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Introduction

The p{version �nite elementmethod for the second order elliptic equations for the last time

has been intensively investigated theoretically and by means of numerical experiments for

the possibilities of development of more e�cient solution procedures. We may refer to

works of I. Babuska et.al. [1] and L.F. Pavarino [2] in which DD methods for the p{

version with nonoverlapping and overlapping subdomains were analyzed in this aspect.

Results of series of numerical experiments and applications may be found, for instance, in

J. Mandel [3], G.F. Carey and E. Barragy [4], P.F. Fisher [5], C.H. Amon [6] and others.

However answers to many questions are still unclear. They are related, particularly, to

the conditionality of systems of algebraic equations for the whole problem and for the

problems arising on subdomains and in this connection to the choice of basis for the

reference element and to the methods of solution of the problems on subdomains. It is

worth to note that numerical experiments, see for instance [1, 3], showed that the most

time consuming operation for p = 10�12 even in 2D case turned out to be the solution of

systems of algebraic equations for subdomains. The Schur complement preconditioning

in DD methods without overlapping and construction of cheap prolongation operators in

di�erent �nite element spaces from the interface boundary on the whole domain demand

also further study. In this paper we analyze some of the mentioned problems for the

p{version at its application to the 2D second order elliptic partial di�erential equation in

an arbitrary su�ciently smooth domain.

It is assumed that one of the two reference elements or the both are used for de�ning

the �nite element space. The basis of one is f

^

L

i;j

(x) =

^

L

i

(x

1

)

^

L

j

(x

2

), 0 � i; j � pg,

where

^

L

0

;

^

L

1

are usual \nodal" linear functions,

^

L

k

= �

k

~

L

k

for k � 2 with �

k

and

~

L

k

being a normalizing multiplier and the integral of the Legendre's polynomial L

k�1

of degree k � 1. The basis of another is f

^

L

i;j

(x) for 2 � i; j; (i + j) � p, for i =

0; 1; j = 2; 3; ::; p, for i = 2; 3; ::; p; j = 0; 1 and for i; j = 0; 1g. Special partition

of the domain in quadrangles, which are curvilinear near to the boundary, and special

mappings of the reference element on these quadrangles allow us to obtain the �nite

element method in which the boundary and the �rst homogeneous boundary condition

are taken into account exactly. The mappings are chosen to satisfy conditions which we

call the generalized conditions of quasiuniformity and which are su�cient to guarantee the

same orders of convergence and condition numbers as in the case of uniform square mesh

of �nite elements. In the same manner the �nite element p{version with the piecewise

polynomial approximation of the boundary may be obtained and considered from the

point of view of its numerical solution and convergence.

Condition numbers of the sti�ness and mass matrices of the reference elements are

estimated with the same order p

2

. To obtain the �rst we assume that the vertices of the

element are �xed. These estimates lead to estimates of condition numbers for the global

�nite element sti�ness and mass matrices with the orders h

�2

p

2

log p and p

2

respectively.

Also some energy equivalence inequalities useful at the construction ofDD preconditioners

are proved.

If the bilinear form corresponds to Laplace operator then the sti�ness matrix of the

reference element, which is denoted via A

1

, has a rather simple form. In particular, in

the rows corresponding to

^

L

i;j

, 2 � i; j � p, it contains only �ve nonzero coe�cients.

The conditions of the generalized quasiuniformity and simplicity of the matrix allow to

conclude that it can serve as a good preconditioner for the sti�ness matrices of a general

curvilinear form �nite elements in the case of more general elliptic equations. Considering

A

1

as the sti�ness matrix of each element we assemble de�nite matrix �

p;h

, which is a
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good preconditioner for the global sti�ness matrix providing the generalized condition

number O(1). It turns out that the method of the nested dissection by A. George [7]

is applicable for solving of the system �

p;h

x = y with the computational cost O(N

1;5

),

where N is the dimension of �

p;h

. The more e�cient solution techniques demand further

study.

In DD solvers for the p{version the domains of elements or clusters of elements are

usually taken for the subdomains of decomposition. For the simplicity we assume here

the �rst. Matrix A

1

as it has been noted, is a good preconditioner for the element sti�ness

matrices and much simpler than �

p;h

, since it corresponds to the square. Thus, the solution

of the Dirichlet problems on subdomains won't be di�cult. For the Schur complement

preconditioning we suggest a matrix, which provides the generalized condition number

O(log

2

p). It is represented as the product of a diagonal and a triangular matrices and so

is convenient for the use in computations.

