. We
use the function f(x) = x as a counter example. It has infinite smoothness,
i.e., f ∈ Hs([0, 1]) for any s ∈ N, but the decay of the coefficients with
respect to the H1([0, 1])-basis is bounded by 3/2, cf. Theorem 3.34.

We start by considering the same differential operator as in Section 3.5.1,
namely

y(2s) = (−1)s
1− σ2

σ2
y (3.9)

To work with the weak formulation we will use again a integration by parts
trick, which now involves boundary terms:

Lemma 3.25. For f, g ∈ L2([0, 1]) with 2s weak derivatives, it holds

⟨f (s), g(s)⟩L2

=

s−1∑
l=0

(−1)l[f (s−1+l)(x)g(s−1−l)(x)]1x=0 + (−1)s⟨f (2s), g⟩L2
.

Proof. We proof the statement via induction. The base case s = 0 is clear. For
the induction step, s→ s+ 1 we have by integration by parts

⟨f (s+1), g(s+1)⟩L2
= [f (s)(x)g(s)(x)]1x=0 − ⟨f (s+2), g(s)⟩L2

.

Using the induction hypothesis for s, we obtain

⟨f (s+1), g(s+1)⟩L2

= [f (s)(x)g(s)(x)]1x=0 −
( s−1∑

l=0

(−1)l[f (s+1+l)(x)g(s−1−l)(x)]1x=0

+ (−1)s⟨f (2s+2), g⟩L2

)
.
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It is left to shift the sum to obtain the assertion

⟨f (s+1), g(s+1)⟩L2

= [f (s)(x)g(s)(x)]1x=0 −
s∑

l=1

(−1)l[f (s+l)(x)g(s−l)(x)]1x=0

+ (−1)s+1⟨f (2s+2), g⟩L2

=

s∑
l=0

(−1)l[f ((s+1)−1+l)(x)g((s+1)−1−l)(x)]1x=0

+ (−1)s+1⟨f (2(s+1)), g⟩L2
.

With that, we have a look at the weak formulation of (3.9). For φ ∈
C∞

0 ([0, 1]) we obtain

⟨y(2s), φ⟩L2
=
〈
(−1)s

1− σ2

σ2
y, φ

〉
L2

⇔ ⟨y, φ⟩L2
= σ2(⟨y, φ⟩L2

+ (−1)s⟨y(2s), φ⟩L2
)

= σ2(⟨y, φ⟩L2 + ⟨y(s), φ(s)⟩L2)

− σs
s−1∑
l=0

(−1)l[y(s−1+l)(x)φ(s−1−l)(x)]1x=0 .

Where the boundary terms vanish since φ vanishes at the border. The above
right-hand side defines an inner product ⟨y, φ⟩Hs := ⟨y, φ⟩L2

+ ⟨y(s), φ(s)⟩L2

with a corresponding norm and Hilbert space

Hs([0, 1]) :=
{
f ∈ L2([0, 1]) : ∥f∥2Hs = ∥f∥2L2

+ ∥f (s)∥2L2
<∞

}
,

which we call Sobolev space of smoothness s on the interval [0, 1]. It is also
known as unanchored Sobolev space as it does not fix boundary conditions, cf.
[NW08, Section A.2.1] for s = 1 or [NS23, Definition 1].

In the quest to compute a basis for Hs, we have the 2s solutions as in (3.7)
for the differential equation. By the Sobolev embedding Theorem [AF03,
Theorem 4.12] we have for s ∈ N and ε > 0 that Hs+1/2+ε([0, 1]) ↪→
Cs([0, 1]) (space of s times continuously differentiable functions). Thus,
boundary conditions on the first s− 1 derivatives would also alter the function
space. These are known as anchored Sobolev spaces and are smaller, cf.
[NW08, Section A.2.2] or [KSWW09, Example 4.2]. Boundary conditions on
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higher derivatives do not affect the resulting space as they only act on a set of
measure zero. We will use the 2s conditions

y(s)(0) = y(s)(1) = · · · = y(2s−1)(0) = y(2s−1)(1) = 0 .

Next, we compute the eigenbases forH1([0, 1]) andH2([0, 1]) similar to what
we did for Hs(T) in Theorem 3.22.

Theorem 3.26. The Sobolev space H1([0, 1]) has the orthonormal basis
{ek}∞k=1 = {σkηk}∞k=1 where

σ2
k =

1

1 + π2(k − 1)2
and ηk(x) =

{
1 : k = 1√
2 cos(π(k − 1)x) : k ≥ 2 .

Further {ηk}∞k=1 is an orthonormal system in L2([0, 1]).

Proof. Step 1. Showing {ek}∞k=1 is a basis of Hs([0, 1]). With the above
discussion, the eigenfunctions ek certainly fulfill the following differential
equation

ek =
σ2
k

1− σ2
k

e′′k with e′k(0) = e′k(1) = 0 .

The proposed functions are exactly the ones fulfilling the above.
Step 2. Showing the orthonormality. The L2([0, 1])-orthonormality of ηk

is easy to verify. The H1([0, 1])-orthonormality of ek follows analogously to
Theorem 3.22.

The H1([0, 1]) basis above was already considered in [WW09, Lemma 4.1]
with the same proof technique, in [IN08] as a modified Fourier expansion, and
in [SNC16] in the context of samples along tent-transformed rank-1 lattices,
and further in [Adc10b, AH11, DNP14, CKNS16, KMNN21]. The natural
question arises of Sobolev spaces on the unit interval for higher smoothness.
The following H2([0, 1]) basis was already posed in [AIN12, Section 3],
where higher-order Sobolev-spaces are found as well.

Theorem 3.27. The Sobolev space H2([0, 1]) has the orthonormal basis
{ek}∞k=1 = {σkηk}∞k=1 where

σ1 = σ2 = 1, η1(x) = 1 , and η2(x) = 2
√
3x−

√
3

and for k ≥ 3, σ2
k = 1

1+t4k
with tk > 0 the solutions of cosh(tk) cos(tk) = 1

(tk ≈ 2k−3
2 π, cf. Theorem 3.29) and

ηk(x) = cosh(tkx)+cos(tkx)−
cosh(tk)− cos(tk)

sinh(tk)− sin(tk)
(sinh(tkx) + sin(tkx)) .
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−2

0

2

0 1

Figure 3.1: First six basis functions of H2([0, 1]).

Further, {ηk}∞k=1 is an orthonormal system in L2([0, 1]) and

∥ηk∥∞ ≤


1 for k = 1√
3 for k = 2√
6 for k ≥ 3 .

The kernel for H1([0, 1]) and H2([0, 1]) itself is given by the series rep-
resentation according to Theorem 3.11. Before proving the above, we want
to discuss the basis in terms of its approximation properties and numerical
stability. The singular values σk for H2([0, 1]) decay quadratically in con-
trast to linearly for H1([0, 1]), giving better approximation properties, cf.
Theorem 3.12. The first H2([0, 1]) basis functions are depicted in Figure 3.1.

However, as cosh and sinh both grow exponentially, the representation of
the H2([0, 1]) basis in Theorem 3.27 is prone to cancellations and, therefore,
numerical unstable. In the next theorem we pose an approximation which is
numerically stable and is published in [Bar23, Theorem 4.3].

Theorem 3.28. For 0 < t3 < t4 < . . . fulfilling cosh(tk) cos(tk) = 1, let ηk
be as in Theorem 3.27. Further, for k ≥ 3, let t̃k = π(2k − 1)/2 and

η̃k(x) =
√
2 cos

(
t̃kx+ π/4

)
+ 1[0,1/2](x) exp

(
− t̃kx

)
+ 1[1/2,1](x)(−1)k exp

(
− t̃k(1− x)

)
.

Then |ηk(x) − η̃k(x)| ≤ ε for k ≥ 2
π log(18/ε) + 2. In particular, the

approximation η̃k is exact up to machine precision ε = 10−16 for k ≥ 28.

In the following we proof Theorems 3.27 and 3.28. We suggest to skip to
page 56 in a first reading because of the technical nature of the proofs.
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Proof of the first part of Theorem 3.27. Step 1. Showing {ηk}∞k=1 is a basis
for Hs([0, 1]). Analogously to Theorem 3.26, for σ2

k, ηk an eigenpair of
SKIK , we obtain the following differential equation

ηk =
σ2
k

1− σ2
k

η
(4)
k with η

(2)
k (0) = η

(2)
k (1) = η

(3)
k (0) = η

(3)
k (1) = 0 .

Now we distinguish three cases for the value of σ2
k:

First case. σ2
k = 1. The ansatz function becomes

ηk(x) = A+Bx+ Cx2 +Dx3.

From the conditions η(2)k (0) = η
(3)
k (0) = 0 we obtain D = C = 0. The

two remaining degrees of freedom are restricted by demanding L2([0, 1])-
orthonormality. By simple calculus we obtain the proposed eigenfunctions η1
and η2.

Second case. σ2
k > 1. Set tk := 4

√
(σ2

k − 1)/(σ2
k). The ansatz becomes

ηk(x) = A cosh(tkx) cos(tkx) +B cosh(tkx) sin(tkx)

+ C sinh(tkx) cos(tkx) +D sinh(tkx) sin(tkx).

The conditions η(2)k (0) = η
(3)
k (0) = 0 transform to D = 0 and B = C.

The two remaining degrees of freedom are fixed by the conditions η(2)k (1) =

η
(3)
k (1) = 0 which, in matrix form, look as follows[

− sinh(tk) sin(tk) sinh(tk) cos(tk) − cosh(tk) sin(tk)
− sinh(tk) cos(tk) − cosh(tk) sin(tk) −2 sinh(tk) sin(tk)

] [
A
B

]
= 0 .

For a non-trivial solution we need this matrix to be non-regular. To achieve
that we have a look at the roots of its determinant:

2 sinh2(tk) sin
2(tk) + sinh2(tk) cos

2(tk)− cosh2(tk) sin
2(tk)

!
= 0.

Using sin2(tk) + cos2(tk) = cosh2(tk)− sinh2(tk) = 1 we have

sinh2(tk)− sin2(tk) =
1

2
cosh(2tk) +

1

2
cos(2tk)− 1

!
= 0

which is only fulfilled for tk = 0, or equivalently, σ2
k = 1. Hence, there are no

eigenvalues bigger than 1.
Third case. σ2

k/(1 − σ2
k) > 0 ⇔ σ2

k < 1. Introducing the numbers
tk := 4

√
(1− σ2

k)/σ
2
k, we use the ansatz

ηk(x) = A cos(tkx) +B sin(tkx) + C cosh(tkx) +D sinh(tkx).
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The conditions η(2)k (0) = η
(3)
k (0) = 0 transform to A = C and B = D,

respectively. The conditions η(2)k (1) = η
(3)
k (1) = 0 can be put into a system

of equations:

[
cosh(tk)− cos(tk) sinh(tk)− sin(tk)
sinh(tk) + sin(tk) cosh(tk)− cos(tk)

] [
A
B

]
= 0

or, by using cosh2(tk)− sinh2(tk) = cos2(tk) + sin2(tk) = 1, equivalently

[
cosh(tk)− cos(tk) sinh(tk)− sin(tk)

0 1− cosh(tk) cos(tk)

] [
A
B

]
= 0.

For non-trivial solutions we need non-regularity of that matrix which trans-
forms to the condition cosh(tk) cos(tk) = 1. With the leftover degree of
freedom we choose

A = C = 1 and B = D = −cosh(tk)− cos(tk)

sinh(tk)− sin(tk)

and obtain ηk for k ≥ 3 as proposed in the theorem.
Step 2. Showing the orthonormality. From the eigendecomposition in

Step 1 follows the compactness of SKIK , cf. [Con90, Theorem 4.4]. By the
spectral Theorem 3.13 we know that the eigenspaces of different eigenvalues
are orthogonal. For σ1 = σ2 = 1 we have orthonormality by construction. All
other eigenvalues are different and, thus, the corresponding eigenfunctions
ηk are orthogonal. If we show the L2([0, 1])-normalization of ηk we obtain
L2([0, 1])-orthonormality and the H2([0, 1])-orthonormality of ek follows
analogously to Theorem 3.22.
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For the L2([0, 1])-norm we obtain

∫ 1

0

|ηk|2 dx =

∫ 1

0

(cosh(tkx) + cos(tkx))
2 dx

+B2

∫ 1

0

(sinh(tkx) + sin(tkx))
2 dx

+ 2B

∫ 1

0

(cosh(tkx) + cos(tkx))(sinh(tkx) + sin(tkx)) dx

= 1 +
sin(2tk) + sinh(2tk) + 4 cos(tk) sinh(tk) + 4 sin(tk) cosh(tk)

4tk

+B2− sin(2tk) + sinh(2tk)− 4 cos(tk) sinh(tk) + 4 sin(tk) cosh(tk)

4tk

+ 2B
(sin(tk) + sinh(tk))

2

2tk

= 1 +
1 +B2

4tk
(sinh(2tk) + 4 sin(tk) cosh(tk))

+
1−B2

4tk
(sin(2tk) + 4 cos(tk) sinh(tk)) +B

(sin(tk) + sinh(tk))
2

tk

= 1 +
1 +B2

2tk
cosh(tk)(sinh(tk) + 2 sin(tk))

+
1−B2

2tk
cos(tk)(sin(tk) + 2 sinh(tk)) +B

(sin(tk) + sinh(tk))
2

tk
.

Using cos(tk) cosh(tk) = 1, we have

1 +B2 = 2
sinh(tk)

sinh(tk)− sin(tk)
and 1−B2 = −2

sin(tk)

sinh(tk)− sin(tk)
.

(3.10)
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x

y

π/2 3π/2 5π/2

Figure 3.2: cos(t) and 1/ cosh(t)

Thus,∫ 1

0

|ηk|2 dx = 1 +
1

tk(sinh(tk)− sin(tk))

(
sinh(tk) cosh(tk)(sinh(tk) + 2 sin(tk))

− sin(tk) cos(tk)(sin(tk) + 2 sinh(tk))

− (cosh(tk)− cos(tk))(sin(tk) + sinh(tk))
2
)

= 1 +
cos(tk) sinh

2(tk)− cosh(tk) sin
2(tk)

tk(sinh(tk)− sin(tk))

= 1 +
cos(tk) cosh

2(tk)− cos(tk)− cosh(tk) + cosh(tk) cos
2(tk)

tk(sinh(tk)− sin(tk))
,

where cos2(tk) + sin2(tk) = cosh2(tk)− sinh2(tk) = 1 was used in the last
equality. Using cosh(tk) cos(tk) = 1, the latter summand evaluates to zero
and we have proven the L2([0, 1])-normality.

Lemma 3.29. For 0 < t3 < t4 < . . . fulfilling cosh(tk) cos(tk) = 1 and
t̃k = 2k−3

2 π, we have

3

2
π < t3 and

∣∣∣t̃k − tk

∣∣∣ ≤ ε

for k ≥ 1
π log(π/ε) + 2. In particular |t̃k − tk| ≤ π exp(−2π) for all k ≥ 3.

Proof. Since 0 < 1/ cosh(t) < 1 for t > 0 and the oscillating behavior of
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cos(t), as depicted in Figure 3.2, we obtain

tk ∈


(

2k−3
2 π, 2k−2

2 π
)

for k even(
2k−4

2 π, 2k−3
2 π

)
for k odd .

In particular, 3
2π < t3. Furthermore, for even k and t ∈

(
2k−3

2 π, 2k−2
2 π

)
we

have

1

cosh(t)
≤ 2 exp(−t) ≤ 2 exp

(
− 2k − 3

2
π
)

and cos(t) ≥
t− 2k−3

2 π

π/2
.

The function bounds intersect for a value larger than tk, which we use to refine
the interval:

tk ∈
(
t̃k, t̃k + π exp

(
− 2k − 3

2
π
))
.

Similarly, for odd k and t ∈
(

2k−4
2 π, 2k−3

2 π
)

we obtain

tk ∈
(
t̃k − π exp

(
− 2k − 4

2
π
)
, t̃k

)
.

Thus, for k ≥ 3 we have
∣∣∣t̃k− tk∣∣∣ ≤ π exp(−(k−2)π), which is smaller than

ε for k ≥ log(π/ε)/π + 2.

Lemma 3.30. For 0 < t3 < t4 < . . . fulfilling cosh(tk) cos(tk) = 1, we
have that ηItk defined by

ηItk(x) := cosh(tkx)−
cosh(tk)− cos(tk)

sinh(tk)− sin(tk)
sinh(tkx) (3.11)

is convex and non-negative for all odd k and monotone for all even k.

Proof. Step 1. We distinguish for different values ofB = B(t) := (cosh(t)−
cos(t))/(sinh(t)− sin(t)). For B < 1 we have

ηIt(x) = cosh(tx)−B sinh(tx) ≥ cosh(tx)− sinh(tx) ≥ 0

and by the same argument (ηIt(x))
(2) = t2ηIt(x) ≥ 0 for all x ≥ 0. Thus,

ηIt(x) is convex and non-negative.
For B > 1 we obtain

(ηIt)
′ = t(sinh(tx)−B cosh(tx)) ≤ t(sinh(tx)− cosh(tx)) ≤ 0
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for all x ≥ 0. Thus, ηIt is monotone.
Step 2. It is left to show for which k’s B(tk) attains a value smaller or

bigger than one:

B(tk) ≶ 1 ⇔ cosh(tk)− cos(tk) ≶ sinh(tk)− sin(tk)

⇔ exp(−tk)−
√
2 cos(tk + π/4) ≶ 0.

We will show that exp(−tk)−
√
2 cos(tk + π/4) has the same sign as (−1)k

and, thus, are finished. We do this by estimating their difference by a quantity
smaller than one. With t̃k = 2k−3

2 π we obtain

| exp(−tk)−
√
2 cos(tk + π/4)− (−1)k|

= | exp(−tk)−
√
2 cos(tk + π/4) +

√
2 cos(t̃k + π/4)|.

Using that cos is Lipschitz-continuous with constant 1 and Theorem 3.29 we
estimate the above by

| exp(−tk)−
√
2 cos(tk + π/4)− (−1)k| ≤ | exp(−tk)|+

√
2|tk − t̃k|

≤ exp(−3/2π) +
√
2π exp(−2π),

which is certainly smaller than one.

Lemma 3.31. For 0 < t3 < t4 < . . . fulfilling cosh(tk) cos(tk) = 1, we
have that ηItk defined in (3.11) is even with respect to the axis x = 1/2 for all
odd k and vice versa.

Proof. Step 1. We will show that ηItk has any symmetry around x = 1/2. We
shift the function and split it into an odd and an even part. For B = B(t) =
(cosh(t)− cos(t))/(sinh(t)− sin(t)), we obtain

ηIt(x+ 1/2) = cosh(tx+ t/2)−B sinh(tx+ t/2)

= (cosh(t/2)−B sinh(t/2))︸ ︷︷ ︸
=:α

cosh(tx)

+ (sinh(t/2)−B cosh(t/2))︸ ︷︷ ︸
=:β

sinh(tx).

Multiplying the two factors α and β in front of cosh(tx) and sinh(tx), we
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obtain

α · β = −B cosh2(t/2)−B sinh2(t/2) + (1 +B2) cosh(t/2) sinh(t/2)

= −B cosh(t)− 1

2
−B

cosh(t) + 1

2
+ (1 +B2)

sinh(t)

2

= −B cosh(t) + (1 +B2)
sinh(t)

2
.

Using (3.10), cosh(t) cos(t) = 1, and 1 = cosh2(t)− sinh2(t) this evaluates
to

α · β = − cosh2(t)− 1

sinh(t)− sin(t)
+

sinh2(t)

sinh(t)− sin(t)
= 0 .

Since we are not dealing with the zero function, either α or β is zero. Thus,
x 7→ ηIt(x+ 1/2) obeys a symmetry.

Step 2. It remains to specify the kind of symmetry. By Theorem 3.30 we
have that ηIt is convex for odd k. Since a convex non-constant function cannot
be odd it has to be even. Also by Theorem 3.30 we have that ηIt is monotone
for even k. Since a monotone non-zero function cannot be even it has to be
odd.

Proof of the second part of Theorem 3.27. The cases k = 1, 2 are clear. For
k ≥ 3 we split the function into ηIt defined in (3.11) and

ηIIt (x) := cos(tx)− cosh(t)− cos(t)

sinh(t)− sin(t)
sin(tx).

We will show that each of these is bounded by 1.01
√
2 and, thus, obtain the

assertion.
Step 1. In order to bound ηItk we firstly have a look at the boundary points

x ∈ {0, 1}. With Theorem 3.31 we obtain

ηItk(0) =
∣∣∣ηItk(1)∣∣∣ = 1. (3.12)

By Theorem 3.30 ηItk is either non-negative and convex or monotone and, thus,
cannot exceed its values on the boundary.

Step 2. In order to bound ηIItk we define

B :=
cosh(tk)− cos(tk)

sinh(tk)− sin(tk)
and ϑ = arg(1 +Bi).
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Next, we use the exponential definition of sine and cosine and the polar
representation of complex numbers to obtain

ηIItk(x) = cos(tkx)−B sin(tkx)

=
exp(itkx) + exp(−itkx)

2
+Bi

exp(itkx)− exp(−itkx)

2

=
(1 +Bi) exp(itkx) + (1−Bi) exp(−itkx)

2

=
√
1 +B2

exp(i(tkx+ ϑ)) + exp(−i(tkx+ ϑ))

2

=
√

1 +B2 cos(tkx+ ϑ) .

Thus, by (3.10)

|ηIItk(x)| ≤
√

1 +B2 =

√
2

1− sin(tk)/ sinh(tk)
≤

√
2

1− 1/ sinh(tk)

(3.13)
From Theorem 3.29 we use tk ≥ 3/2π in combination with the monotonicity
in (3.13) we have |ηIItk(x)| ≤ 1.01

√
2.

Lemma 3.32. For t ≥ max{2 log(4/ε), 3/2π} we have for x ∈ [0, 1/2]∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ ≤ ε .

Proof. We use cosh(t)−sinh(t) = exp(−t) and cos(t)−sin(t) =
√
2 cos(t+

π/4) to estimate∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣
= |

√
2 cos(t+ π/4)− exp(−t)|

∣∣∣ sinh(tx)

sinh(t)− sin(t)

∣∣∣.
Since we have x ≤ 1/2, sinh strictly monotone growing, and t ≥ 3/2π by
Theorem 3.29, we further estimate∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ ≤ 2
∣∣∣ sinh(t/2)

sinh(t)− sin(t)

∣∣∣
= 2
∣∣∣ 1

2 cosh(t/2)

1

1− sin(t)/ sinh(t)

∣∣∣ .
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Using 1− sin(t)/ sinh(t) > 1/2 for t > 3/2π, we obtain∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sinh(tx)

∣∣∣ ≤ 2

cosh(t/2)
≤ 4

exp(t/2)
,

which is smaller than ε for t ≥ 2 log(4/ε).

Lemma 3.33. For 0 < t3 < t4 < . . . fulfilling cosh(tk) cos(tk) = 1, we
have ∣∣∣ηIItk(x)−√

2 cos(tkx+ π/4)
∣∣∣ ≤ ε for x ∈ [0, 1]

and
∣∣∣ηItk(x)− exp(−tx)

∣∣∣ ≤ ε for x ∈ [0, 1/2]

for k ≥ 2
π log(4/ε) + 2.

Proof. Step 1. For the first inequality we use
√
2 cos(tx+ π/4) = cos(tx)− sin(tx)

to obtain∣∣∣ηIIt −
√
2 cos(tx+ π/4)

∣∣∣ = ∣∣∣(1− cosh(t)− cos(t)

sinh(t)− sin(t)

)
sin(tx)

∣∣∣
which is smaller than ε for t > max{2 log(4/ε), 3/2π} by Theorem 3.32.

The second inequality follows analogously from exp(−tx) = cosh(tx)−
sinh(tx) and Theorem 3.32.

Step 2. It is left to show the condition t ≥ max{2 log(4/ε), 3/2π} from
Step 1. By Theorem 3.29 we have tk ≥ 3/2π. Further, by assumption, we
have

k ≥ 2

π
log
(4
ε

)
+ 2 ≥ 2

π
log
(4
ε

)
+ exp(−2π) +

3

2
.

Thus,

2 log
(4
ε

)
≤ 2k − 3

2
π − π exp(−2π) ≤ tk

where the last inequality follows from Theorem 3.29.

Proof of Theorem 3.28. Because of the symmetry shown in Theorem 3.31 we
assume without loss of generality x ∈ [0, 1/2]. Then

|ηk(x)− η̃k(x)| ≤
∣∣∣ηIk(x)− exp(−tkx)

∣∣∣+ ∣∣∣ηIIk (x)−√
2 cos(tkx+ π/4)

∣∣∣
+
∣∣∣ exp(−tkx)− exp(−t̃kx)

∣∣∣+√
2
∣∣∣ cos(tkx+ π/4)− cos(t̃kx+ π/4)

∣∣∣.
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By Theorem 3.33, the first two summands are each smaller than ε/4 each for
k > 2

π log(16/ε) + 2. We estimate the two latter summands as follows.
Since cos is Lipschitz continuous with constant one we have

√
2
∣∣∣ cos(tkx+ π/4)− cos

(
t̃kx+

π

4

)∣∣∣ ≤ √
2
∣∣∣tk − t̃k

∣∣∣
which, by Theorem 3.29 is smaller or equal than ε/4 for k ≥ 1

π log(18/ε)+ 2.
Since exp is Lipschitz continuous with constant 1 on (−∞, 0), we have∣∣∣ exp(−tkx)− exp(−t̃kx)

∣∣∣ ≤ ∣∣∣tk − t̃k

∣∣∣
which, by Theorem 3.29 is smaller or equal than ε/4 for k ≥ 1

π log(16/ε)+ 2.
Overall, we obtain |ηk(x)− η̃k(x)| < 4 ε

4 = ε for

k ≥ 2

π
log(18/ε) + 2

≥ max
{ 2

π
log(16/ε) + 2,

1

π
log(18/ε) + 2,

1

π
log(16/ε) + 2

}
.

As the bases for H1([0, 1]) and H2([0, 1]) from Theorem 3.26 and The-
orem 3.27 differ, a characterization by the decay of the coefficients as in
Theorem 3.24 is not apparent. It turns out to not be possible in this case: We
consider the function x 7→ x, which is in Hs([0, 1]) for s ∈ N. A basis for
all Hs([0, 1]) is in particular a basis in H1([0, 1]), which we already know
from Theorem 3.26. The characterization by the coefficients with respect to
the H1([0, 1]) basis yields a smaller function space as the following lemma
shows.

Lemma 3.34. Let s ≥ 0 and H̃s([0, 1]) be the RKHS constructed from a
kernel according to Theorem 3.11 with

σ2
k(s) =

1

1 + π2(k − 1)2s
and ηk(x) =

{
1 : k = 1√
2 cos(π(k − 1)x) : k ≥ 2 .

Then x 7→ x ∈ H̃s([0, 1]) if and only if s < 3/2.

Proof. We have

⟨x,
√
2 cos(π)(k − 1)x⟩L2

= −
√
2

∫ 1

0

sin(π(k − 1)x)

π(k − 1)
dx

=

√
2((−1)k+1 − 1)

π2(k − 1)2
.
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Thus,

∥x∥H̃s =

∞∑
k=1

|⟨x, ek⟩H̃s |2 =

∞∑
k=1

σ2
k|⟨x, ηk⟩L2

|2

=
1

2
+

∞∑
k=2

1 + π2k2s

π4(k − 1)4
2((−1)k+1 − 1)2

which is finite if and only if s < 3/2.

This shows on the one hand the lack of a universal basis for Hs([0, 1]) for
all smoothnesses s ∈ N. On the other hand we see that defining function
spaces using the decay of the cosine coefficients yields a different smoothness
concept, where even the analytic function x 7→ x is excluded in most of them.
Nevertheless, with the convenience of having simple cosine functions for a
basis makes them interesting from a computational perspective, cf. [CKNS16,
IKP18, GSY19].

3.5.3 Jacobi polynomials on the interval [−1, 1]

Now we consider algebraic polynomials on the interval [−1, 1] where special
attention has to be drawn to effects near the border. A detailed overview can
be found in the survey article [MX15] by F. Marcellán and Y. Xu or in the
book [JMN21] from P. Junghanns, G. Mastroianni, and I. Notarangelo.

For α, β > −1 and vα,β(x) = (1−x)α(1+x)β we consider the differential
equation

v−α,−β(x)
d

dx

(
vα+1,β+1(x)

d

dx
y(x)

)
= −k(k + α+ β + 1)y(x) .

The solutions are the so-called Jacobi polynomials pα,βk , which are orthog-
onal with respect to ⟨f, g⟩α,β =

∫ 1

−1
f(x)g(x)vα,β(x) dx, cf. [Sze75, Theo-

rem 4.2.1]. In case α = β, they are called Gegenbauer polynomials, where
we pay special attention to the following two examples:

• With α = β = 0 (unweighted Lebesgue measure v0,0 ≡ 1) we obtain
the Legendre polynomials {Pk}∞k=0 with

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k ,

which are normalized such that Pk(1) = 1 and ∥Pk∥2L2([−1,1]) =

2/(2k + 1).



58 Chapter 3 Reproducing kernel Hilbert spaces (RKHS)

• For α = β = −1/2 (Chebyshev measure v−1/2,−1/2(x) = (1 −
x2)−1/2) we obtain the Chebyshev polynomials {Tk}∞k=0 with

Tk(x) = cos(k arccos(x))

which are normalized such that ∥T0∥2L2([−1,1],(1−x2)−1/2)
= π and

∥Tk∥2L2([−1,1],(1−x2)−1/2)
= π/2.

Using Theorem 3.11, we define RKHSs from them with a certain decay of
the coefficients ⟨f, pα,βk ⟩L2([−1,1],vα,β)

Ls
2([−1, 1], vα,β)

=
{
f ∈ L2([−1, 1], vα,β) :

∞∑
k=0

(k + 1)2s|⟨f, pα,βk ⟩α,β |2 <∞
}
,

which can be found in [JMN21, (2.4.1)] and are called Sobolev-type subspace
Ls
2([−1, 1], vα,β) of L2([−1, 1], vα,β). As in Section 3.5.1, we are interested

in the connection of this coefficient decay and smoothness properties of the
function f .

Lemma 3.35. Let s ∈ N. Then f ∈ Ls
2([−1, 1], vα,β) if and only if

x 7→ f (r)(x)(1− x2)r/2 ∈ L2([−1, 1], vα,β)

for r = 0, . . . , s.

Proof. [BHS92, Conclusion 2.3] or [JMN21, Lemma 2.4.7].

Theorem 3.35 gives a characterization, where the weak existence of the
derivatives is coupled with weights depending on the order of the derivative.
Comparing these spaces to the ones from Section 3.5.2, we choose α =
β = 0. The difference is the additional weight (1− x2)r/2 in Theorem 3.35,
which allows the functions to grow at the border. Thus, up to the scaling of
the interval, Hs([0, 1]) is smaller than Ls

2([−1, 1], v0,0). This comes with a
drawback when approximating functions from samples. In order to see the
price we pay we have to introduce the Christoffel function and its supremum.
We do this for a general domain D ⊆ Rd, as it will be useful later on as well:

N(V, x) =

m−1∑
k=1

|ηk(x)|2 and N(V ) := sup
x∈D

N(V, x) , (3.14)
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with V = {η1, . . . , ηm−1} an orthonormal system. We know by the Riesz
representer Theorem that the norm of an element from the dual space is equal
to the norm of its representer. Thus,

N(V, x) = sup
∥f̂∥2

2≤1

m−1∑
k=1

f̂kηk(x) = sup
f∈span{η1,...,ηm−1}

f(x)

∥f∥L2

, (3.15)

which shows that the Christoffel function is independent of the chosen or-
thonormal basis.

Via Hölder’s inequality we obtain

∥f∥∞ =
∣∣∣m−1∑
k=1

f̂kηk(x)
∣∣∣ ≤√N(V )∥f∥L2

.

Thus, for a small Christoffel function, the function evaluations f(x) do not
blow up when the L2 norm is small. The smallest value is of the order m as∫
D
N(V, ·) dϱT = m and by the mean value Theorem there exists x ∈ D

where this value is attained.
We have seen that the H1([0, 1]) and H2([0, 1]) bases from Section 3.5.2

are bounded orthonormal systems (BOS), i.e., there exists B > 0 such that
∥ηk∥∞ ≤ B for all k ∈ N. In this case we obtain the optimal order of the
Christoffel function N(V ) ≤ Bm.

In contrast to the Legendre polynomials, where we have

N(V ) =

m−1∑
k=0

|Pk(1)|2

∥Pk∥L2

=

m−1∑
k=0

2k + 1

2
=
m+m(m− 1)

2
,

which grows quadratically. This also affects the needed number of samples for
a well-conditioned least squares matrix, cf. Theorem 6.4. As a consequence
the results in Chapters 7 and 8 hold for a larger number of basis functions of the
spaces H1([0, 1]) and H2([0, 1]) compared to their polynomial counterpart.

In the following lemma we relate unweighted smoothness to the decay of
the coefficients in the special case for Legendre and Chebyshev coefficients.

Lemma 3.36. Let f, . . . , f (s−1) : [−1, 1] → C be absolute continuous and
f (s) of bounded variation V <∞. Then we have for the Legendre coefficients∣∣∣〈f, Pk

∥Pk∥L2

〉
L2([−1,1],v0,0)

∣∣∣ ≤ 2V√
π(2k + 1)(k − s)

s∏
ℓ=1

1

k − ℓ+ 1/2

≲ k−(s+1)
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and for the Chebyshev coefficients∣∣∣〈f, Tk
∥Tk∥L2

〉
L2([−1,1],v−1/2,−1/2)

∣∣∣ ≤√ 2

π
V

s∏
ℓ=0

1

k − ℓ
≲ k−(s+1) .

In particular, we obtain for the unweighted norm f ∈ L
s+1/2
2 ([−1, 1], v0,0)

and for the Chebyshev norm f ∈ L
s+1/2
2 ([−1, 1], v−1/2,−1/2).

Proof. The estimate for the Legendre coefficients was shown in [Wan23,
Theorem 3.5] and for the Chebyshev coefficients in [Tre13, Theorem 7.1] or
[PPST18, Theorem 6.16].

The reverse direction in Theorem 3.36 is not know to us. Further, at first
sight it seems like we received half an order of convergence for free. This is
not the case as the bounded variation condition is stronger as the following
lemma shows in the unweighted case.

Lemma 3.37. Let Xs be all functions f : [−1, 1] → C satisfying the assump-
tions of Theorem 3.36, i.e., we have f, . . . , f (s−1) : [−1, 1] → C are absolute
continuous and f (s) is of bounded variation.

Then f ∈ Hs+1/2−ε([−1, 1], v0,0) for all ε > 0, where the Sobolev space
for non-integer smoothness is defined in the usual way, cf. [DNPV12].

Proof. We need to define the Besov space Bs
p,q for p = 1, q = ∞, and integer

smoothness s

Bs
1,∞ :=

{
f ∈ L1 : sup

h̸=0

∥∆2
hf

(s−1)∥L1

|h|
<∞

}
with the finite difference (∆hf)(x) := f(x+ h)− f(x) and ∆2

h = ∆h ◦∆h,
cf. [Tri92, Section 1.2.5].

