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1 Introduction

In recent years, domain decomposition methods have been used extensively to e�ciently

solve boundary value problems for partial di�erential equations in complex{form domains

[4, 13, 16]. On the other hand, multilevel techniques on hierarchical data structures also

have developed into an e�ective tool for the construction and analysis of fast solvers [2,

5, 15, 17]. But direct realization of multilevel techniques on a parallel computer system

for the global problem in the original domain involves di�cult communication problems.

I this paper, we present and analyze a combination of these two approaches: domain

decomposition and multilevel decomposition on hierarchical structures to design optimal

preconditioning operators.

Let 
 � R
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be a polygon. In the domain 
 we consider the boundary value problem
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(1.1)

where

@u

@N

=

2

X

i;j=1

a

ij

(x)

@u

@x

j

cos(n; x

i

)

is the conormal derivative, n denotes the outward normal to �, and �

0

is a union of a

�nite number of curvilinear segments, � = �

0

[ �

1

;�

0

=

�

�

0

: Here

�

�

0

denotes the closure

of �

0

:

By H

1

(
;�

0

) we denote the subspace of the Sobolev space H

1

(
)

H

1

(
;�

0

) =

n

v 2 H

1

(
) j v(x) = 0; x 2 �

0

o

:

We introduce the bilinear form a(u; v) and the linear functional l(v) :

a(u; v) =

Z




�

2
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@v
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(x)uv

�

dx+

Z

�

1

�(x)uv dx

l(v) =

Z




f(x)vdx:

Let us suppose that the operator coe�cients and the right-hand side of the problem

(1.1) are such that the bilinear form a(u; v) is symmetric, elliptic, and continuous on

H

1

(
;�

0

)�H

1

(
;�

0

), i.e.

a(u; v) = a(v; u) 8u; v 2 H

1

(
;�

0

)

�

0

kuk

2

H

1

(
)

� a(u; u) � �

1

kuk

2

H

1

(
)

8u 2 H

1

(
;�

0

)

and the linear functional l(v) is continuous on H

1

(
;�

0

):

jl(u)j � �kuk

H

1

(
)

8u 2 H

1

(
;�

0

):

The generalized solution u 2 H

1

(
;�

0

) of (1.1) is, by de�nition, a solution to the projec-

tion problem [1]

u 2 H

1

(
;�

0

) : a(u; v) = l(v) 8v 2 H

1

(
;�

0

): (1.2)
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We know that under these assumptions for a(u; v) and l(v) there exists a unique solution

of (1.2).

Let 
 be a union of n nonoverlapping subdomains 


i

,

�


 =

n

[

i=1

�




i

; 


i

\ 


j

= ;; i 6= j;

where 


i

are polygons with diameters on the order of H. Let us consider a coarse grid

triangulation of 





h

0

=

n

[

i=1




h

i;0

; 


h

i;0

=

M

(0)

i

[

l=1

��

(0)

i;l

;

diam (�

(0)

i;l

) = 0(H)

and we re�ne 


h

i;0

several times. This results in a sequence of nested triangulations




h

i;0

;


h

i;1

; : : : ;


h

i;J

such that

�




h

i;k

=

M

(k)

i

[

l=1

��

(k)

i;l

; k = 0; 1; : : : ; J ;

where the triangles �

(k+1)

i;l

are generated by subdividing triangles �

(k)

i;l

into four congruent

subtriangles by connecting the midpoints of the edges.

Introduce the spaces

W

i;0

�W

i;1

� : : : �W

i;J

= H

h

(


i

);

V

i;0

� V

i;1

� : : : � V

i;J

= H

h

(�

i

); (1.3)

�

i

= @


i

; i = 1; 2; : : : ; n:

Here the space W

i;k

consists of real-valued functions which are continuous on 
 and linear

on the triangles in 


h

i;k

. The space V

i;k

is the space of traces on �

i

of functions from W

i;k

:

V

i;k

=

n

'

h

j '

h

= u

h

j

�

i

; with u

h

2 W

i;k

o

:

We de�ne the space H

h

(
) of real continuous functions which are linear on each triangle

of 


h

and vanish at �

0

:

Let us consider the projection problem

u

h

2 H

h

(
) : a(u

h

; v

h

) = l(v

h

) 8v

h

2 H

h

(
) (1.4)

which is an approximation of the problem (1.2).

Each function u

h

2 H

h

(
) is put in correspondence with a real column vector u 2

R

N

whose components are values of the function u

h

at the corresponding nodes of the

triangulation 


h

. Then (1.4) is equivalent to the system of mesh equations

Au = f;

(Au; v) = a(u

h

; v

h

) 8u

h

; v

h

2 H

h

(
); (1.5)

(f; v) = l(v

h

) 8v

h

2 H

h

(
);
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where u

h

and v

h

are the respective interpolations of vectors u and v; (f; v) is the Euclidean

scalar product in R

N

:

The goal of this work is to construct a symmetric positive de�nite preconditioning

operator B for (1.5) so as to satisfy the inequalities

c

1

(Bu; u) � (Au; u) � c

2

(Bu; u) (1.6)

where the positive constants c

1

and c

2

are independent of h and H, the multiplication of

a vector by B

�1

should be easy to implement.