The resulting DD p{version conjugate gradient method demands O(log p log �) itera-

tions. In general situation the main time consuming operation will be the multiplication

by the global sti�ness matrix, which has O(Rp

4

) nonzero entries withR being the number

of elements. But, for instance, in the case of the Laplace equation the number of nonzero

entries is O(Rp

2

).

The article is organized as follows. In Sec.1 there are given estimates for 1D case,

which are the development of the study in [8]. The estimates for the condition numbers

for the sti�ness and mass matrices are derived in Sec.2. In Sec.3 the Schur complement

preconditioner is obtained for the 2D reference element and the related generalized con-

dition number is estimated. The �nite element method for the second order elliptic �rst

boundary value problem in an arbitrary su�ciently smooth domain is described in Sec.4.

There are given also the estimates of condition numbers for the global �nite element

matrices. The DD preconditioner is constructed in Sec.5. Part I contains Sec.1 and Sec.2.

Let us describe some notations used in the papers.

I := (�1; 1), I

?

:= (0; �), � := I � I, also notation I with di�erent subscripts is used

for the unity matrices.

P

p;x

, P

(p)

x

are the spaces of polynomials of degree not higher than p over all variables

and in each variable, P

[p]

x

is the space containing P

p;x

and polynomials of the �rst degree

in one variable and the p{th degree in another.

^

E ,

^

E

0

are the reference elements, E

r

is some �nite element, H(

^

E), H(

^

E

0

), H(E

r

) are

the spaces generated by the corresponding elements.

D

q

x

v := @

jqj

v=@x

q

1

1

@x

q

2

2

; q = (q

1

; q

2

); q

1

; q

2

� 0; jqj = q

1

+ q

2

;

(�; �)




, k � k




= k � k

0;


are the scalar product and the norm in L

2

(
).

j � j

k;


, k � k

k;


are the quasinorm and the norm in the Sobolev space W

k

2

(
), i.e.

jvj

2

k;


=

X

jqj=k

Z




(D

q

x

v)

2

dx; kvk

2

k;


= kvk

2

0;


+

k

X

l=1

jvj

2

l;


:

o

W

1

2

(
) is the subspace of W

1

2

(
) of functions having zero traces on @
 .

k � k

1=2;I

,

0

k � k

1=2;I

, are the norms in the space W

1=2

2

(I) and the subspace

0

W

1=2

2

(I) �

W

1=2

2

(I) of functions having zero values at x = �1. These norms for I

��

= (a; b) are

de�ned by expressions
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kvk

2

1=2;I

��

:=

b

Z

a

b

Z

a

 

u(x)� u(y)

x� y

!

2

dxdy;

0

kvk

2

1=2;I

��

:= kvk

2

1=2;I

��

+ 2

b

Z

a

u

2

(x)

x� a

dx + 2

b

Z

a

u

2

(x)

x� b

dx:

The norm k � k

1=2;

i

, where 

i

is the side of � is de�ned analogously with k � k

1=2;I

. For

instance, for the side 

i

, which is on the line x

1

= x

0

, we have

kvk

2

1=2;

i

:=

�

Z

0

�

Z

0

 

u(x

0

; t)� u(x

0

; � )

t� �

!

2

dtd�:

Also we need the norm

kuk

2

1=2;@�

=

4

X

i=1

kvk

2

1=2;

i

+

4

X

i=1

�

Z

0

u

j(i)

(t)� u

l(i)

(t)

jtj

dt;

where the u

j(i)

denotes the restriction of u on side 

j(i)

, t is the distance to v

i

, v

i

is the

vertex of � such that the vertex is common for 

j(i)

and 

l(i)

.

A

+

is the pseudoinverse to matrix A.

�(A), �

min

(A), �

max

(A) are an eigenvalue, the minimal nonzero and the maximal

eigenvalues of symmetric nonnegative matrix A.

Signs �, �, � assume one sided and two sided inequalities, which are true with some

omitted absolute constants.

1 One dimensional �nite element with the integrated Legendre

polynomials as shape functions

Let us consider the system of functions on I

~

M = f

~

L

i

j

~

L

0

= L

0

;

~

L

1

= L

1

;

~

L

j

=

x

Z

�1

L

j�1

(s) ds; j = 2; 3; :::; 2Ng;

containing two �rst Legendre polynomials, i.e. constant L

0

� 1 and linear L

1

= x func-

tions, and the �rst integrals of Legendre polynomials. As it is known

kL

i

k

2

= 2=(2i + 1);

~

L

j

(x) =

1

2j � 1

[L

j

(x)� L

j�2

(x)]; (1.1)

The number of functions in

~

M is adopted equal to 2N + 1 only for convenience, the

considerations and results are not changed when i = 0; 1; :::; 2N + 1.

