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Exact discretizations of two-point boundary value problems

G�unther Windisch

Summary. In the paper we construct exact three-point discretizations of linear

and nonlinear two-point boundary value problems with boundary conditions of

the �rst kind. The �nite element approach uses basis functions de�ned by the

coe�cients of the di�erential equations. All the discretized boundary value prob-

lems are of inverse isotone type and so are its exact discretizations which involve

tridiagonal M-matrices in the linear case and M-functions in the nonlinear case.

1. Introduction

Let u(x) be a solution of a two-point boundary value problem

Lu = f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

:

(1.1)

Using a �nite set of grid points �!

h

= fx

i

g

n+1

i=0

� [0; 1], a discretization method is

said to be "exact" at u(x) if it generates a system of equations

L

h

u

h

= f

h

; (1.2)

whose solution is given by fu(x

i

)g

n+1

i=0

.

We shall illustrate this by a simple example. Consider

�u

00

= 0; 0 < x < 1;

u(0) = u

0

; u(1) = u

1

;

(1.3)

which has the unique solution u(x) = u

0

+x (u

1

�u

0

) . Then, the standard �nite

di�erence method on the uniform grid �!

h

= fx

i

= ih; i = 0; : : : ; n+1; h =

1

n+1

g

de�ned by

y

0

= u

0

;

�

y

i�1

�2y

i

+y

i+1

h

2

= 0; i = 1; : : : ; n;

y

n+1

= u

1

;

(1.4)

is exact because y

i

= u(x

i

) = u

0

+ x

i

(u

1

� u

0

); i = 0; : : : ; n + 1 is the unique

solution of the system of linear equations (1.4).
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2. Exact discretization of di�erential equations with constant

coe�cients

In this section we consider the two-point boundary value problem

Lu = �u

00

+ bu

0

+ cu = f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

;

(2.1)

where b and c are real constants. Furthermore, we assume that f(x) is at least

continuous. It is known that the solution u(x) of problem (2.1) may exhibit

boundary layers, see [2], [3].

2.1 Exact discretization of Lu = �u

00

= f(x)

The solution of

Lu = �u

00

= f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

;

(2.2)

is given by

u(x) = u

0

(1 � x) + u

1

x+

R

1

0

G(x; �)f(�)d�; (2.3)

where

G(x; �) =

8

>

<

>

:

�(1 � x); � < x;

x(1� �); � � x;

(2.4)

is the Green's function of the di�erential operator of problem (2.2). It is obvious

that the Green's function is symmetric and nonnegative, i.e. G(x; �) = G(�; x)

and G(x; �) � 0 for all (x; �) 2 [0; 1]

2

.

Let �!

h

= f0 = x

0

< x

1

< x

2

< � � � < x

n

< x

n+1

= 1g be a grid with step sizes

h

i

= x

i

� x

i�1

> 0 for i = 1; : : : ; n + 1. Then, the three{point discretization of

problem (2.2)

�

1

h

i

y

i�1

+

�

1

h

i

+

1

h

i+1

�

y

i

�

1

h

i+1

y

i+1

=

R

1

0

�

i

(�)f(�) d�;

i = 1; : : : ; n;

(2.5)
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with y

0

= u

0

, y

n+1

= u

1

and

�

i

(�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

��x

i�1

h

i

; x

i�1

� � � x

i

;

x

i+1

��

h

i+1

; x

i

< � � x

i+1

; i = 1; : : : ; n;

0; else;

(2.6)

is exact for any n � 1.

The latter statement will be proved by showing that

y

i

= u(x

i

) = u

0

(1� x

i

) + u

1

x

i

+

R

1

0

G(x

i

; �)f(�)d�; i = 1; : : : ; n; (2.7)

satisfy all of the equations (2.5). The proof is quite technical and it will be

therefore omitted here.

Next, we rewrite the exact discretization (2.5) of problem (2.2) in matrix form.

For this purpose de�ne

A = tridiag

 

�

1

h

i

;

1

h

i

+

1

h

i+1

; �

1

h

i+1

!

n�n

;

y = (y

1

; : : : ; y

n

)

T

;

b = (b

1

; : : : ; b

n

)

T

;

b

1

=

u

0

h

1

+

Z

1

0

�

1

(�)f(�) d�;

b

i

=

Z

1

0

�

i

(�)f(�) d�; i = 2; : : : ; n� 1;

b

n

=

u

1

h

n+1

+

Z

1

0

�

n

(�)f(�) d�:

Then, the linear equation system (2.5) has short form

Ay = b; (2.8)

where the tridiagonal matrix A = A

T

is an irreducible, weakly diagonally domi-

nant M-matrix with

detA =

h

1

+ � � �+ h

n+1

h

1

� � �h

n+1

> 0

and A

�1

> 0. Thus, the solution (2.7) of the system of equations (2.8) is unique.
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We shall show now that the system of linear equations (2.5) also results from

a �nite element discretization of problem (2.2). For this purpose, we start with

weak formulation of problem (2.2).