For f ∈ Xs the derivative f (s) is of bounded variation. Thus, also the finite
difference ∆2

hf is of bounded variation. In particular, f (s) ∈ L1 and, therefore,
f ∈ Bs+1

1,∞. By [Tri92, (2.3.2/23)], we further have Bs+1
1,∞ ↪→ Bs+1−ε

1,1 for any
ε > 0. Thus,

Xs ↪→ Bs+1
1,∞ ↪→ Bs+1−ε

1,1 ↪→ Hs+1/2−ε ,

where the third embedding follows from the Sobolev inequality, cf. [Tri10,
(2.7.1/1)].

Concluding this section, we have seen that the polynomial spaces are
well-studied and in the special case of Ls

2([−1, 1], v0,0) for s = 1, 2 can
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be compared toH1([0, 1]) andH2([0, 1]) from Section 3.5.2. In particular, we
have seen that Ls

2([−1, 1], v0,0) is bigger than Hs([0, 1]) but does not have a
bounded orthonormal basis, which affects analysis of functions in the uniform
norm and, consequently, the approximation from samples.

3.6 Extension to higher dimensions

In Section 3.5 we gave one-dimensional examples of RKHSs. Many phe-
nomena and insights are covered by them. But already problems in the
three-dimensional physical space require an extension of this concept. In
the heyday of machine learning with superfluous amounts of data from the
internet of things high-dimensional problems become more important. Here,
the curse of dimensionality is ubiquitous, i.e., the amount of data needed grows
exponentially when the dimension increases.

We introduce three different concepts to extend the one-dimensional func-
tion spaces to higher dimensions:

• isotropic Sobolev spaces,
• Sobolev spaces with dominating mixed smoothness, and
• truncated analysis of variance (ANOVA) decomposition.

They increase in computational applicability for higher dimensions and de-
crease in expressiveness, i.e., the size of the corresponding function space.

3.6.1 Isotropic Sobolev spaces on the torus Td

When coming up with smoothness concepts for a function f : D → K, D ⊆
Rd in multiple dimensions d > 1 the straight-forward approach is to require
the existence and continuity of all partial derivatives of first order. Functions
of this type are denoted by C1(D). For s ∈ N0, this concepts recursively
extends to s-times continuously differentiable functions

Cs(D) :=
{
f : D → Kd : Dαf ∈ C(D) for all α ∈ Nd

0 with ∥α∥1 ≤ s
}
,

where Dαf := ∂∥α∥1f/(∂xα1
1 . . . ∂xαd

d ). To regain the Hilbert structure the
canonical approach is to demand square-integrability instead of continuity
of the same derivatives. This leads to the isotropric Sobolev spaces of
smoothness s ∈ N0

Hs(D) :=
{
f ∈ L2(D) : ∥f∥2Hs =

∑
∥α∥1≤s

∥Dαf∥2L2
<∞

}
.
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A first central question is whether the one-dimensional orthogonal basis func-
tions ηk keep their properties when extending them to higher dimensions via
the canonical tensor product ansatz

ηk(x) = η(k1,...,kd)((x1, . . . , xd)
T) =

d∏
j=1

ηkj
(xj) .

Already for the interval D = [0, 1] considered in Section 3.5.2 this question is
non-trivial as it was commented in [IN09, Section 2] or [Adc10a, Section 3.5].

As we merely want to introduce the core idea, we focus on the domain D
being the d-dimensional torus Td for a straight-forward analysis. Here, we
have the basis

ηk(x) =

d∏
j=1

exp(2πikjxj) = exp(2πi⟨k,x⟩)

for k ∈ Zd as the concepts are well-studied and approachable in this case.
Since there is no natural ordering of the multi indices k ∈ Zd, a first goal is
a characterization in terms of the decay of the Fourier coefficients ⟨f, ηk⟩L2

similar to Theorem 3.24. To achieve that we need the following lemma on the
equivalence of finite ℓp-norms, which extends to 0 < p < 1 even though it is
no norm in this case.

Lemma 3.38. For 0 < p ≤ q ≤ ∞ and k ∈ Cd we have

∥k∥q ≤ ∥k∥p ≤ d
1
p−

1
q ∥k∥q .

Proof. Step 1. We first prove the left-hand inequality. Since p 7→ xp is
increasing for x ∈ [0, 1], we have

∥k∥−q
p ∥k∥qq =

∥∥∥ k

∥k∥p

∥∥∥q
q
=

d∑
j=1

∣∣∣ kj
∥k∥p

∣∣∣q ≤
d∑

j=1

∣∣∣ kj
∥k∥p

∣∣∣p = 1 .

Step 2. Now we use Jensen’s inequality to obtain the second inequality:

∥k∥p =
((∑d

j=1 |kj |p

d

) q
p

d
q
p

) 1
q ≤

( d∑
j=1

|kj |qd
q
p−1
) 1

q

= d
1
p−

1
q ∥k∥q .

Using this lemma, we show the decay of the Fourier coefficients for func-
tions from isotropic Sobolev spaces on Td.
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Lemma 3.39. Let s ∈ N0. Then f ∈ Hs(Td) if and only if for every
0 < p ≤ ∞ we have ∑

k∈Zd

∥k∥2sp |⟨f, ηk⟩L2
|2 <∞ .

Proof. Step 1. Establishing an explicit formula for derivatives of f . Since ηk
are the trigonometric polynomials, we have the relation Dαηk = (2πik)αηk
where (2πik)α :=

∏d
j=1(2πikj)

αj . Thus derivatives of f ∈ L2(T
d) are

given by

Dαf =
∑
k∈Zd

(2πik)α⟨f, ηk⟩L2

and the condition f ∈ Hs(Td) is equivalent to∑
k∈Zd

|kα⟨f, ηk⟩L2
|2 <∞ for all ∥α∥1 ≤ s . (3.16)

Step 2. Showing f ∈ Hs(Td) implies Fourier coefficient decay. By
Theorem 3.38 all ℓp norms are the same up to a d-dependent constant. Thus,
showing the result for p = 1 is enough. Jensen’s inequality gives ∥k∥2s1 ≤
d2s−1

∑d
j=1 k

2s
j and thus

∑
k∈Zd

∥k∥2s1 |⟨f, ηk⟩L2
|2 ≤

∑
k∈Zd

(
d2s−1

d∑
j=1

k2sj

)
|⟨f, ηk⟩L2

|2

≤ d2s−1
d∑

j=1

∑
k∈Zd

k2sj |⟨f, ηk⟩L2
|2

where the latter sums are all finite by (3.16) with the choices α = sej for
j = 1, . . . , d and ej the j-th unit vector.

Step 3. Showing Fourier coefficient decay implies f ∈ Hs(Td). We have∑
k∈Zd

k2α|⟨f, ηk⟩L2 |2 ≤
∑
k∈Zd

∥k∥2∥α∥1
∞ |⟨f, ηk⟩L2 |2 ,

which is finite for all ∥α∥1 ≤ s by assumption.

From Theorem 3.39 we have that the Fourier coefficients decay according
to an ℓp-norm of their frequency. If we want to approximate a function by
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Figure 3.3: Cube of frequencies {k ∈ Z3 : ∥k∥∞ ≤ 6}.

truncating its Fourier coefficients have to truncate accordingly. The next
lemma shows that the d-dependence is independent of the chosen p and enters
exponentially.

Lemma 3.40. Let 0 < p ≤ ∞ and Id,pN := {k ∈ Zd : ∥k∥p ≤ N}. Then
|Id,pN | ∼ Nd.

Proof. Step 1. Showing the assertion for 1 ≤ p. In the boundary cases we
have |Id,1N | ∼ |Id,∞N | ∼ Nd. For 1 < p ≤ ∞ we use |Id,1N | ≤ |Id,pN | ≤ |Id,∞N |,
which follows from Theorem 3.38.

Step 2. It remains to show the assertion for 0 < p < 1. By Theorem 3.38
we have Id,1

d1−1/pN
⊆ Id,pN . Thus, |Id,pN | ≤ |Id,1

d1−1/pN
| ∼ Nd.

If we are solely concerned about the d-dependence, Theorem 3.40 states
that we might as well chose the largest ℓp ball with p = ∞, which is de-
picted in Figure 3.3. For this frequency set multidimensional fast Fourier
algorithms [CT65, KKP09] are applicable which makes this approach com-
putationally interesting. On the downside, as the ℓp-balls grow exponentially
in the dimension, the curse of dimensionality enters. In fact, in [KSU14] the
behavior of the approximation numbers was determined an(IK : Hs(Td) →
L2(T

d)) ∼ n−s/d, which shows that the number of information has to grow
exponentially in the dimension to achieve the same accuracy. Nevertheless,
in lower dimensions d ∈ {1, 2, 3} this approach is feasible and in [KMU16]
the preasymptotic behavior was studied where the involved constants decay
polynomial in d.
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∂/∂x1

∂/∂x2

Figure 3.4: Visualization of the isotropic Sobolev spaces (gray) and Sobolev
spaces with dominating mixed smoothness (black).

3.6.2 Sobolev spaces with dominating mixed smoothness

As we have seen in Section 3.6.1 the canonical approach to extend smoothness
concepts to higher dimensions yields isotropic Sobolev spaces which are trou-
blesome in higher dimensions. Another approach is do demand the existence
of all derivatives of dominating mixed smoothness. This leads to the Sobolev
spaces with dominating mixed smoothness s ∈ N0

Hs
mix(D) :=

{
f ∈ L2(D) : ∥f∥2Hs

mix
=

∑
α∈{0,s}d

∥Dαf∥2L2
<∞

}
.

When comparing them to the isotropic Sobolev spaces the existence of partial
derivatives Dαf is required for the ℓ∞ ball instead of ℓ1 as depicted in Fig-
ure 3.4 for dimension d = 2. From this we obtain the immediate embedding
Hds(D) ↪→ Hs

mix(D) ↪→ Hs(D). The original idea to consider these spaces
goes back to K. I. Bebenko and S. M. Nikol’skii, cf. [Bab60, Nik63]. They oc-
cur naturally as solution for hyperbolic partial differential equations [Mam15],
in quantum mechanics [Yse04], in discrepancy theory [BLV08], for computing
entropy numbers [KL93], or approximation theory [Tem93a, DuTU18].

It was shown in [SU09] that the Sobolev spaces with dominating mixed
smoothness are a tensor product of the one-dimensional Sobolev spaces

Hs
mix(D) = Hs(D1)⊗ · · · ⊗Hs(D1)

forD = D1⊗· · ·⊗D1. Because of this structure the basis and singular values
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Figure 3.5: Hyperbolic cross for dimension d = 3 and radius R = 15.

of the embedding Hs
mix(D) ↪→ L2(D) are given by

ηk(x) =

d∏
j=1

ηkj (xj) and σ2
k =

d∏
j=1

σ2
kj
.

For approximation the singular functions corresponding to the largest singular
values are most important. Collecting all these multi-indices k ∈ Zd we end
up with the so-called hyperbolic cross of radius R

Ihc :=
{
k = (k1, . . . , kd) ∈ Zd :

d∏
j=1

max{1, kj} ≤ R
}
,

where one is depicted in Figure 3.5. Note, that we included negative multi-
indices as this originates from the frequencies used in trigonometric polyno-
mials. When approximating with polynomials or the H1([0, 1]) or H2([0, 1])
basis from Sections 3.5.2 and 3.5.3, we only need the first quadrant. A huge
advantage is its cardinality of merely |Ihc| ≍ R(logR)d−1 frequencies, cf.
Theorem 7.11 or [BKUV17]. Thus, the dimension d only enters in the loga-
rithm, which makes these spaces applicable in higher dimensions compared to
the isotropic Sobolev spaces from Section 3.6.1.

3.6.3 Truncated ANOVA decomposition

Another way of approaching high-dimensional problems, gaining recent popu-
larity, is via the truncated ANOVA decomposition, which we address in this
section based on [BPS22]. In-depth works on this topic are [CMO97, RFA99,
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LO06, NW08, KSWW09, Gu13, Sch22] where we only give a brief introduc-
tion and restrict ourselves to D = Td for simplicity. The core idea is that
certain functions are representable as a sum of lower-dimensional functions,
e.g.

f(x1, . . . , x9) = exp(x1) + sin(x1) cos(x2) + x5x
3
6x

5
7 .

The above function f is nine-dimensional but may be decomposed into a
sum of one one-dimensional function, one two-dimensional, and one three-
dimensional one. This assumption occurs, e.g. naturally in calculations of
the electronic structure problem for molecules in [GHH11] where component-
wise interactions are intrinsic. Even when this assumption is not given, the
truncation to lower-dimensional terms has been proven to beat past methods
in practice on benchmark problems, cf. [Sch22, Chapter 6].

A central tool are integral projections

Puf(x) =

∫
Td−|u|

f(x) dxu∁

for a subset of coordinate indices u ⊆ {1, . . . , d} and its complement u∁ =
{1, . . . , d} \ u. Additionally, for vectors x ∈ Td indexed with a subset
u ⊆ {1, . . . , d} we define xu := (xj)j∈u. For u ⊆ {1, . . . , d}, the ANOVA
terms and ANOVA decomposition are given by

fu = Puf −
∑
v⊊u

fv and f =
∑

u⊆{1,...,d}

fu .

For D = Td the ANOVA terms are orthogonal and expressible in terms of its
Fourier coefficients

fu =
∑
k∈Zd

suppk=u

⟨f, ηk⟩L2
ηk

with suppk = {j ∈ {1, . . . , d} : kj ̸= 0}. A depiction of the frequencies
corresponding to different dimensions is in Figure 3.6. For other domains with
orthonormal systems this works similar, cf. [Sch22], or a bit more involved
with wavelets, cf. [LPU23].

The number of ANOVA terms is 2d and therefore grows exponentially in
the dimension which reflects the well known curse of dimensionality. The
idea to circumvent this is to truncate the decomposition and only take a certain
number of terms into account. It is common to truncate to lower-dimensional
terms fu with |u| ≤ ds. Then, the number of terms with respect to the spatial
dimension d is

∑ds

j=1

(
ds

d

)
∈ O(dds), which grows polynomially instead of
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Figure 3.6: Decomposition of the frequency into the different dimensions of
the ANOVA decomposition.

exponentially. Furthermore, amongst the terms fu it is possible to find the ones
contributing most to the overall function via sensitivity analysis decreasing the
number of terms even more. Next to that, this approach is combinable with
fast Fourier methods, cf. [BPS22, Sch22].
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Concentration inequalities

Randomness and random constructions are used in e.g. compressive sensing,
Monte Carlo methods, or function approximation. To show error bounds of
these constructions, concentration inequalities are used. In this section we
repeat on a selection of them which we will use later on. A good collection
and introduction can be found in [Ver18].

In particular, Section 4.1 is about concentration inequalities in random
vectors starting with the well-known Bernstein inequality followed by the
more general Hanson-Wright inequality, which we prove for complex random
vectors under Bernstein conditions. In Section 4.2 we consider matrix-valued
concentration inequalities for finite- and infinite-dimensional matrices.

4.1 Concentration inequalities for random vectors

The bounds in this section are on random variables of the form f : Cn → R.
We present Bernstein’s inequality where f is the sum, the Hanson-Wright
inequality for quadratic forms, and McDiarmid’s inequality for general f
satisfying a certain c- boundedness condition.

We start with Bernstein’s inequality, which is found in the standard literature,
cf. [FR13, Corollary 7.31] or [SC08, Theorem 6.12].

Theorem 4.1 (Bernstein). Let ξ1, . . . , ξn be independent real-valued mean-
zero random variables satisfying E(ξ2i ) ≤ σ2 and ∥ξi∥∞ ≤ K for i =
1, . . . , n and real numbers σ2 and K. Then

1

n

n∑
i=1

ξi ≤
2Kt

3n
+

√
2σ2t

n

with probability exceeding 1− exp(−t).

Bernstein’s inequality gives a concentration bound for the sum of indepen-
dent random variables. We need similar bounds for quadratic forms in random
vectors, which are known as Hanson-Wright inequalities. To formulate them,
we need to introduce the spectral norm and the Frobenius norm of a matrix
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A ∈ Cm×n

∥A∥2→2 =
√
λmax(A∗A) = σmax(A) and ∥A∥F =

√√√√ m∑
k=1

n∑
i=1

|ak,i|2 ,

(4.1)
where λmax and σmax denote the largest eigenvalue and singular value, respec-
tively. The following result is such an inequality with a Bernstein condition on
the random variables.

Theorem 4.2 (Hanson-Wright). Let ξ = (ξ1, . . . , ξn)
T be a vector of inde-

pendent complex-valued mean-zero random variables such that

E(|ξi|2p) ≤ p!K2p−2σ2
i /2 (4.2)

for 0 ≤ σ2
i ≤ K, i = 1, . . . , n, and p ∈ N. Let further A ∈ Cn×n Hermitian,

m = E(ξ∗Aξ), and Dσ = diag(σ1, . . . , σn). Then

ξ∗Aξ −m ≤ max
{
256K2∥A∥2→2t, 8

√
3K∥ADσ∥F

√
t
}

with probability exceeding 1− exp(−t).
Remark 4.3. In [BLM13, Example 2.12] is a real-valued version of the
Hanson-Wright inequality for Gauss distributed random variables, which is a
special case of the above with better constants (the rotation invariance of a
Gauss distributed vector is used). There is also a more general Hanson-Wright
type inequality for sub-Gaussian random variables in [RV13] without specified
constants.

Theorem 4.2 was shown in [Bel19, Theorem 3] for real valued random
variables and real matrices. With some adjustments the proof works for the
complex case as well. For that we need a preliminary lemma.

Lemma 4.4. Let ξ be as in Theorem 4.2, a ∈ C, a = (a1, . . . , an)
T ∈ Cn,

and A0 ∈ Cn×n Hermitian with zeros on the diagonal. Then

E(exp(|aξ|)) ≤ exp(|aK|2) ,
E(| exp(⟨a, ξ⟩)|) ≤ exp(K2∥a∥22) ,

and E(exp(ξ∗A0ξ)) ≤ E(exp(16K2∥A0ξ∥22) .

Furthermore, for |a|K2 ≤ 1/2, we have

E(|aξ2i − aσ2
i |) ≤ exp(|a|2σ2

iK
2)

and E(|aξ2i |) ≤ exp
(3
2
|a|σ2

i

)
.
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Proof. The first, fourth, and fifth inequality are stated in [Bel19, Proposition 4]
for real numbers. The extension to complex numbers is straight-forward by
inserting absolute values in appropriate places.

Second inequality. Using the first inequality we have

E(| exp(⟨a, ξ⟩)|) = E
(∣∣∣ n∏

i=1

exp(aiξi)
∣∣∣) ≤ E

( n∏
i=1

exp(|aiK|2)
)

= E
(
exp(K2∥a∥22)

)
.

Third inequality. Since | exp(z)| is convex on the complex plane, we can
use the decoupling theorem from [Ver11] or [FR13, Theorem 8.11]. For ξ′ an
independent copy of ξ, we obtain

Eξ(| exp(ξ∗A0ξ)|) ≤ Eξ,ξ′(| exp(4ξ∗A0ξ
′)|) ≤ Eξ(exp(16K

2∥A0ξ∥22)) ,

where we used the second inequality in the last line.

Proof of Theorem 4.2. We decompose ξ∗Aξ into the diagonal and the off-
diagonal part

ξ∗Aξ −m =

n∑
i=1

aii(|ξi|2 − σ2
i ) + ξ∗A0ξ =: S1 + S2 .

In the following we bound the moment generating functions of S1 and S2 in
order to apply Chernoff bound. Let λ > 0 satisfy

128∥A∥2→2K
2λ ≤ 1 . (4.3)

Step 1. Bounding of the moment generating function of S1. We apply the
fourth inequality of Theorem 4.4 (applicable because of (4.3))

E(exp(λS1)) = E
(
exp

(
λ

n∑
i=1

aii(|ξi|2 − σ2
i )
))

≤ exp
(
λ2K2

n∑
i=1

|aii|2σ2
i

)
.

Step 2. Preparing auxiliary linear algebra. We define the matrix A0 =
A − diag(a11, . . . , ann) being A with zeros on the diagonal. Since |aii| ≤
∥A∥2→2, we have by triangle inequality

∥A0∥2→2 ≤ 2∥A∥2→2 .
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Let B = A∗
0A0 = (bij)i,j=1,...,n and B0 = B − diag(b11, . . . , bnn). Then,

0 ≤ bii =
∑
j ̸=i

|aji|2 ≤ ∥A∥22→2

and ∥B0ξ∥22 ≤ 2∥Bξ∥22 + 2

n∑
i=1

|biiξi|2

≤ 2∥A0∥22→2∥A0ξ∥22 + 2∥A∥22→2

n∑
i=1

|bii||ξi|2

≤ 2∥A∥22→2

(
2∥A0ξ∥22 +

n∑
i=1

|bii||ξi|2
)
.

Step 3. Bounding of the moment generating function of S2. Let η =
32K2λ2. We use the third inequality of Theorem 4.4

E(exp(λS2)) ≤ E(exp(16λ2K2∥A0ξ∥22)) = E
(
exp

(η
2
∥A0ξ∥22

))
.

(4.4)
Using ∥A0ξ∥22 =

∑n
i=1 bii|ξi|2 + ξ∗B0ξ, the Cauchy-Schwarz inequality,

and the third inequality of Theorem 4.4 again, we obtain

E
(
exp

(η
2
∥A0ξ∥22

))2
≤ E

(
exp

(
η

n∑
i=1

bii|ξi|2
))
E(exp(ηξ∗B0ξ))

≤ E
(
exp

(
η

n∑
i=1

bii|ξi|2
))
E(exp(16η2K2∥B0ξ∥22)) .

Applying the result from Step 2 and 32K2∥A∥22→2η ≤ 1/16 (implied by
(4.3)), we obtain

E
(
exp

(η
2
∥A0ξ∥22

))2
≤ E

(
exp

(
η

n∑
i=1

bii|ξi|2
))

·

E
(
exp

(
32η2K2∥A∥22→2

(
2∥A0ξ∥22 +

n∑
i=1

|bii||ξi|2
)))

≤ E
(
exp

(
η

n∑
i=1

bii|ξi|2
))
E
(
exp

( η
16

(
2∥A0ξ∥22 +

n∑
i=1

|bii||ξi|2
)))

.
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By the Cauchy-Schwarz inequality, we further have

E
(
exp

(η
2
∥A0ξ∥22

))2
≤ E

(
exp

(
η

n∑
i=1

bii|ξi|2
))

·

√
E
(
exp

(η
4
∥A0ξ∥22

))√√√√E( exp(η
8

n∑
i=1

bii|ξi|2
))

.

Thus,

E
(
exp

(η
2
∥A0ξ∥22

))3/2
≤ E

(
exp

(
η

n∑
i=1

bii|ξi|2
))3/2

,

where we can drop the power because of the positivity of bii. Plugging this
into (4.4) and using the fifth equation of Theorem 4.4 (applicable because of
(4.3)), we obtain

E(exp(λS2)) ≤ E
(
exp

(3
2
η

n∑
i=1

biiσ
2
i

))
.

Resubstituting λ for η and using
∑n

i=1 biiσ
2
i = ∥A0Dσ∥2F , we have an

estimate for the moment generating function of S2

E(exp(λS2)) ≤ exp
(
48K2λ2∥A0Dσ∥2F

)
.

Step 4. Bringing everything together. By the Chernoff bound and the
Chauchy-Schwarz inequality, we have

P(ξ∗Aξ −m > ε) ≤ exp(−λε)E(exp(λS1 + λS2))

≤ exp(−λε)
√
E(exp(2λS1))E(exp(2λS2)) .

Using Steps 1 and 3, we have

P(ξ∗Aξ −m > ε)

≤ exp(−λε) exp
(
48λ2K2

( n∑
i=1

|aii|2σ2
i + ∥A0Dσ∥2F

))
= exp

(
48K2λ2∥ADσ∥2F − λε

)
.
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It remains to choose λ. The minimum for the unconstrained problem is attained
at λ⋆ = ε/(96K2∥ADσ∥2F ). If λ⋆ satisfies (4.3), then

P(ξ∗Aξ −m > ε) ≤ exp
( −ε2

192K2∥ADσ∥2F

)
.

Otherwise we use the boundary value λb = 1/(128∥A∥2→2K
2) ≤ λ⋆ and

−ελb + (λb)248K2∥ADσ∥2F ≤ −ελb + λb48K2∥ADσ∥2F
96K2∥ADσ∥2F

=
−ε

256K2∥A∥2→2
.

Overall, we obtain

P(ξ∗Aξ −m > ε) ≤ exp
(
max

{ −ε2

192K2∥ADσ∥2F
,

−ε
256K2∥A∥2→2

})
.

The assertion follows by choosing

ε = max
{
8
√
3tK∥ADσ∥F , 256K2∥A∥2→2t

}
.

We are interested in the special case where the quadratic form is expressed
as the Euclidean norm of a matrix-vector product and will formulate this in
the next corollary.

Corollary 4.5. Let ξ = (ξ1, . . . , ξn)
T be a vector of independent complex-

valued mean-zero random variables satisfying E(|ξi|2) ≤ σ2 and |ξi| ≤ K
for i = 1, . . . , n. Then for all L ∈ Cm×n

∥Lξ∥22 ≤ (2mσ2 + 256K2t)∥L∥22→2

with probability exceeding 1− exp(−t).

Proof. Step 1. Applying the Hanson-Wright inequality. Since ∥Lξ∥22 =
ξ∗L∗Lξ is a quadratic form we will apply Theorem 4.2 on L∗L. For that we
check the moment condition (4.2) on ξ21 , . . . , ξ

2
n. For p = 1 it is fulfilled for

constants K/
√
2 and (

√
2σi)

2. For p ≥ 2, we have p! ≥ 2p−1 and obtain

E(|aiξi|2p) ≤ ∥ξi∥2p−2
∞ E(|ξi|2)

≤ (K)2p−2σ2

≤ p!
( K√

2

)2p−2 (
√
2σ)2

2
.
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Therefore, Theorem 4.2 is applicable.
Step 2. Calculation of the expected value. Since ξ1, . . . , ξn are independent

and have bounded variance, we obtain

E(∥Lξ∥22) =
m∑

k=1

n∑
i=1

n∑
j=1

aikaj,k E(ξiξj)

=

m∑
k=1

( n∑
i=1

∑
j ̸=i

aikaj,k E(ξiξj)
)
+

n∑
i=1

|aik|2E(|ξi|2)

≤ σ2∥L∥2F .

Step 3. Bringing everything together. By Step 1 and 2 we obtain

∥Lξ∥22 ≤ σ2∥L∥2F +max
{
128K2∥L∗L∥2→2t, 8

√
3σ2tK∥L∗L∥F

}
with probability exceeding 1− exp(−t). With

∥L∥2F = trace(L∗L) ≤ m∥L∗L∥2→2 ≤ m∥L∥22→2

and ∥L∗L∥F =
√

trace(L∗LL∗L) ≤
√
m∥L∥22→2 ,

we obtain

∥Lξ∥22 ≤
(
σ2m+max

{
128K2t, 8

√
3mσ2tK

})
∥L∥22→2

≤
(
(
√
mσ2)2 + 2 ·

√
mσ2 · 4

√
3tK + (

√
128tK)2

)
∥L∥22→2

≤
(√

mσ2 +
√
128tK

)2
∥L∥22→2

≤ (2mσ2 + 256tK2)∥L∥22→2 .

Note that the m on the right-hand side is important. If we would use
∥Lξ∥22 ≤ ∥L∥22→2∥ξ∥22 and estimate the latter we would get an n instead.
Thus, we gain whenever m < n.

Next, we state a concentration result for more general f : Cn → R. It was
originally stated by McDiarmid in [McD89] and requires some notation.

Definition 4.6. A function f : Ωn → R is said to be c-bounded on Ξ ⊆ Ωn

for c = (c1, . . . , cn) ∈ [0,∞)n if and only if

|f(x)− f(x′)| ≤ dc(x,x
′)
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for all x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n) ∈ Ξ where the distance dc is

defined by

dc(x,x
′) =

∑
i:xi ̸=x′

i

ci.

Note, that a function is c-bounded if changing a single variable xi, i =
1, . . . , n changes f(x) only by ci, i.e.,∣∣∣f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∣∣∣ ≤ ci

for all (x1, . . . , xn), (x′1, . . . , x
′
n) ∈ Ξ.

With that, we can formulate an extension of McDiarmid [McD89] due to
R. Combes:

Theorem 4.7 (McDiarmid). Let ξ1, . . . , ξn be independent random variables
with values in D. Furthermore, let f : Dn → R be c-bounded on Ξ ⊆ Dn,
m = E(f(ξ1, . . . , ξn)|(ξ1, . . . , ξn) ∈ Ξ), and γ = P((ξ1, . . . , ξn) /∈ Ξ).
Then

|f(ξ1, . . . , ξn)−m| ≤
√
t

2
∥c∥2 + γ∥c∥1

with probability exceeding 1− 2γ − 2 exp(−t).

Proof. [Com15, Theorem 2.1] with ε = γ∥c∥1 +
√
t/2∥c∥2.

4.2 Concentration inequalities for the spectral norm of
(infinite) matrices

The bounds in this section concern sums of random matrices and bound the
maximal singular values of them, which we will apply for the least squares
matrix (2.1) later on. The following works for finite matrices and was shown
in [Tro12, Theorem 1.1].

Lemma 4.8 (Matrix Chernoff). Let A1, . . . ,An ∈ Cm×m be a finite se-
quence of independent, Hermitian, positive semi-definite random matrices
satisfying λmax(Ai) ≤ K almost surely. Furthermore, we set µmin :=
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λmin(
∑n

i=1E(Ai)) and µmax := λmax(
∑n

i=1E(Ai)). Then

P
(
λmin

( n∑
i=1

Ai

)
≤ (1− ε)µmin

)
≤ m exp

(
− µmin

K
(ε+ (1− ε) log(1− ε))

)
≤ m exp

(
− µminε

2

2K

)
,

P
(
λmax

( n∑
i=1

Ai

)
≥ (1 + ε)µmax

)
≤ m exp

(
− µmax

K
(−ε+ (1 + ε) log(1 + ε))

)
≤ m exp

(
− µmaxε

2

3K

)
for 0 ≤ ε ≤ 1.

Proof. The first estimates are provided by [Tro12, Theorem 1.1]. Based on
the Taylor expansion

(1 + t) log(1 + t) = t+

∞∑
k=2

(−1)k

k(k − 1)
tk ,

which holds true for t ∈ [−1, 1], we further derive the inequalities

t+ (1− t) log(1− t) =

∞∑
k=2

1

k(k − 1)
tk ≥ t2

2

and −t+ (1 + t) log(1 + t) =

∞∑
k=2

(−1)k

k(k − 1)
tk ≥ t2

2
− t3

6
≥ t2

3

for the range 0 ≤ t ≤ 1.

The next bound bounds the maximal singular value as well and works for
infinite matrices.

Theorem 4.9 ([MU21, Proposition 3.8]). Let u1, . . . ,un be i.i.d. random
sequences from ℓ2. Let further n ≥ 3, t > 0, M > 0 such that ∥ui∥2 ≤ M
almost surely and E(ui ⊗ ui) = Λ for all i = 1, . . . , n. Then∥∥∥ 1

n

n∑
i=1

ui ⊗ ui
∥∥∥
2→2

≤ 21(log(n) + t)

n
M2 + 2∥Λ∥2→2

with probability exceeding 1− 23/4 exp(−t).
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Subsampling of finite frames

In this chapter we deal with the basic linear algebra concept of frames.
Their notion goes back to 1952 introduced by R. J. Duffin and A. C. Schaef-
fer [DS52]. Let H be a complex Hilbert space with scalar product ⟨·, ·⟩ and
norm ∥ · ∥. A countable subset (yi)i in H is said to be a frame if there are
constants 0 < A ≤ B <∞ such that

A∥x∥2 ≤
∑
i

|⟨x,yi⟩|2 ≤ B∥x∥2 for all x ∈ H . (5.1)

We are mostly interested in frames consisting of finitely many elements
of a finite dimensional Hilbert space H , see e.g. O. Christensen [Chr08]
or P. Casazza and G. Kutyniok [CK13] for an introduction to frame the-
ory. Systems of this kind may be represented by vectors (yi)Mi=1 ⊆ Cm.
For ensuring 0 < A, we need the condition M ≥ m for the number of
frame elements. The question of finding good subframes in such a system is
rather fundamental and important for many applications ranging from graph
sparsifiers [BSS09, SS11], the Kadison-Singer problem [MSS15, Wea04],
to optimal discretization and sampling recovery of multivariate functions
[DKU23, KU21a, KU21b, NSU21, LT22, Tem21, PU22]. In this context, let
us also mention the possibility of generating “approximations” of Hadamard
matrices, a problem which has been considered in [DR22] for example. Sub-
sampling of a tight Hadamard frame (yi)Mi=1, where all entries of the yi are
±1 (or in a complex setting of modulus 1), may lead to an almost square
Hadamard-type matrix with good condition. For our goal of function approxi-
mation we want to achieve a small error in some norm defined on the whole
domain, i.e., a quantity where every single point matters. The discrete set of
points, in which we have given function evaluations for the sampling problem,
is a subset thereof. Therefore, the task can be understood as a subsampling
procedure while trying to keep the inherent information, which corresponds to
the subsampling of frames.

Some results of this section are already published in [BSU23], of which
we present the following contributions: We introduce a random subsampling
technique in Theorem 5.1 yielding a logarithmic gap in terms of optimality
in the number of frame elements, i.e., we have n of order m logm where n is
the number of frame elements and m their dimension. This logarithmic gap
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is closed in Theorem 5.3 by the deterministic BSS algorithm to merely linear
oversampling, i.e., n of order m. In the function approximation application
later on it is of interest if the subsampling can be done without weights. For
that reason we present approaches in Theorems 5.7 and 5.10 eliminating the
weights saving the more important lower frame bound as this bound is crucial
for the reconstruction of a vector a from its frame coefficients ⟨a,yi⟩. We
conclude this section with some numerical examples in Section 5.4 to indicate
the applicability of the theory.

5.1 Random weighted subsampling of finite frames

We begin with a random subsampling strategy that allows to extract “good”
subframes of O(m logm) elements out of any given frame in Cm. This goes
back to M. Rudelson and R. Vershynin [RV07], see also D. A. Spielman
and N. Srivastava [SS11], where the goal was to efficiently find a low rank
approximation of a given matrix such that the error with respect to the spectral
norm remains small. The method is rather simple since it relies on a random
sub-selection where the discrete probability mass ϱi for selecting one particular
frame element yi is directly linked to its contribution to the sum of the norms,
i.e., the Frobenius norm ∥Y ∥2F , see (4.1), of the matrix

Y :=


(y1)∗

...