In the following it is convenient to use another normalization and to divide sometimes

~

M in two subsystems, corresponding to odd and even numbers. Let us set

M = f

^

L

i

; i = 0; 1; :::2Ng;

�

M = f

�

L

i

; i = 0; 1; :::2Ng;

M =

�

M =

�

M

+

[

�

M

�

;

�

M

+

= f

�

L

i

=

^

L

2i

; i = 0; 1; :::Ng;

�

M

�

= f

�

L

i

=

^

L

2(i�N)�1

; i = N + 1; :::; 2Ng;

(1.2)
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with

^

L

i

=

~

L

i

=k

~

L

i

k; k

^

L

i

k = 1, i.e.

^

L

0

=

L

0

p

2

;

^

L

1

=

s

3

2

~

L

1

;

^

L

j

= �

j

~

L

j

= 

j

[L

j

� L

j�2

]; j � 2;

�

j

=

1

2

q

(2j � 3)(2j � 1)(2j + 1); 

j

=

1

2

s

(2j � 3)(2j + 1)

2j � 1

;

(1.3)

SystemsM;

�

M di�er only in the ordering of their elements.

Expression

f =

2N

X

i=0

�

b

i

�

L

i

and quadratic forms (f; f)

I

; (f

0

; f

0

)

I

generate matrices

(f; f)

I

=<

�

K

0

�

b;

�

b >; (f

0

; f

0

)

I

=<

�

K

1

�

b;

�

b >;

where < �; � > is the scalar product in R

2N+1

and

�

b = f

�

b

i

g is the vector of the coe�cients

�

b

i

. It is easy to note, that

�

K

0

=

 

�

K

0;+

0

0

�

K

0;�

!

;

�

K

1

=

 

�

K

1;+

0

0

�

K

1;�

!

and matrices

�

K

1;+

;

�

K

1;�

are diagonal, matrices

�

K

0;+

;

�

K

0;�

are tridiagonal. ViaK

0

; K

1

we

denote the same matrix

�

K

0

;

�

K

1

but with the ordering of rows and columns, corresponding

to representation

f =

2N

X

i=0

^

b

i

^

L

i

:

The aim of this paragraph is

Lemma 1.1 The nonzero eigenvalues of K

0

; K

1

satisfy relations

�

min

(K

1

) =

p

6; �

max

(K

1

) = (4N � 3)(4N + 1)=2

�

min

(K

0

) � 1=N

2

; �

max

(K

0

) � 1:

(1.4)

Proof. These estimates are evident except for �

min

(K

0

). Indeed, taking into account

(1.1){(1.3), we see, that

K

1

= diag

"

0;

p

6; :::;

(2i� 3)(2i+ 1)

2

; :::;

(4N � 3)(4N + 1)

2

#

; (1.5)

and, thus, relations (1.4) for K

1

are right.

As it is shown below matrix

�

K

0

has diagonal predominance for any N < 1. Matrix

K

0

can be represented in the form K

0

= D

�1

A

0

D

�1

with the diagonal matrix D, which

is the square root of the diagonal of A

0

. Matrix A

0

is the \mass" matrix in the basis

fL

0

; L

1

; (L

2

� L

0

); : : : ; (L

i

� L

i�2

); : : : ; (L

N

� L

N�2

)g:
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A

0

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2 0 �2

0

2

3

0 �

2

3

0

�2 0 (2 +

2

5

) 0

2

5

0 : : : : : : : : : : : :

�

2

2i�3

0

2

2i�3

+

2

2i+1

0 �

2

2i+1

: : : : : : : : : : : :

0 : : : : : :

2

4N�3

0

2

4N�3

2

4N+1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Consequently for the result we have

K

0

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �

q

5=6

1 0 �

q

7=10 0

� � �

1 0 �c

i

� � �

SYM 1 0

1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

c

i

=

1

2

 

(2i+ 3)(2i� 5)

(2i� 3)(2i + 1)

!