De�ne

U = fu(x) 2 W

1

2

(0; 1); u(0) = u

0

; u(1) = u

1

g;

V =

�

W

1

2

(0; 1);

a(u; v) =

Z

1

0

u

0

v

0

dx:

Then, we seek a function u 2 U such that

a(u; v) =

R

1

0

u

0

v

0

dx =

R

1

0

vf dx; 8 v 2 V: (2.9)

We de�ne the �nite dimensional approximation of problem (2.9) as follows. First,

we supplement the set of functions (2.6) with the two functions

�

0

(�) =

8

>

<

>

:

x

1

��

h

1

; 0 � � � x

1

;

0; else;

�

n+1

(�) =

8

>

<

>

:

��x

n

h

n+1

; x

n

� � � 1

0; else;

and introduce

U

h

= fu

h

(x) = u

0

�

0

(x) +

n

X

i=1

y

i

�

i

(x) + u

1

�

n+1

(x); y

i

2 IR; i = 1; : : : ; ng;

V

h

= spanf�

i

(x)g

n

i=1

:

Second, seek u

h

2 U

h

such that

a(u

h

; �

i

) =

R

1

0

�

i

f dx i = 1; : : : ; n: (2.10)

Now, it has been found that the �nite element approximation (2.10) is equivalent

to the exact discretization (2.8) because of

A = tridiag (a(�

i�1

; �

i

) ; a(�

i

; �

i

) ; a(�

i+1

; �

i

))

n�n

;

where
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a(�

i�1

; �

i

) =

R

1

0

�

0

i�1

�

0

i

dx = �

1

h

i

;

a(�

i

; �

i

) =

R

1

0

(�

0

i

)

2

dx =

1

h

i

+

1

h

i+1

;

a(�

i+1

; �

i

) =

R

1

0

�

0

i+1

�

0

i

dx = �

1

h

i+1

:

2.2 Exact discretization of Lu = �u

00

+ cu = f(x), c > 0

For any constant c > 0, the unique solution of

Lu = �u

00

+ cu = f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

;

(2.11)

is given by

u(x) = u

0

sinh(

p

c(1�x))

sinh(

p

c)

+ u

1

sinh(

p

cx)

sinh(

p

c)

+

R

1

0

G

c

(x; �)f(�)d�; (2.12)

where G

c

(x; �) is the Green's function of the di�erential operator of problem

(2.11) de�ned dy

G

c

(x; �) =

8

>

>

<

>

>

:

sinh(

p

c(1�x)) sinh(

p

c�)

p

c sinh(

p

c)

; � < x;

sinh(

p

cx) sinh(

p

c(1��))

p

c sinh(

p

c)

; � � x:

(2.13)

It is thus clear that G

c

(x; �) is symmetric and nonnegative. This means that

G

c

(x; �) = G

c

(�; x) and G

c

(x; �) � 0 for all (x; �) 2 [0; 1]

2

.

Now let us consider the exact discretization of problem (2.11) on the uniform

grid �!

h

= fx

i

= ih; i = 0; : : : ; n+ 1; h =

1

n+1

g.

It turns out that the three-point discretization

�y

i�1

+ 2 cosh(

p

ch) y

i

� y

i+1

=

sinh(

p

ch)

p

c

R

1

0

 

i

(�)f(�) d�;

i = 1; : : : ; n;

(2.14)

with y

0

= u

0

, y

n+1

= u

1

and
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i

(�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

sinh(

p

c(��x

i�1

))

sinh(

p

ch)

; x

i�1

� � � x

i

;

sinh(

p

c(x

i+1

��))

sinh(

p

ch)

; x

i

< � � x

i+1

; i = 1; : : : ; n;

0; else;

(2.15)

is exact for any n � 1.

In order to prove this statement, we have to show that

y

i

= u(x

i

) = u

0

sinh(

p

c(1�x

i

))

sinh(

p

c)

+ u

1

sinh(

p

cx

i

)

sinh(

p

c)

+

R

1

0

G

c

(x

i

; �)f(�)d�;

i = 1; : : : ; n;

(2.16)

is the solution of the system of equations (2.14). The proof will be omitted here

because it only needs technical details.

To get an impression how the functions  

i

(�) di�er from the pieceweise linear

functions �

i

(�) de�ned by (2.6) we illustrate the behaviour of  

i

(�) for c = 16,

see Figure 1.

Figure 1

xx-h x+h
0

1

The left-hand side expression of the exact discetization (2.14) can be deduced

directly from the Taylor series expansion

�v(x� h) + 2 cosh(

p

ch) v(x)� v(x+ h) =

1

X

k=1

r

2k

�

�v

(2k)

(x) + c

k

v(x)

�

h

2k

;

which holds true for any function v 2 C

1

, where r

2k

2 IR; k = 1; 2; : : :, are well-

de�ned coe�cients. Exploiting this for the solution u(x) of the homogeneous

6



di�erential equation, we get

�u(x� h) + 2 cosh(

p

ch)u(x)� u(x+ h) = 0;

because �u

00

+ cu = 0 implies �u

(2k)

(x) + c

k

u(x) = 0 for k = 1; 2; : : : .