(yM )∗

 ∈ CM×m . (5.2)

Note that for a given frame (yi)Mi=1 ⊆ Cm, with M ≥ m and m ∈ N, this
matrix represents the analysis operator of the frame and that

mA ≤ trace(Y ∗Y ) = ∥Y ∥2F ≤ m∥Y ∗Y ∥2→2 = mλmax(Y
∗Y ) ≤ mB .

(5.3)

The main result of this section relies on a matrix Chernoff bound in Theo-
rem 4.8 proven by Tropp [Tro12, Thm. 1.1]. It shows how one can randomly
subsample a finite frame of arbitrary size in Cm to a weighted subframe with
O(m logm) elements while essentially keeping its stability properties.

Theorem 5.1. Let (yi)Mi=1 ⊆ Cm be a frame with constants 0 < A ≤ B <∞.
Let further p, t ∈ (0, 1) and n ∈ N be such that

n ≥ 3B

At2
m log

(2m
p

)
.



5.1 Random weighted subsampling of finite frames 81

Drawing n indices J ⊆ {1, . . . ,M} (with duplicates) i.i.d. according to the
discrete probability density ϱi = ∥yi∥22/∥Y ∥2F , i ∈ {1, . . . ,M}, then gives a
rescaled random subframe (ϱ

−1/2
i yi)i∈J such that

(1− t)A∥a∥22 ≤ 1

n

∑
i∈J

∣∣∣〈a, ϱ−1/2
i yi

〉∣∣∣2 ≤ (1 + t)B∥a∥22 for all a ∈ Cm

with probability exceeding 1− p.

Proof. The result is a direct consequence of Tropp’s concentration inequality
in Lemma 4.8. For a randomly chosen index i ∈ {1, . . . ,M} we define the
rank-one random matrix Ai :=

1
nϱ

−1
i (yi ⊗ yi). Clearly, it holds

λmax(Ai) = λmax

( 1
n
ϱ−1
i (yi ⊗ yi)

)
=

1

n
ϱ−1
i ∥yi∥22 =

1

n
∥Y ∥2F .

Furthermore, having n independent copies (Ai)i∈J , we obtain∑
i∈J

EAi =
∑
i∈J

E
( 1
n
ϱ−1
i (yi ⊗ yi)

)
=
∑
i∈J

1

n
Y ∗Y = Y ∗Y .

This gives for µmin := λmin(
∑

i∈J EAi) and µmax := λmax(
∑

i∈J EAi)
that

µmin = λmin(Y
∗Y ) ≥ A and µmax = λmax(Y

∗Y ) = ∥Y ∗Y ∥2→2 .

Since ∥Y ∥2F = trace(Y ∗Y ), Lemma 4.8 and (5.3) gives

P
(
λmax

( 1
n

∑
i∈J

ϱ−1
i yi ⊗ yi

)
≥ (1 + t)B

)
≤ m exp

(
− n∥Y ∗Y ∥2→2

trace(Y ∗Y )

t2

3

)
≤ m exp

(
− n

m

t2

3

)
.

For the smallest eigenvalue things are a bit different. Here we obtain

P
(
λmin

( 1
n

∑
i∈J

ϱ−1
i yi ⊗ yi

)
≤ (1− t)A

)
≤ m exp

(
− nA

trace(Y ∗Y )

t2

2

)
≤ m exp

(
− An

Bm

t2

2

)
.
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For the probability of our assertion we need the complement of the two events
above:

1−m exp
(
− n

m

t2

3

)
−m exp

(
− An

Bm

t2

2

)
≥ 1− 2m exp

(
− An

Bm

t2

3

)
≥ 1− p ,

which follows from the assumption on n.

Theorem 5.1 shows that drawing frame elements yi, i ∈ {1, . . . ,M},
according to the probabilities ϱi := ∥yi∥22/(

∑
j ∥yj∥22) yields a reweighted

subframe (ϱ
−1/2
i yi)i∈J with similar frame bounds, with high probability

provided |J | = O(m logm). In terms of computational complexity this
strategy is very efficient. It is not optimal with respect to the number of frame
elements, however.

Remark 5.2. The rescaled random subframe (ϱ
−1/2
i yi)i∈J in Theorem 5.1 is

an equal-norm frame. Thus, starting with a tight frame, we are able to con-
struct an “almost tight” frame with unit-norm (UNTF). These are important
in robust data transmission and have proven notoriously difficult to construct,
cf. [CFM12, CK03].

5.2 Deterministic weighted subsampling of finite frames

The shortcoming of the random subsampling being non-optimal with respect
to the number of frame elements is dealt with in this section. We next present
a deterministic subsampling algorithm for finite frames in Cm which we
subsequently call (generalized) BSS algorithm. A version for real-valued tight
frames in Rm was originally introduced by J. D. Batson, D. A. Spielman,
and N. Srivastava in the context of graph sparsification [BSS09]. It allows to
extract from any given finite frame in Cm a comparably well-conditioned re-
weighted subframe of cardinality O(m). This is the statement of Theorem 5.3
below which generalizes [BSS09, Thm. 3.1].

In contrast to related non-weighted subsampling results like in [NSU21,
Thm. 2.3], which are all based on Weaver’s theorem, a deep result equivalent
to the famous Kadison-Singer theorem [MSS15], the proof of Theorem 5.3
is elementary and constructive. The underlying BSS algorithm lends itself to
practical polynomial time implementation.
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The careful analysis of the algorithm is published in [BSU23, Section 3]
and is accredited to M. Schäfer. Because of its technical nature we omit it here
and refer to the mentioned reference for the eager reader.

Theorem 5.3. Let (yi)Mi=1 ⊆ Cm be a frame (5.1) with frame constants
0 < A ≤ B <∞ and let b > κ2 ≥ 1 with

κ :=
( B
2A

+
1

2

)
+

√( B
2A

+
1

2

)2
− 1 . (5.4)

Then the BSS algorithm, cf. Algorithm 1, computes a subset J ⊆ {1, . . . ,M}
with |J | ≤ ⌈bm⌉ and nonnegative weights si, i ∈ J , such that

A∥a∥22 ≤
∑
i∈J

si|⟨a,yi⟩|2 ≤ γ ·B∥a∥22 for all a ∈ Cm (5.5)

with γ :=
(
√
b+ 1)2

(
√
b− 1)(

√
b− κ)

. (5.6)

Remark 5.4. (i) The BSS algorithm computes the index subset J and
the corresponding weights si in O(bMm3). An implementation and
runtime analysis is given on page 87, see also [BSS09, Sec.3]. Better
guarantees on the bound can be obtained by a “preconditioning” of the
frame, given by Lemma 5.6. The resulting algorithm is called BSS⊥.
In BSS⊥ also the restriction b > κ2 can be evaded. Some empirical
results are presented in Section 5.4.

(ii) The theorem neither gives control over the weights si nor provides an
unweighted version of itself. The latter would actually be useful for
applications. We refer to [NSU21] for an unweighted result which is
called “Weaver subsampling” and relies on the Kadison-Singer theo-
rem [MSS15]. In Section 5.3 below we will use a special construction
from Lemma 5.9 to deduce an unweighted version that preserves the
lower frame bound, cf. Corollary 5.11.

In the following we give an insight into the principal structure of the BSS
algorithm. The frame property of the vectors (yi)Mi=1 can be formulated as

AI ⪯
M∑
i=1

yi(yi)∗ ⪯ BI ,

where I denotes the identity matrix in Cm×m and A ⪯ B denotes B −A
being positive semi-definite.
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Furthermore, condition (5.5) of the subsampled frame can be rewritten as

AI ⪯
∑
i∈J

siy
i(yi)∗ ⪯ γ ·BI . (5.7)

The idea of the BSS algorithm is to build the sum
∑

i∈J siy
i(yi)∗ itera-

tively in n := ⌈bm⌉ steps. Starting with the zero-matrix A(0) := 0, a sequence
of Hermitian matrices

A(0), A(1), A(2), . . . , A(n) (5.8)

is computed via rank-1 updates of the form

A(k) = A(k−1) + t(k)yi(k)

(yi(k)

)∗ , k ∈ {1, . . . , n} ,

with suitably selected indices i(k) ∈ {1, . . . ,M} and weights t(k) > 0. After
n iterations we have thus constructed a matrix A(n) of the form

A(n) =

n∑
k=1

t(k)yi(k)

(yi(k)

)∗ =
∑
i∈J

s̃iy
i(yi)∗ (5.9)

where
s̃i :=

∑
k:i(k)=i

t(k) and J :=
{
i(k) : k = 1, . . . , n

}
.

Clearly, |J | ≤ n = ⌈bm⌉. During the whole process the spectra of the con-
structed matrices A(k) are controlled by means of so-called spectral barriers,
i.e., numbers l(k), u(k) ∈ R such that

σ(A(k)) ⊆ (l(k), u(k)) , k ∈ {0, . . . , n} . (5.10)

Note, that the barriers may be negative even though the eigenvalues of Hermi-
tian matrices are always non-newgative.

Whereas the precise location of the eigenvalues of A(k) may not be known,
in this way we have enclosed their location in open intervals (l(k), u(k)), in
particular it holds

l(k)I ⪯ A(k) ⪯ u(k)I .

The algorithm starts with initial barriers l(0) < 0 and 0 < u(0) for A(0) = 0.
From each step to the next, the barriers are then shifted to the right, most simply
by certain fixed lengths δL > 0 and δU > 0. In the k-th iteration we thus
have l(k) = l(0) + kδL and u(k) = u(0) + kδU (see Figure 5.1). For each A(k)
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the indices and weights i(k+1) and t(k+1) are further chosen such that (5.10)
remains valid for the updated matrix A(k+1). Under these conditions, the final
matrix A(n) then has property (5.10) for

l(n) = l(0) + nδL and u(n) = u(0) + nδU .

For the “right” choice of l(0), u(0), δL, and δU we end up with final barriers
satisfying

l(n) > 0 and
u(n)

l(n)
≤ γ · B

A
.

This finally allows to rescale the weights s̃i in (5.9) appropriately, giving the
desired weights si such that (5.7) is fulfilled.

R

R

R

l(k−1)

l(k)

l(k+1)

u(k−1)

u(k)

u(k+1)

l(k−1)

l(k)

l(k+1)

u(k−1)

u(k)

u(k+1)

Figure 5.1: Spectral shifting via constant and variable barrier shifts.

The subsequent version, Algorithm 1, was implemented for the purpose of
empirical analysis (see Section 5.4). Instead of fixed barrier shifts δL and δU
it uses variable shifts δ(k)L and δ(k)U depending on the iteration step k.
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Algorithm 1 BSS
Input: Frame y1, . . . ,yM ∈ Cm with frame bounds 0 < A ≤

B <∞;
Oversampling factor b > κ2 with κ as in (5.4); Stability
factor ∆ ≥ 0.

Output: Nonnegative weights si such that
√
s1y

1, . . .
√
sMyM is a

frame with |{i : si > 0}| ≤ ⌈bm⌉ and bounds 0 < A ≤
Bγ(1 + ∆) <∞. (γ := γ(b, κ) is the value from (5.6).)

1: Put n := ⌈bm⌉ and κ := κ(A,B) as in (5.4). Further, set A(0) := 0,

l(0) := −m
√
bκ

1 + ∆
, u(0) := m

b+
√
b√

b− 1

B

A
,

δ
(0)
L :=

1

1 + ∆
, δ

(0)
U :=

√
b+ 1√
b− 1

B

A
.

▷ A(0) ∈ Cm×m is the zero matrix, l(0), u(0) associated lower and upper
spectral barriers. The initial barrier shifts are given by δ(0)L , δ(0)U .

2: for k = 1 to n do
3: Compute the eigenvalues λ(k−1)

1 , . . . , λ
(k−1)
m of A(k−1).

4: Compute the so-called lower and upper potentials

ϵ
(k−1)
L := Φl(k−1)(A(k−1)) =

∑m
j=1

(
λ
(k−1)
j − l(k−1)

)−1
,

ϵ
(k−1)
U := Φu(k−1)

(A(k−1)) =
∑m

j=1

(
u(k−1) − λ

(k−1)
j

)−1
.

5: Put δ(k−1)
L :=

(
1

δ
(0)
L

− κϵ
(0)
L + κϵ

(k−1)
L

)−1

and

δ
(k−1)
U :=

(
1

δ
(0)
U

+ ϵ
(0)
U − ϵ

(k−1)
U

)−1

.

6: Increment l(k−1) and u(k−1):
l(k) := l(k−1) + δ

(k−1)
L , u(k) := u(k−1) + δ

(k−1)
U .

7: Compute the factors

f
(k−1)
L := Φl(k)(A(k−1)) =

∑m
j=1

(
λ
(k−1)
j − l(k)

)−1
and

f
(k−1)
U := Φu(k)

(A(k−1)) =
∑m

j=1

(
u(k) − λ

(k−1)
j

)−1
.

8: for j = 1 to M do
9: Compute
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L(k−1)(yj) :=
(yj)∗(A(k−1) − l(k)I)−2yj

f
(k−1)
L − ϵ

(k−1)
L

− (yj)∗(A(k−1) − l(k)I)−1yj ,

U (k−1)(yj) :=
(yj)∗(A(k−1) − u(k)I)−2yj

ϵ
(k−1)
U − f

(k−1)
U

− (yj)∗(A(k−1) − u(k)I)−1yj .

10: if L(k−1)(yj)− U (k−1)(yj) ≥ ∆
2M

(
1− 1√

b

)
then

11: denote this index by i(k).
12: break
13: end if
14: end for
15: Compute

t(k) := 2
(
L(k−1)(yi(k)

) + U (k−1)(yi(k)

)
)−1

,
s̃i(k) := s̃i(k) + t(k),
A(k) := A(k−1) + t(k)yi(k)

(yi(k)

)∗.
16: end for
17: return rescaled weights si :=

1

2

( A

l(n)
+
Bγ(1 + ∆)

u(n)

)
s̃i

for i = 1, . . . ,M .

A crucial step is the index selection in line 10. The condition guarantees that
the chosen i(k) and the subsequently computed t(k) lead to a new updated
matrix A(k) (in line 15) which fulfills (5.10) as the matrices A(0), . . . ,A(k−1)

did before. To avoid numerical issues in the selection, which might occur due
to calculation inaccuracies, the stability parameter ∆ ≥ 0 comes into play. It
ensures that L(k−1)(yi(k)

) ≥ U (k−1)(yi(k)

) can be verified, via the condition
in line 10, in a numerically stable manner. In the numerical experiments we
used ∆ = 10−14 which worked for every tested experiment and does not seem
to cause any issues.

Remark 5.5. Algorithm 1 also works for fixed barrier shifts. We can skip the
update in line 5 and always use δ(0)L and δ(0)U in the subsequent incrementation
step in line 6. The advantage of variable shifts is a sharper containment of the
spectrum (see illustration in Fig. 5.1).

Runtime analysis of Algorithm 1. The computation of the singular value
decomposition (SVD) of Ak−1 in the k-th iteration step has a complexity
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of O(m3). Having the SVD decomposition at hand, matrix-vector products
with (A(k−1) − l(k)I)−1, (A(k−1) − l(k)I)−2, (A(k−1) − u(k)I)−1, and
(A(k−1) − u(k)I)−2 are computable in O(m2). To eventually decide, which
index is selected in line 10, L(k−1)(yi) and U (k−1)(yi) in the worst case
need to be computed for all i ∈ {1, . . . ,M}. This thus may require O(Mm2)
multiplication steps. All in all, taking into account M ≥ m, each iteration
can be performed in O(Mm2) time. Since the number of iterations is ⌈bm⌉,
the total time of the algorithm is O(bMm3). In our implementation we used
a random procedure to traverse the indices i ∈ {1, . . . ,M} and noticed that
this speeds up the algorithm. In particular, often it suffices to check one
or two elements to find one fulfilling the barrier condition, see Section 5.4,
Experiment 3.

Instead of computing the singular value decomposition from scratch every
iteration it is possible to update it continuously, cf. [BN79, MVDV92], which
we have not implemented.

By including a preceding orthogonalization procedure, it is possible to allow
arbitrarily small oversampling factors b > 1. Further the guarantees on the
bounds improve. The modified algorithm is called BSS⊥. It is based on the
following simple observation.

Lemma 5.6. For every matrix Y ∈ CM×m with M ≥ m there is a matrix
Ỹ ∈ CM×m such that

range(Ỹ ) ⊃ range(Y ), Ỹ ∗Ỹ = I, and ∥Ỹ ∥2F = m,

where range(Ỹ ) and range(Y ) denote the range in CM of the respective
operators.

Proof. The matrix Ỹ is constructed by applying the Gram-Schmidt algorithm
to the columns of Y . If we end up with less than m vectors, which happens
if rank(Y ) < m, we orthogonally extend them, which is possible since
M ≥ m.

Algorithm 2 BSS⊥

Input: Frame y1, . . . ,yM ∈ Cm with frame bounds 0 < A ≤
B <∞;
Oversampling factor b > 1; Stability factor ∆ ≥ 0.

Output: Nonnegative weights si such that
√
s1y

1, . . .
√
sMyM is a

frame with |{i : si > 0}| ≤ ⌈bm⌉ and bounds 0 < A ≤
Bγ(1 + ∆) <∞. (γ is the value from (5.6) for κ = 1.)
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1: Let Y ∈ CM×m be the matrix with rows y1, . . . ,yM and construct
Ỹ ∈ CM×m as in Lemma 5.6 via Gram-Schmidt orthogonalization of the
columns of Y .

2: return weights s1, . . . , sM , calculated by applying BSS (Algorithm 1)
to the rows of Ỹ .

Note that the rows ỹ1, . . . , ỹM of Ỹ , constructed in line 1 of Algorithm 2,
form a tight frame with A = B = 1. Hence, in lines 2 Algorithm 1 can be
applied for arbitrarily small b > 1. In fact, the frame property of the initial
system (yi)Mi=1 is not needed for this. It is possible to run BSS⊥ for any input
vector sequence (yi)Mi=1 in Cm, satisfying M ≥ m. The returned weights si
always fulfill |{i : si ̸= 0}| ≤ ⌈bm⌉ and it always holds

M∑
i=1

∣∣∣〈a,yi
〉∣∣∣2 ≤

M∑
i=1

si

∣∣∣〈a,yi
〉∣∣∣2 ≤ (

√
b+ 1)2

(
√
b− 1)2

(1 + ∆)

M∑
i=1

∣∣∣〈a,yi
〉∣∣∣2

(5.11)

for all a ∈ Cm. Assuming the input sequence was a frame, we then further
deduce

A∥a∥22 ≤
M∑
i=1

si

∣∣∣〈a,yi
〉∣∣∣2 ≤ (

√
b+ 1)2

(
√
b− 1)2

(1 + ∆)B∥a∥22 for all a ∈ Cm .

To verify (5.11), let us first reformulate this inequality as

∥Y a∥22 ≤ ∥S 1
2 (Y a)|J∥22 ≤ (

√
b+ 1)2

(
√
b− 1)2

(1 + ∆)∥Y a∥22 , (5.12)

where J := {i : si ̸= 0}, (Y a)|J is for the restricted vector ([Y a]i)i∈J ∈
C|J|, and S := diag(si)i∈J ∈ C|J|×|J|. By Theorem 5.3, applying BSS
(Algorithm 1) to (ỹi)Mi=1 yields si such that |J | = |{i : si ̸= 0}| ≤ ⌈bm⌉ and

∥a∥22 ≤
M∑
i=1

si|⟨a, ỹi⟩|2 ≤ (
√
b+ 1)2

(
√
b− 1)2

(1 + ∆)∥a∥22 for all a ∈ Cm .

Therefore, by the orthogonality of Ỹ , for all a ∈ Cm

∥Ỹ a∥22 ≤ ∥S 1
2 (Ỹ a)|J∥22 ≤ (

√
b+ 1)2

(
√
b− 1)2

(1 + ∆)∥Ỹ a∥22 .

Using range(Ỹ ) ⊃ range(Y ), as guaranteed by Lemma 5.6, we may finally
replace Ỹ in this last inequality with the original Y , leading to (5.12).
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5.3 Non-weighted subsampling of finite frames

We now turn to non-weighted versions of the subsampling strategies from
Sections 5.1 and 5.2. Our approach is to give estimates on the occurring
weights. In this way, we sacrifice the upper frame bound in order to keep a
lower frame bound not much smaller than the initial one. For many applications
the lower frame bound is the important one as it ensures the reconstruction of
any vector a ∈ Cm from its frame coefficients ⟨a,yi⟩. Results in this section
will be of the following form:

Given vectors y1, . . . ,yM , we seek inequalities of the type

1

M

M∑
i=1

|⟨a,yi⟩|2 ≤ C

|J |
∑
i∈J

|⟨a,yi⟩|2 for all a ∈ Cm (5.13)

for J ⊆ {1, . . . ,M} and some fixed constant C > 0. If the initial y1, . . . ,yM

satisfy a lower frame bound, (5.13) gives that the vectors yi, i ∈ J , satisfy a
lower frame bound as well.

For the non-weighted version of the random subsampling in Theorem 5.1
the construction of Ỹ is covered by Lemma 5.6. We obtain the following
result with |J | = O(m logm).

Theorem 5.7. Let (yi)Mi=1 ⊆ Cm be a frame and c, p, t ∈ (0, 1) and n ∈ N
be such that

n ≥ 3

ct2
m log

(m
p

)
.

Drawing n indices J ⊆ {1, . . . ,M} (with duplicates) i.i.d. according to the
discrete probability density ϱi = (1− c)/M + c · ∥ỹi∥22/m gives

1

M

M∑
i=1

|⟨a,yi⟩|2 ≤ 1

(1− c)(1− t)

1

|J |
∑
i∈J

|⟨a,yi⟩|2 for all a ∈ Cm

with probability exceeding 1− p.

Proof. Similar to Theorem 5.1, the result follows from Tropp’s concentration
inequality in Lemma 4.8. Here it is applied to the random rank-1 matrices
Ai := 1

nϱ
−1
i ỹi ⊗ ỹi, where ỹ1, . . . , ỹM ∈ Cm are the rows of the matrix

Ỹ obtained according to Lemma 5.6 from Y , the analysis operator (5.2) of
(yi)Mi=1. The matrices Ai satisfy

λmax(Ai) =
1

n
ϱ−1
i ∥ỹi∥22 ≤ m

cn
.
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For n = |J | independent copies (Ai)i∈J , due to the orthogonality of Ỹ , we
further have∑

i∈J

EAi =
∑
i∈J

E
( 1
n
ϱ−1
i ỹi ⊗ ỹi

)
=
∑
i∈J

1

n
Ỹ ∗Ỹ = I ,

where I is the m ×m-dimensional identity matrix. Consequently, we have
µmin = λmin(

∑
i∈J EAi) = 1. Using this in combination with Lemma 4.8

gives

P
(
λmin

( 1
n

∑
i∈J

ϱ−1
i ỹi ⊗ ỹi

)
≤ 1− t

)
≤ m exp

(
− cn

m

t2

3

)
,

which is smaller than p by the assumption on n. Using ϱi ≥ (1− c)/M , we
obtain

∥Ỹ a∥22 = ∥a∥22 ≤ 1

1− t

1

n

∑
i∈J

ϱ−1
i |⟨a, ỹi⟩|2

≤ M

(1− c)(1− t)

1

n
∥(Ỹ a)|J∥22

for all a ∈ Cm with probability exceeding 1− p. By the arguments in (5.12)
and after we may replace Ỹ with the original Y to obtain the assertion.

Next, we assume that we have a Bessel sequence in Cm with elements that
are norm-bounded from below. Applying Algorithm 2 (BSS⊥) then yields a
non-weighted inequality of type (5.13) with |J | = O(m). In Section 5.4 this
algorithm is used in the experiments 1-3.

Lemma 5.8. Let (yi)Mi=1 be a Bessel sequence in Cm, i.e., a set of vectors
satisfying the upper bound in (5.1) for some B > 0. Further assume M ≥ m
and ∥yi∥22 ≥ βm/M for some β > 0 and all i ∈ {1, . . . ,M}. Then, for
any b > 1, there exists a subset J ⊆ {1, . . . ,M} with |J | ≤ ⌈bm⌉ (without
duplicates) such that

1

M

M∑
i=1

|⟨a,yi⟩|2 ≤ B

β

(
√
b+ 1)2

(
√
b− 1)2

1

m

∑
i∈J

|⟨a,yi⟩|2 for all a ∈ Cm .

Proof. Applying Algorithm 2 (BSS⊥) to the sequence (yi)Mi=1 yields weights
si ≥ 0, where |{i : si ̸= 0}| ≤ ⌈bm⌉. Recall that, by the discussion of
Algorithm 2, its application to any input sequence (yi)Mi=1 is possible provided
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M ≥ m. We obtain (5.11). Taking into account the Bessel property of (yi)Mi=1

and choosing ∆ = 0 in Algorithm 2 yields

M∑
i=1

∣∣∣〈a,yi
〉∣∣∣2 ≤

∑
i∈J

si

∣∣∣〈a,yi
〉∣∣∣2 ≤ (

√
b+ 1)2

(
√
b− 1)2

B∥a∥22 (5.14)

for J := {i : si ̸= 0} and all a ∈ Cm. Setting a = yj for j ∈ J , we obtain
by the assumption ∥yj∥22 ≥ βm/M and the upper estimate in (5.14)

sj ≤
(
√
b+ 1)2B

(
√
b− 1)2∥yj∥22

≤ B

β

(
√
b+ 1)2

(
√
b− 1)2

M

m
.

Thus, by the lower estimate in (5.14), we obtain the assertion.

The condition on the norms ∥yi∥2 in Lemma 5.8 can be dropped with
a more elaborate subsampling strategy, PlainBSS (see below) instead of
BSS⊥. The “preconditioning” in PlainBSS is based on Lemma 5.9 rather
than Lemma 5.6. The final result is stated in Corollary 5.11. The price we pay
for this is the dependence of the constant in terms of the oversampling factor b.
It deteriorates to (b− 1)−3 while in the previous result it is (b− 1)−2.

Lemma 5.9. Let Y ∈ CM×m be a matrix and K ∈ {0, . . . ,M}. Then there
is a matrix Ỹ ∈ CM×m′

withm′ ∈ {K, . . . ,K+m} and rows ỹ1, . . . , ỹM ∈
Cm′

such that

range(Ỹ ) ⊃ range(Y ) , Ỹ ∗Ỹ = I , and ∥ỹi∥22 ≥ K

M
,

where I is the m′ ×m′-dimensional identity matrix.

Proof. Let us denote the columns of Y with c1, . . . , cm. Further define
columns in CM by

dk =
1√
M

[
exp

(
2πik

j

M

)]M
j=1

for k = 0, . . . ,K − 1, which are the first K columns of a Fourier matrix. By
construction the system (dk)Kk=1 is orthonormal. It can hence be extended by
appropriate vectors c̃1, . . . , c̃l to an orthonormal basis of

span{d1, . . . ,dK , c1, . . . , cm} .
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Those can be constructed e.g. via the Gram-Schmidt algorithm. Finally, we
set up

Ỹ :=
[
d1
∣∣ · · · ∣∣dK

∣∣ c̃1 ∣∣ · · · ∣∣ c̃l ] =

(ỹ1)∗

...

(ỹM )∗

 ∈ CM×(K+l) ,

which fulfills the stated conditions.

Theorem 5.10. Let (yi)Mi=1 be a sequence of vectors in Cm and let K ∈
{0, . . . ,M}. Then, for any b > 1, a set of indices J ⊆ {1, . . . ,M} (without
duplicates) can be constructed (in polynomial time) such that |J | ≤ ⌈b(K +
m)⌉ and

1

M

M∑
i=1

∣∣∣〈a,yi
〉∣∣∣2 ≤ (

√
b+ 1)2

(
√
b− 1)2

m

K

1

m

∑
i∈J

∣∣∣〈a,yi
〉∣∣∣2 for all a ∈ Cm .

(5.15)

Proof. We construct the vectors ỹ1, . . . , ỹM according to Lemma 5.9. They
form a tight frame in Cm′

with m′ ∈ {K, . . . ,K + m} and ∥ỹi∥22 ≥ K
M

for all i ∈ {1, . . . ,M}. We can thus apply Lemma 5.8 (BSS⊥, which in
effect is here BSS) with B = 1. We obtain a subset J ⊆ {1, . . . ,M} with
|J | ≤ ⌈bm′⌉ ≤ ⌈b(K +m)⌉ (without duplicates) such that

1

M

M∑
i=1

∣∣∣〈a,yi
〉∣∣∣2 ≤ (

√
b+ 1)2

(
√
b− 1)2

1

K

∑
i∈J

∣∣∣〈a,yi
〉∣∣∣2 for all a ∈ Cm

which finishes the proof.

A result in terms of the “real” oversampling factor b′ in Theorem 5.10,
determined by ⌈b′m⌉ = ⌈b(K +m)⌉, is given in Corollary 5.11.

Corollary 5.11. Let y1, . . . ,yM ∈ Cm be vectors with m ∈ N. Further, take
b′ > 1+ 1

m and assumeM ≥ ⌈b′m⌉. We then obtain indices J ′ ⊆ {1, . . . ,M}
with |J ′| ≤ ⌈b′m⌉ such that

1

M

M∑
i=1

∣∣∣〈a,yi
〉∣∣∣2 ≤ 89

(b′ + 1)2

(b′ − 1)3
1

m

∑
i∈J′

∣∣∣〈a,yi
〉∣∣∣2 for all a ∈ Cm .
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Proof. The idea is to apply Theorem 5.10 for specifically chosen K ∈ N

and b > 1, such that ⌈b(m+K)⌉ ≤ ⌈b′m⌉ for the given b′ and the prefactor
in (5.15) becomes small. Theorem 5.10 yields the prefactor

(
√
b+ 1)2

(
√
b− 1)2

m

K
=

(
√
b+ 1)4

(b− 1)2
m

K
≤ 4

(b+ 1)2

(b− 1)2
m

K
=: C(K) .

Choosing b and K such that b′ = bm+K
m gives

b = b′/(1 +K/m) , b+ 1 = (b′ + 1 +K/m)/(1 +K/m) ,

b− 1 = (b′ − 1−K/m)/(1 +K/m) ,

and hence

C(K) = 4
(b′ + 1 + K

m

b′ − 1− K
m

)2m
K
. (5.16)

We now choose K⋆ = ⌈ (b′−1)m
8 ⌉ ∈ {1, . . . ,M}. Assuming b′ ≥ 1 + 4/m,

we can then bound
b′ − 1

8
≤ K⋆

m
≤ b′ − 1

4
.

Further, since b′ − 1−K⋆/m > 0, we arrive at the estimate

C(K⋆) ≤ 4
(b′ + 1 + (b′ − 1)/4

b′ − 1− (b′ − 1)/4

)2 8

b′ − 1

=
32

b′ − 1

(5b′/4 + 3/4)

3(b′ − 1)/4

)2
≤ 32

(5
3

)2 (b′ + 1)2

(b′ − 1)3

≤ 89
(b′ + 1)2

(b′ − 1)3
. (5.17)

Next, we consider the cases b′ = 1 + 2/m and b′ = 1 + 3/m separately,
where in both K⋆ = 1. The associated b’s are given by b = 1 + 1/(m + 1)
and b = 1 + 2/(m + 1). Further 1/m = (b′ − 1)/2 and 1/m = (b′ − 1)/3.
Inserting these values into (5.16), we obtain estimates for C(K⋆) as in (5.17).
The prefactors, being 72 and 48, are even smaller than 89. Finally, to extend
the estimate (5.17) to the whole range b′ > 1+ 1

m , note that the right-hand side
of (5.17) is increasing for b′ ↘ 1. Taking into account ⌈b′m⌉ = m + k + 1
for each k ∈ N and b′ ∈ (1 + k

m , 1 +
k+1
m ], we are finished.
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Building on the proof of Corollary 5.11, we now formulate Algorithm 3
(PlainBSS). Like Algorithm 1 (BSS) and Algorithm 2 (BSS⊥), it is polyno-
mial in time.

Algorithm 3 PlainBSS
Input: Vectors y1, . . . ,yM ∈ Cm with m ∈ N and M ≥ m+ 2;

Oversampling factor b′ s.t. m+ 2 ≤ ⌈b′m⌉ ≤M ; Stability
factor ∆ ≥ 0.

Output: Indices J ⊆ {1, . . . ,M} such that |J | ≤ ⌈b′m⌉ and
1
M

∑M
i=1 |⟨a,yi⟩|2 ≤ 89 (b′+1)2

(b′−1)3
1+∆
m

∑
i∈J |⟨a,yi⟩|2 .

1: Compute K⋆ and b from b′ as in the proof of Corollary 5.11.
2: Construct the vectors ỹ1, . . . , ỹM ∈ Cm′

with K = K⋆ according to
Lemma 5.9, where the initial Y ∈ CM×m is the matrix (5.2) with rows
(y1)∗, . . . , (yM )∗ .

3: Apply Algorithm 1 (BSS) to ỹ1, . . . , ỹM with oversampling factor b and
stability factor ∆ to obtain weights s1, . . . , sM .

4: return indices J := {i : si ̸= 0}.

For a better runtime, it might sometimes be advantageous to combine BSS
subsampling with a preceding random subsampling step. Theorem 5.1 could
be used, for instance, to quickly reduce the number of vectors to O(m logm)
in case of very large M . In the following corollary such a two-step procedure
is used to construct a unit-norm frame with few (close to m) elements and
well-behaved frame bounds. Here it is crucial that the BSS algorithm returns
no duplicates, which is used in the proof.

Corollary 5.12. Assume that the vectors y1, . . . ,yM ∈ Cm,m ∈ N, form a
tight frame and let b′ > 1 + 1

m . Further choose p, t ∈ (0, 1) and draw

n :=
⌈ 3
t2
m log

(2m
p

)⌉
indices J ⊆ {1, . . . ,M} (with duplicates) i.i.d. according to the discrete
probability density ϱi = ∥yi∥22/∥Y ∥2F . In case n > ⌈b′m⌉, those can further
be subsampled using BSS (with oversampling factor b′) giving J ′ ⊆ J with
|J ′| ≤ ⌈b′m⌉ and a unit-norm frame (yi/∥yi∥2)i∈J′ satisfying

(1− t)(b′ − 1)3

89(b′ + 1)2
∥a∥22 ≤

∑
i∈J′

∣∣∣〈a, yi

∥yi∥2

〉∣∣∣2 ≤ (1 + t)
⌈3 log(2m/p)

t2

⌉
∥a∥22
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for all a ∈ Cm with probability exceeding 1 − p. Otherwise, when n ≤
⌈b′m⌉, the frame (yi/∥yi∥2)i∈J′ with J ′ = J already satisfies |J ′| ≤ ⌈b′m⌉
and (5.18) for all a ∈ Cm with probability exceeding 1− p.