1=2

=

1

2

�

1�

12

4i

2

� 4i� 3

�

1=2

:

Easy calculations lead to inequality

1

2

� c

i

�

1

2(i

2

+ 1)

; i � 4;

from which and considerations of the �rst four rows of K

0

we have

1 � c

i

� c

i�2

� 1=(i

2

+ 1); i = 0; 1; :::; 2N; �

min

(K

0

) � 1=N

2

: (1.6)

It is easy to note that the matrix, which is denoted below by 4

0

and is obtained from K

0

by making in each row the diagonal coe�cients equal to the sum of modules of the non-

diagonal coe�cients, retains positive de�niteness. Since it is meaningful for calculations

we shall also estimate the boundaries of the spectrum for 4

0

. It is su�cient to consider

only K

0;+

and the corresponding part �

0;+

of �

0

because for K

0;�

considerations are the

same. Thus, let us put

�

K

0;+

= 4

0;+

+ D

0;+

where D

0;+

is the diagonal matrix, 4

0;+

has

the form

�

0;+

=

0

B

B

B

B

B

B

B

@

1=h

0

�1=h

0

�1=h

0

(1=h

0

+ 1=h

1

) �1=h

1

0

: : : : : : : : :

�1=h

i�1

(1=h

i�1

+ 1=h

i

) �1=h

i

0 : : : : : :

�1=h

N�1

(1=h

N�1

+ 1=h

N

)

1

C

C

C

C

C

C

C

A

and h

i

= 1=c

2i

. As

�

K

0;+

has diagonal predominance, so all diagonal elements of D

0;+

are positive. The above expression for 4

0;+

is the same as for the �nite element matrix,

generated in the case of linear �nite elements with the nodes

x

(0)

= 0; x

(i)

= h

0

+ h

1

+ :::+ h

i�1

; x

(N+1)

= b

7



by bilinear form (u

0

; v

0

)

(0;b)

at the �rst boundary condition at x = b. That means pos-

itive de�niteness of 4

0;+

at any N < 1. Consequently, �

min

(

�

K

0;+

) � �

min

(�

0;+

) +

�

min

(D

0;+

) > 0 if N <1.

For the estimation of �

min

(4

0;+

) one may use the relation

�

min

(4

0;+

) = �

�1

max

(4

�1

0;+

)

since 4

�1

0;+

may be written explicitly, see [9], on the basis of the above mentioned analogy

with the �nite element matrix. Namely we have

4

�1

0;+

= f�

(i;j)

g; �

(i;j)

= K(x

(i)

; x

(j)

); i; j = 0; 1; :::; N

K(x; t) = fb� x; x � t; b� t; t � xg :

For �

max

(4

�1

0;+

) we can use the Frobenius estimate by the maximal sum of the modulus of

coe�cients in each row. Taking into account that the sum ofK(x; x

(j)

) over j = 0; 1; :::N is

equivalent to the quadrature of trapeziums, which at x = x

(i)

is equal to the corresponding

integral, we get

�

max

(4

�1

0;+

) = max

0�i�N

P

j

K(x

(i)

; x

(j)

) �

2max

"

1

h

0

; max

1�k�N

1

h

k�1

+ h

k

#

0 � x � b max

0�x�b

Z

b

a

K(x; t)dt �

� max

"

1

h

0

; max

1�k�N

1

h

k�1

+ h

k

#

b

2

� 8N

2

:

(1.7)

In (1.7) it is also taken into account that numbers c

i

are uniformly bounded from below

by

q

33=175 and from above by 1/2. Thus minimal eigenvalues of 4

0;+

and D

0;+

are

estimated from below with the same order.

Let us show now, that estimate (1.6) for �

min

(K

0

) is exact in the order. For vector of

the form

b

+

= (0; 0; :::; b

l

; b

l+1

; :::b

N

)

T

; l = entire

N

2

; b

+

2 R

N+1

; (1.8)

we have

b

T

+

D

0;+

b

+

�

4

N

2

b

T

+

� b

+

; (1.9)

On the other hand for the symmetrical positive de�nite D

0;+

; 4

0;+

it is true, that

b

T

+

�

K

0;+

b

+

= b

T

+

(D

0;+

+4

0;+

)b

+

� b

T

+

(

4

N

2

I +4

0;+

) b

+

: (1.10)

Now we put in b

+

from (1.8) b

j

= 1; j = l; l + 1; :::; N , and turn again to the explicit

form of 4

�1

0;+

. For such b

+

we obtain

b

T

+

4

�1

0;+

b

+

�

X

l�i;j�N

K(x

(i)

; x

(j)

) � 2

h

min

l<i<N

1

h

i�1

+ h

i

i

2

b

Z

b=2

b

Z

b=2

K(x; t) dtdx :

The integral is equal to N

3

=48 and c

i

= 0:5�O(N

2

); l � i � N . Therefore for su�ciently

large N it is true the estimate b

T

+

4

�1

0;+

b

+

� cN

3

and since b

T

+

b

+

= N � l � 0:5N +1, then

b

T

+

4

�1

0;+

b

+

� cN

2

b

T

+

� b

+

8



and c is an absolute constant. From this inequality and formulas (1.9), (1.10) it follows,

that �

min

(

�

K

0;+

) � cN

2

and therefore estimate (1.6) for �

min

(K

0

) is exact in order. We

have proved (1.4) for �

min

(K

0

).