Next, we introduce a matrix formulation of the exact discretization (2.14). For

this let

A =

p

c

sinh(

p

ch)

tridiag

�

�1 ; 2 cosh(

p

ch) ; �1

�

n�n

;

y = (y

1

; : : : ; y

n

)

T

;

b = (b

1

; : : : ; b

n

)

T

;

b

1

=

p

c

sinh(

p

ch)

u

0

+

Z

1

0

 

1

(�)f(�) d�;

b

i

=

Z

1

0

 

i

(�)f(�) d�; i = 2; : : : ; n� 1;

b

n

=

p

c

sinh(

p

ch)

u

1

+

Z

1

0

 

n

(�)f(�) d�:

Thus, (2.14) is equivalent to

Ay = b; (2.17)

where the tridiagonal matrix A = A

T

is an irreducible, strictly diagonally domi-

nant M-matrix with A

�1

> 0.

The exact discretization (2.17) of problem (2.11) is also deducable by a �nite

element method which uses the function system f 

i

(x)g

n

i=1

de�ned by (2.15).

With the same U; V as in Section 2.1 we now de�ne the bilinear form

a(u; v) =

Z

1

0

(u

0

v

0

+ cuv) dx:

Then, the weak form of problem (2.11) is de�ned as follows: Seek u(x) 2 U such

that

a(u; v) =

R

1

0

(u

0

v

0

+ cuv) dx =

R

1

0

vf dx; 8 v 2 V: (2.18)
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For a �nite dimensional approximation of problem (2.18), we supplement the

function system f 

i

(�)g

n

i=1

with the two functions

 

0

(�) =

8

>

<

>

:

sinh(

p

c(x

1

��))

sinh(

p

ch)

; 0 � � � x

1

;

0; else;

 

n+1

(�) =

8

>

<

>

:

sinh(

p

c(��x

n

))

sinh(

p

ch)

; x

n

� � � 1;

0; else;

and de�ne

U

h

= fu

h

(x) = u

0

 

0

(x) +

n

X

i=1

y

i

 

i

(x) + u

1

 

n+1

(x); y

i

2 IR; i = 1; : : : ; ng;

V

h

= spanf 

i

(x)g

n

i=1

:

Thus, seek u

h

2 U

h

such that

a(u

h

;  

i

) =

R

1

0

(u

0

h

 

0

i

+ c u

h

 

i

) dx =

R

1

0

 

i

f dx; i = 1; : : : ; n: (2.19)

To show now that the �nite element approach (2.19) leads to the exact discretiza-

tion (2.17), we have to compute a( 

k

;  

i

) for k = i � 1; i; i + 1. In fact, we �nd

the entries of the matrix

A = tridiag (a( 

i�1

;  

i

); a( 

i

;  

i

); a( 

i+1

;  

i

))

n�n

;

as

a( 

i�1

;  

i

) =

R

1

0

( 

0

i�1

 

0

i

+ c  

i�1

 

i

) dx = �

p

c

sinh(

p

ch)

;

a( 

i

;  

i

) =

R

1

0

(( 

0

i

)

2

+ c ( 

i

)

2

) dx =

2

p

c cosh(

p

ch)

sinh(

p

ch)

;

a( 

i+1

;  

i

) =

R

1

0

( 

0

i+1

 

0

i

+ c  

i+1

 

i

) dx = �

p

c

sinh(

p

ch)

:

We leave the veri�cation of the latter three relations to the reader because it only

needs a certain amount of rather technical integrations.
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Remarks

1. Consider the standard �nite di�erence discretization

y

0

= u

0

;

�y

i�1

+ (2 + h

2

c)y

i

� y

i+1

= h

2

f(x

i

); i = 1; : : : ; n;

y

n+1

= u

1

;

of problem (2.11) on the uniform grid �!

h

. For c > 0 and f(x) 6� 0 it

can never be an exact discretization because the coe�cient (2 + h

2

c) of y

i

represents only the �rst two terms of the Taylor series expansion

2 cosh(

p

ch) = 2 + ch

2

+

2c

2

h

4

4!

+ � � �

and the right-hand side is approximated by

sinh(

p

ch)

p

c

Z

1

0

 

i

(�)f(�) d� � h

2

f(x

i

):

2. If we let c! +0 in the exact discretization (2.14), we immediately derive

the exact discretization (2.5) of problem (2.2).