Using a combination of Additive Schwarz and Fictitious Space Methods, optimal pre-

conditioning operators have been constructed in [11, 12, 13] for the case of arbitrary

(unstructured) grids. However, that construction involves explicit extension operators

whose implementation for three dimensional problems is optimal from the arithmetic cost

and the condition number points of view but di�cult for practice realization. The main

goal of this work is to construct, using the hierarchical structure (1.3), a robust optimal

preconditioning operator. One of the crucial points in [11, 12, 13] and this paper is using of

non{exact solvers in subdomains and explicit extension operators. It means, to construct

optimal preconditioning operators, we can design norm preserving operators of functions

given at �

i

into 


i

with the optimal arithmetic cost (a number of arithmetic operations

should be proportional to a number degrees of freedom) and then, instead of exact solvers

in subdomains, we can use any spectrally equivalent preconditioning operators. Optimal

extension operators have been presented in [8, 9, 11] for unstructured grids and robust

explicit extension operators on hierarchical data structures in [5, 14].

The paper is organized as follows. In the Section 2, using Additive Schwarz Method,

we describe general construction of a preconditioning operator with local multilevel pre-

conditioning operators. In the Section 3, we present an optimal multilevel extension of

grid functions from boundaries subdomains into inside subdomains. In the Section 4,

we propose an optimal interface preconditioning operator at the boundaries of the sub-

domains which involves a multilevel decomposition and corresponding explicit extension

operators at interfaces.

2 Domain decomposition { additive Schwarz-Method

To design the preconditioning operator for the system (1.5), we use the additive Schwarz{

Method [7] and realize the main idea of the construction of preconditioners from [13] for

the hierarchical grids. Denote by

�

H

h

(


i

) the subspace of H

h

(


i

)

�

H

h

(


i

) =

n

u

h

2 H

h

(


i

) j u

h

(x) = 0; x 2 �

i

o

and de�ne the local preconditioning operators B

i

such that

B

i

:

�

H

h

(


i

)!

�

H

h

(


i

);

c

3

ku

h

k

2

H

1

(


i

)

� (B

i

u; u) � c

4

ku

h

k

2

H

1

(


i

)

8u

h

2

�

H

h

(


i

);

where c

3

; c

4

are independent of h and H. We hereafter use the same designation for an

operator and its matrix representation. For instance, to de�ne B

i

, we can use the so-called

BPX{preconditioners [3]. To do it, denote by ff

(k)

l

g nodal basis functions from the k{th

level and de�ne

B

�1

i

u

h

=

J

X

k=0

X

f

(k)

l

2

�

H

h

(


i

)

(u

h

; f

(k)

l

)

L

2

(


i

)

f

(k)

l

: (2.1)
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Let us assume that we can de�ne the extension operators t

i

t

i

: V

i;J

�! W

i;J

such that

t

i

'

h

= u

h

;

u

h

(x) = '

h

(x); x 2 �

i

; (2.2)

kt

i

'

h

k

H

1

(


i

)

� c

5

k'

h

k

H

1=2

(�

i

)

8'

h

2 V

i;J

;

with c

5

independent of h and H. Here k'

h

k

H

1=2

(�

i

)

is the norm [10] in the Sobolev space

H

1=2

(�

i

)

k'

h

k

2

H

1=2

(�

i

)

= H

Z

�

i

('

h

(x))

2

dx+

Z

�

i

Z

�

i

('

h

(x)� '

h

(y))

2

jx� yj

2

dxdy:

Then, we can de�ne the extension operator t

t : H

h

(S)! H

h

(
);

where H

h

(S) is the space of traces of functions from H

h

(
) at S

S =

n

[

i=1

�

i

and for any '

h

2 H

h

(S)

t'

h

= u

h

;

u

h

(x) = '

h

(x); x 2 S;

kt'

h

k

H

1

(
)

� c

5

k'

h

k

H

1=2

(S)

:

Here

k'

h

k

2

H

1=2

(S)

=

n

X

i=1

k'

h

k

2

H

1=2

(�

i

)

:

The operator t

i

from (2.2) is constructed in the Section 3.

Let � satis�es to the following inequalities

c

6

k'

h

k

2

H

1=2

(S)

� (�';') � c

7

k'

h

k

2

H

1=2

(S)

8'

h

2 H

h

(S); (2.3)

where c

6

; c

7

independent of h and H. Then, according to [11], we can de�ne the precon-

ditioning operator B as follows

B

�1

=

2

6

6

6

6

4

0

B

�1

1

.