The last estimate (1.4) is evidently valid since the sum of the modulus of coe�cients

in each row is less than 4 and the diagonal coe�cients are equal 1. Lemma has been

proved.

In the �nite element method the functions

^

L

0

=

1

2

(1 + x);

^

L

1

=

1

2

(1� x); (1.11)

are used instead of the �rst two functions (1.3). In the following we understand M,

�

M

as such bases. It is evident that the estimates for the bounds of the nonzero spectrums

of

�

K

0

;

�

K

1

are retained in the order.

According to the fact of the uniform boundness of numbers c

i

from below and from

above matrix 4

0;+

is equivalent in the spectrum to matrix

�

(1)

=

0

B

B

B

B

B

B

B

B

@

1 �1

�1 2 �1 0

: : : : : : : : :

�1 2 �1

0 : : : : : : : : :

�1 2

1

C

C

C

C

C

C

C

C

A

:

The same is true for4

0;�

under agreement that the same notation4

(1)

is used for matrices

(1.12) of di�erent dimensions. In other words

b

T

+

4

(1)

b

+

� b

T

+

4

0;+

b

+

� b

T

+

4

(1)

b

+

; b

+

2 R

N+1

;

b

T

�

4

(1)

b

�

� b

T

�

�

0;�

b

�

� b

T

�

4

(1)

b

�

; b

�

2 R

N

:

(1.12)

2 Square element with the hierarchical shape functions pro-

duced by the integrated Legendre's polynomials

By the reference element

^

E =

^

Ef�;

^

L

i;j

; 0 � i; j � pg; p = 2N , we shall mean square

� := I � I with the speci�ed on it systemM

�

= f

^

L

i;j

; 0 � i; j � pg of functions

^

L

i;j

(x) =

^

L

i

(x

1

)

^

L

j

(x

2

): (2.1)

The space spanned over them is the space H(

^

E) = P

(p)

x

of polynomials

û(x) =

X

u

i;j

^

L

i;j

(x); 0 � i; j � p; (2.2)

containing all polynomials of degree not higher than p in each variable x

1

; x

2

. We shall

consider matrices A

0

; A

1

of bilinear forms

(û; v̂)

�

= u

T

p

A

0

v

p

; a




(û; û) =

Z

�

rû � rv̂ dx = u

T

p

A

1

v

p

; u

p

; v

p

$ û; v̂; (2.3)

where relations u

p

$ û; v

p

$ v̂; : : : are understood as isomorphism between polynomials

û; v̂ 2;P

(p)

x

and vectors u

p

= fu

i;j

g; v

p

= fv

i;j

g : : : from R

(p+1)

2

of coe�cients of their

9



representations in the basis f

^

L

i;j

g, see (2.2). Matrices A

0

; A

1

are the mass and sti�ness

matrices of the reference element, while energy is de�ned by the Dirichlet integral.

For the following systemM

�

it is convenient to subdivide into subsystemsM

I

,M

II

,

M

III

containing, correspondingly, the so called internal, side and vertex shape functions:

M

I

= f

^

L

i;j

; 2 � i; j � pg;

M

II

= f

^

L

i;j

; i = 0; 1; j = 2; 3; : : : ; p or j = 2; 3; : : : ; p; j = 0; 1g;

M

III

= f

^

L

i;j

; i = 0; 1 and j = 0; 1g:

By the internal sti�ness matrix we shall call matrix A

1;0

generated by the set M

I

.

Evidently it corresponds to the �rst boundary condition on @� since all functions ofM

I

are equal zero on @� and there is no such functions inM

II

,M

III

.