Proof. By (5.3) and (yi)Mi=1 forming a tight frame, we have ∥Y ∥2F = mA.
By Theorem 5.1 we first obtain a subframe with n = |J | elements such that

1− t

m
∥a∥22 ≤ 1

n

∑
i∈J

∣∣∣〈a, yi

∥yi∥2

〉∣∣∣2 ≤ 1 + t

m
∥a∥22 . (5.18)

Next, if we apply Algorithm 3 (PlainBSS) to this subframe, we obtain
J ′ ⊆ J with |J ′| ≤ ⌈b′m⌉ such that

1

n

∑
i∈J

∣∣∣〈a, yi

∥yi∥2

〉∣∣∣2 ≤ 89
(b′ + 1)2

(b′ − 1)3
1

m

∑
i∈J′

∣∣∣〈a, yi

∥yi∥2

〉∣∣∣2 ,
which is used in the lower frame bound. For the upper frame bound we use
that J ′ has no duplicates, wherefore

1

m

∑
i∈J′

∣∣∣〈a, yi

∥yi∥2

〉∣∣∣2 ≤
⌈3 log(2m/p)

t2

⌉ 1
n

∑
i∈J

∣∣∣〈a, yi

∥yi∥2

〉∣∣∣2 .
Here, the relation of n and m was used. Last, we use the upper frame bound
(5.18) and obtain the assertion.

5.4 Numerical experiments

In this section we test BSS, BSS⊥, and PlainBSS (Algorithms 1, 2, and 3)
in practice. Note that there are further recent attempts to reduce the sampling
budget in least squares approximations in practice, see [HNP22]. A survey on
different probabilistic sampling strategies for sparse recovery of multivariate
functions can be found in [ACDM22] (here especially Sec. 1.4 provides many
further references). In addition, let us mention [AB22], where B. Adcock and
S. Brugiapaglia give theoretical and empirical evidence of the near-optimal
performance of simple Monte Carlo sampling for the recovery of smooth
functions in high dimensions.

For the first three experiments, we use the rows of a d-dimensional Fourier
matrix as initial frame, i.e.,

yi =
[ 1√

M
exp(2πi⟨k,xi⟩)

]
k∈I

for i ∈ {1, . . . ,M} , (5.19)
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where I ⊆ Zd are |I| = m frequencies determining the dimension of the
frame elements and the points X = {x1, . . . ,xM} ⊆ Td determine their
number. In the experiments, we will have a look at different choices for these
frequencies I and points X . Note that construction (5.19) gives an equal-norm
frame.

As for the stability factor ∆ we used the fixed number 10−14 which worked
for every example we tested and does not seem to alter the results.

Experiment 1 We choose dimension d = 2 and, in the frequency domain,
we use a so-called dyadic hyperbolic cross

I = Hd
R =

⋃
l∈Nd

0

∥l∥1=R

Ĝl with Ĝl =
d×

j=1

Ĝlj

and Ĝl = Z ∩ (−2l−1, 2l−1] ,

which occurs naturally when approximating in Sobolev spaces with mixed
smoothness, cf. Section 3.6.2 or [DuTU18]. Here, we use R = 6, which
results in 256 frequencies. In spatial domain, the canonical candidate are
sparse grids:

Sd
R =

⋃
j∈Nd

0

∥l∥1=R

Gl with Gl =
d×

j=1

Glj and Gl = 2−l(Z ∩ [0, 2l)) .

Sparse grids have the minimal amount of points n = m and reconstruct every
frequency k ∈ Hd

R, i.e., A > 0. Precise estimates on the frame bounds of
these matrices are found in [KK11, Thm. 3.1].

To test the BSS algorithm we use an initial 2-dimensional 65×65 equispaced
grid

X =
{ i

d
√
M

: i ∈ {0, . . . , d
√
M − 1}d

}
,

which has M = 4225 points and is exact (A = B = 1) for the M frequencies
k ∈ {−( d

√
M − 1)/2, . . . , ( d

√
M − 1)/2}d, cf. [PPST18, Sec. 4.4.3], in

particular for the given dyadic hyperbolic cross. These initial frequencies and
points can be seen in the first three graphs of Figure 5.2.

On the resulting frame constructed according to (5.19) we apply the un-
weighted BSS algorithm (discarding the weights si) with a target oversampling
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frequencies I

m = 256

sparse grid

M = 256 (b = 1)
A = 0.04336

B = 16

initial points

M = 4225 (b ≈ 16.5)
A = 1
B = 1

BSS subsampling

n = 384 (b ≈ 1.5)
A = 0.06531
B = 2.95612

random subsampling

n = 384 (b ≈ 1.5)
A = 0.00475
B = 3.51213

Figure 5.2: Two-dimensional experiment with sparse grid.

of b = 1.5 to obtain the subset J and compute the new frame bounds. For
comparison, we draw a random subset (with replacement) of the same size
and compute the frame bounds as well. Note, that we do not have theoretical
bounds for these few random points. The results are depicted in the two
rightmost graphs of Figure 5.2.

Since ∥yi∥22 = m, we obtain by Lemma 5.8 the theoretical lower frame
bound A = (

√
b − 1)2/(

√
b + 1)2 = 0.01021 (cf. Lemma 5.8) where we

observe A = 0.06531 in the experiment. This is better by a factor of 13 when
compared to random subsampling, where we obtain a lower frame bound of
A = 0.00475. Furthermore, the BSS algorithm gives a smaller upper frame
constant than random subsampling, but this is not covered by our theory. The
lower frame bound of the BSS subsampled points is bigger than the lower
frame bound of the sparse grid. Even using the next biggest sparse grid with
n = 576 points this still holds, as the frame bounds are A = 0.04336 and
B = 16.
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Following [KK11] the frame bounds worsen for the sparse grids in higher
dimensions. We conducted the same experiment in five dimensions with dyadic
hyperbolic cross with m = 1002 frequencies and included Frolov points for
comparison as well, cf. [KOUU20]. The outcome is as follows:

b n A B

sparse grids
S5
5 1.00 1002 0.00009 89.5249

S6
5 2.96 2972 0.00063 74.5446

S7
5 8.46 8472 0.00158 63.5213

Frolov points
1.02 1021 0.00008 3.13560
2.05 2051 0.08128 2.14287
4.08 4093 0.37502 1.79493

BSS

1.01 1013 0.00012 3.69835
1.50 1503 0.04333 2.99637
2.00 2004 0.10659 2.61729
2.50 2505 0.16325 2.39153
2.96 2966 0.20790 2.24841
3.50 3507 0.25682 2.10744
4.08 4089 0.30101 2.00187

We cannot set b = 1 with the BSS algorithm, but already for b = 1.01 we
achieve a slightly better lower frame bound A than for the sparse grid. When b
increases is where the BSS algorithm shows its advantage as the frame bounds
become progressively better. In comparison to Frolov points the performance
is similar but the Frolov points lack theoretical validation in this setting.

Experiment 2 As the components of the frame elements yi are continuous
in xi, we have similar frame elements for close points xi and xj . For the
next experiment, we again are in dimension d = 2 and choose the full grid
of frequencies I = [−6, 6] ∩ Z2 with m = 169 frequencies for which the
full grid of 13× 13 = 169 points is barely exact. For the points we use two
13 × 13 point grids where one is slightly moved by [0.01, 0.01]T, which is
depicted in the two leftmost plots of Figure 5.3. This setting is a union of two
tight frames, itself a tight frame, where each element has a close duplicate
which occur in pairs. A reasonable subsampling technique would pick at least
one out of each pair. We set a target oversampling factor of b = 1.1 and apply
the unweighted BSS algorithm and random subsampling for comparison. The
results are depicted in the two rightmost graphs of Figure 5.3.

As in the first experiment, we have the theoretical lower frame bound
A = (

√
b − 1)2/(

√
b + 1)2 = 0.00057 (cf. Lemma 5.8) where we observe

A = 0.02278 in the experiment. For random subsampling we do not pick one
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frequencies I

m = 256

initial points

M = 4225 (b ≈ 16.5)
A = 1
B = 1

BSS subsampling

n = 384 (b ≈ 1.1)
A = 0.02278
B = 1.81720

random subsampling

n = 384 (b ≈ 1.1)
A = 0

B = 4.58234

Figure 5.3: Two-dimensional experiment with frequencies on the grid.

frame element of each pair creating holes which spoil the lower frame bound.
In fact, the subsampling is not even a frame anymore as A = 0.

Experiment 3 As our algorithms do not depend on the dimension, for the
next experiment, we choose d = 25. In frequency domain we choosem = 500
random frequencies in [−1000, 1000]25 ∩ Z25. In time domain we use two
different choices:

• We use a full grid with M = 200125 > 1080 points, which is exact for
all possible frequencies.

• We use M = ⌈6m log(m)⌉ = 18 644 random points. In Theorem 6.4,
we show that this gives frame bounds A = 1/2 and B = 3/2 with high
probability.

For ten different choices of b ∈ (1, 2] we use the unweighted BSS algorithm
for the grid and unweighted BSS⊥ for the random points. Note, that we do not
compute all frame elements in advance but rather on the fly, which is possible
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10−4

10−2

100

10−2 10−1 100

lower frame bound

b− 1

Figure 5.4: 25-dimensional experiment. Solid line with circles: lower frame
bound A for the initial points being the full Grid. Solid line with
squares: lower frame bound A for the initial points being drawn
randomly. Dashed: (b− 1)3/2.

with the random subsampling and the BSS algorithm by addressing the frame
elements by their index. For BSS⊥ or PlainBSS this is not feasable since
we construct an orthogonalized matrix of the original size M ×m.

We compute the new frame bounds and count the inner iterations (i.i.) of
the BSS algorithm in line 6. Further, we compute the theoretical frame bounds
1/B · (

√
b− 1)2/(

√
b+ 1)2 from Lemma 5.8. The results are shown in the

table below and Figure 5.4.
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The message of this experiment is twofold:

• The rate of A for b→ 1 is cubic in the theoretical results, cf. Lemma 5.8
and Theorem 5.10. In this experiment we observe the rate of 3/2 which
is even smaller that the bound for the weighted BSS algorithm, cf.
Theorem 5.3.

• As the number of points in the grid is larger than the estimated number
of atoms in the observable universe, the BSS algorithm could have a
slow runtime. The only difference in the computational effort could
originate from the iterations in the inner loop of the BSS algorithm.
From our theory we obtain M iterations in the worst case whereas we
observe 1.5 iterations on average in both experiments.

Experiment 4 In this experiment we deal with two-dimensional hyperbolic
Chui-Wang wavelets ψj,k, which are compactly supported, piecewise linear,
and L2([0, 1]

d)-normalized, see for instance [LPU23] for the precise construc-
tion. We define the index sets

Jn = {(j,k) ∈ Nd
−1 ×Zd : j ≥ −1, |j|1 ≤ N,k ∈ Ij} (5.20)

and

Ij =

d∏
i=1

{
{0, 1, . . . 2ji − 1} for ji ≥ 0,

{0} for ji = −1.

The projection on the j-component of this index set is displayed in the first
picture in Figure 5.5 with N = 3. Drawing sufficiently many (M ) points
i.i.d. and uniformly at random (M = O(|Jn| log(|Jn|))) it has been shown
in [LPU23] that the corresponding frame ([ψj,k(x

i)]j,k)
M
i=1 has reasonably

good frame bounds (see the second picture in Figure 5.5). In the previous
experiments we only dealt with equal-norm frames. This is not given anymore
in this particular frame such that we are forced to apply PlainBSS to extract
a reasonable subframe with b ≈ 1.5. The resulting points can be seen in the
third picture of Figure 5.5.

The lower frame bound of the subsampled points can be estimated by
Corollary 5.11: A ≤ 0.01708(b−1)3

89(b+1)2 ≈ 3.84 · 10−6 for b = 1.5. In practice
we obtain a subsampled frame bound of A = 3.21 · 10−3, which indicates
that the theoretical constants may be improved. Further, in the comparison
to random subsampling, PlainBSS is better by a factor of 10 (last picture
of Figure 5.5) and the upper frame bound does not differ much. Overall, this
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I

m = 192

initial points

M = 2400 (b ≈ 12.5)
A = 0.01708
B = 1.01502

BSS subsampling

n = 288 (b ≈ 1.5)
A = 0.00321
B = 1.05583

random subsampling

n = 288 (b ≈ 1.5)
A = 0.00030
B = 1.13434

Figure 5.5: Two-dimensional hyperbolic wavelet transform.

experiment demands for the tricky construction of Lemma 5.9 and shows its
stable applicability.



Chapter 6

L2-Marcinkiewicz-Zygmund (MZ) inequalities

In Section 2.3 we have seen that the singular values of the system matrix
L are important for, e.g. the runtime of the LSQR algorithm. Now we give
two equivalent characterizations for bounds of the singular values, in order to
apply techniques from Chapter 5 and get a vast family of initial points. One
of these characterizations goes back to J. Marcinkiewicz and A. Zygmund
[MZ37] and establishes a connection between the continuous L2-norm and
point evaluations of functions. A set of points X = {x1, . . . ,xn} ⊆ D and
weights W = diag(ω1, . . . , ωn) ∈ [0,∞)n×n fulfills an L2-Marcinkiewicz-
Zygmund (MZ) inequality with constants 0 < A ≤ B < ∞ for a finite-
dimensional function space V , if

A∥f∥2L2
≤

n∑
i=1

ωi|f(xi)|2 ≤ B∥f∥2L2
for all f ∈ V , (6.1)

where, for ϱT a σ-finite measure and some domain D ⊆ Rd,

∥f∥L2
:=
√
⟨f, f⟩L2

with ⟨f, g⟩L2
:=

∫
D

f(x)g(x) dϱT (x) .

Clearly, such points together with appropriate subspaces V are good for
sampling recovery in L2(D, ϱT ). For a systematic study of MZ inequalities
(also for p ̸= 2) we refer to the recent series of papers by V. N. Temlyakov
and coauthors, see for instance [Tem18, KKLT22]. We orient this chapter on
[BKPU23, Section 2].

In the least squares approximation we use ansatz functions η1, . . . , ηm−1,
cf. Section 2.2. Throughout this section we assume that these ansatz functions
are orthonormal with respect to the L2(D, ϱT ) inner product. We investigate
the recovery of functions f : D → C where we assume f to be element of the
function space V = span{η1, . . . , ηm−1}, i.e., we have the representation

f(x) =

m−1∑
k=1

akηk(x) with a = (ak)
m−1
k=1 = (⟨f, ηk⟩L2)

m−1
k=1 . (6.2)

For the recovery we have given samples f = (f(x1), . . . , f(xn))T ∈ Cn in
points X = {x1, . . . ,xn} ⊆ D.
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If the singular values of W 1/2L are non-zero, we immediately obtain that
the least squares approximation SX

V from Section 2.2 reconstructs all functions
f ∈ V . The stability of the reconstruction as well as the number of iterations
of a conjugate gradient method used to solve the system of equations heavily
depends on the condition number of the matrix (L∗WL)−1L∗W 1/2 as we
have seen in Theorem 2.3.

Lemma 6.1. [KUV21, Proposition 3.1] Let W 1/2L ∈ Cn×(m−1) be a matrix
with m− 1 ≤ n with non-zero singular values. Then

σmax

(
(L∗WL)−1L∗W 1/2

)
=

1

σmin(W 1/2L)

and σmin

(
(L∗WL)−1L∗W 1/2

)
=

1

σmax(W 1/2L)
.

This motivates having a look at lower and upper bounds for the singular
values of W 1/2L. The following lemma gives different characterizations for
these bounds.

Lemma 6.2. Let η1, . . . , ηm−1 : D → C be an L2-orthonormal basis of a
finite-dimensional function space V , let X = {x1, . . . ,xn} ⊆ D be points
and W = diag(ω1, . . . , ωn) ∈ [0,∞)n×n weights. Then the following state-
ments are equivalent:

(i) the singular values of the matrix W 1/2L ∈ Cn×(m−1), where L and
W are defined in (2.1), lie in the interval [

√
A,

√
B], i.e.,

A∥a∥22 ≤ ∥W 1/2La∥22 ≤ B∥a∥22 for all a ∈ Cm−1 ;

(ii) the rows
√
ωi(ηk(x

i))m−1
k=1 ∈ Cm−1 for i = 1, . . . , n, of the matrix

W 1/2L form a frame with bounds A and B, i.e.,

A∥a∥22 ≤
n∑

i=1

|⟨a,
√
ωi(ηk(x

i))m−1
k=1 ⟩|2 ≤ B∥a∥22 for all a ∈ Cm−1 ;

(iii) the points X and weights W form an L2-MZ inequality for V =
span{η1, . . . , ηm−1} with bounds A and B, i.e.,

A∥f∥2L2
≤

n∑
i=1

ωi|f(xi)|2 ≤ B∥f∥2L2
for all f ∈ V .
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Proof. Step 1. To show the equivalence of (i) and (ii) we rewrite the matrix-
vector product W 1/2La using the Euclidean inner products of a and the rows
of W 1/2L as follows

A∥a∥22 = A∥a∥22 ≤ ∥W 1/2La∥22 =

n∑
i=1

|⟨a,
√
ωi(ηk(x

i))m−1
k=1 ⟩|2

≤ B∥a∥22 = B∥a∥22 .

This immediately shows the equivalence of the two stated conditions.
Step 2. Now we show the equivalence of (ii) and (iii). Using the series

expansion (6.2) of f , we have

n∑
i=1

|⟨a,
√
ωi(ηk(x

i))m−1
k=1 ⟩|2 =

n∑
i=1

ωi

∣∣∣m−1∑
k=1

akηk(x
i)
∣∣∣2 =

n∑
i=1

ωi|f(xi)|2

and further using Parseval’s identity, we obtain

∥a∥22 = ∥a∥22 =
∥∥∥m−1∑

k=1

akηk(x
i)
∥∥∥2
L2

= ∥f∥2L2
.

Plugging these two formulas into the frame condition, we obtain a reformu-
lation in terms of functions, which is an L2-MZ inequality for the function
space V with bounds A and B.

The L2-MZ characterization supports the availability of points with well-
behaved least squares matrices. With Lemma 6.2, using a set of points X
coming from an L2-MZ inequality with well-behaved constants, we automat-
ically have a good point set to use in least squares approximation, and vice
versa. Point sets fulfilling L2-MZ inequalities are widely available and well-
studied, cf. [MNW01, KKP07, FM11, CDL13, CM17, Tem18]. Furthermore,
the next theorem shows an equivalence to an exact integration condition when
the constants in the L2-MZ inequality coincide. This widens the applicability
even further, cf. [CN07, KPV15, Tre13].

Theorem 6.3. Points X ⊆ D and weights W = diag(ω1, . . . , ωn) ∈
[0,∞)n×n obey an L2-MZ inequality (6.1) on V = span{ηk}k=1,...,m−1

with constants A = B if and only if we have exact quadrature on V · V :=
{f = g · h : g, h ∈ V }, i.e., we have

n∑
i=1

ωig(x
i)h(xi) =

1

A

∫
D

g(x)h(x) dν(x) for all g, h ∈ V .
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Proof. Starting with the L2-MZ inequality, we have
n∑

i=1

ωi|f(xi)|2 = A

∫
D

|f(x)|2 dν(x) for all f ∈ V .

By the parallelogram law the corresponding inner products also coincide,
which is on direction of the assertion. The reverse is achieved by using
g = h.

6.1 Random L2-MZ inequalities

An universal approach to obtain an L2-MZ inequality is to use random points
with respect to a certain measure. This was established in [CM17, Thm. 2.1],
which is a key element in many theorems presented in this thesis and is widely
used, cf. [NSU21, Theorem 2.3], [MU21, Theorem 5.1], [DC22b, Lemma 2.1],
or [BSU23, Theorem 2.1].

Lemma 6.4. Let t ≥ 0, n ∈ N, x1, . . . ,xn ∈ D be points drawn accord-
ing to a probability measure dϱS = 1/β dϱT with dϱT a second measure
and β : D → [0,∞] the Radon-Nikodym derivative. Let further, V be an
m − 1-dimensional function space with an L2(D, ϱT )-orthonormal basis
η1, . . . , ηm−1 with m satisfying

10∥β(·)N(V, ·)∥∞(log(m− 1) + t) ≤ n ,

with N(V, ·) the Christoffel function (3.14). Then

n

2
∥g∥2L2(D,ϱT ) ≤

n∑
i=1

β(xi)|g(xi)|2 ≤ 3n

2
∥g∥2L2(D,ϱT ) for all g ∈ V ,

where each inequality holds with probability exceeding 1− exp(−t).

The proof ideas go back to [CDL13, Thm. 1] and [CM17, Thm. 2.1] but for
the sake of readability we state it here as well.

Proof. The result is a direct consequence of Tropp’s result in Lemma 4.8. For
a randomly chosen point xi we define the random rank-one matrix Ai =
1
nβ(x

i)(yi ⊗ yi) with yi = (η1(x
i), . . . , ηm−1(x

i))T. By construction, it
holds

n∑
i=1

Ai = L∗WL
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and by the orthogonality of ηk(
E(Ai)

)
k,l

=
1

n

∫
D

ηk(x)ηl(x)β(x)β
−1(x) dϱT (x) =

δk,l
n

,

which gives E
(∑n

i=1 Ai

)
= Im−1×m−1 and, therefore, µmax = µmin = 1.

Further, we have

λmax

( 1
n
β(xi)(yi ⊗ yi)

)
=

1

n
β(xi)∥yi∥22 ≤ 1

n
∥β(·)N(V, ·)∥∞ .

Lemma 4.8 with t = 1/2 then gives the lower bound

P
(
λmin

( 1
n
L∗WL

)
≤ 1

2

)
≤ (m− 1) exp

(
− n

10
∥β(·)N(V, ·)∥−1

∞

)
,

which is smaller than exp(−t) by the assumption on m. Using Theorem 6.2
we obtain the formulation with respect to functions.

The bound for the largest eigenvalue works analogue.

The important part for the reconstruction of functions is the lower L2-MZ
inequality, cf. Chapter 7. For the weighted result above we have both inequali-
ties. Aiming for an unweighted result, the next corollary states a construction
of points with logarithmic oversampling and equal weights satisfying the lower
L2-MZ inequality.

Corollary 6.5. Let V be an m − 1-dimensional function space with an or-
thonormal basis η1, . . . , ηm−1 in L2(D, ϱT ). Let t ≥ 0 and n ∈ N be such
that

20(m− 1)(log(m− 1) + t) ≤ n .

Then the points x1, . . . ,xn drawn according to a probability measure

dϱS(x) =
1

2ϱT (D)
+

1

2

∑m−1
k=1 |ηk(x)|2

m− 1
dϱT

fulfill the unweighted lower L2-MZ inequality with probability exceeding
1− exp(−t), i.e.,

∥g∥2L2(D,ϱT ) ≤
4ϱT (D)

n

n∑
i=1

|g(xi)|2 for all g ∈ V . (6.3)
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0

1

0 1
−1

0

1

−1 0 1

T2 [−1, 1]2

Figure 6.1: Left: Equispaced grid on T2 and, right, a Chebyshev grid on
[−1, 1]2.

Proof. The assertion follows from Theorem 6.4 with

β(x) =
( 1

2ϱT (D)
+

1

2

∑m−1
k=1 |ηk(x)|2

m− 1

)−1

≤ 2ϱT (D) .

A nice aspect of these random constructions is their universal applicability.
Being able to compute the Christoffel function N(V, ·) =

∑m−1
k=1 |ηk(·)|2, we

immediately obtain an L2-MZ inequality with only logarithmic oversampling.
On the downside the randomness is not controllable and the resulting points
do not need to possess any structure.

6.2 Examples of deterministic L2-MZ inequalities

In this section we give examples of points X = {x1, . . . ,xn} forming exact
quadrature rules for certain m-dimensional function spaces V on the torus
Td and the cube [−1, 1]d. By exact quadrature we consider points form L2-
MZ inequalities with A = B, cf. Lemma 6.3. Because of their structure
it is possible to use fast algorithms for the matrix-vector product with the
corresponding system matrix (2.1) decreasing the computational complexity
to O(n log n) instead of the naive O(n ·m).

Grid points. Starting with an one-dimensional quadrature rule it is easy to
deduce a multivariate equivalent by simply tensorizing it. The result then has
a grid-like structure. Examples for equispaced points and Chebyshev points
are depicted in Figure 6.1.

The equispaced points on Td are exact for the full cube of frequencies.
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Lemma 6.6. Let n ∈ N be such that d
√
n ∈ N. The points

X =
{ 1

d
√
n
i : i ∈ {1, . . . , d

√
n}d
}

fulfill an L2-MZ inequality with equal weights ωi = 1/n and A = B = 1 for
V = span{exp(2πi⟨k, ·⟩)}k∈I with the full cube of frequencies

I =
{
−

d
√
n

2
, . . . ,

d
√
n

2
− 1
}d

.

Proof. Let W and L be as in (2.1). By Theorem 6.2 we have to show that
W 1/2L is orthogonal. Because of the tensor-product structure, it is sufficient
to show this in the one-dimensional case. The one-dimensional result is true by
applying the formula for the geometric sum, which can be found in [PPST18,
Lemma 3.10].

The matrix-vector product with the Fourier-matrix given the equispaced
points and the cube of frequencies is computable using the Fast Fourier Trans-
form (FFT) with O(n log n) flops, which goes back to J. W. Cooley and
J. Tukey, cf. [CT65].

In order to obtain the equivalent for the cube [−1, 1]d we apply the transform
cos(π·) to every point in a component-wise fashion.

Lemma 6.7. Let n ∈ N such that d
√
n− 1 ∈ N. The points

X =
{
cos
( π

d
√
n− 1

i
)
: i ∈ {0, . . . , d

√
n− 1}d

}
fulfill an L2-MZ inequality with weights

ωi = 1/n

d∏
j=1

{
1/2 if ij ∈ {0, d

√
n− 1}

1 otherwise

and A = B = 1 for the Chebyshev polynomials V = span{Tk}k∈I , defined
in Section 3.5.3, with the frequency index set

I = {0, . . . , d
√
n− 1}d .

Proof. Analogously to Theorem 6.6 using [PPST18, Lemma 3.46].

It is again possible to carry out the corresponding matrix-vector product us-
ing the discrete cosine transform of type I (DCT-I) in O(n log n), cf. [PPST18,
Section 6.3].
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0

1

0 1
−1

0

1

−1 0 1

T2 [−1, 1]2

Figure 6.2: Left: A rank-1 lattice on T2 and, right, the transformed counter-
part, a Chebyshev lattice, on [−1, 1]2.

L2-MZ inequalities with this grid structure are optimal in the sense that the
number of points n is equal to the dimension of the function space V . On
the downside, this number grows exponentially in the dimension d where the
expressivity of the full frequency grid is rarely needed for approximation. I.e.,
they suffer the curse of dimensionality.

Rank-1 lattices. Next, we present L2-MZ inequalities, which work for
arbitrary frequency index sets including hyperbolic crosses making them
suitable for approximating functions in high-dimensions belonging to Sobolev
spaces with dominating mixed smoothness, cf. Section 3.6.2. For a detailed
study of rank-1 lattices see [SJ94, Kä14a, KPV15, PPST18, DKP22].

Rank-1 lattices X = {x1, . . . ,xn} ⊆ Td consist of equispaced points on a
line which wraps around the d-dimensional torus Td. They are defined by a
generating vector z ∈ Nd and a lattice size n ∈ N via

X :=
{ 1

n
(izmod n1) ∈ Td : i = 0, . . . , n− 1

}
.

An example of a rank-1 lattice in dimension d = 2 is depicted in the left of
Figure 6.2.

Because of their one-dimensional structure, a one-dimensional FFT can be
used to compute the matrix-vector product with the corresponding Fourier
matrix L in O(n log n+ d|I|) instead of the naive O(n · |I|), where I ⊆ Zd

is an arbitrary frequency index set, cf. [PPST18, Algorithms 8.8 and 8.9]. For
approximating functions with rank-1 lattices we suppose the following feature:
We say a rank-1 lattice X has the reconstructing property for a frequency
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index set I , if

1

n

n∑
i=1

exp(2πi⟨k,xi⟩) = δ0,k for all k ∈ D(I) , (6.4)

where D(I) = {k − l : k, l ∈ I} is the frequency difference set. By
Theorem 6.2 this is equivalent to an L2-MZ inequality for the space V =
span{exp(2πi⟨k, ·⟩)}k∈I with A = B = 1. There exist algorithms which,
given a frequency index set I and n, compute a generating vector z such
that the rank-1 lattice X , as defined above, with equal weights ωi fulfills an
L2-MZ inequality (6.1) for A = B. This idea was thoroughly developed in
[Nuy07, CN07] and is still an active subject, cf. [Kä14a, Kä20, KMNN21].
One algorithm we will use later is a probabilistic approach recently presented
in [Kä20]. On the one hand the component-by-component (CBC) rank-1
lattice construction is extremely efficient with computational costs that are
linear in |I| up to a few logarithmic factors. On the other hand, the sizes n
of the resulting rank-1 lattices might be slightly (but only up to a factor of
two with high probability) larger than those resulting from the deterministic
approaches.

Note, that the reconstructing requirement (6.4) are |D(I)| ≈ |I|2 conditions
in the worst case possibly blowing up the size n of the rank-1 lattice. More
detailed results on the minimal size of n are in [PV16, Theorem 2.1], which is
a direct consequence of [Kä14b].

Analogously to the grid points, we may transform the rank-1 lattices via
cos(π·) to obtain points on [−1, 1]d. These are know as Chebyshev lattices. A
prominent example are Padua points lying on Lissajois curves in dimension
d = 2. A thorough introduction is in [CP11, PC12, PV15] where we present
some results from the latter.

For a generating vector z ∈ Rd and a lattice size n ∈ N, Chebyshev lattices
are of the form

X =
{
cos
( iπ
n
z
)
: i = 0, . . . , n

}
.

An example for the special case of Padua points for d = 2, z = (9, 10), and
n = 90 is depicted in the right of Figure 6.2, where multiple points coincide.
To obtain the equivalent to the reconstructing property (6.4) of rank-1 lattices
one works with the mirrored index set

M(I) :=
{
h ∈ Zd : (|h1|, . . . , |hd|)T ∈ I

}
and the component-by-component algorithms which are used for rank-1 lat-
tices. A result on the minimal size of a Chebyshev lattice is stated in [PV15,
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Remark IV.4] stating the existence of a reconstructing lattice for the function
space V = span{Tk}k∈I of size n with

n ≤ max
{2
3

(
|M(I)|2 − |M(I)|+ 8

)
, max

kinI
3∥k∥∞

}
.

The mirrored index set M(I) may be 2d times bigger than I itself, increasing
the lattice size and the slowing fast algorithms using the DCT-I down to
O(n log n+ d2d|I|) flops, cf. [PV15, Section III.A].

Multiple rank-1 lattices The drawbacks of the big lattice size of single
rank-1 lattices can be overcome using the union of several rank-1 lattices
known as multiple rank-1 lattices. Their analysis turns out to be tedious and
resources can be found in [Kä18, GIKV21]. Again, it is possible to use Fourier
algorithms to accelerate the matrix-vector product with the corresponding
system matrix.

6.3 Subsampling of L2-MZ inequalities

In Section 6.2 we have seen structured points suitable for the fast implementa-
tion of the matrix-vector product of the system matrix. But when it comes to
high-dimensional approximation, the grid points are not suitable and rank-1
lattices, although they work for arbitrary frequency index sets, have a bad
sampling complexity, cf. Theorem 7.11, compared to e.g. the random points
in Section 6.1. In this section we will utilize subsampling techniques from
Chapter 5 to find a subset of points from an L2-MZ inequality which keeps its
reconstructing properties and structure. We will go along [BKPU23, Section 3]
and use random and BSS subsampling as illustrated in Figure 6.3.

Starting with an L2-MZ inequality of points XMZ and weights WMZ exact
for span{ηk}k∈IMZ , the following theorem covers how to select a goodL2-MZ
inequality with logarithmic oversampling.

Theorem 6.8. Let 0 < C ≤ 1, {ηk}k∈IMZ be an L2-orthonormal basis of the
finite-dimensional function space V , let X = {x1, . . . ,xM} ⊆ D be points
and WMZ = diag(ω1, . . . , ωM ) ∈ [0,∞)M×M weights fulfilling an L2-MZ
inequality for V with constants A and B. Further, let t > 0, I ⊆ IMZ, and
n ∈ N be such that

n ≥ 12B

AC
|I|(log |I|+ t) . (6.5)
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random

XMZ,WMZ

BSS

X,W X ′,W ′

Figure 6.3: Subsampling scheme.

We draw a set X = {xi}i∈J , |J | = n, of points i.i.d. from XMZ with respect
to ϱi (with duplicates), which are discrete probability weights (

∑n
i=1 ϱi = 1)

fulfilling

ϱi ≥
Cωi

∑
k∈I |ηk(xi)|2∑M

j=1 ωj

∑
k∈I |ηk(xj)|2

for i = 1, . . . ,M . (6.6)

Then, with probability larger than 1− 2 exp(−t), there holds the subsampled
L2-MZ inequality

1

2
A∥f∥2L2

≤
∑
i∈J

ωi

nϱi
|f(xi)|2 ≤ 3

2
B∥f∥2L2

for all f ∈ span{ηk}k∈I .

(6.7)

Proof. Fixing the parameters t := 1/2 and p := 2 exp(−t) in Theorem 5.1
yields the assertion (this is not the same t as in the present assertion).

Thus, we found a subset X of XMZ with logarithmic oversampling (inde-
pendent of the original sizeM ) which fulfills an L2-MZ inequality with similar
constants. The probability density stated in (6.6) is also used in Christoffel-
weighted least squares approximation, cf. [NJZ17]. Note, that the weights ϱi
are governed by the Christoffel function ωi

∑
k∈I |ηk(xi)|2. With an upper

estimate on it, the weights ϱi may be choosen equal.

Remark 6.9. It is possible to apply the orthogonalization trick from [BSU23,
Lemma 4.3] in order to eliminate the factor B/A in the assumption on the
number of points n in (6.5). But this demands for setting up the matrix L from
(2.1) whereas in the above formulation, we only need the evaluation of the
Christoffel function.
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Next, we subsample X further to obtain merely linear oversampling.

Theorem 6.10. Let the assumptions from Theorem 6.8 hold and X be such
that (6.7) holds. Further, let b > κ2 with

κ =
3B

2A
+

1

2
+

√(3B
2A

+
1

2

)2
− 1 .

Then BSS-subsampling (Algorithm 1) the points X , we obtain points X ′ =
{xi}i∈J′ ⊆ X with |X ′| ≤ ⌈b|I|⌉ and non-negative weights si, i ∈ J ′ such
that it holds the subsampled L2-MZ inequality

1

2
A∥f∥2L2

≤
∑
i∈J′

ωisi
nϱi

|f(xi)|2 ≤ 3

2

(
√
b+ 1)2

(
√
b− 1)(

√
b− κ)

B∥f∥2L2

for all f ∈ span{ηk}k∈I .

Proof. The result is an immediate consequence of applying Theorem 5.3 to
the randomly subsampled points of Theorem 6.8.

The previous result is based on [BSS09] where tight frames were subsam-
pled, which was used [LT22] for subsampling random points. This was then
extended in [BSU23] for non-tight frames as well, which we use here. The
BSS-algorithm gives no control over the weights si, however. One alternative
would be to use Weaver-subsampling to loose the weights, but this is highly
nonconstructive and spoils the involved constants, cf. [NSU21]. A clever ex-
tension of the BSS-algorithm makes it possible to loose the weights from the
BSS-subsampling, regain the constructiveness, choose a smaller oversampling
factor b, and save the left-hand side of the L2-MZ inequality, which is the
important one as it allows for the reconstruction from the function evaluations
f(xi).