.

.

B

�1

n

3

7

7

7

7

5

+ t�

�1

t

�

: (2.4)

Here 0 is the null-matrix which corresponds to nodes of the triangulation 


h

at S and B

i

is from (2.1).

The following theorem is valid

Theorem 2.1 If the operator B is from (2.4), then the constants c

1

; c

2

from (1.6) are

independent of h and H.
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3 Multilevel explicit extension operators

The main goal of this section is to construct the robust operator t

i

from (2.2). During

this section, we omit the subscript i.

To design the extension operator

t : V

J

! W

J

;

we follow to [5, 14]. Denote by '

(k)

i

; i = 1; 2; : : : ; N

k

, the nodal basis of V

k

and denote by

�

(k)

i

the one-dimensional subspace spanned by this function '

(k)

i

: De�ne

Q

(k)

i

: L

2

(�)! �

(k)

i

the L

2

-orthoprojection from L

2

(�) on to �

(k)

i

and denote

~

Q

k

=

N

k

X

i=1

Q

(k)

i

; k = 0; 1; : : : ; J � 1:

For k = J we de�ne

~

Q

J

as the L

2

-orthoprojection from L

2

(�) on to V

j

.

The following lemmas are valid [14].

Lemma 3.1 There exists a positive constant c

8

, independent of h and H, such that for

any '

h

2 V

J

k'

h

0

k

2

H

1=2

(�)

+

1

H

k'

h

1

k

2

L

2

(�)

+ j'

h

1

j

2

H

1=2

(�)

� c

8

k'

h

k

2

H

1=2

(�)

;

where

'

h

0

=

~

Q

0

'

h

; '

h

1

= '

h

� '

h

0

: (3.1)

Here

j'

h

j

2

H

1=2

(�)

=

Z

�

Z

�

('

h

(x)� '

h

(y))

2

jx� yj

2

dxdy:

Lemma 3.2 There exists a positive constant c

9

, independent of h and H, such that

k'

h

0

k

2

+

1

H

�

k

~

Q

0

'

h

1

k

2

L

2

(�)

+

J

X

k=1

2

k

k(

~

Q

k

�

~

Q

k�1

)'

h

1

k

2

L

2

(�)

�

� c

9

k'

h

k

2

H

1=2

(�)

;

where '

h

0

; '

h

1

from (3.1).

The construction of the operator t is based on the decomposition from the Lemma 3.2.

Denote by x

(k)

i

; i = 1; 2; : : : ; L

k

, the nodes of the triangulation 


h

k

(we assume that nodes

x

(k)

i

are enumerated �rst on � and then inside 
) and de�ne the extension operator t in

the following way. For any '

h

2 V

J

set

 

h

0

=

~

Q

0

'

h

;

 

h

k

= (

~

Q

k

�

~

Q

k�1

)'

h

; k = 1; 2; : : : ; J:

(3.2)

Then

'

h

=  

h

0

+  

h

1

+ : : :+  

h

J

:

5



De�ne the extension u

h

k

2 W

k

as follows

u

h

0

(x

(0)

i

) =

8

<

:

 

h

0

(x

(0)

i

); x

(0)

i

2 �;

�

 ; x

(0)

i

=2 �;

u

h

k

(x

(k)

i

) =

8

<

:

 

h

k

(x

(k)

i

); x

(k)

i

2 �;

0; x

(k)

i

62 �;

(3.3)

k = 1; 2; : : : ; J:

Here

�

 is, for instance, the meanvalue of the function  

h

0

on �

�

 =

1

N

0

N

0

X

i=1

 

h

0

(x

(0)

i

):

De�ne

t'

h

= u

h

� u

h

0

+ u

h

1

+ : : :+ u

h

J

(3.4)

Remark 3.1 We can use the L

2

-orthoprojections form L

2

(�) on to V

k

instead of

~

Q

k

; k =

0; 1; : : : ; J � 1: But in this case the cost of the decomposition (3.2) is expensive (especially

for three dimensional problems).

Theorem 3.1 There exists a positive constant c

10

, independent of h and H, such that

kt'

h

k

H

1

(
)

� c

10

k'

h

k

H

1=2

(�)

8'

h

2 V

J

:

Here the operator t is from (3.2){(3.4).

Remark 3.2 It is obvious that

Q

(k)

i

'

h

=

('

h

; '

(k)

i

)

L

2

(�)

('

(k)

i

; '

(k)

i

)

L

2

(�)

'

(k)

i

and the cost of the action of t and t

�

is proportional to the number of nodes of the grid

domain.