Lemma 2.1 There are valid estimates

�

min

(A

0

) � N

�4

; �

max

(A

0

) � 1; �

min

(A

1;0

) � 1; �

max

(A

1;0

) � N

2

: (2.4)

Proof. Matrices A

0

; A

1;0

are represented by means of the Kronecker products

A

0

= K

0

�K

0

; A

1:0

= K

1;0

�K

0;0

+K

0;0

�K

1;0

;

whereK

1;0

;K

0;0

are matrices, which are obtained fromK

0

;K

1

by crossing out the �rst two

rows and columns and K

0

;K

1

are matrices described in Sec.1. According to the properties

of the Kronecker product f�

m;n

(A�B)g = f�

m

(A)g�f�

n

(B)g and consequently estimates

for �

min

from below and for �

max

from above directly follow from (1.2). However, estimate

�

min

(A

1;0

) � N

�2

obtained in such a way is rough and to obtain the estimates given in

(2.4) it is necessary to use another ways. Let us use the representation

�

K

0;0

= �

0;0

+D

0;0

,

which is analogous to the representation K

0;+

= �

0;+

+D

0;+

.

Then

�

min

(A

1;0)

= �

min

(K

1;0

� (�

0;0

+D

0;0

) + (�

0;0

+D

0;0

)�K

1;0

)

� �

min

(K

1;0

�D

0;0

) +D

0;0

�K

1;0

):

Matrices K

1;0

, D

0;0

are diagonal and their elements of the i-th row have the orders i

2

,

(i

2

+ 1)

�1

. Consequently,

�

min

(A

1;0

) � inf

i;j

�

i

2

j

2

+ 1

+

j

2

i

2

+ 1

�

� 1; 2 � i; j � 2N; (2.5)

and estimate for �

min

(A

1;0

) of lemma is also valid.

In order to obtain the estimate from above let us consider in R

(2N�1)

2

vectors w

p

of

the form w

p

= a� b, where a = fa

i

g 2 R

(2N�1)

and b = fb

i

g 2 R

(2N�1)

. We can write

inf

u

p

2R

(2N�1)

2

u

T

p

A

1;0

u

p

u

T

p

u

p

� inf

w

p

w

T

p

A

1;0

w

p

w

T

p

w

p

= 2 inf

a;b

a

T

K

1;0

a

a

T

a

b

T

K

0;0

b

b

T

b

� 2 inf

a

a

T

K

1;0

a

a

T

a

sup

b

T

K

0;0

b

b

T

b

from where and from Lemma 1.1 the estimate for �

min

(A

1;0)

from above follows.

Matrix K

0;0

contains unities on the diagonal and

^

K

1;0

has diagonal coe�cients of

order N

2

, what makes valid the estimates for �

max

from below. According to the men-

tioned property of the Kronecker product �

min

(A

0;0

) = (�

min

(K

0;0

))

2

, and estimates for

�

min

(K

0;0)

are known. Lemma has been proved.
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Remark 2.1 Numerical experiments with some shape functions have shown the growth of

the condition number for the local sti�ness matrix as O(p

3

), see for instance [1]. For the

chosen here shape functions according to above lemma, see also lemma 2.2, such condition

number is O(p

2

).

Now we consider matrix A

1;1

, which is obtained from A

1

by crossing out four rows and

four columns corresponding to vertex functions

^

L

i;j

, i; j = 0; 1.

Lemma 2.2 There are true estimates

�

min

(A

1;1

) � 1; �

max

(A

1;1

) � N

2

:

Proof. The estimates for �

max

(A

1;1

) are proved in the same way as for A

1;0

. In order to

simplify judgements in estimating of �

min

(A

1;1

) we instead of A

1;1

will consider matrix A

1

on the space of vectors u

p

2 U

IS

, u

p

= fu

i;j

g, i; j = 0; 1; : : : ; p, with four zero components

u

i;j

= 0 for i; j = 0; 1.

Matrix A

1

is de�ned by the Kronecker product

A

1

= K

1

�K

0

+K

0

�K

1

where K

1

corresponding to system

^

M = f

^

L

i;j

; i = 0; 1; : : : ; pg where

^

L

0

;

^

L

1

from (1.11)

and, thus, having the form

K

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 �1 0 0

�1 1 0 0 0

0 0

5

2

0

.

.

.

(2i�3)(2i+1)

2

0

.

.

.