Theorem 6.11. Let the assumptions from Theorem 6.8 hold and X be such
that (6.7) holds. Further, let I ⊆ IMZ and b > 1 + 1

|I| . Then PlainBSS-
subsampling (cf. Algorithm 3) the points X , we obtain X ′ = (xi)i∈J′ ⊆ X
with |X ′| ≤ ⌈b|I|⌉ such that it holds the subsampled left L2-MZ inequality

(b− 1)3

178 (b+ 1)2
A∥f∥2L2

≤ 1

|I|
∑
i∈J′

ωi

ϱi
|f(xi)|2 for all f ∈ V .

Proof. The result is an immediate consequence of applying Theorem 5.11 to
the randomly subsampled points of Theorem 6.8.
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Consequently, we have constructed subsets of existing L2-MZ inequalities.
This allows to use the algorithms for the initial points as we will see in the
numerical experiments of Section 7.3.

Similar to Theorem 6.5 we now state the existence of an equalweighted
lower L2-MZ inequality with linear oversampling. This result uses an unstruc-
tured random draw of points for the initial L2-MZ inequality.

Corollary 6.12. Let V be an m − 1-dimensional function space with an
orthonormal basis η1, . . . , ηm−1 in L2. Further, let X denote the point set
from Theorem 6.5 fulfilling (6.3). For b > 1 + 1

m−1 we can construct an index
set J ′ ⊆ {1, . . . , n} with |J ′| ≤ ⌈b(m − 1)⌉ for which the points {xi}i∈J′

fulfill the unweighted lower L2-MZ inequality with probability exceeding
1− exp(−t), i.e.,

∥f∥2L2(D,ϱT ) ≤ 356
(b+ 1)2

(b− 1)3
ϱT (D)

m− 1

∑
i∈J′

|f(xi)|2 for all f ∈ V .

Proof. The result is an immediate consequence of applying Theorem 5.11 to
the randomly subsampled points of Theorem 6.5.

This result allows to discretize an arbitrary (m− 1)-dimensional function
space using only point evaluations with merely linear oversampling.





Chapter 7

Least squares in the worst-case setting

The worst-case setting, also known as active learning setting, is a subfield
of machine learning where we are not given the data in advance but rather the
learning algorithm queries labels for specific data points. In sampling recovery
this means we choose points X = {x1, . . . ,xn} ⊆ D in the domain D ⊆ Rd

where we evaluate the target function f : D → K with K ∈ {R,C}. It is
necessary to know a restriction in advance which will be the assumption f ∈ F
for some function class F . We are interested in worst-case error guarantees
for a given class of functions F , i.e., the chosen points X will work for every
function f ∈ F . The so called (linear) sampling width in L2 measure the
best achievable performance with n− 1 points

gn(F,L2(D, ϱT )) := inf
x1,...,xn−1∈D
φ1,...,φn−1∈L2

sup
∥f∥F≤1

∥∥∥f −
n−1∑
i=1

f(xi)φi

∥∥∥
L2

, (7.1)

cf. [DuTU19, (5.0.1)]. We obtain upper bounds for the sampling width by
proving bounds for the sampling width restricted to the least squares ap-
proximation

glsn,m(F,L2(D, ϱT )) := inf
V⊆ℓ∞(D)
dimV=m−1

inf
X∈Dn−1

sup
∥f∥F≤1

∥f − SX
V f∥L2

, (7.2)

where SX
V is the least squares approximation from Chapter 2. To quantify the

goodness of our bounds we further introduce the linear width

am(F,L2(D, ϱT )) := inf
ℓ1,...,ℓm−1 : F→C
φ1,...,φm−1∈L2

sup
∥f∥F≤1

∥∥∥f−m−1∑
k=1

ℓk(f)φk

∥∥∥
L2

. (7.3)

Since point evaluations are a special case of linear functionals, we have

am(F,L2(D, ϱT )) ≤ gm(F,L2(D, ϱT )) ≤ glsm,m(F,L2(D, ϱT ))

and the linear width serves as a natural lower bound for the sampling width.
Note, that the linear width is equal to the approximation numbers of the identity
operator. If F = H(K) is an RKHS and the embedding IK : H(K) →
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L2 has singular values σk and we obtain am(H(K), L2(D, ϱT )) = σm by
Theorem 3.12.

As we will see, least squares approximation already achieves a sharp bound
for the sampling width.

7.1 Sampling recovery in spaces of finite measure

In this section we consider the worst-case function approximation in the space
L2(D, ϱT ) for a finite measure ϱT , which is based on [BSU23]. It turns out
the existence of a non-weighted lower L2-MZ inequality is sufficient to prove
error bounds:

Lemma 7.1. Let ϱT be a finite measure and X = {x1, . . . ,xn} fulfill a lower
L2-MZ inequality for the function space V with constant A and all weights
ωi = 1.

Then we have for SX
V f the plain least squares approximation defined in

Section 2.2

∥f − SX
V f∥2L2

≤ 4
(
ϱT (D) +

n

A

)
inf
g∈V

∥f − g∥2∞ .

Proof. For any h ∈ V we have by triangle inequality

∥f − SX
V ∥2L2

≤ 2∥f − h∥2L2
+ 2∥h− SX

V f∥2L2
.

Since we have finite measure, the first summand is bounded by ∥f − h∥2L2
≤

ϱT (D)∥f − h∥2∞.
For the second summand we use the invariance of SX

V to functions in V ,
Lemmata 6.1, and 6.2

∥h− SX
V f∥2L2

= ∥SX
V (h− f)∥2L2

≤ ∥(L∗L)−1L∗∥22→2

n∑
i=1

|(h− f)(xi)|2

≤ n

A
∥h− f∥2∞ .

Overall, we obtain

∥f − SX
V ∥2L2

≤ 2
(
ϱT (D) +

n

A

)
∥f − h∥2∞ .

It is left to choose h ∈ V such that ∥f − h∥2∞ ≤ 2 infg∈V ∥f − g∥2∞.
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Next, we use the constructions of points for L2-MZ inequalities from Chap-
ter 6. We start with the random points from Theorem 6.5.

Theorem 7.2. Let V be an m − 1-dimensional function space with an or-
thonormal basis η1, . . . , ηm−1 in L2(D, ϱT ). Let t ≥ 0 and n ∈ N such
that

20(m− 1)(log(m− 1) + t) ≤ n

and let the points x1, . . . ,xn be drawn according to the following probability
measure

dϱS(x) =
1

2ϱT (D)
+

1

2

∑m−1
k=1 |ηk(x)|2

m− 1
dϱT .

Then we have for SX
V f the plain least squares approximation defined in

Section 2.2 with probability exceeding 1− exp(−t)

∥f − SX
V f∥2L2

≤ 20ϱT (D) inf
g∈V

∥f − g∥2∞ .

Proof. The assertion follows from Theorem 7.1 and Theorem 6.5.

Inequalities of this type with logarithmic oversampling have been first
established by A. Cohen and G. Migliorati [CM17]. This has been improved
by V. N. Temlyakov [Tem21] to n = O(m) samples with unspecified constants.
The mentioned results rely on the weighted least squares approximation and
V. N. Temlyakov posed the question in [Tem21], if also classical plain least
squares approximation could be used. The next theorem gives an affirmative
answer and even displays the dependence of the constant on the oversampling
factor b.

Theorem 7.3. Let V be an m − 1-dimensional function space with an or-
thonormal basis η1, . . . , ηm−1 in L2(D, ϱT ). Further, let b > 1 + 1

m−1 and
X = {x1, . . . ,xn} with |X| ≤ ⌈b(m− 1)⌉ be the points from Theorem 6.12.

Then we have for SX
V f the plain least squares approximation defined in

Section 2.2

∥f − SX
V f∥2L2

≤ 714 ϱT (D)
(b+ 1

b− 1

)3
inf
g∈V

∥f − g∥2∞ .

Proof. The assertion follows from Theorem 7.1 where we use the L2-MZ
inequality from Theorem 6.12 and the estimate

⌈b(m− 1)⌉
m− 1

≤ 2
b(m− 1)

m− 1
≤ 2(b+ 1) .
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This result yields a relation of the sampling width restricted to the least
squares approximation and the Kolmogorov width in ℓ∞(D)

dm(F, ℓ∞(D)) := inf
V⊆F

dim(V )=m−1

sup
∥f∥F≤1

inf
g∈V

∥∥∥f − g
∥∥∥
∞
,

which includes non-linear approximations in contrast to the linear width. Note,
that these coincide when the error is measured in a Hilbert spaces norm. When
optimizing over all m− 1-dimensional reconstruction spaces, we obtain the
following estimate.

Corollary 7.4. Let F be a class of functions in ℓ∞(D). Then for m ∈ N and
b > 1 + 1

m there exists a constant CϱT
such that

gls⌈bm⌉,m(F,L2(D, ϱT )) ≤ CϱT

(b+ 1

b− 1

)3/2
dm(F, ℓ∞(D)) . (7.4)

Since the quantities on the left-hand side of (7.4) are in general larger than
the standard sampling width (7.1), where there are no such restrictions on
the recovery, this slightly improves on recent results by V. N. Temlyakov,
Theorems 1.1 and 1.2 in [Tem21] as well as [LT22, Thm. 3.4], the latter
joint work with I. Limonova. Interestingly, the b-dependent constant may be
improved to (b− 1)−1 when allowing weighted least squares approximations,
cf. [LT22, Thm. 1.7] (or the original [DPS+21, Thm. 6.3]) for the case of
real functions (an extension to the complex case has been given in [LT22,
Rem. 3.2] but only for b > 2). In our case a distinction between real and
complex L2(D, ϱT ) in (7.4) as in [LT22] is unnecessary due to the validity of
Theorem 5.3 in the complex setting. Note that the right-hand side in (7.4) is
of particular importance if the linear widths in L2 are not square-summable
[TU21, TU22].

7.2 Sampling recovery in RKHSs

7.2.1 Optimal sampling complexity with unstructured points

In this section, we investigate the same problem - the recovery of functions in
L2(D, ϱT ) - but under the assumption of functions being element of an RKHS
H(K), where ϱT is allowed to be infinite. This scenario is investigated in the
recent papers [DKU23, KU21a, KUV21, MU21, NSU21], where this section
is based on [BSU23].

We start with some basic assumptions
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Assumption 7.5. Let H(K) be a separable RKHS with finite trace (3.4)
and let σ2

k and ηk denote the eigenvalues and L2(D, ϱT )-orthonormal eigen-
functions of the integral operator TK from (3.2). Further, we assume X =
{x1, . . . ,xn} ⊆ D to be i.i.d. random points with respect to the measure
dϱS(x) = 1/β(x) dϱT , where

1

β(x)
=

1

2

∑m−1
k=1 |ηk(x)|2

m− 1
+

1

2

∑∞
k=m |ek(x)|2∑∞

k=m σ2
k

for m,n ∈ N, which will be specified later.

The use of this density is based on an idea first used in [KU21a]. Before
proving the actual bounds we need an auxiliary lemma, which will be used
to bound the discrete truncation error where the coarse ℓ∞(D)-estimate was
used in Section 7.1.

Lemma 7.6. Let Theorem 7.5 hold, n ≥ 3, and let

Φ = [ek(x
i)]i=1,...,n;k=m,m+1,... ∈ Cn×∞

and W = diag(β(x1), . . . , β(xn)) ∈ [0,∞)n×n .

Then we have with probability exceeding 1− 23/4 exp(−t)

1

n
∥W 1/2Φ∥22→2 ≤ 42(log n+ t)

n

∞∑
k=m

σ2
k + 2 sup

k≥m
σ2
k .

Proof. We apply Theorem 4.9 for ui =
√
β(xi)(ek(x

i))∞k=m using

∥ui∥22 =
2∑m−1

k=1 |ηk(xi)|2
m−1 +

∑∞
k=m |ek(xi)|2∑∞

k=m σ2
k

∞∑
k=m

|ek(xi)|2

≤ 2

∞∑
k=m

σ2
k

and plug in the identity

E(ui ⊗ ui) = diag(σ2
m, σ

2
m+1, . . . ) .

With that, we state a bound on the worst-case error of the least squares
approximation using random points with logarithmic oversampling.
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Theorem 7.7. Let Theorem 7.5 hold with m ≥ 3 and

n := ⌈20(m− 1)(log(m− 1) + t)⌉ ≤ (m− 1)r ,

for some t > 0 and r > 1.
Then, for SX

V f the weighted least squares approximation defined in Sec-
tion 2.2 with ωi = β(xi), we have with probability exceeding 1− 4 exp(−t)

sup
∥f∥H(K)≤1

∥f − SX
V f∥2L2

≤ 3 sup
k≥m

σ2
k +

5r

m− 1

∞∑
k=m

σ2
k .

Proof. We begin by defining two events. The first one bounds the spectral
norm of the least squares matrix

S1 :=
{
X ⊆ Dn :

∥∥∥(L∗WL)−1LW 1/2
∥∥∥2
2→2

≤ 2

n

}
.

Using Theorem 6.2, we have that this is equivalent to the lower bound of the
singular values of W 1/2L. By the definition of β, we have

10
(
∥β(·)N(V, ·)∥∞

)
(log(m− 1) + t) ≤ 20(m− 1)(log(m− 1) + t) ≤ n

and apply Theorem 6.4 to obtain that event S1 holds with probability at least
1− exp(−t).

Event S2 is the inequality of Theorem 7.6 which holds with probability at
least 1− 23/4 exp(−t). Together we obtain the desired probability

P(S1 ∩ S2) ≥ 1− PS∁
1 − PS∁

2 ≥ 1− 4 exp(−t) .

It remains to show the bound based on events S1 and S2. On that account
we decompose the error using orthogonality

∥f − SX
V f∥2L2

= ∥f − PV f∥2L2
+ ∥PV f − SX

V f∥2L2
(7.5)

and estimate each summand individually.
Step 1. We estimate the first summand of (7.5) by

∥f − PV f∥2L2
=
∥∥∥ ∑

k≥m

⟨f, ek⟩H(K)ek

∥∥∥2
L2

=
∑
k≥m

σ2
k|⟨f, ek⟩H(K)|2

≤ ∥f∥2H(K) sup
k≥m

σ2
k .
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Step 2. For the second summand we use the invariance of SX
V to functions

in V

∥PV f − SX
V f∥2L2

= ∥SX
V (f − PV f)∥2L2

= ∥(L∗WL)−1L∗W ((f − PV f)(x
i))ni=1∥2L2

≤ ∥(L∗WL)−1L∗W 1/2∥22→2

n∑
i=1

β(xi)|(f − PV f)(x
i)|2 .

We estimate the first factor by the means of event S1 and write the latter in
terms of its coefficients in order to apply event S2

∥PV f − SX
V f∥2L2

≤ 2

n

∥∥∥W 1/2Φ
(
⟨f, ek⟩H(K)

)
k≥m

∥∥∥2
2

≤ 2

n
∥W 1/2Φ∥22→2

∑
k≥m

|⟨f, ek⟩H(K)|2

≤
(84(log n+ t)

n

∞∑
k=m

σ2
k + 2 sup

k≥m
σ2
k

)
∥f∥2H(K) .

Overall we obtain

∥f − SX
V f∥2L2

≤
(
3 sup
k≥m

σ2
k +

84(log n+ t)

n

∞∑
k=m

σ2
k

)
∥f∥2H(K) .

By the assumption on m, we have

84(log n+ t)

n
≤ 84(log n+ t)

20(m− 1)(log(m− 1) + t)
≤ 84

20

r

m− 1
≤ 5r

m− 1

and obtain the assertion.

The logarithmic oversampling in Theorem 7.7 is improved to linear over-
sampling in the next theorem with the drawback of loosing a logarithmic term
in the bound itself. However, this gives a bound with better overall sampling
complexity.

Theorem 7.8. Let Theorem 7.5 hold and let t, m, r, and X be as in The-
orem 7.7. For b > 1 + 1

m−1 , we construct J ′ ⊆ {1, . . . , n} with |J ′| ≤
⌈b(m− 1)⌉ by applying PlainBSS Algorithm 3 to (

√
β(xi)ηk(x

i))m−1
k=1 .
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Then, for SX′

V f the weighted least squares approximation defined in Sec-
tion 2.2 with X ′ = {xi}i∈J′ and ωi = β(xi), we have with probability
exceeding 1− 4 exp(−t)

sup
∥f∥H(K)≤1

∥f − SX′

V f∥2L2

≤ 9049
(b+ 1)2

(b− 1)3
(log(m− 1) + t)

(
sup
k≥m

σ2
k +

r

m− 1

∞∑
k=m

σ2
k

)
.

Proof. We use the events S1 and S2 with the desired probability from Theo-
rem 7.7 to show the result. By Theorem 5.11 and S1we have for the subsam-
pled least squares matrix L′ and weight matrix W ′

∥((L′)∗W ′L′)−1(L′)∗(W ′)1/2∥22→2 (7.6)

≤ 89
(b+ 1)2

(b− 1)3
n

m− 1
∥(L∗WL)−1L∗W 1/2∥22→2 (7.7)

≤ 89
(b+ 1)2

(b− 1)3
2

m− 1
. (7.8)

Analogous to Theorem 7.7, we decompose the error and estimate the first
summand

∥f − SX
V f∥2L2

= sup
k≥m

σ2
k∥f∥2H(K) + ∥PV f − SX

V f∥2L2
.

For the second summand we use the invariance of SX
V to functions in V

∥PV f − SX
V f∥2L2

= ∥SX
V (f − PV f)∥2L2

=
∥∥∥((L′)∗W ′L′)−1(L′)∗W ′((f − PV f)(x

i))i∈J′

∥∥∥2
L2

≤
∥∥∥((L′)∗W ′L′)−1(L′)∗(W ′)1/2

∥∥∥2
2→2

∑
i∈J′

β(xi)|(f − PV f)(x
i)|2 .

We estimate the first factor by the means of (7.6) and extend the latter to the
points X ⊃ X ′

∥PV f − SX
V f∥2L2

≤ 89
(b+ 1)2

(b− 1)3
n

m− 1

2

n

n∑
i=1

β(xi)|(f − PV f)(x
i)|2 .
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Analogously to Step 2 of Theorem 7.7, we obtain

∥PV f − SX
V f∥2L2

≤ 89
(b+ 1)2

(b− 1)3
n

m− 1

(
2 sup
k≥m

σ2
k +

5r

m− 1

∞∑
k=m

σ2
k

)
∥f∥2H(K) .

Overall, this gives

∥f − SX
V f∥2L2

≤ 445
(b+ 1)2

(b− 1)3
n

m− 1

(
sup
k≥m

σ2
k +

r

m− 1

∞∑
k=m

σ2
k

)
∥f∥2H(K) .

Using

n

m− 1
=

⌈20(m− 1)(log(m− 1) + t)⌉
m− 1

≤ 61

3
(log(m− 1) + t) ,

we obtain the assertion.

The performance of Theorem 7.8 is near-optimal as in [NSU21], i.e., we
obtain for the sampling width (7.1)

g2n ≤ C log n

n

∑
k≥⌊cn⌋

σ2
k .

The latter reference is the first which used the Weaver subsampling technique
based on the Kadison-Singer Theorem for the sampling recovery problem.
However, it does not achieve the optimal rate. By a further refinement of the
technique, established recently in [DKU23] by M. Dolbeault, D. Krieg, and
M. Ullrich, the optimal rate (without additional log-term) has been found. In
contrast to [DKU23, NSU21] we have a semi-constructive method to generate
the sampling points (offline step) that does not need the Kadison-Singer theo-
rem in terms of the Weaver subsampling. In addition, the dependence on the
oversampling factor b is displayed. An open question remains: Although in
many relevant cases (like periodic Sobolev spaces with mixed smoothness) the
recovery operator turns out to be a canonical plain least squares approximation
operator SX

V with equal weights (acting on the hyperbolic cross frequency
subspace with points displayed in Figure 5.2) we do not know whether loosing
the weights is possible in general.
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7.2.2 Sampling recovery with L2-MZ points

The points in Section 7.2.1 stem from an initial random draw. Therefore, there
is missing structure which may be useful for applying fast algorithms. In
Section 6.2 we considered deterministic sets of points, which fulfill an L2-MZ
inequality, for which the corresponding least squares approximation is fast in
the sense that Fourier-like algorithms can be used for the matrix-vector product
with the corresponding least squares matrix (2.1). Based on [BKPU23], in
this section we bound the worst-case error of the least squares approximation
utilizing samples in L2-MZ points. Error bounds for L2-MZ points can also
be found in [Grö20].

In the framework of this section, we consider RKHS H(K) with bounded
kernels, i.e.,

∥K∥∞ :=
√

sup
x∈D

K(x,x) <∞ . (7.9)

With ∥ · ∥2H(K) = ⟨·, ·⟩HK
, this condition implies ∥f∥∞ ≤ ∥K∥∞ · ∥f∥H(K),

which, in other words, is the continuous embedding of H(K) into the space
of essentially bounded functions ℓ∞(D).

Further, we consider the following set of assumptions on the initial points
XMZ and weights WMZ for the theorems of this section.

Assumption 7.9. Let H(K) be a separable RKHS with finite trace (3.4),
bounded (7.9) kernel, and let σ2

k and ηk denote the eigenvalues and the
L2(D, ϱT )-orthonormal eigenfunctions of the integral operator TK (3.2).

For V = span{ηk}k∈IMZ ⊆ H(K) a finite-dimensional function space,
we assume the points XMZ ⊆ D and weights WMZ ∈ [0,∞)M×M fulfill an
L2-MZ inequality for V with constants A and B.

Under these assumptions, we state a rather general result.

Theorem 7.10. Let Assumptions 7.9 hold. Then, for SXMZ
VMZ

f the weighted
least squares approximation defined in Section 2.2 with weights WMZ, we have
the exact reconstruction for function in VMZ and otherwise

sup
∥f∥H(K)≤1

∥∥∥f − S
XMZ
VMZ

f
∥∥∥2
L2

≤ sup
k/∈IMZ

σ2
k +

∑M
i=1 ωi

A
sup

∥f∥H(K)≤1

∥f − PVMZf∥
2
∞ .
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Proof. The reconstructing property for functions in VMZ is immediate. For
general functions f ∈ H(K) we use orthogonality of the projection to obtain

∥f − S
XMZ
VMZ

f∥2L2
= ∥f − PVMZf∥

2
L2

+ ∥PVMZf − S
XMZ
VMZ

f∥2L2
(7.10)

of which we now estimate each summand individually.
Step 1. We bound the first summand of (7.10) by

∥f − PVMZf∥
2
L2

=
∥∥∥ ∑

k/∈IMZ

⟨f, ek⟩H(K)ek

∥∥∥2
L2

=
∑

k/∈IMZ

σ2
k

∣∣∣⟨f, ek⟩H(K)

∣∣∣2
≤ ∥f∥2H(K) sup

k/∈IMZ

σ2
k .

Step 2. For the second summand of (7.10) we use the reconstructing
property of SXMZ

VMZ
for functions in VMZ

∥PVMZf − S
XMZ
VMZ

f∥2L2
= ∥SXMZ

VMZ
(PVMZf − f)∥2L2

≤
∥∥∥((LIMZ

XMZ
)∗WMZL

IMZ
XMZ

)−1(L
IMZ
XMZ

)∗W
1/2
MZ

∥∥∥2
2→2

·∥∥∥W 1/2
MZ

(
(PVMZf − f)(xi)

)M
i=1

∥∥∥2
2
.

By Lemmata 6.1 and 6.2 we have for the first factor∥∥∥((LIMZ
XMZ

)∗WMZL
IMZ
XMZ

)−1(L
IMZ
XMZ

)∗W
1/2
MZ

∥∥∥2
2→2

≤ 1

A
.

Finally, we obtain

sup
∥f∥H(K)≤1

∥PVMZf − S
XMZ
VMZ

f∥2L2

≤ 1

A
sup

∥f∥H(K)≤1

M∑
i=1

ωi|(PVMZf − f)(xi)|2

≤
∑M

i=1 ωi

A
sup

∥f∥H(K)≤1

∥PVMZf − f∥2∞ .

The bounds in Theorem 7.10 are rather basic and hold in a general setting.
In special cases like the exponential functions, Chebyshev polynomials, and
the half-period cosine functions this topic is examined in detail in [KMNN21]
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for rank-1 lattices, cf. Section 6.2. In particular for function spaces with mixed
smoothness there exist almost tight error bounds in [BKUV17] which improve
on Theorem 7.10 which we will present next. For simplicity we omit constants
in the following. For two sequences (an)

∞
n=1 and (bn)

∞
n=1 ⊆ R we write

an ≲ bn if there exists a constant c > 0 such that an ≤ cbn for all n. We will
write an ≍ bn if an ≲ bn and bn ≲ an.

The following theorem is a collection of results from [KSU15, BDSU16,
BKUV17].

Theorem 7.11 (Approximation with rank-1 lattices in Hs
mix). Let IMZ ⊆

Nd be a hyperbolic cross frequency index set with radius R ∈ (1,∞), see
Section 3.6.2 and XMZ a corresponding reconstructing rank-1 lattice with M
points, cf. (6.4).

(i) The size of a hyperbolic cross is asymptotically |IMZ| ≍ R(logR)d−1.

(ii) The best possible error of functions in Hs
mix behaves as follows

sup
∥f∥Hs

mix
≤1

∥f − PVMZf∥
2
L2

≍ |IMZ|−2s(log |IMZ|)2(d−1)s

and

sup
∥f∥Hs

mix
≤1

∥f − PVMZf∥
2
∞ ≍ |IMZ|−2s+1/2(log |IMZ|)2(d−1)s .

(iii) The size of a reconstructing rank-1 lattice for IMZ is bounded by

|IMZ|2(log |IMZ|)−2(d−1) ≲M ≲ |IMZ|2(log |IMZ|)−d ,

where the lower inequality holds for all reconstructing rank-1 lattices
and there exists a rank-1 lattice fulfilling the upper one.

(iv) The error of the least squares approximation operator using rank-1
lattices and VIMZ = span{exp(2πi⟨k, ·⟩)}k∈IMZ is bounded as follows:

M−s ≲ sup
∥f∥Hs

mix
≤1

∥f − S
XMZ
VIMZ

f∥2L2

≲

{
|IMZ|−2s(log |IMZ|)(d−1)(2s+1)

M−s(logM)(d−2)s+d−1 ,

where the lower inequality holds for all reconstructing rank-1 lattices
and there exists a rank-1 lattice fulfilling the upper one.
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Proof. There are different definitions for the hyperbolic cross and the Sobolev
spaces with mixed smoothness. Up to constants the considered quantities
coincide, cf. [KSU15]. The assertion (i) is given in [BKUV17, Lemma 2]. To
show (ii), we use sup∥f∥Hs

mix
≤1 ∥f − PVMZf∥

2
L2

= R−s and (i). The second
part of (ii) is given in [BDSU16, Theorem 6.11 (iii)].

Assertion (iii) follows from Lemmata 2 and 3 in [BKUV17]. To show (iv),
we use [BKUV17, Theorem 2] with α = s, β = γ = 0 and Lemmata 2 and 3
from [BKUV17] again.

Note, that the Fourier coefficients of the approximation in [BKUV17] (for-
mula 2.3) are computed by applying the adjoint of the Fourier matrix. Because
of the reconstructing property, this coincides with the least squares approxima-
tion presented here, i.e., with W = diag(1/M, . . . , 1/M) we have

S
XMZ
VMZ

f =
∑

k∈IMZ

ak exp(2πi⟨k, ·⟩)

with a = (L∗WL)−1L∗Wf = 1
ML∗f .

Similar bounds were obtained for the kernel method operating on rank-1
lattice points, cf. [KKK+21a]. For random points one has the rate M−2s and
additional logarithmic terms, however. So, using full rank-1 lattices we lose
half the rate of convergence in the main order in comparison to the results from
Section 7.2.1. In the next section we will present a mixture of both approaches
fixing that drawback.

7.2.3 Sampling recovery with subsampled L2-MZ points

The next step is to subsample the L2-MZ points like in Section 6.3 whilst pay-
ing attention to the approximation error. With that we obtain an error behavior
similar to Section 7.2.1 and are still able to use the fast algorithms associated
to the L2-MZ points. This strategy is already published in [BKPU23].

In contrast to Section 6.3, we subsample two frames and one Bessel se-
quence simultaneously from the points XMZ coming from an initial L2-MZ
inequality. In order to control the subsampling we use a change of measure
via a convex combination of the respective probability densities. Each point
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xi ∈ XMZ will be drawn with respect to the following probability density:

ϱi =

ωi

∑
k∈I

|ηk(xi)|2

3

M∑
j=1

ωj

∑
k∈I

|ηk(xj)|2
+

ωi

∑
k∈IMZ\I

|ek(xi)|2

3

M∑
j=1

ωj

∑
k∈IMZ\I

|ek(xj)|2
+
ωi

3
. (7.11)

Since ϱi ≥ 0 and
∑M

i=1 ϱi = 1, these are proper density weights. In gen-
eral, the spectral decomposition has to be know in order to compute these
weights. For specific examples, like Sobolev spaces on the torus Hs(T), cf.
Section 3.5.1, the basis are the exponential functions simplifying the above
density: they have absolute value one resulting in the above density to be
constant and the resulting measure being uniform.

For the later analysis we need some preparations, starting with a concentra-
tion inequality for random infinite matrices similar to Theorem 7.6.

Lemma 7.12. Let Assumptions 7.9 hold and let X = {xi}i∈J , |J | = n, be
points drawn i.i.d. from XMZ with respect to the discrete density weights ϱi,
defined in (7.11). Further, for I ⊆ IMZ, we define the matrices

W = diag(ωi/ϱi)i∈J and Φ = (ek(x
i))i∈J,k∈IMZ\I .

Then we have with probability exceeding 1− 23/4 exp(−t)

1

n

∥∥∥W 1/2Φ
∥∥∥2
2→2

≤ 63(log(n) + t)

n
B

∑
k∈IMZ\I

σ2
k + 2B sup

k/∈I

σ2
k .

Proof. Since points with probability ϱi = 0 will almost surly not be drawn,
we assume ϱi > 0. Let

L
IMZ\I
XMZ

=
(
ηk(x

i)
)
xi∈XMZ,k∈IMZ\I

= Φdiag(σ−1
k )k∈IMZ\I .

Our objective is to apply Theorem 6.1. To this end we define the vectors
ui =

√
ωi/ϱi(ek(x

i))k∈IMZ\I . Note,∑
i∈J

ui ⊗ ui = (Φ)∗WΦ .
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Now we estimate ∥ui∥22 and ∥Eui ⊗ ui∥2→2. We bound ∥ui∥2 by using the
L2-MZ inequality and ∥ek∥2L2

= σ2
k

∥ui∥22 ≤ 3
∑

k∈IMZ\I

M∑
j=1

ωj |ek(xj)|2

≤ 3B
∑

k∈IMZ\I

∥ek∥2L2

= 3B
∑

k∈IMZ\I

σ2
k .

We further have by the compatibility of the spectral norm and Lemma 6.2∥∥∥Eui ⊗ ui
∥∥∥
2→2

=
∥∥∥W 1/2

MZ Φ
IMZ\I
XMZ

∥∥∥2
2→2

≤
∥∥∥W 1/2

MZ L
IMZ\I
XMZ

∥∥∥2
2→2

∥∥∥ diag(σk)IMZ\I

∥∥∥2
2→2

≤ B sup
k∈IMZ\I

σ2
k ,

which gives the assertion after applying Proposition 4.9.

We now formulate a central result of this section, which bounds the worst-
case reconstruction error for the least squares approximation where the points
are drawn randomly from a discrete set of points fulfilling anL2-MZ inequality,
cf. middle of Figure 6.3.

Theorem 7.13. Let Assumption 7.9 hold and I ⊆ IMZ ⊆ N, |I| ≥ 3, be an
index set. For n ∈ N, t > 0, and r ≥ 1 such that

n :=
⌈36B
A

|I|(log |I|+ t)
⌉
≤ |I|r,

let X = (xi)i∈J , |J | = n, be points drawn i.i.d. from XMZ with respect
to the discrete density weights ϱi. Then we have with probability exceeding
1− 4 exp(−t)

sup
∥f∥H(K)≤1

∥f − SX
V f∥2L2

≤ 9B

A
sup
k/∈I

σ2
k +

7r

|I|
∑

k∈IMZ\I

σ2
k

+
12

A
sup

∥f∥H(K)≤1

∥f − PVMZf∥
2
∞ ,

where W = diag(ωi/ϱi)i∈J , V = span{ηk}k∈I , and SX
V = SX

V (W ).
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Proof. Without loss of generality let ϱi > 0. We begin by defining two events.
The first one bounds the spectral norm of the least squares matrix

S1 =
{
X ⊆ XMZ :

∥∥∥(L∗WL
)−1

L∗W 1/2
∥∥∥2
2→2

≤ 2

An

}
.

Using Theorem 6.1, we have, that this is equivalent to a lower bound of the
singular values of W 1/2L. Via Lemma 6.2 we use the L2-MZ characterization
and the assumption on n in order to apply Theorem 6.8 with C = 1/3 and
obtain that the above holds with probability 1− 2 exp(−t).

We define the matrix

Φ =
(
ek(x

i)
)
xi∈Y ,k∈IMZ\I

.

Event S2 is the inequalities of Lemma 7.12 which holds with probability at
least 1− 23/4 exp(−t). Together we obtain the desired probability

P(S1 ∩ S2) ≥ 1− PS∁
1 − PS∁

2 ≥ 1− 4 exp(−t) .

It remains to show the bound based on the events S1 and S2. On that account
we decompose the recovery error using triangle inequality

∥f − SX
V f∥2L2

≤ ∥f − PV f∥2L2
+ ∥PV f − SX

V f∥2L2

≤ ∥f − PV f∥2L2
+ 2∥PV f − SX

V PVMZf∥
2
L2

+ 2∥SX
V PVMZf − SX

V f∥2L2
. (7.12)

In the following we estimate each of the three summands individually.
Step 1. We estimate the first summand of (7.12) in the same manner as in

the first step of the proof of Theorem 7.10:

∥f − PV f∥2L2
≤ ∥f∥2H(K) sup

k/∈I

σ2
k .

Step 2. Using the invariance of SX
V on PV f , we estimate the second

summand of (7.12) by∥∥∥PV f − SX
V PVMZf

∥∥∥2
L2

=
∥∥∥SX

V (PVMZf − PV f)
∥∥∥2
L2

=
∥∥∥(L∗WL)−1L∗W ((PVMZf − PV f)(x

i))i∈J

∥∥∥2
2

≤
∥∥∥(L∗WL)−1L∗W 1/2

∥∥∥
2→2

∑
i∈J

ωi

ϱi
|(PVMZf − PV f)(x

i)|2 .
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We estimate the first factor by the means of event S1 and write the latter in
terms of its coefficients in order to apply event S2∥∥∥SX

V PVMZf − SX
V f
∥∥∥2
L2

≤ 2

An

∥∥∥W 1/2Φ
(
⟨f, ek⟩H(K)

)
k∈IMZ\I

∥∥∥2
2

≤ 2

An

∥∥∥W 1/2Φ
∥∥∥2
2→2

∑
k∈IMZ\I

|⟨f, ek⟩H(K)|2

≤
(126B(log(n) + t)

An

∑
k∈IMZ\I

σ2
k +

4B

A
sup
k/∈I

σ2
k

)
∥f∥2H(K) .