2.3 Exact discretization of Lu = �u

00

+ bu

0

+ cu = f(x), b; c 2 IR, c � 0

We turn our attention now to the construction of an exact discretization of the

boundary value problem

Lu = �u

00

+ bu

0

+ cu = f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

:

(2.20)

Suppose now that

b; c 2 IR with c � 0 ; maxfc; jbjg > 0: (2.21)

Then problem (2.20) has a unique solution u(x).

We start with the representation of u(x). From assumptions (2.21) we get that

the characteristic equation

��

2

+ b�+ c = 0

9



of the homogeneous di�erential equation Lu = 0 has two di�erent real roots

�

2

=

b�

p

b

2

+ 4c

2

< �

1

=

b+

p

b

2

+ 4c

2

:

It holds

�

1

+ �

2

= b; �

1

�

2

= �c;

e

�

1

� e

�

2

> 0; (�

1

� �

2

)(e

�

1

� e

�

2

) > 0:

Then the solution of problem (2.20) is given by

u(x) = u

0

e

�

1

+�

2

x

�e

�

1

x+�

2

e

�

1

�e

�

2

+ u

1

e

�

1

x

�e

�

2

x

e

�

1

�e

�

2

+

R

1

0

G

c;b

(x; �)f(�) d�;
(2.22)

where G

c;b

(x; �) is Green's function of the di�erential operator of problem (2.20).

For (x; �) 2 [0; 1]

2

, we have

G

c;b

(x; �) =

8

>

>

<

>

>

:

(e

�

1

+�

2

x

�e

�

1

x+�

2

)(e

��

2

�

�e

��

1

�

)

(�

1

��

2

)(e

�

1

�e

�

2

)

; � < x;

(e

�

1

x

�e

�

2

x

)(e

�

1

(1��)

�e

�

2

(1��)

)

(�

1

��

2

)(e

�

1

�e

�

2

)

; � � x:

(2.23)

In any case it holds that G

c;b

(x; �) � 0 for (x; �) 2 [0; 1]

2

.

We remark that b = 0; c > 0 implies �

1

=

p

c = ��

2

, hence G

c;0

(x; �) = G

c

(x; �);

see (2.13).

If b 6= 0; c � 0, then G

c;b

(x; �) 6= G

c;b

(�; x) for all x 6= �.

We now shall next turn to the exact three-point discretization of problem (2.20)

on the uniform grid �!

h

with step size h =

1

n+1

. One can show that

�(e

�

1

h

� e

�

2

h

) y

i�1

+ 2 sinh((�

1

� �

2

)h) y

i

� (e

��

2

h

� e

��

1

h

) y

i+1

=

2(cosh((�

1

��

2

)h)�1)

�

1

��

2

R

1

0

�

i

(�)f(�) d�; i = 1; : : : ; n ;

(2.24)

where y

0

= u

0

; y

n+1

= u

1

and
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�

i

(�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

e

��

2

(��x

i�1

)

�e

��

1

(��x

i�1

)

e

��

2

h

�e

��

1

h

; x

i�1

� � � x

i

;

e

�

1

(x

i+1

��)

�e

�

2

(x

i+1

��)

e

�

1

h

�e

�

2

h

; x

i

< � � x

i+1

; i = 1; : : : ; n;

0; else;

(2.25)

is an exact discretization of problem (2.20).

For the proof, a calculation reveals that

y

i

= u(x

i

) = u

0

e

�

1

+�

2

x

i

� e

�

1

x

i

+�

2

e

�

1

� e

�

2

+ u

1

e

�

1

x

i

� e

�

2

x

i

e

�

1

� e

�

2

+

Z

1

0

G

c;b

(x

i

; �)f(�) d�;

i = 1; : : : ; n;

is solution of the system of linear equations (2.24). It will be seen later on that

this solution is unique.

We have depicted one such function �

i

(x) just de�ned for the values b = 8; c = 12

in Figure 2.

Figure 2

xx-h x+h
0

1

The idea for the left-hand side expression of exact discretization (2.24) is to use

a �nite di�erence scheme for Lu = 0 of type

�

u(x�h)�2u(x)+u(x+h)

�(h)

2

+ b

u(x+h)�u(x�h)

2�(h)

+ cu(x) = 0;
(2.26)

11



where �(h)

2

; �(h) have to be chosen such that (2.26) is exact discretization on

the uniform grid �!

h

.

Assuming temporarily b 6= 0; c > 0, we are able to determine unique �(h)

2

and

�(h). Substituting expression (2.22) for f(x) � 0 in (2.26) gives

�(h)

2

=

2

c

sinh((�

1

��

2

)h)+sinh(�

2

h)�sinh(�

1

h)

sinh(�

1

h)�sinh(�

2

h)

;

�(h) =

b

c

sinh((�

1

��

2

)h)+sinh(�

2

h)�sinh(�

1

h)

cosh(�

1

h)�cosh(�

2

h)

:

Making use of the latter two expressions in (2.26) and multiplying then (2.26)

through by (sinh((�

1

� �

2

)h) + sinh(�

2

h) � sinh(�

1

h))=c gives the left-hand

side expression of (2.24) after rearranging the coe�cients.