(2p�3)(2p+1)

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

For matrices A

1

and

�

�

A

1

= K

1;0

�K

0

+K

0

�K

1;0

we have A

1

�

�

�

A

1

� 0, where in above relation K

1;0

is understood as matrix obtained from

K

1

by replacing by zeros the �rst two rows and columns. Indeed, matrix

�

�

A

1

is nonnegative

since K

1;0

and K

0

are nonnegative. Further K

1

�K

0

and K

1;0

�K

0

distinguish only in

the �rst 2(p+ 1) � (2p + 1) diagonal block, which is

 

K

0

�K

0

�K

0

K

0

!

in K

1

�K

0

and zero in K

1;0

�K

0

. Thus, K

1

�K

0

� K

1;0

�K

0

. If we change the ordering

of rows and columns replacing i by j and visa versa, then we see there is only the same

di�erence between K

0

�K

1

and K

0

�K

1;0

. Consequently A

1

�

�

�

A

1

� 0.

It is easy to note that zero rows and columns of K

1;0

�K

0

and K

0

�K

1;0

have only

four zero rows and columns in common and they correspond to i; j = 0; 1. All the rest

rows and columns are nonzero. More exactly in respect to rows we have:

zero rows in K

1;0

�K

0

and nonzero rows in K

0

�K

1;0

for i = 0; 1; j = 2; 3; : : : ; p,

nonzero rows in K

1;0

�K

0

and zero rows in K

0

�K

1;0

for i = 2; 3; : : : ; p; j = 0; 1,

nonzero rows in K

1;0

�K

0

and K

0

�K

1;0

for i; j = 2; 3; : : : ; p.

11



Submatrix (p

2

�1)�(p

2

�1) of K

1;0

�K

0

with entries corresponding to i = 2; 3; : : : ; p; j =

0; 1; : : : ; p and (p

2

� 1) � (p

2

� 1) submatrix of K

0

�K

1;0

with entries corresponding to

i = 1; 2; : : : ; p; j = 2; 3; : : : ; p are three-diagonal. The diagonal predominance of these two

submatrices are estimated exactly in the same manner as for K

1;0

�K

0;0

and K

0;0

�K

1;0

.

Denoting via d

i;j

(A) the diagonal predominance in row \i; j" of some matrix A we obtain

in the result that

d

i;j

(

�

�

A

1;1

) � �

o;i

�

1;i

i

2

j

2

+ 1

+ �

o;j

�

1;j

j

2

i

2

+ 1

(2.6)

where �

k;l

is the Kronecker delta and i; j are not equal to 0 or 1 simultaneously. Lemma

has been proved.

Let us give several additional inequalities related to the preconditioning of A

1

Lemma 2.3 Let û 2 H(

^

E) be presented in the form û = û

I

+ û

II

+ û

III

, where û

L

2

span M

L

, L = I; II; III and

â(v;w) =

Z

�

rvrwdx

Then

c

1

1 + log p

[â(û

I

+ û

II

; û

I

+ û

II

) + â(û

III

; û

III

)] � â(û; û) (2.7)

� 2[â(û

I

+ û

II

; û

I

+ û

II

) + â(û

III

; û

III

)];

c

1

p + log p

X

L=I;II;III

â(û

L

; û

L

) � 3

X

L=I;II;III

â(û

L

; û

L

); (2.8)

with an absolute constant c

1

, c

2

.

Proof. The right inequalities are Cauchy ones. The left inequality (2.7) indeed has been

proved in [1] and is based on the following result, which is needed below.

Theorem 2.1 (I.Babuska et al. [1]). For any polynomial u(x) 2 P

p;x

and x 2 I

ju(x)j � (1 + log

1

2

p)kuk
1

2

;I

(2.9)

with absolute constant. This estimate cannot be asymptotically improved, i.e. there is a

constant �c and for each p � 2 there exists v

p

2 P

p;x

such that kv

p

k
1

2

;I

� �c and jv

p

(�1)j �

log

1

2

p.

Now we have

â(û

I

+ û

II

; û

I

+ û

II

) = â(û� û

III

; û� û

III

) � 2 (â(û; û) + â(û

III

; û

III

)) ;

â(û

I

+ û

II

; û

I

+ û

II

) + â(û

III

; û

III

) � 2â(û; û) + 3â(û

III

; û

III

):

(2.10)

Since û

III

is bilinear its maximum is at one of the vertices x = (�1;�1) of � and at

these points û

III

= û(x). Consequently a(û

III

; û

III

) � c

4

max ju(x)j

2

over x = (�1;�1)

and application of (2.9) and the trace theorem gives

a(û

III

; û

III

) � c

4

c

3

(1 + log p) kûk
1

2

;

i

� c

5

c

4

c

3

(1 + log p) kûk

1;�

;
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where 

j

; j = 1; 2; 3; 4, are the sides of � and above 

i

is the side adjacent to the vertex,

at which û

III

achieves maximum. Now the Bramble{Hilbert lemma type arguments allow

to write

a(û

III

; û

III

) � c(1 + log p) jûj

2

1;�

� c(1 + log p)a(û; û) (2.11)

with an absolute constant c. Combining with (2.10) we obtain the left part of (2.7).