Step 3. We start estimating the third summand of (7.12) analogously to
Step 2

∥PV f − SX
V PVMZf∥

2
L2

≤ 2

An

∑
i∈J

ωi

ϱi
|(f − PVMZf)(x

i)|2 .

Now we use the third part of ϱi, to obtain

∥PV f − SX
V PVMZf∥

2
L2

≤ 6

An

∑
i∈J

|(f − PVMZf)(x
i)|2

≤ 6

A
∥f − PVMZf∥

2
∞ .

Overall, applying the estimates 1. – 3. in (7.12), we obtain

sup
∥f∥H(K)≤1

∥f − SX
V f∥2L2

≤ sup
k/∈I

σ2
k +

252B(log(n) + t)

An

∑
k∈IMZ\I

σ2
k

+
8B

A
sup
k/∈I

σ2
k +

12

A
sup

∥f∥H(K)≤1

∥f − PVMZf∥
2
∞ .

By the assumption on |I| we have

252B(log(n) + t)

An
≤ 7(log(n) + t)

|I|(log(|I|) + t)
≤ 7r(log(|I|) + t)

|I|(log(|I|) + t)
=

7r

|I|
≤ 3 ,

and obtain the assertion.

Remark 7.14. (i) Given a bounded orthonormal system, i.e., ∥ηk∥∞ =
C < ∞ for all k we can alter events S1 and S2 such that we will not
need to sample with respect to the density weights ϱi and sample with
respect to the weights ωi coming from the L2-MZ inequality directly.
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(ii) Whenever the Christoffel-function
∑

k∈I |ηk(x)|2 is constant, indepen-
dent of the underlying index set I , the three summands in the density
weights ϱi in (7.11) coincide and the number of random points may be
divided by three whilst achieving the same error bound.

(iii) Up to the quotient of the constants for the L2-MZ inequality, the first two
summands of Theorem 7.13 are the same as in Theorem 7.8 or [KUV21]
where points were drawn with respect to a continuous probability mea-
sure. The difference is in the latter summand, which only depends on
the initial point set. By choosing a suitable initial point set, i.e., a point
set satisfying a L2-MZ inequality for large enough IMZ, we can make
this as small as needed. In particular smaller than the first two terms,
which, therefore, determine the error decay behavior.

Next, we use the unweighted frame subsampling from [BSU23] to prove
the main result which lowers the number of points to be linear in |I|, cf. right
of Figure 6.3.

Theorem 7.15. Let Assumption 7.9 hold and I ⊆ IMZ ⊆ N, |I| ≥ 3 be an
index set. For n ∈ N, t > 0, and r ≥ 1 such that

n :=

⌈
36B

A
|I|(log |I|+ t)

⌉
≤ |I|r,

let X = {xi}i∈J , |J | = n be points drawn i.i.d. from XMZ with respect to the
discrete density weights ϱi, defined in (7.11). For b > 1 + 1

|I| , PlainBSS
subsampling (cf. [BSU23, Algorithm 3]) the points X , we obtain points
X ′ = {xi}i∈J′ ⊆ X with |X ′| ≤ ⌈b|I|⌉ such that we have with proba-
bility exceeding 1− 4 exp(−t)

sup
∥f∥H(K)≤1

∥f − SX′

V f∥2L2

≤ 39 808
B

A

(b+ 1)2

(b− 1)3
(log |I|+ t)

(
B

A
sup
k/∈I

σ2
k +

r

|I|
∑

k∈IMZ\I

σ2
k

+
1

A
sup

∥f∥H(K)≤1

∥f − PVMZf∥
2
∞

)

with weights W ′ = diag(ωi/ϱi)i∈J′ and the least squares approximation
SX′

V f = SX′

V (W ′)f defined in Section 2.2.
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Proof. For g ∈ V we have

∥SX′

V g∥2L2
≤
∥∥∥((L′)∗W ′L′)−1(L′)∗(W ′)1/2

∥∥∥2
2→2

∑
i∈J′

ωi

ϱi
|g(xi)|2 .

By Theorem 6.11 and Theorem 6.1 we have

∥SX′

V g∥2L2
≤ 89(b+ 1)2

(b− 1)3
n

|I|
2

An

∑
i∈J′

ωi

ϱi
|g(xi)|2

≤ 3234(b+ 1)2B

(b− 1)3A
(log(|I|) + t)

( 2

An

∑
i∈J′

ωi

ϱi
|g(xi)|2

)
,

where |I| ≥ 3 was used in

n =
⌈36B
A

|I|(log |I|+ t)
⌉
≤ 109B

3A
|I|(log |I|+ t) .

Using this estimate in step 2 and 3 of the proof of Theorem 7.13 we obtain the
assertion.

We payed the logarithmic factor in the bound to work with linearly many
points whilst achieving the same error bound as in [NSU21]. Recent progress
has shown that the logarithmic factor can be avoided but this utilizes the
Kadison-Singer theorem and is not constructive, cf. [DKU23].

7.3 Application on the torus Td with rank-1 lattices

In this section we apply our general theory from Section 7.2.3 to Sobolev
function spaces with dominating mixed smoothness on the d-dimensional
torus Hs

mix(T
d), see Section 3.6.2. This gives a feel for the general theory and

shows that a subset of a rank-1 lattice is able to achieve the good sampling
complexity in contrast to the full rank-1 lattice.

Corollary 7.16. LetHs
mix(Td), s > 1/2, be the Sobolev space with dominating

mixed smoothness on the d-torus, I ⊆ IMZ ⊆ Zd, |I| ≥ 3, be the hyperbolic
cross frequency index sets, and XMZ a reconstructing rank-1 lattice for IMZ

with M points, cf. (6.4). For b > 1 + 1
|I| we construct a subset of points

X ′ = {xi}i∈J′ ⊆ XMZ with |X ′| ≤ ⌈b|I|⌉ such that we have the following
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bound for the plain least squares approximation

sup
∥f∥Hs

mix
≤1

∥f − SX′

V f∥2L2
≤ Cd,s

( b

b− 1

)3
log |I|

(
|I|−2s(log |I|)(d−1)2s

(7.13)

+ |IMZ|−2s+1(log |IMZ|)2(d−1)s
)
,

with probability 1− 4/|I| and Cd,s a constant depending on d and s.

Proof. Since we are dealing with a reconstructing lattice, we have a tight
frame A = B. We need to apply Theorem 7.15 and Remark 7.14 and use the
following inequality

∑
k/∈I

σ2
k =

∑
k/∈I

d∏
j=1

(1 + (2π|kj |)2s)−1 ≲ |I|−2s+1(log |I|)2(d−1)s

from [DuTU18, (2.3.2)]. Using Hölder’s inequality and the above inequality
again, we obtain

∥f − PVMZf∥
2
∞ ≤

∣∣∣ ∑
k/∈IMZ

σ−2
k σ2

k|f̂k|
∣∣∣2

≤
∑

k/∈IMZ

σ−4
k

∑
k/∈IMZ

σ2
k|f̂k|2

≲ |IMZ|−2s+1(log |IMZ|)2(d−1)s∥f∥2Hs
mix
.

Remark 7.17 (Optimality for rank-1 lattices). With the initial hyperbolic
cross IMZ in Corollary 7.16 slightly bigger than I we recover the optimal
error bound n−s(log n)(d−1)s, cf. [DuTU18, (2.3.2)], up to a logarithmic
factor. Thus, the phrase “This main rate (without logarithmic factors) is half
the optimal main rate [...] and turns out to be the best possible among all
algorithms taking samples on [rank-1] lattices” from [BKUV17] has to be
stated more precisely to “. . . samples on full [rank-1] lattices”. We conjecture
that the non-constructive approach in [DKU23] (based on Kadison-Singer
and Weaver subsampling [NSU21]) may lead to a bound without additional
logarithm.

Next, we support our findings with numerical experiments.
Because of the one-dimensional structure of rank-1 lattices, the matrix-

vector product with the system matrix LXMZ can be carried out using a
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one-dimensional Fast Fourier Transform (FFT) in O(M logM). We may use
this algorithm for the subsampled points X = {xi}i∈J and system matrix L
too:

L = PLXMZ where P =


1 0 0 . . . 0 0 0
0 0 1 . . . 0 0 0

...
...

0 0 0 . . . 0 1 0
j1 j2 jn


1
2
...
n

. (7.14)

Here, we use hyperbolic crosses for the frequency index sets with size
M ≲ |IMZ|2(log |IMZ|)−d, cf. Theorem 7.11 (iii). Using the FFT this yields
the following complexity for the matrix-vector product with the full rank-1
lattice and, subsequently, the subsampled one:

O(M logM) = O(|IMZ|2(log |IMZ|)1−d)

with the same memory usage. In contrast, if we naively set up the ma-
trix with the n ∼ |IMZ| log |IMZ| random points we have a complexity of
O(|IMZ|2 log |IMZ|) for the number of arithmetic operations and memory us-
age of the matrix-vector product. If we further use BSS subsampling this
reduces to O(|IMZ|2), which is still slower than using the FFT for d ≥ 2. In
general, whenever we start with a rank-1 lattice with fewer than quadratic
points, we gain computation speed. For hyperbolic cross frequency index sets
this is a logarithmic gain, cf. Theorem 7.11 (iii), and may be more relevant for
other frequency sets.

Experiment 1. For the numerical experiments, use the five-dimensional
bump function from [BKUV17, KUV21]

f(x) = f((x1, . . . , xd)
T) =

5∏
j=1

(53/415
4
√
3

max
{1
5
−
(
xj −

1

2

)2
, 0
})

of which we know the exact Fourier coefficients. We remark that ∥f∥L2 = 1

and f ∈ H
3/2−ε
mix (T5) for ε > 0.

For frequency sets we use hyperbolic crosses suitable for approximating
functions with dominating mixed smoothness, cf. Section 3.6.2. They are
parametrized by an radius R determinating the size and a shape parameter γ

I = IMZ =
{
k ∈ Zd :

d∏
j=1

max
{
1,

|kj |
γ

}
≤ R

}
,
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Figure 7.1: Five-dimensional experiment 1 on the torus for different point sets
and algorithms. Black: full lattice, magenta: randomly subsampled
rank-1 lattice, azure: continuously random points, and dashed in
black the truncation error.

where we choose the shape parameter γ = 1/2 thinning the hyperbolic cross
even more without drastically altering the space. Using the probabilistic
algorithm from [Kä20] we computed a reconstructing rank-1 lattice XMZ for
IMZ. We used three different techniques for approximation:

• We solved the least squares system for the full rank-1 lattice, which has
a direct solution in this case. Using Lemma 6.3 for L∗WL = I , we
omit the inverse matrix all together. The special structure of the points
was used to perform the matrix-vector product using a one-dimensional
fast Fourier transform in O(M logM).

• We randomly subsampled the full rank-1 lattices according to Theo-
rem 7.13 (all points have equal probability ϱi = 1/M ) such that we have
n = ⌈|I| log |I|⌉ points , cf. Figure 6.3. We solved the least squares sys-
tem iteratively using the same one-dimensional fast Fourier transform
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as described in (7.14) and set an iteration limit of ten.

• We drew random samples with respect to the Lebesgue measure as
suggested in Theorem 7.8 or [KUV21] with the same number of points
n = ⌈|I| log |I|⌉. We set up the system matrix and solved the least
squares system with the n random points iteratively. We limit the
iterations to at most ten as before.

We computed the L2-error decomposed into truncation error

∥f − PV f∥2L2
= ∥f∥2L2

−
∑
k∈I

|f̂k|2

and the aliasing error

∥PV f − SX
V f∥2L2

=
∑
k∈I

|f̂k − ĝk|2

with ĝk the Fourier coefficients of the approximation. Further we measured the
elapsed time for the computations and stopped the computations when more
then 100 gigabytes of memory were used. We repeated this experiment ten
times and the minimal, maximal and average results can be seen in Figure 7.1.

• In the upper left figure, we see that for all proposed methods the aliasing
error is below the truncation error (dashed line). We emphasize at this
point that we have used the minimal choice of IMZ, namely I = IMZ.
A larger IMZ would only affect the aliasing error which is dominated
by the truncation error which is the bottleneck and cannot be prevented.
Differences in the sets I and IMZ might only have a positive effect on
the aliasing error, which seems to be superfluous in our setting.

• In the upper right figure, we see that the full rank-1 lattice has more
points and is worth subsampling. In particular for 106 frequencies
we have an oversampling factor of 489 for the full lattice whereas the
oversampling for the random choices is log(106) ≤ 14.

• In the lower left we see the slower error decay of the full rank-1 lattice
and the faster error decay of the continuously random points with respect
to the number of points. The error of the subsampled rank-1 lattice is
the minimum of these two. In particular, for increasing number of points
we obtain the better error decay for random points as well as for the
randomly subsampled rank-1 lattice.
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• In the lower right we see the computation time of the respective meth-
ods. The full rank-1 lattice and the subsampled rank-1 lattice differ by
a factor of ten. This is due to the same underlying algorithm and the
iteration count of ten for the subsampled version. Longer than both
took the continuous random points as there the full matrix has to be
used in contrast to using the highly tuned FFT. As we showed at the
beginning of this section this is slower in regards to the complexity
(O(|I|2(log |I|)1−d) versus O(|I| log |I|)). For 23 483 frequencies the
computations took 258 seconds for the full matrix, whereas merely 4 sec-
onds for the subsampled rank-1 lattice. Furthermore storing the matrix
needs 23 483 · 212 432 · 16 bytes ≈ 80 gigabytes, where 16 bytes is the
size of a complex floating point number with double precision (which is
why the experiment for the continuously random points stopped early).
In contrast to that the rank-1 lattice uses around 1 000 000 points and
therefore 1 000 000 · 16 bytes = 16megabytes of memory. Even the
largest considered rank-1 lattice uses merely 8 gigabytes.

Note, that a detailed investigation of the computation time need to
consider the evaluation time for the function as well. When function
evaluations are cheap, the full rank-1 lattice would benefit. On the other
hand, when every function evaluation would correspond to the solution
of a partial differential equation the subsampled rank-1 lattices would
be benefitial.

Experiment 2. We repeat Experiment 1 but additionally BSS subsample
the randomly subsampled rank-1 lattice further to an oversampling factor of
b = 2. We need to stop earlier as the BSS algorithm is (so far) not suitable for
arbitrarily large matrices. The results can be seen in Figure 7.2.

As the random subsampling step was already evaluated in the experiment
above, we focus on the BSS subsampling. We obtain an even smaller number
of points (|X ′| = 2|I|) while still having the aliasing error slightly smaller
than the truncation error. This results in a faster error decay with respect to
the number of points, cf. lower left of Figure 7.2. We also see that the BSS
algorithm takes way more time, cf. lower right of Figure 7.2. But this is a
precomputation step and only has to be done once with the actual iterative
solver for the solution not suffering from this.

Overall, we see that the theory is applicable for approximating functions
from samples in subsampled rank-1 lattices. The numerical experiments show
the practicality of this method, which is even better than the theory suggests
as the choice I = IMZ was possible without deteriorating the error.
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Figure 7.2: Five-dimensional experiment 2 on the torus for different point sets
and algorithms. Black: full lattice, magenta: randomly subsampled
lattice, orange: random and BSS subsampled lattice (dashed in
orange: time of the BSS precomputation step) azure: continuously
random points, and dashed in black the truncation error.

7.4 Comparison to the kernel method

We have seen that the least squares approximation achieves the best possible
error in the worst-case setting while being stable without the need for further
regularization other than the inherent oversampling. It is still worth mentioning
that there are also other methods used in practice. Particularly interesting is
the kernel method SX directly associated to the RKHS setting

(SXf)(x) =

n∑
i=1

αiK(x,xi) with α = (α1, . . . , αn)
T = K−1

X f

(7.15)

where (KX)ni,j=1 = K(xi,xj) is the kernel matrix.
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Note, the kernel matrix from above may be ill-conditioned but is always
invertible, cf. [Wen05b, Section 12.2]. With that we immediately have the
interpolation property of the kernel method. Based on that, we repeat on the
optimality of the kernel method in the worst-case setting of the respective
space.

Lemma 7.18. Let ∥ · ∥W be some error norm of a function space W where
H(K) ↪→ (W, ∥ ·∥W). In terms of the worst-case error, the kernel method SX

from (7.15) beats any other method based on the same samples. In particular,
for our least squares approximation SX

V from Chapter 2, W = L2, and some
function space V this reads as

sup
∥f∥H(K)≤1

∥∥f − SXf
∥∥
L2

≤ sup
∥f∥H(K)≤1

∥∥f − SX
V f
∥∥
L2

.

The proof is in [Wen05b, Section 13.2] and goes back to [MR77]. For the
sake of readability we will give a proof here as well. We show the statement
only for the least squares approximation but it works the same for arbitrary
methods.

Proof. Let g ∈ H(K) be such that ∥g∥H(K) ≤ 1 and g(xi) = 0 for 1 ≤ i ≤
n. Then SX

V (g) = SX
V (−g) and we obtain

∥g∥W ≤ 1

2

(∥∥g − SX
V (g)

∥∥
W

+
∥∥g + SX

V (−g)
∥∥
W

)
≤ max

{∥∥g − SX
V (g)

∥∥
W
,
∥∥−g − SX

V (−g)
∥∥
W

}
≤ sup

∥h∥H(K)≤1

∥∥h− SX
V h
∥∥
W
.

Since the kernel method SX is an orthogonal projection onto H(K), we have
that the residual f − SXf is orthogonal to the kernel approximation SXf
in H(K). Thus, for a general f ∈ H(K) with ∥f∥H(K) ≤ 1 we obtain
∥f − SXf∥2H(K) = ∥f∥2H(K) − ∥SX(f)∥2H(K) ≤ 1. With the interpolation
property of the kernel method we additionally have (f − SX(f))(xi) = 0 for
i = 1, . . . , n. Thus, we may use f −SXf in place of g. Taking the supremum
we obtain the assertion.

Thus, using the point constructions from the preceding section in the kernel
approximation, we achieve an error as good as the least squares approximation
itself. But, as least squares is already optimal, there is no gain. E.g. similar to
the approximation bounds for rank-1 lattices in Theorem 7.11 there are results
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from the kernel perspective in [KKK+21b, Section 3]. One difference is that
all computations are done in spatial domain with the following consequences:

• With the kernel method we do not have to know the spectral functions
ηk, for which in some scenarious lots of computations are needed, cf.
Chapter 3. Instead, we may start with a kernel without thinking about the
underlying space. Especially when approximating in high dimensions
and kernels having small support the corresponding kernel matrix KX

is expected to be sparse, which speeds up matrix-vector multiplications.

• On the downside, when having two close points xi and xj , the kernel
matrix KX will have two similar columns/rows yielding a high con-
dition number. In practice some sort of regularization is often used to
regain numerical stability. However, this introduces additional errors.

Further, when the kernel is global the way of speeding up matrix-vector
multiplications is by using the Mercer representation of the kernel

K(x, y) :=

∞∑
k=1

σ2
kηk(y)ηk(x) ,

which is then truncated and used for a matrix decomposition in order to
apply fast algorithms, cf. [APSV18]. But truncating the kernel, one ends
up with a similar approximation as with the least squares approximation
with additional possibilities for numerical errors.

In the end, there is no algorithm to solve all problems and it comes down
to the specific setting at hand. For instance, when working with PDEs the
series representation attained from the least squares approximation allows
to compute derivatives or norms of the approximation immediately when
derivatives or norms of the basis functions are known due to linearity. This is
often called spectral method as it is based on computing eigenfunctions of the
partial derivative operator similar to how we introduced the Sobolev spaces in
Section 3.5.





Chapter 8

Least squares in statistical learning

Statistical learning deals with approximating individual functions based on
data samples which may be perturbed by noise. This is the everyday task in
data mining, machine learning, or nonparametric statistics. In the learning
framework, the data samples z = (z1, . . . , zn) with zi = (xi, yi) ∈ D ×K
are independent and identically distributed (i.i.d.) according to some unknown
source measure p on D ×K. Because of the random nature of the problem,
tools from statistics and probability theory are essential next to mathemati-
cal/numerical analysis and computer science. For in-depth introductions to
the topic we refer to [Vap00, CS02, CZ07, SC08, HTF09]. In contrast to
Chapter 7 there is only one function to approximate and points are given rather
than chosen.

The theory we present in this chapter also covers a field, which attracts
rising attention in the recent years: the covariate shift setting, a subfield of
transfer learning. The general goal of learning is to find a function g : D → K

in some hypothesis space H minimizing the risk

E(g) :=
∫
D×K

|g(x)− y|2 dq(x, y) (8.1)

with respect to some target measure q onD×K, where we almost exclusively
use the squared loss function | · |2 but other options are possible.

• In the classical learning setting the source and target measure coincide,
i.e., p = q. E.g. training a self-driving car to drive in the city with
driving data of that car in that city.

• In transfer learning the knowledge from solving one problem is used
to solve a related problem. Formally, that means the source and target
measure may differ: p ̸= q. E.g. training a self-driving car to drive in
the city with driving data from a bicycle on a training course.

• Because the general transfer learning problem may be arbitrarily diffi-
cult, we rely on the so-called covariate shift assumption, cf. [Shi00,
HGB+06, GMM+22]. Here, only the probabilities of inputs in the
source and the target domains (marginal probabilities) ϱS(x) and ϱT (x)
differ, while the conditional probability p(y|x) is the same under both
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the source and the target measure. This means that the joint probabilities
p(x, y), q(x, y) can be factorized as the following products

p(x, y) = p(y|x)ϱS(x) and q(x, y) = p(y|x)ϱT (x) . (8.2)

This scenario occurs e.g. when training a self-driving car to drive in the
city with driving data from a car on a training course.

We follow [HGB+06] and assume that there is a function β : D → R+

such that

dϱT (x) = β(x)dϱS(x).

Then β is the Radon-Nikodym derivative dϱT

dϱS
of the target measure

ϱT with respect to the source measure ϱS . In our analysis we assume
to know β. If this is not the case it is possible to approximate it from
sampled points, cf. [GMM+22].

8.1 Basic concepts in statistical learning

In this section we introduce the standard vocabulary of learning theory follow-
ing [SC08].

We start with defining the optimal approximation also known as regression
function

fq(x) :=

∫
K

y dq(y|x) , (8.3)

which is the target quantity but utilizes the underlying distribution q which we
do not know in practice. The variance σ2

q of a learning problem is given by

σ2
q (x) =

∫
K

|y − fq(x)|2 dq(y|x) and σ2
q =

∫
D

σ2(x) dϱT (x) . (8.4)

The regression function fq is optimal in the sense that it minimizes the risk
(8.1) to which the variance σ2

q is a lower bound as stated in the next lemma.

Lemma 8.1. For a learning problem with probability measure q(x, y) =
q(y|x)ϱT (x) on D ×K, fq the regression function (8.3), and g : D → K, we
have

E(g) = ∥g − fq∥2L2(D,ϱT ) + σ2
q .
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Proof. The binomial formula gives

E(g) = E(g − fq + fq)

=

∫
D×K

|g(x)− fq(x)|2 dq(x, y) +

∫
D×K

|fq(x)− y|2 dq(x, y)

+ 2

∫
D×K

|g(x)− fq(x)||fq(x)− y| dq(x, y) .

The first term does not depend on y and, thus, we omit the integration over
K. By definition, the second term is equal σ2

q . The third term is zero by the
definition of the regression function fq .

For an algorithm we cannot access the underlying distributions p or q but
rather have to work with a discretized version of p using a set of training data
z. This is then known as empirical risk minimization: For a hypothesis
space H it is given by

fz := min
g∈H

Ez(g) where Ez =

n∑
i=1

ωi|f(xi)− yi|2 .

Usually ωi = 1/n but for the considered covariate shift setting other choices
will prove to be useful. Choosing a finite dimensional hypothesis space
H = V = span{η1, . . . , ηm−1} this coincides with the weighted least squares
approximation from Chapter 2:

fz = SX
V y = SX

V (ω1, . . . , ωn)y .

Except when σ2
q = 0, which is the noiseless case, we have to deal with a

trade-off:

• Having a “rich” hypothesis space H, we will have a smaller error on the
training data but possibly big variance on the unseen data;

• Having H “small”, the variance is small but we may not be able to
represent the training data.

Example 8.2. Let x1, . . . , xn ∈ [0, 1] be uniformly distributed on the interval
and yi = f(xi) + εi where f : [0, 1] → R, x 7→ x2 and εi is Gaussian
noise with variance 0.1. As hypothesis space we use polynomials H = V =
span{1, x, . . . , xm−1}. The least squares approximations for polynomial
degree 0, 2, and 14 are depicted in Figure 8.1. Already in this example
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Figure 8.1: Fitting noisy data from a function with polynomials of degree 0, 2,
and 14.

the typical over- and underfitting behavior takes effect: Choosing a “small”
hypothesis space H we may not be able to represent the training data but
choosing a too “rich” hypothesis space H the error on the training set is small
but the variance on the unseen data may be big.

8.2 Error guarantees for least squares approximation

In this section we bound the quantity ∥fq −SX
V y∥L2(D,ϱT ), which is the same

as bounding the risk E(SX
V y) up to the additive constant σ2

q , cf. Theorem 8.1.
For individual function approximation the majority of L2-error bounds are
stated in expectation, cf. [Bar02, Theorem 1.1] for penalized least squares,
[CDL13, Theorem 3] for plain least squares or, [HNP22, Theorem 4.1], and
[KUV21, Theorem 6.1] for weighted least squares approximation. Bounds
holding with high probability are known for polynomial approximation, cf.
[MNvST14, Theorem 3], wavelet approximation, cf. [LPU23, Theorems 3.20
& 3.21], or in a more general setting including noise in [CM17, Theorem 4.3]
with the coarser L∞-norm instead of the natural L2-norm in the estimate.
Further, in [CM17, Theorem 4.1] an error bound with the natural L2-norm
estimate is presented in expectation with the same behavior as we will present
with high probability. The results enable to give performance guarantees
for model selection strategies like the balancing principle [PL13, LMP20] or
cross-validation [BHP20, BH22] in Chapter 9.

Introducing a benchmark is difficult in the individual function context, as
an algorithm predicting the target function is best for that particular func-
tion but would fail for others. To still have a benchmark for least squares
approximation, we use the underlying approximation space. Given an m− 1-
dimensional function space V = span{η1, . . . , ηm−1} ⊆ L2, the best possible
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L2-approximation to f : D → K in V is given by the projection

PV fq = argming∈V ∥fq − g∥L2(D,ϱT ) .

Note, since V is finite-dimensional the minimum is actually attained. Let
f = (fq(x

1), . . . , fq(x
n))T and ε = y − f . Because of its linearity, the

approximation error ∥fq − SX
V y∥L2 splits as follows:

∥fq − SX
V y∥2L2

= ∥fq − PV fq∥2L2
+ ∥PV fq − SX

V y∥2L2

≤ ∥fq − PV fq∥2L2︸ ︷︷ ︸
truncation error

+2 ∥PV fq − SX
V f∥2L2︸ ︷︷ ︸

discretization error

+2 ∥SX
V ε∥2L2︸ ︷︷ ︸

noise error

.

For a fixed number of points n, we have a look at the behavior with respect to
m, the dimension of the approximation space V . The truncation error is the
best possible benchmark and depends on the decay of the coefficients ⟨fq, ηk⟩,
which is usually polynomially m−s for some rate s ≥ 1 depending on fq and
the choice of V .

To investigate of the discretization error, we first have a look at the noiseless
case, i.e., σ2

q = 0. The next result shows, that the discretization error obeys
the same decay as the truncation error and is heavily based on [LPU23, Theo-
rem 3.20] which extends to a more general setting. It was originally stated in
[Bar23, Theorem 3.2].

Theorem 8.3. Let dϱS = 1/β dϱT be probability measures with β their
respective Radon-Nikodym derivative. Further let σ2

q = 0, i.e., no noise and
the conditional probability p(y|x) = δfq(x) with fq the regression function
(8.3), and let z = {(x1, y1), . . . , (x

n, yn)} be samples drawn according to
p(x, y) = p(y|x)ϱT (x). Further, let t ≥ 0 and V be an m − 1-dimensional
function space with an orthonormal basis η1, . . . , ηm−1 satisfying

10∥β(·)N(V, ·)∥∞(log(m− 1) + t) ≤ n .

Then, for SX
V f the weighted least squares approximation defined in Section 2.2

with ωi = β(xi) and exact data f = (y1, . . . , yn)
T, we have

∥fq − SX
V f∥2L2

≤ 8
(
∥fq − PV fq∥L2

+

√
t

n
∥fq − PV fq∥L∞

)2
≤ 8
(
1 +

√
N(V )

∥β(·)N(V, ·)∥∞

)2
∥fq − PV fq∥2L2

,

with probability exceeding 1− 2 exp(−t) where L2 = L2(D, ϱT ) and L∞ =
L∞(D, ϱT ).
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Proof. For abbreviation, we use e2 = ∥fq − PV fq∥L2
and e∞ = ∥fq −

PV fq∥L∞ . Further, for L, W the least squares and weight matrix as in
Section 2.2, we define the event

A :=
{
x1, . . . ,xn ∈ D :

n

2
≤ ∥W 1/2L∥22→2

}
(8.5)

which has probabilityP(A) ≥ 1−exp(−t) by Lemma 6.4 and the assumption
on V . We split the approximation error

∥f − SX
V f∥2L2

= e22 + ∥PV fq − SX
V f∥2L2

.

Due to the invariance of SX
V to functions in V , we pull it in front and use

compatibility of the operator norm to obtain

∥f − SX
V f∥2L2

≤ e22 + ∥SX
V ∥22→L2

n∑
i=1

β(xi)|(f − PV fq)(x
i)|2 .

By Theorem 6.1 and the event (8.5), we have ∥SX
V ∥22→L2

= ∥W 1/2L∥−1
2→2 ≤

2/n. Thus,

∥f − SX
V f∥2L2

≤ 3e22 +
2

n

n∑
i=1

∣∣∣β(xi)|(f − PV fq)(x
i)|2 − e22

∣∣∣ .
It remains to estimate the latter summand. To this end we define

ξi = β(xi)|(f − PV fq)(x
i)|2 − e22,

which is mean-zero since we sample with respect to the distribution ϱS . Fur-
ther, we have

E(ξ2i ) = E
(
(β(xi))2|(f − PV fq)(x

i)|4
)
− e42

≤ ∥f − PV fq∥2L∞
e22 − e42

≤ e22(e2 + e∞)2 ,

and
∥ξi∥∞ ≤ sup

x∈D

∣∣∣β(x)|(f − PV fq)(x)|2 − e22

∣∣∣ ≤ e2∞ + e22 .

Thus, the conditions in order to apply Bernstein, cf. Theorem 4.1, are fulfilled:

1

n

n∑
i=1

ξi ≤
2t

3n

(
e22 + e2∞

)
+

√
2t

n

(
e∞e2 + e22

)
≤
(2
3
+
√
2
)
e22 +

√
2t

n
e∞e2 +

2t

3n
e2∞ (8.6)
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with probability 1 − exp(−t), where t ≤ n was used in the last inequality.
Thus,

∥fq − SX
V f∥2L2

≤
(13
3

+ 2
√
2
)
e22 +

√
8t

n
e∞e2 +

4t

3n
e2∞

≤
(13
3

+ 2
√
2
)(
e2 +

√
t

n
e∞

)2
.

By union bound we obtain the overall probability exceeding the sum of the
probabilities of events given by (8.5) and (8.6).

The second bound is achieved in the following way: For any function
g =

∑m−1
k=1 ⟨g, ηk⟩L2

ηk ∈ V the Hölder’s inequality gives an estimate on the
L∞-norm in terms of the L2-norm:

∥g∥L∞ =
∥∥∥m−1∑

k=1

⟨g, ηk⟩L2
ηk

∥∥∥
L∞

≤
∥∥∥(m−1∑

k=1

|⟨g, ηk⟩L2
|2
)1/2(m−1∑

k=1

|ηk|2
)1/2∥∥∥

L∞

≤
√
N(V )∥g∥L2

. (8.7)

Using the assumption on V , we have√
t

n
e∞ ≤

√
tN(V )

n
e2

≤

√
t

10(log(m) + t)

N(V )

∥β(·)N(V, ·)∥∞
e2

≤

√
N(V )

∥β(·)N(V, ·)∥∞
e2 .

Provided N(V )/∥β(·)N(V, ·)∥∞ is finite and given the oversampling con-
dition, Theorem 8.3 states, that the least squares approximation from a finite-
dimensional function space V has the same error as the L2-projection up
to a multiplicative constant with high probability. Thus, the discretization
error ∥PV fq − SX

V f∥2L2
(error without noise) only differs by a multiplicative

constant in comparison to the error of the L2-projection ∥fq − PV fq∥2L2
.

This improves on [CM17, Theorem 2.1] where the same bound was shown
in expectation or bounded by the L∞-error without the prefactor

√
t/n with
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high probability. Note, there exists a distribution ϱS such that linear over-
sampling m ∈ O(n) achieves the optimal error in expectation, but this is not
constructive, cf. [DC22a].

Next, we investigate the noise error. We have shown in [Bar23, Theo-
rem 1.1] that, next to the truncation error ∥fq − PV fq∥2L2

and discretization
error ∥PV fq − SX

V f∥2L2
, we obtain an additional summand increasing linear

in the dimension of V .

Theorem 8.4. Let dϱS = 1/β dϱT and let z = {(x1, y1), . . . , (x
n, yn)}

be a sample drawn according to p(x, y) = p(y|x)ϱT (x) on D × {y ∈ C :
|y| ≤ K}. Further, let t ≥ 0, V be an m-dimensional function space with an
orthonormal basis η1, . . . , ηm−1 satisfying

10∥β(·)N(V, ·)∥∞(log(m− 1) + t) ≤ n . (8.8)

Then, for SX
V y the weighted least squares approximation defined in Sec-

tion 2.2 with ωi = β(xi) and fq the regression function (8.3), we have

∥fq − SX
V y∥2L2

≤ 14
(
∥fq − PV fq∥L2

+

√
t

n
∥fq − PV fq∥∞

)2
+ 4∥β∥∞∥σ2

q∥∞
m− 1

n
+

2048Kt∥β∥∞
n

, (8.9)

with probability exceeding 1− 3 exp(−t) where L2 = L2(D, ϱT ) and L∞ =
L∞(D, ϱT ).