4 Interface preconditioning operators

In this section, we construct an optimal interface preconditioner in the space H

h

(S) which

satis�es (2.3). To do it, we use the idea of Additive Schwarz Method at interface S from

[13]. Let S be a union of K nonoverlapping edges E

i

of the triangulation 


h

0

S =

K

[

j=1

�

E

j

; E

j

\ E

i

= ;; i 6= j:

Split H

h

(S) into a vector sum of subspaces

H

h

(S) = U

0

+ U

1

+ : : :+ U

K

; (4.1)

where U

0

is the coarse space which consists of continuous functions linear on the edges

E

j

, j = 1; 2; : : : ;K, and U

j

, j = 1; 2; : : : ;K, correspond to E

j

and are de�ned below.
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Denote by

�

U

j

= f'

h

2 H

h

(S) j '

h

(x) = 0; x 62 E

j

g;

~

U

(k)

j

= V

k

jE

j

; k = 0; 1; : : : ; J:

For any edge E

j

we de�ne the explicit extension operator �

j

�

j

:

~

U

(J)

j

! H

h

(S)

as follows. Denote by '

(k)

j;i

, i = 1; 2; : : : ; I

(k)

j

, the nodal basis of

~

U

(k)

j

(the functions '

(k)

j;i

are di�er from the functions '

(k)

i

from the Section 3 only at the end points of E

j

) and

denote by �

(k)

j;i

the one-dimensional subspace spanned by this function '

(k)

j;i

: De�ne

Q

(k)

j;i

: L

2

(E

j

)! �

(k)

j;i

corresponding L

2

-orthoprojection. Set

~

Q

(k)

j

=

I

(k)

j

X

i=1

Q

(k)

j;i

; k = 0; 1; : : : ; J � 1 ;

and de�ne

~

Q

(k)

J

as the L

2

-orthoprojection from L

2

(E

j

) onto

~

U

(J)

j

: Now we can de�ne the

extension operator �

j

according to (3.2){(3.4). For any '

h

2

~

U

(J)

j

set

 

h

0

=

~

Q

(0)

j

'

h

;

 

h

k

= (

~

Q

(k)

j

�

~

Q

(k�1)

j

)'

h

; k = 1; 2; : : : ; J

(4.2)

and

u

h

k

=

8

>

<

>

:

 

h

k

(x

(k)

i

); x

(k)

i

2 E

j

0; x

(k)

i

62 E

j

; k = 0; 1; : : : ; J

(4.3)

�

j

'

h

= u

h

0

+ u

h

1

+ : : :+ u

h

J

:

De�ne

U

j

=

�

U

j

+ �

j

~

U

j

:

Then from the Theorem 3.1 and [13] for the decomposition (4.1) we have the following

theorem.

Theorem 4.1 There exists a positive constant c

11

; dependent of h and H, such that for

any function '

h

2 H

h

(S) there exist '

h

j

2 U

j

, j = 0; 1; : : : ;K, such that

'

h

0

+ '

h

1

+ : : :+ '

h

k

= '

h

;

k'

h

0

k

2

H

1=2

(S)

+ k'

h

1

k

2

H

1=2

(S)

+ : : :+ k'

h

K

k

2

H

1=2

(S)

� c

11

k'

h

k

2

H

1=2

(S)

Let the operator �

0

generates an equivalent norm in U

0

:

c

12

k'

h

k

2

H

1=2

(S)

� (�

0

';') � c

13

k'

h

k

2

H

1=2

(S)

8'

h

2 U

0

; (4.4)
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where c

12

; c

13

independent of h and H. De�ne local preconditioners for U

j

, j = 1; 2; : : : ;K.

Denote by

�

�

j

and

e

�

j

the BPX-like preconditioners in the spaces

�

U

j

and

~

U

j

, respectively

�

�

�1

i

'

h

=

J

X

k=0

X

supp'

(k)

j;i

�E

j

('

h

; '

(k)

j;i

)

L

2

(E

j

)

'

(k)

j;i

8'

h

2

�

U

j

;

�

�1

i

'

h

=

J

X

k=0

X

supp'

(k)

j;i

\E

j

6=;

('

h

; '

(k)

j;i

)

L

2

(E

j

)

'

(k)

j;i

8'

h

2

~

U

j

:

Then, de�ne the interface preconditioning operator � in the following way

�

�1

= �

+

0

+

K

X

j=1

(

�

�

�1

j

+ �

j

e

�

�1

j

�

�

j

): (4.5)

Here �

+

0

is a pseudo-inverse of �

0

from (4.4), �

j

is from (4.2), (4.3), and we extend the

operator

�

�

�1

j

by zero outside E

j

. The following theorem is valid.

Theorem 4.2 If the operator � is from (4.5) then the constants c

6

; c

7

form (2.3) are

independent of h and H.

Remark 4.1 The method suggested in this paper can be generalized evidently for three

dimensional problems.

Remark 4.2 Using combination of presented technique and technique from [10], e�ective

preconditioning operators for elliptic problems with jump coe�cients can be constructed.
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