Next we describe the exact discretization (2.24) in matrix form. De�ne

� =

�

1

� �

2

2(cosh((�

1

� �

2

)h)� 1)

;

A = � tridiag

�

�(e

�

1

h

� e

�

2

h

); 2 sinh((�

1

� �

2

)h);�(e

��

2

h

� e

��

1

h

)

�

n�n

;

y = (y

1

; : : : ; y

n

)

T

;

b = (b

1

; : : : ; b

n

)

T

;

b

1

= � (e

�

1

h

� e

�

2

h

)u

0

+

Z

1

0

�

1

(�)f(�) d�;

b

i

=

Z

1

0

�

i

(�)f(�) d�; i = 2; : : : ; n� 1;

b

n

= � (e

��

2

h

� e

��

1

h

)u

1

+

Z

1

0

�

n

(�)f(�) d�:

Thus, we may write the exact discretization (2.24) as

Ay = b: (2.27)

The matrix A is an irreducible tridiagonal M-matrix.

12



To see this, we remark that �

2

� 0 < �

1

implies

� > 0; e

�

1

h

� e

�

2

h

> 0; e

��

2

h

� e

��

1

h

> 0; 2 sinh((�

1

� �

2

)h) > 0;

so that A is irreducible, o�-diagonally nonpositive and diagonally positive. Hence,

A is an irreducible L-matrix. The proof is complete if we can show that A has

diagonal dominance property.

We get that A is weakly row diagonally dominant in the case c = 0; b 6= 0;

and, that A is strictly row diagonally dominant if c > 0; b 2 IR.

For this, let r

i

; i = 1; : : : ; n; denote the row sums of A. In any case we have

r

1

> 0 and r

n

> 0. For i = 2; : : : ; n� 1 we get

r

i

= 2 sinh((�

1

� �

2

)h)� (e

�

1

h

� e

�

2

h

)� (e

��

2

h

� e

��

1

h

)

= � 8 sinh

�

�

1

h

2

�

sinh

�

�

2

h

2

�

sinh

�

(�

1

��

2

)h

2

�

:

The case c = 0; b 6= 0 implies �

2

= 0 and hence r

i

= 0 for i = 2; : : : ; n� 1. Then

the matrix A is an irreducible and weakly row diagonally dominant L-matrix.

Assuming c > 0, we get �

2

< 0 < �

1

. Thus, r

i

> 0 for i = 2; : : : ; n � 1 and the

matrix A is a strictly row diagonally dominant L-matrix.

Therefore, under assumption (2.21) the matrix A is an irreducible tridiagonal

M-matrix with A

�1

> 0. This proves that the given solution y

i

= u(x

i

) for

i = 0; : : : ; n+ 1; of the exact discretization (2.24) is unique.

The M-matrix A is symmetic if and only if b = 0 holds.

To see this remember that b = 0 implies 0 <

p

c = �

1

= ��

2

. Putting this in the

de�nition of the matrix A yields

A = 2� tridiag(� sinh(

p

ch); sinh(2

p

ch);� sinh(

p

ch))

n�n

= A

T

For b 6= 0 it follows that �

1

+ �

2

= b 6= 0. Hence A 6= A

T

because of

e

��

2

h

� e

��

1

h

=

e

�

1

h

� e

�

2

h

e

(�

1

+�

2

)h

=

e

�

1

h

� e

�

2

h

e

bh

6= e

�

1

h

� e

�

2

h

:

Let the case b 6= 0; c = 0 briey catch our attention. This assumption implies

�

1

=

b+ jbj

2

= b

+

� 0; �

2

=

b� jbj

2

= b

�

� 0; �

1

� �

2

= jbj > 0:
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Then the matrix A has the form

A = � tridiag(�(e

b

+

h

� e

b

�

h

); 2 sinh(jbjh);�(e

�b

�

h

� e

�b

+

h

))

n�n

6= A

T

;

where � =

jbj

2(cosh(jbjh)�1)

.

Our next goal is to show that the exact discretization (2.27) of problem (2.20)

also results from the application of Galerkin's method. The crucial question,

of course, is to adapt the basic function system to the boundary value problem

(2.20). The hint how to choose the best basic function system comes directly

from the right-hand side terms of the exact discretization (2.24).