Proof. Let f = (fq(x
1), . . . , fq(x

n))T and ε = y − f . We split the approxi-
mation error

∥fq − SX
V y∥2L2

≤ ∥fq − PV fq∥2L2
+ 2∥fq − SX

V f∥2L2
+ 2∥SX

V ε∥2L2

and bound the first two summands as in the proof of Theorem 8.3 with the
events given by (8.5) and (8.6). Note, the constant changes from 13/3 + 2

√
2

to 23/3 + 4
√
2 ≤ 14. Now, we focus on the third summand. Applying the

Hanson-Wright inequality from Corollary 4.5 gives

∥SX
V ε∥2L2

= ∥(L∗WL)−1L∗Wε∥22
≤ (2(m− 1)∥σ2

q∥∞ + 1024Kt)∥(L∗WL)−1L∗W ∥22→2 (8.10)

with probability 1 − exp(−t). Now we apply ∥(L∗WL)−1L∗W ∥22→2 ≤
∥β∥∞∥(L∗WL)−1L∗W 1/2∥22→2, Theorem 6.1, and event (8.5) to obtain

∥SX
V ε∥2L2

= ∥(L∗WL)−1L∗Wε∥22

≤ 4∥β∥∞∥σ2
q∥∞

m− 1

n
+

2048Kt∥β∥∞
n

.
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By union bound we obtain the overall probability exceeding the sum of the
probabilities of the events given by (8.5), (8.6), and (8.10).

The first line of (8.9) corresponds to the truncation error ∥fq − PV fq∥2L2

and discretization error ∥PV fq−SX
V fq∥2L2

, decaying inm. Note, that the L∞-
term with the prefactor n−1/2 behaves as the L2-term whenever β is bounded
from below, cf. Theorem 8.3. The second line of (8.9) is the error due to noise,
increasing in m, cf. Figure 8.1. This linear behavior in m is approved by
[LMP20, Theorem 4.9] (by using the regularization gλ(σ) = 1/(λ+ σ) with
λ = 0). This resembles the well-known bias-variance trade off modeling the
over- and undersmoothing effects which one wants to balance, cf. Section 8.1
or [GKKW02, PL13].

The behavior of our bound (8.9) is similar to [CM17, Theorem 4.1], which
is stated only in expectation. The estimation of the noise error is using a
Hanson-Wright concentration inequality, which can be found using different
assumptions. Thus, we can replace the noise model by general Bernstein
conditions, cf. Lemma 4.5, or sub-Gaussian noise, cf. [RV13].

The Radon-Nikodym derivative β = dϱT

dϱS
and the Christoffel function

N(V, ·) affect the maximal size of V in the assumption and the amplification
of the noise in bound. There are two extremal cases:

(i) Having β(x) = m/N(V,x), as it was presented in [HD15, NJZ17,
CM17, KUV21], we obtain the assumption

10∥β(·)N(V, ·)∥∞(log(m) + t) = 10m(log(m) + t) ≤ n ,

which allows for the biggest choice of m in our bound, i.e, logarith-
mic oversampling. But this spoils ∥β∥∞ in the error bound when the
Christoffel function attains small values.

(ii) For domains D with bounded measure, we may choose β(x) = ϱT (D),
as it was done in [CDL13, CM17, LPU23]. As all weights ωi = ϱT (D),
SX
V becomes the plain least squares approximation. In this case, ∥β∥∞

is minimal and noise is least amplified. But this choice spoils the
assumption on the choice of m when the Christoffel function N(V, ·)
attains big values. This effect is controllable, for instance, when working
with a bounded orthonormal system (BOS) (∥ηk∥∞ ≤ B for some
B > 0 and all k). Then

N(V ) ≤
m−1∑
k=0

∥ηk∥2∞ ≤ mB2
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and the assumption on the size of V can be replaced by

10∥β(·)N(V, ·)∥∞(log(m) + t) ≤ 10ϱT (D)Bm(log(m) + t) ≤ n .

We explore these intricacies of the covariate shift setting for different ϱS and
ϱT setting on the unit interval [0, 1] in Section 8.3.

Next, we prove a bound for the approximation error of least squares approx-
imation in the uniform norm from [Bar23, Theorem 1.2].

Theorem 8.5 (L∞-error bound with noise). Let the assumptions of Theo-
rem 8.4 hold and let P∞

V fq = argming∈V ∥fq − g∥L∞ .
Then, for SX

V y the weighted least squares approximation defined in Sec-
tion 2.2 with ωi = β(xi), we have with probability exceeding 1− 3 exp(−t):

∥fq − SX
V y∥L∞ ≤ 4

√
N(V )

(
∥fq − P∞

V fq∥L∞ +

√
t

n
∥fq − P∞

V fq∥L2

)
+ 2

√
∥β∥∞N(V )∥σ2

q∥∞
m− 1

n
+ 46

√
Kt∥β∥∞

n
.

with probability exceeding 1− 3 exp(−t) where L2 = L2(D, ϱT ) and L∞ =
L∞(D, ϱT ).

Proof. For abbreviation, we use e2 = ∥fq − P∞
V fq∥L2

and e∞ = ∥fq −
P∞
V fq∥L∞ . Using (8.7) we reduce the L∞-case to the L2-case which we

already covered. We split the approximation error

∥fq − SX
V y∥L∞ ≤ ∥fq − P∞

V f∥L∞ + ∥P∞
V f − SX

V f∥L∞ + ∥SX
V ε∥∞

≤ e∞ +
√
N(V )∥P (f, V, L∞)− SX

V f∥L2
+
√
N(V )∥SX

V ε∥L2
.

Analogously to (8.6) we obtain

∥P∞
V f − SX

V f∥2L2
≤
(2
3
+
√
2
)
e2∞ +

√
2t

n
e∞e2 +

2t

3n
e22

≤
(2
3
+
√
2
)(
e∞ +

√
t

n
e2

)2
,

where the last inequality follows from t ≤ n. Thus,

∥fq − SX
V y∥L∞

≤
(
1 +

√
4 + 6

√
2

3
N(V )

)(
e∞ +

√
t

n
e2

)
+
√
N(V )∥SX

V ε∥L2

≤ 4
√
N(V )

(
e∞ +

√
t

n
e2

)
+
√
N(V )∥SX

V ε∥L2 .
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Using the same bound as in Theorem 8.4 for ∥SX
V ε∥L2

we obtain the assertion.

The bound is similar to [LPU23, Theorem 3.21] in the wavelet setting
without noise but we use the best approximation with respect to the more
natural L∞ instead of L2. In addition to the error of the best approximation
we now have the additional factor N(V ) due to using the norm estimate
∥g∥L∞ ≤

√
N(V )∥g∥L2

for functions g ∈ V . The same factor appears when
approximating the worst-case error where it is known from various examples,
e.g. [Tem93b, Thm .1.1], [PU22, Sec. 7]. Optimally, this factor evaluates
to
√
N(V ) =

√
m but may be worse as we will see in the next section. In

[KPUU23] a technique was used to improve the factor to
√
m independent of

the Christoffel function.

8.3 Application on the unit interval [0, 1]

An interesting example, where different effects of the general theory can be
investigated, is the approximation of functions on the unit interval D = [0, 1]
from samples given in uniformly random points. In this section we have
a look at different scenarios occurring when approximating on the interval
[0, 1] and using different measures for ϱS , ϱT , and different ansatz functions
in V . For ϱT will use either the Lebesgue measure dx or the Chebyshev
measure π(1 − (2x − 1)2)−1/2 dx. As ansatz functions we will consider
monomials, which, when orthogonalized with respect to to these measures, are
the Legendre polynomials Pk(x) =

1
2kk!

dk

dxk ((2x− 1)2 − 1)k or Chebyshev
polynomials Tk(x) = cos(k arccos(2x − 1)), respectively. We will further
consider the bases of the Sobolev spaces H1((0, 1),dx) and H2((0, 1),dx)
from Theorem 3.26 and Theorem 3.26.

We start by having a look at what the theory predicts and will validate this
with numerical experiments afterwards.

8.3.1 Analysis

As for the approximation rates of these four bases the following gives answer
depending on the smoothness of the regression function fq , cf. (8.3).

• Let s ∈ N, fq, . . . , f
(s−1)
q : [0, 1] → K be absolute continuous, and

f
(s)
q of bounded variation. Using Theorem 3.37, this implies Sobolev

regularity fq ∈ Hs+1/2−ε([0, 1],dx) for all ε > 0 and by Theorem 3.36
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we obtain for the polynomial approximation by Legendre polynomials

∥fq − Pspan{P0,...,Pm−2}fq∥L2((0,1),dx)

=

√√√√ ∞∑
k=m−1

∣∣∣〈f, Pk

∥Pk∥L2

〉
L2((0,1),dx)

∣∣∣2

≲

√√√√ ∞∑
k=m−1

k−(2s+2) ≲ m−(s+1/2)

and analog for Chebyshev polynomials

∥fq−Pspan{T0,...,Tm−2}fq∥L2((0,1),π(1−(2x−1)2)−1/2dx) ≲ m−(s+1/2) .

• Let s ∈ {1, 2} and V the span of the first m − 1 basis functions of
Hs([0, 1]) from Theorem 3.26 or Theorem 3.27. Using Theorem 3.12
we obtain by using the orthonormal basis in Hs that the error of the
projection is given by the singular m-th singular value. Consequently,
we have for fq ∈ Hs

∥fq − PV fq∥L2((0,1),dx) ≲ m−s .

From this, approximation with Legendre or Chebyshev polynomials seems
advantageous in comparison to the Hs([0, 1]) basis from Theorem 3.26 or
Theorem 3.27. Next, we will see what happens when we draw uniform
samples, i.e., dϱS = dx. The deterministic equivalent to uniform sampling are
equispaced points. When using these for polynomial interpolation, C. Runge
already knew in 1901, that higher degree polynomials lead to oscillatory
behavior towards the border which spoil the approximation error. Even though,
we do not interpolate, we will observe similar behavior using Legendre and
Chebyshev polynomials.

• When using the Legendre polynomials and the Lebesgue error measure
dϱT = dx we have β ≡ 1. Since ∥Pk∥2L2((0,1),dx)

= 2k + 1 and
Pk(0) = 1, we have for the Christoffel function given in (3.14)

N(V, 0) =

m−1∑
k=0

|Pk(0)|2

∥Pk∥2L2

=

m−1∑
k=0

(2k + 1) = m2 . (8.11)

Plugging this into the assumption (8.8), we require m ≤
√
n, i.e.,

quadratic oversampling is required. The same phenomenon was also
observed in [MNvST14].
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• When using the Chebyshev target measure, we have dϱT = π(1 −
(2x− 1)2)−1/2 dx and β(x) = π

4 (1− (2x− 1)2)−1/2. The Chebyshev
polynomials are a BOS, but the distribution β spoils both the assumption
on m and the error bound, since β diverges at the border. In this way the
Theorem 8.4 has no statement at all. This effect can be circumvented
using a padding technique at the border, cf. [PS22].

• Using the basis of the Sobolev-space H1[0, 1] from Theorem 3.26 or
H2[0, 1] from Theorem 3.27 we have an BOS, i.e., ∥ηk∥∞ ≤ B for
B =

√
6 and all k. Thus, with β ≡ 1 and N(V ) ≤ Bm, these basis are

suitable for approximation in uniform random points onD = [0, 1] using
plain least squares approximation and only logarithmic oversampling
by (8.8).

Note, the approximation with polynomials can be saved when sampling
with respect to the Chebyshev measure dϱS(x) = π(1− (2x− 1)2)−1/2 dx:

• For the Chebyshev polynomials we have β ≡ 1. Since the Chebyshev
polynomials are a BOS, this does not spoil our bounds.

• Using the Legendre polynomials (dϱT = dx) we have β(x) = π(1−
(2x− 1)2)1/2. Further, we use [RW12, Lemma 5.1]:√

1− (2x− 1)2|Pk(x)|2 ≤ 2

π

(
2 +

1

k

)
for k ≥ 1. Thus, ∥β(·)N(V, ·)∥∞ and ∥β(·)∥∞ are bounded and do not
spoil the choice of polynomial degree m, making logarithmic oversam-
pling m logm ≲ n possible, nor the error bound.

It turns out, that there is a measure for every kind of Jacobi polynomial such
that ∥β(·)N(V, ·)∥∞ is well-behaved, cf. [Nev79, Section 6.3, Lemma 5].

8.3.2 Numerical Experiments

To support our findings from Section 8.3.1, we give numerical examples. As a
test function we use

fq(x) = Bcut
2 (x) with Bcut

2 (x) =

{
−x2 + 3/4 for x ∈ [0, 1/2]

x2/2− 3/2x+ 9/8 for x ∈ [1/2, 1]

(8.12)
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0

1

0 0.5 1

Figure 8.2: Cutout of the B-spline of order two given in (8.12).

which was already considered in [PV15, NP22]. The function Bcut
2 is shown in

Figure 8.2 and is a cutout of the B-spline of order two. It and its first derivative
are absolute continuous and the second derivative is of bounded variation.
Thus, from Section 8.3.1, we expect the rate 5/2 for the polynomial basis and
1 and 2 for the H1 and H2 bases.

We sample f in 10 000 uniformly random points and add 0.1%M Gaussian
noise to obtain y = f + ε, where M = maxx∈[0,1] f(x)−minx∈[0,1] f(x) =
5/8. For V we consider the four choices from above: Chebyshev polynomials,
Legendre polynomials, the H1 basis, and the H2 basis. For m = dim(V ) up
to 1 000 we do the following:

(i) Compute the minimal and maximal singular values of 1/
√
nW 1/2L,

with W = diag(β(x1), . . . , β(xn)) and L given in (2.1).

(ii) We use least squares approximation with 20 iterations to obtain the
approximation SX

V y =
∑m−1

k=0 ĝkηk, defined in (2.1).

(iii) We compute the L2-error by using Parseval’s equality:

∥fq − SX
V y∥2L2

= ∥fq∥2L2
−

m−1∑
k=1

|f̂k|2 +
m−1∑
k=1

|f̂k − ĝk|2 ,

where the coefficients f̂k = ⟨fq, ηk⟩L2
are computed analytically.

(iv) We compute the split approximation error:

∥fq − SX
V y∥2L2

≤ 2∥f − SX
V f∥2L2

+ 2∥SX
V ε∥2L2

,

where we compute both quantities separately, again, using Parseval’s
equality.
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Figure 8.3: One-dimensional experiment for different choices of V . Top row:
minimal and maximal singular value of 1/

√
nW 1/2L. Bottom

row: the L2-approximation error ∥fq − SX
V y∥2L2

(solid line) split
into the error for exact function values ∥fq − SX

V f∥2L2
and the

noise error ∥SX
V ε∥2L2

(dashed lines) with respect to m.

The results are depicted in Figure 8.3.

• The smallest singular values for the Chebyshev polynomials and the
Legendre polynomials decay rapidly for bigger m. This coincides with
the violation of the assumption in Lemma 6.4 for small m:

10∥β(·)N(V, ·)∥∞(log(m) + t) ≤ n,

where ∥β(·)N(V, ·)∥∞ is unbounded in the Chebyshev case and grows
quadratic in the Legendre case, cf. (8.11). In this experiment, for m =
1000 the condition number σmax(W

1/2L)/σmin(W
1/2L) exceeded

1029 for the algebraic polynomials and was below 14 for the Hs basis.

• The error for exact function values ∥f − SX
V f∥2L2

has decay 3/2 for
H1 and 5/2 for the other bases. This conforms with the theory for the
polynomial bases. For the H1 and H2 bases the theory predicted only
decay rate 1 and 2.
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• For the noise error ∥SX
V ε∥2L2

we observe linear growth in m = dim(V )
as predicted in Theorem 8.4. Furthermore, this error is bigger by a
factor of around 40 in the Chebyshev case compared to the others. The
maximal weight ∥W ∥∞ in this case is around 40 as well. The error due
to noise in our bound has the factor ∥β∥∞ which can be replaced by
∥W ∥∞ to sharpen the bound and explain this effect.

This numerical experiment and the theoretical discussion in Section 8.3.1
shows, that the H1 and the H2 bases are suitable for approximating functions
on the unit interval given in uniform random samples. They are numerically
stable in contrast to polynomial approximation with Chebyshev or Legendre
polynomials. This becomes clear when looking at the error without noise
(dashed line) in Figure 8.3. The error decay of the polynomial basis stops
approximately at polynomial degree 100, where the system matrix LW 1/2

becomes too bad conditioned for the lsqr algorithm to find a good solution with
limited iterations. In contrast to that, the error using the H1- and H2-bases
keeps decaying beyond degree 1 000. In particular, the least squares matrix is
well-conditioned and we can limit the iterations when using an iterative solver,
cf. [Gre97, Theorem 3.1.1] or Theorem 2.3.

8.4 Numerical experiment on the unit cube [0, 1]d

To put the theory to test in a higher-dimensional setting, we repeat the one-
dimensional experiment scaled to five dimensions. We do this using Sobolev
spaces of dominating mixed smoothness, cf. Section 3.6.2, with the tensorized
H2 basis. For our test function we tensorize the B-Spline cutout

f(x) =

5∏
j=1

Bcut
2 (xj)

where Bcut
2 is defined in (8.12). We increase the number of samples to be

1 000 000 and add Gaussian noise with the following three different vari-
ances σ2 ∈ {0.00, 0.01M, 0.03M} where M is the range of f , i.e., M =
maxx∈[0,1]d f(x)−minx∈[0,1]d f(x) = 5/8.

This function is in the Sobolev space of dominating mixed smoothness
5/2 − ε for ε > 0. Accordingly, we use the tensorized H2 basis ηk(x) =∏5

j=1 ηkj
(xj) with frequencies in a hyperbolic cross

IR(H
2
mix) :=

{
k ∈ Nd :

5∏
j=1

σ−2
kj

≤ R
}
.
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Figure 8.4: Five-dimensional experiment for H2
mix. The lines represent the

L2-error ∥f − SX
V y∥2L2

.

Let V = span{ηk : k ∈ IR(H
2
mix)} of size m. Since the H2

mix basis is a BOS,
we obtain

N(V )

m
≤ 6 .

With t = 6, we satisfy the assumptions of Theorem 8.4 for m ≤ 12 250 and
obtain a probability exceeding 0.99 for the error bound in Theorem 8.4. For
m = dim(V ) up to 10 000 (R ≈ 7 · 1011) we do the following:

(i) We use plain least squares approximation with 20 iterations to obtain
the approximation SX

V y =
∑m−1

k=1 ĝkηk, defined in (2.1).

(ii) We compute the L2-error by using Parseval’s equality analog to the
one-dimensional case.

The results are depicted in Figure 8.4.

• The theoretical bounds capture the error behavior well having the decay
of the projection and a linear increasing function depending on the noise.
We did not plot them as the involved constants deteriorate the bound,
especially in the experiments with noise. Here, improving constants in
the Hanson-Wright inequality in Theorem 4.5 could be a starting point.

• Furthermore, this experiment shows, that the H2 basis is easily suitable
for high-dimensional approximation as well.
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8.5 Comparison to other methods

In this section we compare our theory to other methods from the literature
similar to Section 7.4 in the worst-case setting. There it made sense to opti-
mize over all algorithms working with n samples. In the learning setting we
always must take the method at hand into consideration, since an algorithm
just predicting the target function fq ignoring all samples is always best but
useless otherwise. In the learning setting there is the bias-variance trade-off
which one tries to balance by using some sort of regularization. With least
squares approximation we regularize by using a finite-dimensional ansatz
space V with, e.g. different polynomial degrees. To make different methods
comparable, we assume that the optimal regularization parameter is used. Note,
in practice this is usually not possible and methods like the cross-validation or
the balancing principle have to be applied, cf. Chapter 9. To get a first feeling,
we show how to optimally choose the number of ansatz functions and give the
resulting approximation rates for a simple example on the one-dimensional
torus T. Note, our theory also directly applies to general domains like the
multi-dimensional torus Td or the cube [0, 1]d.

Example 8.6. We consider the learning problem on the one-dimensional torus
T with i.i.d. uniformly distributed points X and data y such that |yi| ≤ K for
some constant K > 0. We use the least squares approximation SX

V y defined
in Section 2.2 with V = span{exp(2πi(−1)k⌊k/2⌋x)}m−1

k=1 for some even m
such that 10m(logm+ t) ≤ n. By Theorem 8.4, we have the error bound

∥fq − SX
V y∥2L2

≤ 56∥fq − PV fq∥2L2
+ 4∥σ2

q∥∞
m

n
+

2048Kt

n
(8.13)

with probability exceeding 1− 3 exp(−t) where PV fq is the projection of fq
onto V and σ2

q is the variance (8.4).
Assuming Sobolev smoothness fq ∈ Hs(T) for some s > 1/2, cf. Sec-

tion 3.5.1, we have by Theorem 3.24, the polynomial decay s + 1/2 of the
Fourier coefficients, i.e.,

|⟨fq, exp(2πi(−1)k⌊k/2⌋x)⟩L2
|2 ≲ k−2s−1 .

Thus the error of the projection decays with the rate m−s

∥fq − PV fq∥2L2
≲

∞∑
k=m

k−2s ≲ m−2s .

Plugging this into (8.13), the error behavior is

∥fq − SX
V y∥2L2

≲ m−2s +
m

n
,
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which resembles a bias variance trade-off. Without noise there would only
be the decreasing term and we would choose the polynomial degree as big as
possible as in Theorem 8.3 or Chapter 7 to achieve the smallest error. With
noise, we choose the optimal polynomial degree m ∼ n1/(2s+1) minimizing
the above to achieve an error rate of ∥fq − SX

V y∥2L2
≲ n−2s/(2s+1).

If we have an analytic function, the Fourier coefficients decay exponentially
and the optimal polynomial degree is m ∼ log(n) giving the error rate
log(n)/n. This is optimal for all learning algorithms in a minmax sense, cf.
[LMP20, Theorem 5.3].

To put our method in the general context, we use [DVPR10] where general
regularization schemes are used in the non-covariate shift setting. In order to
do that, we need further notation. We consider the ansatz space H to be an
possibly infinite-dimensional RKHS. For IH : H → L2, the inclusion operator,
we define the integral operator TH = I∗HIH : H → H, cf. (3.2).

The smoothness is defined by requiring general source conditions, cf.
[DVPR10, Definition 3.2], i.e., we assume

PHfq ∈ {f ∈ H : f = φ(TH)g, ∥g∥H ≤ 1}

for a continuous non-decreasing index function φ : [0, κ] → [0,∞) with
φ(0) = 0. This resembles the coefficient decay of our target function in the
considered ansatz space similar to the cosine spaces defined in Theorem 3.34.

Further, we need the effective dimension N (λ) := trace((λI+TH)−1TH)
for λ > 0, which will model the bias of the respective method and is usually
assumed to have polynomial N (λ) ≲ λ−β or logarithmic decay N (λ) ≲
log(1/λ).

Then in [DVPR10, Theorem 4.9] the following bound for the error of a gen-
eral regularization scheme SXy was proven to hold under certain conditions
with probability exceeding 1− 6 exp(−t)

∥fq − SXy∥L2
≤ ∥fq − PHfq∥L2

+ ∥PHfq − SXy∥L2

≤ ∥fq − PHfq∥L2
+ Ct3

(√
λφ(λ) +

√
N (λ)

n

)
.

We omit the details since we are merely interested in what is possible to
achieve with other methods and do not focus on the assumptions.

To find the least squares approximation used in Theorem 8.6 in there, we
use λ = 0, N (λ) = N(V ) = m, and the error of the projection polynomially
decaying. This results in the same behavior we have proven above
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In [DVPR10, Corollaries 5.1 and 5.2] different cases of the above quantities
were considered which cover general regularization schemes. There the same
rates appear as we have for least squares approximation with the lower bound
from [DVPR10, Theorem 5.3] reasoning for their optimality. Note, there the
error of the approximation is usually considered to be zero and the bias affects
the index function φ.

This suggests, that least squares approximation is on a par with other meth-
ods in terms of the approximation rates. However, one always has to tailor the
method to the problem at hand/ which is done in least squares approximation
by choosing different ansatz functions and weights.



Chapter 9

Cross-validation

In this chapter we deal with different aspects of cross-validation, a parameter
choice strategy introduced in [GHW79]. In Chapter 8 we inspected the error
behavior of the least squares approximation with respect to the ansatz functions.
In particular, in Theorem 8.6 we investigated the optimal choice of polynomial
degree m when approximating on the one-dimensional torus T. There we
used the exact Fourier coefficients as well as the information about the noise
to estimate the L2-error. However, in practice this is not feasible as it relies on
the underlying data distribution. In this chapter we have a look at a method
estimating the L2-error only relying on the data at hand. A basic idea is
to split the data into a training set and a validation set for estimating the
error. Doing this multiple times we obtain a reasonable estimator for the
L2-error functional known as cross-validation score, which is widely used
in learning, cf. [TW96, BS02, MS00, Ros09, LMP20]. A special case is
where the partitionings seclude single points, then the training sets become
z−i := (z1, . . . , zi−1, zi+1, . . . , zn) and the validation sets {zi}. This leads to
the so called leave-one-out cross-validation score, which we will investigate.

Definition 9.1. Let SX
V y be an approximation based on the data samples

z = {(xi, yi),x
i ∈ D, yi ∈ K, i = 1, . . . , n}. Further let SX−i

V y−i be
the same method applied to the samples with the i-th sample omitted and
β : D → R+ be a function. The importance weighted cross-validation score
is defined via

CVβ(S
X
V y) =

1

n

n∑
i=1

β(xi)
∣∣∣SX−i

V y−i(x
i)− yi

∣∣∣2 .
Note, that we used a weighted version making cross-validation applicable

to the domain adaptation setting discussed in Chapter 8.
Even though the cross-validation score is constructed in a way to estimate the

risk, we are interested in theoretical validation thereof. One has propositions
about the goodness of the cross-validation score in asymptotic cases, cf. [Li86,
GKKW02, Luk06, Gu13], on average, cf. [GHW79, BR08, Bec11], or by
restriction of noise, cf. [KN08, KPP18]. In Section 9.1 we discuss what the
cross-validation score estimates and give novel concentration inequalities on
how well it does that for the least squares approximation.
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An immediate drawback of the cross-validation score is the numerical
complexity of having to compute the n approximations SX−i

V y−i. However,
this can be circumvented in many cases with ideas including Monte Carlo
approximations [DG91], matrix decomposition methods [Wei07, SWB08], or
Krylow space methods [LdHA10]. In Section 9.2 we present results from
[BHP20] tackling this problem for least squares approximation.

9.1 Concentration of the cross-validation score

In this section we investigate the statistical properties of the cross-validation
score. We start with its expected value to show what it actually estimates.

Theorem 9.2. Let z ∈ (D × K)n be a sample distributed according to a
source measure ϱS , ϱT a target measure, and β = dϱT

dϱS
the Radon-Nikodym

derivative. Then the importance weighted cross-validation score CVβ from
Theorem 9.1 estimates the expected error with respect to the target measure
ϱT for n− 1 samples plus the variance σ2

q of the learning problem, i.e., for a
general learning method SX

V we have

Ez

(
CVβ(S

X
V y)

)
= Ez−1

(
∥SX−1

V y−1 − fq∥2L2(D,ϱT )

)
+ σ2

q .

Proof. By the definition of the cross-validation score and linearity we have

Ez

(
CVβ(S

X
V y)

)
=

1

n

n∑
i=1

Ez−i

(
Exi,yi

(
β(xi)

∣∣∣(SX−i

V y−i)(x
i)− yi

∣∣∣2)) .
We simplify the inner expected value as follows

Exi,yi

(
β(xi)

∣∣∣(SX−i

V y−i)(x
i)− yi

∣∣∣2)
= Exi,yi

(
β(xi)

∣∣∣(SX−i

V y−i)(x
i)− fq(x

i) + fq(x
i)− yi

∣∣∣2)
= Exi

(
β(xi)

∣∣∣(SX−i

V y−i)(x
i)− fq(x

i)
∣∣∣2)+ Exi

(
β(xi)σ2(x)

)
+ 2Exi

(
β(xi)

∣∣∣(SX−i

V y−i)(x
i)− fq(x

i)
∣∣∣ |fq(xi)− Eyi(yi)|︸ ︷︷ ︸

=0

)
=

∫
D

|(SX−i

V y−i)(x)− fq(x)|2 ϱT (x) + σ2
q .
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Thus, by the independence of the data samples, we obtain the assertion:

Ez

(
CVβ(S

X
V y)

)
=

1

n

n∑
i=1

Ez−i

(
∥(SX−i

V y−i)− fq∥2L2(D,ϱT ) + σ2
q

)
= Ez−1

(
∥SX−1

V y−1 − fq∥2L2(D,ϱT )

)
+ σ2

q .

It was shown in [BHT23] that the cross-validation score estimates the
expected risk on the unseen samples rather than the error of the model at hand
by investigating the respective variances.

In expectation Theorem 9.2 implies, that instead of minimizing the L2-error
over a hypothesis space, which requires the underlying distribution, we may
minimize the cross-validation score and obtain a good hypothesis.

Remark 9.3. There are scenarios, where we do not know β exactly but rather
an approximation β̃. Assuming we have a bound on the error ∥β − β̃∥∞ ≤ ε

like in [GMM+22] and our approximations SX−i

V y−i and sample values yi
are bounded by some constant K > 0, we have∣∣∣CVβ(S

X
V y)− CVβ̃(S

X
V y)

∣∣∣
≤ 1

n

n∑
i=1

|β(xi)− β̃(xi)|
∣∣∣(SX−i

V y−i)(x
i)− yi

∣∣∣2
≤ 4K2

n

n∑
i=1

|β(xi)− β̃(xi)|

≤ 4K2ε .

Thus, an error in β only enters linearly in the cross-validation score.

To show how good the cross-validation score estimates the L2-error, we
will state concentration results. In [BE02] this was done using a robustness
concept of an algorithm in combination with McDiarmid’s concentration
inequality, which is not directly applicable to the least squares approximation.
We combine this with concepts of [BH22] using an extension of McDiarmid’s
concentration result to overcome this relying only on robustness with high
probability instead of everywhere.

To work towards the main result we need several lemmas starting with an
updated L2-MZ inequality for omitting points.

Lemma 9.4. Assume that points X = {x1, . . . ,xn} ⊆ D and weights
W = diag(ω1, . . . , ωn) ∈ [0,∞)n×n fulfill an L2-MZ inequality (6.1) with
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constants A and B for a function space V . Then omitting k ∈ N points, we
have an L2-MZ inequality with constants A− k∥W ∥∞N(V ) and B, where
N(V ) is the Christoffel function from (3.14).

Proof. Subtracting the j-th term in the L2-MZ inequality, we obtain(
A− ωj

|f(xj)|2

∥f∥2L2

)
∥f∥2L2

≤
∑
i̸=j

ωi|f(xi)| .

And by (3.15)

ωj
|f(xj)|2

∥f∥2L2

≤ ∥W ∥∞ sup
g∈V

|g(xj)|2

∥g∥2L2

∥f∥2L2
≤ ∥W ∥∞N(V ) .

Iterating this k times, we obtain the assertion.

The next lemma states a coarse bound on the possible deviation of the least
squares approximation.

Lemma 9.5. Let X = {x1, . . . ,xn} be points and W = diag(ω1, . . . , ωn)
weights fulfilling a lowerL2-MZ inequality (6.1) with constantA for a function
space V . Further, let y = (y1, . . . , yn)

T ∈ Kn such that |yi| ≤ K for some
K > 0.

Then the least squares approximation SX
V y from Section 2.2 is bounded

∥SX
V y∥∞ ≤

√
N(V )

∑n
i=1 ωi

A
K .

Proof. Let ĝ be the coefficients of SX
V y. We first use (8.7) to reduce the ∥·∥∞

to the ∥ · ∥L2
norm: ∥SX

V y∥∞ ≤
√
N(V )∥ĝ∥2. By Theorem 6.2, we obtain

∥ĝ∥22 ≤ ∥(L∗WL)−1L∗W 1/2∥22→2∥W 1/2y∥22 ≤
K2
∑n

i=1 ωi

A
.

As omitting single points is at the core of cross-validation, we have to know
the behavior of the least squares approximation in this case. Next, we show
different identities which will serve as central tools for the later proof.

Lemma 9.6. Let X = {x1, . . . ,xn} be points and W = diag(ω1, . . . , ωn)
weights, and V a function space. Let SX

V y be the least squares approximation
defined in Section 2.2 with ĝ its Fourier coefficients and SX−j

V y−j , ĝ−j the
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same for the j-th sample omitted. Further, let hj,j be the j-th diagonal entry
of matrix L(L∗WL)−1L∗W with L and W as in (2.1). Then

(i) (S
X−j

V y−j)(x
j)− yj =

(SX
V y)(xj)− yj
1− hj,j

,

(ii) ĝ−j − ĝ = ωj(L
∗WL)−1L∗

j

(
(S

X−j

V y−j)(x
j)− yj

)
.

(iii) If we further have a lower L2-MZ inequality for the function space V with
constants A and |yi| ≤ K for some K > 0, then

∥SX
V y − S

X−j

V y−j∥2L2
≤ 4K2∥W ∥1∥W ∥2∞N2(V )

(A− ∥W ∥∞N(V ))3
.

Proof. Let L−j , W−j , and y−j be the respective quantities with the j-th
column, column and row, and entry omitted, respectively.

Assertions (i) and (ii). The coefficients of the approximations SX
V y and

S
X−j

V y−j are given by

ĝ = (L∗WL)−1L∗Wy,

ĝ−j = (L∗
−jW−jL−j)

−1L∗
−jW−jy−j ,

respectively. Using the Sherman-Morrison formula for the inverse of rank-1
updates, see e.g. [Har97], we obtain

ĝ−j − ĝ = (L∗WL−L∗
jωjLj)

−1(L∗Wy −L∗
jωjyj)− ĝ

=
(
(L∗WL)−1 +

(L∗WL)−1LjωjL
∗
j (L

∗WL)−1

1− ωjL∗
j (L

∗WL)−1Lj

)
·

(L∗Wy −L∗
jωjyj)− ĝ

= (L∗WL)−1Ljωj
(SX

V y)(xj)− yj
1− hj,j

. (9.1)

Thus,

(S
X−j

V y−j)(x
j)− (SX

V y)(xj) = Lj(ĝ−j − ĝ)

= hj,j
(SX

V y)(xj)− yj
1− hj,j

,

which shows (i). Plugging (i) into (9.1) we obtain (ii).
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Assertion (iii). We use the lower L2-MZ inequality with Theorem 6.2,
Parseval’s identity, and (ii) to obtain∥∥∥SX−j

V y−j − SX
V y
∥∥∥2
L2

=
∥∥∥ωj(L

∗WL)−1L∗
j ((S

X−j

V y−j)(x
j)− yj)

∥∥∥2
2

≤ ∥W ∥2∞N(V )

A2

∣∣∣(SX−j

V y−j)(x
j)− yj

∣∣∣2 .
Using Lemmata 9.4 and 9.5 we obtain

∥SX−j

V y−j − SX
V y∥2L2

≤ 2K2 ∥W ∥2∞N(V )

A2

( N(V )∥W ∥1
A− ∥W ∥∞N(V )

+ 1
)
.

We replace the added one in the bracketed term by a factor of two using

A− ∥W ∥∞N(V ) ≤ A ≤ 1

m

n∑
i=1

ωi

∣∣∣m−1∑
k=0

ηk(x
i)
∣∣∣2 ≤ ∥W ∥1N(V )

to finally obtain

∥SX−j

V y−j − SX
V y∥2L2

≤ 4K2 ∥W ∥2∞N(V )

A2

N(V )∥W ∥1
A− ∥W ∥∞N(V )

.