In order to obtain the left inequality (2.8) we use the Markov type inequality

juj

2

1;I

� cpkuk

2

1=2;I

; for any u 2 P

p;x

; (2.12)

which is obtained in the following way. Setting x = cos� we represent ~u(�) := u(x),

� 2 I

�

:= (0; �) by the sum

~u(�) =

p

X

k=0

b

k

cos k�:

We also can write

j~uj

2

1;I

� j~uj

2

1;I

�

= �=2

p

X

k=0

(1 + k

2

)b

2

k

� �p

p

X

k=0

q

(1 + k

2

) b

2

k

� cpk~uk

2

1=2;I

?

� cc

1

pkuk

2

1=2;I

;

where in the last step we used the equivalence of the norms kuk

2

1=2;I

and k~uk

2

1=2;I

?

, which

has been established in [1].

It is easy to see that ûj

@


= û

II

+ û

III

and

a(û

II

+ û

III

; û

II

+ û

III

) �

4

X

i=1

kûk

2

1;

i

:

Thus applying Cauchy inequality,(2.11), (2.12), and the trace theorem we have

a(û

II

; û

II

) � (a(û

III

; û

III

) + c

4

X

i=1

kûk

2

1;

i

)

� c((1 + log p)kûk

2

1;�

+ p

4

X

i=1

kûk

2

1=2;

i

) � c(log p+ p)kûk

2

1;�

:

The use of Bramble{Hilbert lemma type arguments gives

a(û

II

; û

II

) � c(log p+ p)a(û; û): (2.13)

Besides, (2.11), (2.13) allow to obtain

a(û

I

; û

I

) � 3(a(û; û) + a(û

II

; û

II

) + a(û

III

; û

III

)) � c(log p + p)a(û; û): (2.14)

From (2.11), (2.13), and (2.14) it follows left inequality (2.8). Lemma has been proved.

Remark 2.2 In the p-version it is more e�cient sometimes to use the reference element

with polynomial spaces, which are the minimal polynomial spaces containing for a given p

space P

p;x

and allowing to satisfy the compatibility conditions. For the chosen type of the

coordinate functions this assumes the use of the reference element

^

E

0

=

^

E

0

f�;

^

L

i;j

2 M

p

g

with

M

p

=M

I;p

[M

II

[M

III

; M

I;p

:= f

^

L

i;j

; 2 � i; j; (i+ j) � pg:

Thus, for a �xed p set M

p

di�ers fromM

�

only in the subset M

I;p

6=M

I

of the internal

functions but the sets of the boundary functions and the vertex functions coincide. The
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space of polynomials H(

^

E

0

) = span M

p

, which will be denoted also by P

[p]

x

, corresponds

to element

^

E

0

. The reasons for

^

E

0

to be more e�ective in comparison with

^

E , especially if

we enlarge p in the course of solution of one problem are known from the literature. The

obtained results are retained for element

^

E

0

. Lemma 2.1 is retained in particular due to

inclusion

M

(entire p=2)

�

�M

p

�M

(p)

�

;

where for a given p it is used notation M

(p)

�

instead of M

�

. Lemma 2.3 is also valid for

the corresponding matrices generated by the reference element

^

E

0

, because in their proof it

was not important the concrete form of internal functions and the space over them.

Remark 2.3 Let us suppose that we have orthogonalized the set of the side functions to

the set of the internal functions, i.e. instead of M

II

we use M

(II)

such that

a(û

II

; û

I

) = 0; for any û

I

2 M

I

or for any û

I

2 M

I;p

; (2.15)

for any û

(II)

2 M

(II)

. Then

a(û

II

; û

II

) � c(1 + log p)a(û; û)

Indeed, taking into account (2.11),(2.15), we can write

jû

II

j

2

1;�

� jû

II

+ û

I

j

2

1;�

= jû� û

III

j

2

1;�

� 2(jûj

2

1;�

+ jû

III

j

2

1;�

) � c(1 + log p)jûj

1;�

:

Instead of (2.2) we get

c

log p

X

L=I;II;III

a(û

L

; û

L

) � a(û; û) � 3

X

L=I;II;III

a(û

L

; û

L

):
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