We start with a weak formulation of problem (2.20). Let U; V be the function

sets de�ned in Section 2.1. Then, seek u(x) 2 U such that

a(u; v) =

Z

1

0

(u

0

v

0

+ b u

0

v + c uv) dx =

Z

1

0

vf dx; 8 v 2 V:

To derive a �nite dimensional approximation of the just stated weak formulation

of problem (2.20), we �rst supplement the set of function (2.25) with

�

0

(�) =

8

>

<

>

:

e

�

1

(x

1

��)

�e

�

2

(x

1

��)

e

�

1

h

�e

�

2

h

; 0 � � � x

1

;

0; else;

�

n+1

(�) =

8

>

<

>

:

e

��

2

(��x

n

)

�e

��

1

(��x

n

)

e

��

2

h

�e

��

1

h

; x

n

� � � 1;

0; else:

We now de�ne

U

h

= fu

h

(x) = u

0

�

0

(x) +

n

X

i=1

y

i

�

i

(x) + u

1

�

n+1

(x); y

i

2 IR; i = 1; : : : ; ng;

V

h

= spanf�

i

(x)g

n

i=1

:

Then, seek u

h

(x) 2 U

h

which satis�es
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a(u

h

; �

i

) =

R

1

0

(u

0

h

�

0

i

+ b u

0

h

�

i

+ c u

h

�

i

) dx =

R

1

0

�

i

f dx;

i = 1; : : : ; n:

(2.28)

Now we can show that the system of linear equations (2.28) is equivalent to (2.27)

which represents the exact discretization of problem (2.20). It holds true that

A = tridiag(a(�

i�1

; �

i

); a(�

i

; �

i

); a(�

i+1

; �

i

))

n�n

:

The computation of the integrals a(�

k

; �

i

) for k = i� 1; i; i+1; which de�ne the

nonzero entries of the matrix A, proves the assertion.

We get

a(�

i�1

; �

i

) =

R

1

0

(�

0

i�1

�

0

i

+ b�

0

i�1

�

i

+ c �

i�1

�

i

) dx = �

(�

1

��

2

)(e

�

1

h

�e

�

2

h

)

2(cosh((�

1

��

2

)h)�1)

;

a(�

i

; �

i

) =

R

1

0

((�

0

i

)

2

+ b �

0

i

�

i

+ c (�

i

)

2

) dx =

2(�

1

��

2

) sinh((�

1

��

2

)h)

2(cosh((�

1

��

2

)h)�1)

;

a(�

i+1

; �

i

) =

R

1

0

(�

0

i+1

�

0

i

+ b �

0

i+1

�

i

+ c �

i+1

�

i

) dx = �

(�

1

��

2

)(e

��

2

h

�e

��

1

h

)

2(cosh((�

1

��

2

)h)�1)

:

As in all previous cases, the computation of the latter three terms only needs

elementary integrations. The reader will �nd out no di�culty in doing this.

3. Exact discretization of Lu = �(p(x)u

0

)

0

= f(x)

Assume p(x) > 0 for x 2 [0; 1] with

0 < q =

R

1

0

dt

p(t)

<1:

(3.1)

Then, the unique solution u(x) of

Lu = �(p(x)u

0

)

0

= f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

;

(3.2)

has the form

u(x) =

u

0

q

R

1

x

dt

p(t)

+

u

1

q

R

x

0

dt

p(t)

+

R

1

0

G

p

(x; �)f(�)d� ;

(3.3)
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with Green's function

G

p

(x; �) =

8

>

<

>

:

1

q

R

�

0

dt

p(t)

R

1

x

dt

p(t)

; � < x;

1

q

R

1

�

dt

p(t)

R

x

0

dt

p(t)

; � � x:

(3.4)

We mention that Green's function G

p

(x; �) of the di�erential operator of problem

(3.2) is symmetric and nonnegative on [0; 1]

2

.

Let �!

h

= f0 = x

0

< x

1

< x

2

< � � � < x

n

< x

n+1

= 1g and de�ne

p

i

=

R

x

i

x

i�1

dt

p(t)

; i = 1; : : : ; n+ 1 :

(3.5)

It can be shown that the three-point discretization of problem (3.2)

�

1

p

i

y

i�1

+

�

1

p

i

+

1

p

i+1

�

y

i

�

1

p

i+1

y

i+1

=

R

1

0

�

i

(�)f(�) d�;

i = 1; : : : ; n;

(3.6)

with y

0

= u

0

, y

n+1

= u

1

and

�

i

(�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

p

i

q

�

R

1

x

i�1

dt

p(t)

R

�

0

dt

p(t)

�

R

x

i�1

0

dt

p(t)

R

1

�

dt

p(t)

�

; x

i�1

� � � x

i

;

1

p

i+1

q

�

R

x

i+1

0

dt

p(t)

R

1

�

dt

p(t)

�

R

1

x

i+1

dt

p(t)

R

�

0

dt

p(t)

�

; x

i

< � � x

i+1

;

0; else;

(3.7)

for i = 1; : : : ; n is exact for any n � 1.