With these auxiliary lemmas accomplished, we work towards applying
McDiarmid’s concentration inequality Theorem 4.7. For that we will use the
following assumptions

Assumption 9.7. Let ϱS , ϱT be measures, β = dϱT

dϱS
the Radon-Nikodym

derivative, and V be an m− 1-dimensional function space with m ≥ 2 and
an orthonormal basis η1, . . . , ηm−1 in L2(D, ϱT ) satisfying

20∥β∥∞N(V ) ≤ n

log n
.

Further, let y = (y1, . . . , yn)
T ∈ Kn with |yi|, |ỹi| ≤ K for some K > 0 and

we define the set of points where the lower L2-MZ inequality holds

Ξ :=
{
{x1, . . . ,xn}∈Dn :

n

2
∥f∥2L2(D,ϱT ) ≤

n∑
i=1

β(xi)|f(xi)|2 ∀f ∈ V
}
.

Under these assumptions, we will show the c-boundedness of the cross-
validation score and the L2-error and, thereafter, their concentration by using
McDiarmids concentration inequality. Note, by Theorem 6.4 we have that
a random draw of point with respect to ϱS is element of Ξ with probability
exceeding 1− 1/n.
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Lemma 9.8. Let Theorem 9.7 hold. Then for all x ∈ D and all i = 1, . . . , n

the weighted least squares approximation (S
X−i

V y−i)(x) defined in Sec-
tion 2.2 with ωi = β(xi) is c-bounded in Ξ with

c =
13KN3/2(V )∥β∥3/2∞

n
1 .

Proof. Let X ∈ Ξ and y ∈ Kn with |yi| ≤ K. To show c-boundedness we
assume X̃ ∈ Ξ, ỹ ∈ Kn, |ỹi| ≤ K, be copies of X , y differing in the first
component without loss of generality. By using the usual ∥ · ∥∞ to ∥ · ∥L2

estimate (8.7) and triangle inequality, we have∥∥∥SX−i

V y−i − S
X̃−i

V ỹ−i

∥∥∥
∞

≤
√
N(V )

∥∥∥SX−i

V y−i − S
X̃−i

V ỹ−i

∥∥∥
L2(D,ϱT )

≤
√
N(V )

(∥∥∥SX−i

V y−i − S
X−i−1

V y−i−1

∥∥∥
L2(D,ϱT )

+
∥∥∥SX̃−i

V ỹ−i − S
X̃−i−1

V ỹ−i−1

∥∥∥
L2(D,ϱT )

)
.

Applying Theorem 9.6 (iii) with A = n/2 the construction of Ξ gives∥∥∥SX−i

V y − S
X̃−i

V ỹ
∥∥∥
∞

≤ 27/2K

n

( nN(V )∥β∥∞
n− 4∥β∥∞N(V )

)3/2
.

SinceN(V ) ≥ m−1 ≥ 1 and ∥β∥∞ ≥ 1, the assumptions on n gives n ≥ 20
and

27/2
( n

n− 4∥β∥∞N(V )

)3/2
≤ 27/2

( 1

1− 1/(5 log n)

)3/2
≤ 13 .

Thus, we have bounded the effect of changing one point:∥∥∥SX−i

V y − S
X̃−i

V ỹ
∥∥∥
∞

≤ 13KN3/2(V )∥β∥3/2∞

n
.

With that, we show the c-boundedness of the cross-validation score and
the L2-error. We make a fine adjustment to our approximation method by
truncating the absolute value of our least squares approximation by some
K > 0 via the operator TK : KD → K,

(TKf)(x) = arg(f(x))max{|f(x)|,K} . (9.2)

This is easy to implement and improves the bound.
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Lemma 9.9. Let Theorem 9.7 hold. Then CVβ(TKS
X
V y), the cross-validation

score of the weighted least squares approximation defined in Section 2.2 with
ωi = β(xi), is c-bounded for points X ∈ Ξ with

c =
60K2∥β∥5/2∞

n
N3/2(V )1 .

Further, the L2-error ∥fq−TKSX−1

V y−1∥2L2(D,ϱT ) is c-bounded for points
X ∈ Ξ with

c =
52K2∥β∥3/2∞

n
N3/2(V )1 .

Proof. Step 1. We first show the c-boundedness of the cross-validation score
in Ξ. We assume X̃ ∈ Ξ, ỹ ∈ Kn, |ỹi| ≤ K, be copies of X , y differing in
the first component without loss of generality. We have∣∣∣CVβ(TKS

X
V y)− CVβ(TKS

X̃
V ỹ)

∣∣∣
≤ 1

n
β(x1)|(TKSX−1

V y−1)(x
1)− y1|2

+
1

n
β(x̃1)|(TKSX̃−1

V ỹ−1)(x̃
1)− ỹ1|2

+
1

n

n∑
i=2

β(xi)
(
|(TKSX−i

V y−i)(x
i)− yi|2

− |(TKSX̃−i

V ỹ−i)(x
i)− yi|2

)
.

Using the third binomial formula, we obtain∣∣∣CVβ(TKS
X
V y)− CVβ(TKS

X̃
V ỹ)

∣∣∣
≤ 8K∥β∥∞

n
+

1

n

n∑
i=2

β(xi)
∣∣∣(TKSX−i

V y−i)(x
i)− (TKS

X̃−i

V ỹ−i)(x
i)
∣∣∣·∣∣∣(TKSX̃−i

V ỹ−i)(x
i) + (TKS

X−i

V y−i)(x
i)− 2yi

∣∣∣
≤ 8K∥β∥∞

n
+

4K∥β∥∞
n

n∑
i=2

∣∣∣(SX−i

V y−i)(x
i)− (S

X̃−i

V ỹ−i)(x
i)
∣∣∣ .
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By Theorem 9.8 we obtain the c-boundedness of the cross-validation score∣∣∣CVβ(TKS
X
V y)− CVβ(TKS

X̃
V ỹ)

∣∣∣
≤ 8K∥β∥∞

n
+

52K2∥β∥5/2∞

n
N3/2(V )

≤ 60K2∥β∥5/2∞

n
N3/2(V ) .

Step 2. We now show the c-boundedness of the L2-error in Ξ. We have

∥fq − TKS
X−1

V y−1∥L2(D,ϱT ) − ∥fq − TKS
X̃−1

V ỹ−1∥L2(D,ϱT )

=

∫
D

∣∣∣fq(x)− (TKS
X−1

V y−1)(x)
∣∣∣2

−
∣∣∣fq(x)− (TKS

X̃−1

V ỹ−1)(x)
∣∣∣2 dϱT (x) .

Using the third binomial formula, we obtain

∥fq − TKS
X−1

V y−1∥L2(D,ϱT ) − ∥fq − TKS
X̃−1

V ỹ−1∥L2(D,ϱT )

=

∫
D

∣∣∣2fq(x)− (TKS
X−1

V y−1)(x)− (TKS
X̃−1

V ỹ−1)(x)
∣∣∣·∣∣∣(TKSX−1

V y−1)(x)− (TKS
X̃−1

V ỹ−1)(x)
∣∣∣ dϱT (x)

≤ 4K

∫
D

∣∣∣(SX−1

V y−1)(x)− (S
X̃−1

V ỹ−1)(x)
∣∣∣ dϱT (x) .

By Theorem 9.8 we obtain the c-boundedness of the L2-error

∥fq − TKS
X−1

V y−1∥L2(D,ϱT ) − ∥fq − TKS
X̃−1

V ỹ−1∥L2(D,ϱT )

≤ 52K2∥β∥3/2∞

n
N3/2(V ) .

Now we state the central theorem of this section showing the concentration
of the cross-validation score for random points.

Theorem 9.10. Let n ∈ N, x1, . . . ,xn be points drawn according to a
probability measure dϱS = 1/β dϱT . Let further, V be an m− 1-dimensional
function space with m ≥ 2 and an orthonormal basis η1, . . . , ηm−1 in L2

with m satisfying
20∥β∥∞N(V ) ≤ n

log n
,
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t ≥ 0, and y ∈ Kn with |yi| ≤ K.
Then, for TKSX

V y the truncated weighted least squares approximation
defined in Section 2.2 and (9.2) with ωi = β(xi), we have for the cross-
validation score ∣∣∣EZ(CV(TKS

X
V y))− CV(TKS

X
V y)

∣∣∣
≤ 64K2∥β∥5/2∞

(√ t

2
+ 1
)N3/2(V )√

n

with probability exceeding 1− 2/
√
n− 2 exp(−t).

Further, we have for the L2-error with probability exceeding 1− 2/
√
n−

2 exp(−t)∣∣∣EZ(∥TKSX−1

V y − fq∥2L2(D,ϱT ))− ∥TKSX−1

V y − fq∥L2(D,ϱT )

∣∣∣
≤ 56K2∥β∥3/2∞

(√ t

2
+ 1
)N3/2(V )√

n
.

Proof. Using triangle inequality, we obtain∣∣∣EZ(CV(TKS
X
V y))− CV(TKS

X
V y)

∣∣∣
≤
∣∣∣EZ(CV(TKS

X
V y))− EZ(CV(TKS

X
V y)|Z ∈ Ξ)

∣∣∣
+
∣∣∣EZ(CV(TKS

X
V y)|Z ∈ Ξ)− CV(TKS

X
V y)

∣∣∣ .
By Theorem 6.4 with t = log(n), the with respect to dϱS drawn points are in
Ξ with probability exceeding 1− γ = 1− 1/n. Thus, The first summand is
bounded by the fail probability of Γ from Step 1 and CV(TKS

X
V y) ≤ 4K:∣∣∣EZ(CV(TKS

X
V y))− EZ(CV(TKS

X
V y)|Z ∈ Ξ)

∣∣∣
= PX(X /∈ Ξ)max

X,y

∣∣∣CV(TKS
X
V y)

∣∣∣ ≤ 4K

n
.

Finally applying McDiarmid’s concentration inequality together with the c-
boundedness from Theorem 9.9 in order to bound the second summand by∣∣∣EZ(CV(TKS

X
V y)|Z ∈ Ξ)− CV(TKS

X
V y)

∣∣∣
≤
(√ tn

2
+
√
n
)60K2∥β∥5/2∞

n
N3/2(V )
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with probability exceeding 1− 2/
√
n− 2 exp(−t) giving the assertion.

The concentration of the L2-error follows analogous.

To get a feeling for Theorem 9.10, we will put it into perspective by for-
mulating a guarantee for using cross-validation as an a posteriori parameter
choice strategy.

Corollary 9.11. Under the assumptions of Theorem 9.10, we have with proba-
bility exceeding 1− 4/

√
n− 4 exp(−t)

∥fq − TKS
X−1

V ∥L2(D,ϱT ) ≤ CVβ(TKS
X
V y)− σ2

q

+ 120K2∥β∥5/2∞

(√ t

2
+ 1
)N3/2(V )√

n
.

Proof. By Theorem 9.2, we have

∥fq − TKS
X−1

V ∥L2(D,ϱT ) = ∥fq − TKS
X−1

V ∥L2(D,ϱT )

− EZ−1

(
∥fq − TKS

X−1

V y−1∥L2(D,ϱT )

)
+ EZ

(
CVβ(TKS

X
V y)

)
− σ2

q

− CVβ(TKS
X
V y) + CVβ(TKS

X
V y)

≤
∣∣∣∥fq − TKS

X−1

V ∥L2(D,ϱT ) − EZ−1

(
∥fq − TKS

X−1

V y−1∥L2(D,ϱT )

)∣∣∣
+
∣∣∣EZ

(
CVβ(TKS

X
V y)

)
− CVβ(TKS

X
V y)

∣∣∣
+CVβ(TKS

X
V y)− σ2

q .

Applying Theorem 9.10, we obtain the assertion.

With Theorem 9.11, we have an estimator of the unknown L2-error by
computing the cross-validation score, which only relies on the given data. To
discuss the involved rates in more detail we resume to Theorem 8.6.

Example 9.12. We return to the one-dimensional learning problem on the
torusT with the exponential functions from Theorem 8.6. There we established
a theoretical guarantee of the L2-error an deduced an optimal polynomial
degree m⋆, which we do not know in practice.

With Theorem 9.11 we have a bound for the a posteriori parameter estima-
tor cross-validation. A bottleneck is the third summand with N3/2(V )/

√
n

determining its asymptotic behavior. In this setting we have N(V ) = m. In
the following table we compare the L2-error for optimally chosen polyno-
mial degree m⋆ and the bound for the cross-validation score for different
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smoothness of the regression function fq. Note, we are only interested in the
dependence in the number of points n and ignore constants.

smoothness m⋆ ∥fq − SX
V ∥2L2

cross-validation bound

fq ∈ Hs(T) n
1

2s+1 n−
2s

2s+1 n
1−s
2s+1

fq ∈ C∞(T) log(n)
log n

n

log3/2 n√
n

Comparing the last two columns shows that the L2-error with the optimal
polynomial degree has approximately double the order of convergence com-
pared to the cross-validation bound. Thus, we loose theoretically half the rate
of convergence. In the numerical experiments in Section 9.3 the loss of half
the rate is not observed indicating room for improvement.

Concluding this section, we have shown concentration inequalities for
the cross-validation score in least squares approximation. We weakened the
robustness concept from [BE02] to only hold with high probability and used an
extension of McDiarmid’s inequality suitable in this case. As many algorithms
involve random components, this concept may be used in other scenarios
as well. For our case of least squares approximation this allowed to obtain
guarantees for the goodness of cross-validation as an a posteriori parameter
choice strategy. We will validate the theory with numerical experiments in
Section 9.3.

9.2 Fast cross-validation for least squares approximation

To compute the cross-validation score CVβ as defined in Theorem 9.1 we need
as many least squares approximations as there are points in X . In this section
we show how this can be reduced to only the cost of computing one least
squares approximation. Parts of the results are already published in [BHP20].

We start with a result, which shifts the computational heavy part from setting
up the approximations to the points in question, cf. [GHW79].

Theorem 9.13. The cross-validation score CVβ(S
X
V y) of the least squares

approximation SX
V y defined in Section 2.2 can be computed via

CVβ(S
X
V y) =

1

n

n∑
i=1

β(xi)
∣∣∣ (SX

V y)(xi)− yi
1− hi,i

∣∣∣2,
where hi,i are the diagonal elements of the matrix of the least squares approx-
imation L(L∗WL)−1L∗W .
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Proof. The statement follows by plugging Theorem 9.6 (i) in the definition of
the cross-validation score.

With that we only need the residual of the least squares approximation
using all points X and the diagonal entries hi,i. For the particular example
of trigonometric polynomials with a point- and frequency grid an analytic
formula was shown in [TW96]. This is generalizable. Given a tight L2-MZ
inequality, the diagonal entries hi,i can be computed explicitly as the following
theorem shows.

Theorem 9.14. Let X = {x1, . . . ,xn} and W = diag(ω1, . . . , ωn) form a
tight L2-MZ inequality for the approximation space V = span{ηk}m−1

k=1 with
constant A, cf. (6.1). Then the diagonal entries from Theorem 9.13 evaluate to

hi,i =
ωi

A
N(V,xi) .

Proof. From Theorem 6.2 we know L∗WL = AI . Thus,

hi,i = (L(L∗WL)−1L∗W )i,i =
ωi

A
(LL∗)i,i ,

which evaluates to the assertion by the definition of L and the Christoffel
function (3.14).

Therefore, the computation of the cross-validation score boils down to
the computation the least squares approximation for all points X and the
evaluation of the Christoffel function N(V, ·) (3.14) at the given points.

Example 9.15. In particular cases the Christoffel function N(V, ·) is fast to
compute:

(i) On Td the Fourier monomials ηk = exp(2πi⟨k, ·⟩) have absolute value
one everywhere. Thus, for V = span{ηk1

, . . . , ηkm−1
} we obtain

N(V, ·) ≡ m− 1. For the equispaced grid this was already observed in
[TW96].

(ii) On the two-dimensional sphere S2 = {x ∈ R3 : ∥x∥2 = 2}, there
is a basis of spherical harmonics {Yk,l}k=0,...,m,l=−k,...,k, cf. [FGS98,
AH12, Mic13, DX13]. Using the addition theorem from [Mic13, Theo-
rem 5.11], we have

∑k
l=−k |Yk,l|2 being constant for all k ∈ N. Thus,

the Christoffel function is constant in this case.

This works analogous for higher-dimensional spheres and the Wigner-
D functions Dll′

k , l, l′ = −k, . . . , k on the rotation group SO(3), cf.
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Definition [VMK88, Section 4.1, Equation (5)] using the corresponding
addition theorem [VMK88, Section 4.7, Equation (4)].

(iii) Even when the Christoffel function is not constant, the fast computation
is possible. Taking the Chebyshev polynomials in one dimension from
Section 3.5.3, we have for V = span{T0, . . . , Tm−1}

N(V, x) =
1

π
+

2

π

m−1∑
k=1

cos2(k arccos(x)) .

Using the power reduction formula cos(2α) = (cos(2α) + 1)/2, we
obtain

N(V, x) =
m

π
+

1

π

m∑
k=1

cos(2k arccos(x)) ,

which can be computed with a discrete cosine transform of type I (DCT-
I) in O(m logm) for Chebyshev points xi = cos(π(2i− 1)/(2m)) for
i = 1, . . . ,m, cf. [PPST18, Section 6.3] or using the nonequispaced
cosine transform for arbitrary points [FP05].

Analogously, this works for the half-period cosine from Theorem 3.26.

In Theorem 9.15 we have seen that there are cases where the Christoffel
function N(V, ·) simplifies yielding barely any computational cost. Even if
we have to compute the Christoffel function naively, we end up with O(m · n)
arithmetic operations. This is the same as the naive matrix-vector product used
in the least squares approximation and, thus, stems no bottleneck when fast
algorithms are not available.

Next, we have a look what happens when there is no exact L2-MZ inequality
and Theorem 9.14 is not applicable. E.g. random points used in the statistical
learning setting from Chapter 8 do not fall into this category. We have often
seen, that the loss of the tightness of an L2-MZ inequality is not problematic.
Motivated by that, we propose an alternative for the exact cross-validation
score in order to preserve the possibility of the fast computation.

Definition 9.16. We introduce the approximated cross-validation score of the
least squares approximation SX

V y via

FCV(SX
V y) =

1

n

n∑
i=1

β(xi)
∣∣∣ (SX

V y(xi)− yi

1− h̃i,i

∣∣∣2
with h̃i,i = min{A+B

2AB ωiN(V,xi), 1}.
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∥y∥W − ⟨y,Lĝ⟩W
∥y∥W

∥y∥W

∥Lĝ − y∥W

0

y

Lĝ

Figure 9.1: Geometric proof of Theorem 9.17.

The boundedness by one is motivated by the behavior of the exact diagonal
entries hi,i covered by the next lemma.

Lemma 9.17. Let ĝ = argminâ∈Km ∥Lâ− y∥2W . Then

⟨y,Lĝ⟩W = ∥y∥2W − ∥Lĝ − y∥2W ∈ [0, ∥y∥2W ] .

In particular, for our case of interest ĥi = argminâ∈Km ∥Lâ− ei∥2W =
(L∗WL)−1L∗Wei, we obtain

hi,i = 1− ∥Lĥi − ei∥2W
ωi

∈ [0, 1] .

Proof. Since Lĝ is the weighted orthogonal projection, the points 0, y, and
Lĝ span a right triangle. Its hypotenuse from Lĝ divides it in two triangles
which are similar to the original one, cf. Figure 9.1. Thus,

∥y −Lĝ∥W
∥y∥W

=
∥y∥W − ⟨Lĝ,y⟩W

∥y∥W

∥y −Lĝ∥W
,

which implies
∥y −Lĝ∥2W = ∥y∥2W − ⟨Lĝ,y⟩W .

Next, we want to estimate the error which comes from using the approxi-
mated cross-validation score. We start with an estimation of the approximated
diagonal entries h̃i,i.
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Lemma 9.18. Let points X and weights W form an L2-MZ inequality for the
function space V = span{η1, . . . , ηm−1} with constantsA andB. Further let
hi,i be the diagonal entries from Theorem 9.13 and h̃i,i be the approximated
ones from Theorem 9.16. Then

2A

A+B
h̃i,i ≤ hi,i ≤

2B

A+B
h̃i,i .

Proof. We show the assertion for g̃i,i = A+B
2AB ωiN(V,xi) instead of h̃i,i,

which differs in omitting the maximum. Because of the boundedness of hi,i,
the original assertion follows from Theorem 9.17.

Let yi = (η1(x
i), . . . , ηm−1(x

i))T. Then

hi,i = ωi(y
i)∗(L∗WL)−1yi

=
A+B

2AB
ωi(y

i)∗yi 2AB

A+B

(yi)∗(L∗WL)−1yi

(yi)∗yi
.

The first factor evaluates to A+B
2AB ωi(y

i)∗yi = h̃i,i. The latter is a Rayleigh
quotient and is bounded by the reciprocals of the singular values of L∗WL,
which by Theorem 6.2 are 1/A and 1/B, which yields the assertion.

By this lemma we obtain a bound on the difference of the original diagonal
entry hi,i and the approximated one h̃i,i.

Corollary 9.19. Let points X and weights W form an L2-MZ inequality for
the function space V with bounds A and B. Further let hi,i the diagonal
entries from Theorem 9.13 and h̃i,i the approximated ones from Theorem 9.16.
Then

|hi,i − h̃i,i| ≤ h̃i,i
B −A

A+B
.

With the bound on the approximated diagonal entries h̃i,i we now estimate
the error of the approximated cross-validation score FCVβ .

Theorem 9.20. Let X and W form an L2-MZ inequality for V with constants
A and B. Further, let CVβ(S

X
V y) be the cross-validation score from Theo-

rem 9.1 and FCVβ(S
X
V y) be the approximated cross-validation score from

Theorem 9.16 for the least squares approximation SX
V y. Then

|CVβ(S
X
V y)− FCVβ(S

X
V y)|

CVβ(SX
V y)

≤ B −A

B +A
max

i=1,...,n

2h̃i,i

(1− h̃i,i)2
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for all data vectors y ∈ Kn.
In particular, if X and W form a tight L2-MZ inequality for V , we have

CVβ(S
X
V y) = FCVβ(S

X
V y) for all data vectors y ∈ Kn.

Proof. We have

|CVβ(S
X
V y)− FCVβ(S

X
V y)|

≤ 1

n

n∑
i=1

β(xi)|(SX
V y)(xi)− yi|2

∣∣∣ 1

(1− hi,i)2
− 1

(1− h̃i,i)2

∣∣∣
=

1

n

n∑
i=1

β(xi)
|(SX

V y)(xi)− yi|2

(1− hi,i)2

∣∣∣1− (1− hi,i)
2

(1− h̃i,i)2

∣∣∣
≤ CVβ(S

X
V y) max

i=1,...,n

∣∣∣1− (1− hi,i)
2

(1− h̃i,i)2

∣∣∣ .
We use h̃i,i ≤ 1 and hi,i ≤ 1, cf. Theorem 9.17, to estimate the second

factor ∣∣∣1− (1− hi,i)
2

(1− h̃i,i)2

∣∣∣ ≤ ∣∣∣1 + 1− hi,i

1− h̃i,i

∣∣∣∣∣∣1− 1− hi,i

1− h̃i,i

∣∣∣
≤
∣∣∣2− hi,i − h̃i,i

1− h̃i,i

∣∣∣∣∣∣hi,i − h̃i,i

1− h̃i,i

∣∣∣
≤ 2

(1− h̃i,i)2
|hi,i − h̃i,i|

By the Corollary 9.19 we obtain the assertion∣∣∣1− (1− hi,i)
2

(1− h̃i,i)2

∣∣∣2 ≤ 2h̃i,i

(1− h̃i,i)2
B −A

A+B
.

The in particular part follows from Theorem 6.2.

To discuss Theorem 9.11 we resume to Theorem 8.6.

Example 9.21. We know from Theorem 9.15 that the Christoffel function for
trigonometric polynomials on the torus T evaluates to N(V,x) ≡ m. Let
further X = {x1, . . . ,xn} ⊆ Td be points fulfilling an equal weighted, i.e.,
ωi = 1, L2-MZ inequality for V with constants A = 1/2n and B = 3/2n. An
example for these points would be an uniform random draw, cf. Theorem 6.4.
Then h̃i,i = min{4m/(3n), 1}.
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The interesting range of polynomial degrees is around the optimal one.
Consulting Theorem 8.6, we know that for f ∈ Hs this is achieved by m⋆ ∼
n

1
2s+1 . Up to constants Theorem 9.20 would than yield an relative error of

|CVβ(S
X
V y)− FCVβ(S

X
V y)|

CVβ(SX
V y)

≲
m

n
∼ n−

2s
2s+1 .

The nearly linear decay from Theorem 9.21 for the relative difference of the
cross-validation score CVβ(S

X
V y) and approximated cross-validation score

FCVβ(S
X
V y) is better than the expected error decay from Theorem 8.6 itself.

Thus, using the approximated cross-validation score instead of the exact one
does not affect the performance of the parameter choice strategy.

9.3 Numerical experiments

In this section we validate our theoretical findings from Sections 9.1 and 9.2.
Namely, we will have a look at:

• the cross-validation score CVβ(S
X
V y)− σ2 being an estimator of the

L2-error ∥fq − SX
V y∥2L2

and

• the fast cross-validation score FCVβ(S
X
V y) being an estimator of the

cross-validation score CVβ(S
X
V y) whilst being fast to compute.

9.3.1 Numerical experiment on the torus T

We start with a simple example on the one-dimensional torus T with a smaller
number of points. As test function we use the B-spline of order two

B2(x) =

{√
12x for 0 ≤ x ≤ 1/2√
12(1− x) for 1/2 ≤ x ≤ 1 ,

which is L2-normalized and has Sobolev smoothness s = 3/2 − ε for any
ε > 0. We know the exact Fourier coefficients f̂k, allowing us to compute
the L2-error of the least squares approximation SX

V y exactly using Parseval’s
equality

∥B2 − SX
V y∥2L2

= ∥B2∥2L2
−
∑
k≤m

|f̂k|2 +
∑
k≤m

|f̂k − ĝk|2 ,

with ĝk the Fourier coefficients of SX
V y.
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Figure 9.2: One-dimensional experiment on the torus T. In the left fig-
ure shows the L2-error in orange, the cross-validation score
CVβ(S

X
V y) − σ2

emp in black, and the fast cross-validation score
FCVβ(S

X
V y) − σ2

emp in magenta. The middle shows the dif-
ference of L2-error and cross-validation score CVβ(S

X
V y) −

σ2
emp. The right figure shows the difference of cross-validation

score CVβ(S
X
V y) − σ2

emp and the fast cross-validation score
FCVβ(S

X
V y)− σ2

emp.

For our experiment we choose n = 3000 uniform random points in which
we evaluate the test function B2 and add Gaussian noise ε ∈ Rn with a
variance σ2 = 0.05. For different polynomial degrees m we compute the
least squares approximation SX

V y for V = {exp(2πi(−1)k⌊k/2⌋·)}m−1
k=1 . We

measure the following quantities

• the L2-error as shown above,

• the exact cross-validation score CVβ(S
X
V y), and

• the fast cross-validation score FCVβ(S
X
V y) with the assumption A =

B = 1 for the approximated diagonal elements h̃i,i and the Christoffel
function N(V, ·) ≡ m.

Further, we computed the empirical variance of the noise given by σ2
emp =

1/n
∑n

i=1 |εi|2 being the real variance of the realization of the noise ε.
The results are depicted in Figure 9.2. We see that the three quantities

are close except for larger polynomial degrees, where the theory is limited
anyways. In particular, the error of the cross-validation score against the
L2-error, ∥B2 − SX

V y∥2L2
− CVβ(S

X
V y) + σ2

emp, is smaller than the actual
L2-error making cross-validation viable to use as its estimator. Furthermore,
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the difference between fast cross-validation score FCVβ(S
X
V y) and cross-

validation score CVβ(S
X
V y) is smaller than the L2-error as well, making the

fast cross-validation score a viable estimator of the cross-validation score.
In the experiment we see that the fast cross-validation score FCVβ(S

X
V y)

is a good estimator for the L2-error for small polynomial degrees whilst
obtaining a speedup of a factor n = 3000, which is the number of points of
the experiment.

The speedup and small error of the fast cross-validation score to the exact
cross-validation score was expected from the theory. The small error of the
cross-validation score to the L2-error complies the theory and is even better
suggesting room for improvement.

9.3.2 Numerical experiment on the unit cube [0, 1]d

As the theory is basis- and dimension-independent, in this section we resume to
the more practical example from Section 8.4 being on the five-dimensional unit
cube [0, 1]5 and we approximate with the H2([0, 1]) basis from Theorem 3.27.

The setup of the experiment is the same as in Section 8.4: We approx-
imate the tensorized, shifted, and dilated B-spline of order two fq(x) =∏d

j=1B
cut
2 (xj) from (8.12), which we sample in n = 1000 000 uniform ran-

dom points. We use three different noise levels σ2 ∈ {0.00, 0.03, 0.05} and
compute for different polynomial degrees

• the L2-error ∥Bcut
2 − SX

V y∥2L2
by using Parseval’s identity as done in

the previous section and

• the fast cross-validation score FCVβ(S
X
V y) from Theorem 9.16.

Note, the Christoffel functionN(V, ·) is not constant as before and we compute
it in a naive manner in O(n ·m). As we use matrix-vector multiplications for
computing the least squares approximation, this is no bottleneck and does not
deteriorate the overall computation complexity. We omit the computation of
the exact cross-validation score as it would be too slow.

The results are depicted in Figure 9.3. With the high number of points n =
1000 000, the theory suggests a smaller difference of L2-error and fast cross-
validation score. Indeed, in the plots these two quantities are indistinguishable
and their difference is magnitudes smaller.

This experiments shows, that

• with a bigger number of points, the use of fast cross-validation is even
more viable and
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Figure 9.3: Five-dimensional experiment on the unit cube [0, 1]5 for different
levels of noise σ2 ∈ {0, 0.03, 0.05}. The figures shows the L2-
error in black and the fast cross-validation score FCVβ(S

X
V y)−

σ2
emp in orange. In gray we plotted their difference.

• even though we are on a different domain with a different basis, we
obtain a small error, suggesting the generality of our approach.





Chapter 10

Outlook

We use this final chapter to comment on possible starting points for advance-
ments including subjects which have not made it into the thesis but are already
published. Overall, this thesis serves as a plea for the over 200 years old least
squares approximation method showing its fast implementation and theoretical
optimality. In Sections 7.4 and 8.5 we compared it to other algorithms in the
worst-case and statistical learning setting, respectively. It shows that least
squares approximation, when used right, is a universal tool applicable in all
settings of function approximation. With the vast amount of topics covered in
this thesis there remain several interesting research directions:

• In Theorem 3.27 we had a look at the H2([0, 1])-basis, which is now
ready to use in practical applications as our numerical experiments
in Sections 8.3.2, 8.4, and 9.3.2 show. Theoretically, higher order
basis were also considered in [AIN12, Section 3] but not implemented.
As approximation on the unit interval and cube has many practical
applications, one can have a look at the numerical implementation of
higher order bases.

• For the BSS-algorithm from Section 5.2 we observed cubic runtime
in practice. We had to stop the numerical experiments for frames of
dimension ≥ 1 000, as the algorithm was too slow. Many subsam-
pling techniques were only introduced theoretically without big concern
about the runtime. An interesting question is a possible speedup of the
algorithm.

• In Theorem 7.8 the bounds are near-optimal up to a single logarithm.
The existence of a optimal points set closing that gap is known by using
the Kadison-Singer theorem in [DKU23], which is not constructive. It
is open whether there is a polynomial time algorithm which gives points
fulfilling the optimal error bound.

• On the same note, in Theorem 7.8 and in the tight error bound in
[DKU23] the realizing algorithm was the weighted least squares ap-
proximation. In particular settings like on the torus Td the weights turn
out to all be equal. However, it is open if this is possible in general and
the optimal rate is achieved via plain least squares approximation.
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• In Section 7.2.3 we proposed using subsampled L2-MZ inequalities for
function approximation in the worst-case setting. This works also in
the individual function approximation setting as we have already tried
with the example of rank-1 lattices in [BT23]. However, this was not
the focus of this paper and a thorough investigation of using general
subsampled L2-MZ inequalities in individual function approximation
would be interesting.

• We have shown the concentration of the cross-validation score in The-
orem 9.10. However, in Theorem 9.12 we see that the concentration
bound deteriorates the theoretically optimal error. Further, the numerical
experiments suggest a better performance of the cross-validation score.
So, there is a gap one can investigate.



List of Symbols

Fields and domains

N set of positive integers
N0 set of nonnegative integers
Z set of integers
R set of real numbers
C set of complex numbers
K either the set of real or complex numbers
T one-dimensional torus
Td d-dimensional torus

Vector and matrix related notions

∥k∥p p-norm (
∑d

j=1 |kj |p)1/p
∥A∥F Frobenius norm
∥A∥2→2 spectral norm
σmin /max(A) minimal/maximal singular value
λmin /max(A) minimal/maximal eigenvalue

Important numbers and notions

δk,l Kronecker delta
SX
V least squares approximation
SX kernel method
gn sampling width
gls
n,m sampling width restricted to the least squares ap-

proximation
am linear width
dm Kolmogorov width
N(V, ·) Christoffel function
N(V ) supx∈DN(V, x)
O(·) Landau symbol
CVβ cross-validation score



192 List of Symbols

Function spaces and norms

H(K) reproducing kernel Hilbert space (RKHS) with ker-
nel K

L2(D, ϱT ) space of square-integrable functions on D
∥f∥L2

(
∫
D
|f |2 dϱT )

1/2

L∞(D, ϱT ) space of essentially bounded functions on D
∥f∥L∞ ess sup |f | = inf{a ∈ R : ϱT (|f |−1((a,∞))) =

∅}
ℓ∞(D) class of bounded functions on D
∥f∥∞ supx∈D |f(x)|
Hs(T) Sobolev space of smoothness s on the torus T
Hs([0, 1]) Sobolev space of smoothness s on the unit interval

[0, 1]
∥f∥Hs (∥f∥2L2

+ ∥f (s)∥2L2
)1/2

Ls
2([−1, 1], vα,β) Sobolev-type subpace

pα,βk Jacobi polynomial of degree k
∥f∥Ls

2([−1,1],vα,β) (
∑∞

k=0(k + 1)2s|⟨f, pα,βk ⟩α,β |2)1/2

⟨f, g⟩α,β
∫ 1

−1
f(x)g(x)vα,β(x) dx

vα,β(x) (1− x)α(1 + x)β

Cs(D) s-times continuously differentiable functions
Hs(D) isotropic Sobolev space of smoothness s
∥f∥Hs (

∑
∥α∥1≤s ∥Dαf∥2L2

)1/2

Hs
mix(d) Sobolev space with dominating mixed smoothness

∥f∥Hs
mix

(
∑

α∈{0,s}d ∥Dαf∥2L2
)1/2
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