All we need to prove is that

y

i

= u(x

i

) =

u

0

q

R

1

x

i

dt

p(t)

+

u

1

q

R

x

i

0

dt

p(t)

+

R

1

0

G

p

(x

i

; �)f(�)d�;

i = 1; : : : ; n;

(3.8)

satisfy the system of linear equations (3.6). We leave the details of the proof to

the reader because it requires

To analyse qualitative properties of the system of linear equations (3.6), we next
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rewrite it in matrix form. Setting

A = tridiag

 

�

1

p

i

;

1

p

i

+

1

p

i+1

; �

1

p

i+1

!

n�n

;

y = (y

1

; : : : ; y

n

)

T

;

b = (b

1

; : : : ; b

n

)

T

;

b

1

=

u

0

p

1

+

Z

1

0

�

1

(�)f(�) d�;

b

i

=

Z

1

0

�

i

(�)f(�) d�; i = 2; : : : ; n� 1;

b

n

=

u

1

p

n+1

+

Z

1

0

�

n

(�)f(�) d�:

we get

Ay = b (3.9)

as short form of (3.6), where A = A

T

is an irreducible, weakly diagonally domi-

nant M-matrix. Hence, the solution (3.8) is unique.

We shall now derive the just obtained exact discretization of problem (3.2) from

the application of a �nite element method which uses the function system f�

i

(x)g

de�ned by (3.7).

Let U and V be the same as in Section 2.1 and de�ne

a(u; v) =

R

1

0

p(x)u

0

v

0

dx:

Then we seek a function u 2 U such that

a(u; v) =

R

1

0

p(x)u

0

v

0

dx =

R

1

0

vf dx; 8v 2 V: (3.10)

Before we are going to formulate a �nite dimensional approximation of the weak

form (3.10) on the grid �!

h

, we de�ne

�

0

(�) =

8

>

<

>

:

1

p

1

q

�

R

x

1

0

dt

p(t)

R

1

�

dt

p(t)

�

R

1

x

1

dt

p(t)

R

�

0

dt

p(t)

�

; 0 � � � x

1

;

0; else;

�

n+1

(�) =

8

>

<

>

:

1

p

n+1

q

�

R

1

x

n

dt

p(t)

R

�

0

dt

p(t)

�

R

x

n

0

dt

p(t)

R

1

�

dt

p(t)

�

; x

n

� � � 1

0; else:
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Now let

U

h

= fu

h

(x) = u

0

�

0

(x) +

n

X

i=1

y

i

�

i

(x) + u

1

�

n+1

(x); y

i

2 IR; i = 1; : : : ; ng;

V

h

= spanf�

i

(x)g

n

i=1

;

and seek u

h

2 U

h

such that

a(u

h

; �

i

) =

R

1

0

p(x)u

0

h

�

0

i

dx =

R

1

0

�

i

f dx; i = 1; : : : ; n: (3.11)

From (3.11) now results the exact discretization (3.8) of problem (3.2). To see

this, we prove that

A = tridiag (a(�

i�1

; �

i

); a(�

i

; �

i

); a(�

i+1

; �

i

))

n�n

:

A straightforward calculation shows that

a(�

i�1

; �

i

) =

R

1

0

p(x)�

0

i�1

�

0

i

dx = �

1

p

i

;

a(�

i

; �

i

) =

R

1

0

p(x)(�

0

i

)

2

dx =

1

p

i

+

1

p

i+1

;

a(�

i+1

; �

i

) =

R

1

0

p(x)�

0

i+1

�

0

i

dx = �

1

p

i+1

:

Remarks

1. Assuming p(x) � 1, we get immediately p

i

= h

i

= x

i

� x

i�1

and �

i

(x) �

�

i

(x) for all indices i, see (3.5) and (3.7), respectively. In this case, the

exact approximation (3.6) is identical with the exact approximation (2.5)

of problem (2.2), see Section 2.1 .

2. Problem (3.2) also covers boundary layer problems. For example, consider

problem (3.2) with f(x) � 0 and p(x) = e

�bx

. Then the di�erential equation

reduces to �u

00

+ bu

0

= 0, where for jbj � 1 boundary layers may occure.
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4. Exact discretization of Lu = �(�(u))

00

= f(x)

Consider the nonlinear boundary value problem

Lu = �(�(u))

00

= f(x); 0 < x < 1;

u(0) = u

0

; u(1) = u

1

;

(4.1)

with

�(u) 2 C

1

(IR) such that �

0

(u) > 0; 8u 2 IR : (4.2)

Then there exists �

�1

which we need in the sequel.

Remark that

�(k(u)u

0

)

0

= f(x) with k(u) > 0

can be transformed via �(u) =

R

u

0

k(t) dt into the di�erential equation of

problem (4.1).

One checks easily now that

u(x) = �

�1

�

(1 � x)�(u

0

) + x�(u

1

) +

R

1

0

G(x; �)f(�)d�

�

= (4.3)

�

�1

�

(1 � x)�(u

0

) + x�(u

1

) + (1 � x)

Z

x

0

�f(�) d� + x

Z

1

x

(1� �)f(�) d�

�

is the solution of problem (4.1), where G(x; �) is Green's function of the di�er-

ential operator of problem (2.2), see Section 2.1.

Let �!

h

= f0 = x

0

< x

1

< x

2

< � � � < x

n

< x

n+1

= 1g with h

i

= x

i

� x

i�1

> 0

for i = 1; : : : ; n+ 1. It turns out that the following three-point discretization of

problem (4.1)

�

1

h

i

�(y

i�1

) +

�

1

h

i

+

1

h

i+1

�

�(y

i

)�

1

h

i+1

�(y

i+1

) =

R

1

0

�

i

(�)f(�) d�;

i = 1; : : : ; n;

(4.4)

with y

0

= u

0

, y

n+1

= u

1

and the system of basis functions f�

i

(x)g

n

i=1

de�ned by

(2.5) is an exact discretization of problem (4.1) for any n � 1.
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Substituting

y

i

= u(x

i

) = �

�1

�

(1� x

i

)�(u

0

) + x

i

�(u

1

) +

R

1

0

G(x

i

; �)f(�) d�

�

;

i = 1; : : : ; n;

(4.5)

in (4.4) and applying the results of Section 2.1 gives the proof.

For �(u) 6� u the exact discretization (4.4) of problem (4.1) is a system of non-

linear equations.

Next we shall rewrite the nonlinear equation system (4.4) in short form. For this

purpose let

F (y) = (f

1

(y); : : : ; f

n

(y))

T

: IR

n

! IR

n

;

y = (y

1

; : : : ; y

n

)

T

;

b = (b

1

; : : : ; b

n

)

T

;

f

1

(y) =

�

1

h

1

+

1

h

2

�

�(y

1

)�

1

h

2

�(y

2

);

f

i

(y) = �

1

h

i

�(y

i�1

) +

 

1

h

i

+

1

h

i+1

!

�(y

i

)�

1

h

i+1

�(y

i+1

); i = 2; : : : ; n;

f

n

(y) = �

1

h

n

�(y

n�1

) +

 

1

h

n

+

1

h

n+1

!

�(y

n

);

b

1

=

1

h

1

�(u

0

) +

Z

1

0

�

1

(�)f(�) d�;

b

i

=

Z

1

0

�

i

(�)f(�) d�; i = 2; : : : ; n;

b

n

=

1

h

n+1

�(u

1

) +

Z

1

0

�

n

(�)f(�) d�:

The exact discretization (4.4) now becomes

F (y) = b: (4.6)
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The function F (y) is an M-function on IR

n

because

F

0

(y) = tridiag

�

�

1

h

i

;

1

h

i

+

1

h

i+1

; �

1

h

i+1

�

n�n

diag (�

0

(y

1

); : : : ;�

0

(y

n

))

n�n

= A�(y)

is an M-matrix for all y 2 R

n

. This follows directly from the fact that A is an

M-matrix, see Section 2.1, and that

�(y) = diag (�

0

(y

1

); : : : ;�

0

(y

n

)) � 0 with det �(y) > 0 8y 2 IR

n

:

Thus F (y) = b has at most one solution. Its unique solution is given by (4.5).

5. Exact discretization of some nonlinear di�erential operators

In this section we shall briey describe exact discretizations of two nonlinear

boundary value problems. To do this, it is necessary to have expressions of the

solutions at which a discretization may be exact. In each case we assume a

uniform grid �!

h

with step size h =

1

n+1

.

5.1 Exact discretization of Lu = �u

00

+

3

2

u

2

= 0

Consider

Lu = �u

00

+

3

2

u

2

= 0; 0 < x < 1;

u(0) = 4; u(1) = 1;

(5.1)

see [1]. Problem (5.1) has two solutions

u

1

(x) =

4

(1+x)

2

; u

2

(x) is an elliptic function:

(5.2)

It can be seen now that

y

0

= 4;

�

y

i�1

�2y

i

+y

i+1

h

2

+

3

2

y

i�1

y

i+1

�

1�

h

2

12

y

i

�

= 0; i = 1; : : : ; n;

y

n+1

= 1;

(5.3)

21



is exact discretization of problem (5.1) at its solution u

1

(x) because

y

i

= u(x

i

) =

4

(1+x

i

)

2

; i = 0; : : : ; n+ 1;

(5.4)

is a solution of the nonlinear equation system (5.3). The interesting fact is, that

we have to approximate the term u

2

over three grid points. At the other solution

u

2

(x) of problem (5.1) the given approximation (5.3) is not exact. Nevertheless,

the system of nonlinear equations (5.3) has not only the solution (5.4).

5.2 Exact discretization of Lu = ��u

00

� uu

0

= 0, � > 0

Consider the boundary value problem

Lu = ��u

00

� uu

0

= 0; 0 < x < 1;

u(0) = 0; u(1) = tanh

�

1

2�

�

;

(5.5)

which has the solution

u(x) = tanh

�

x

2�

�

: (5.6)

The discretization of problem (5.5)

y

0

= 0;

�y

i�1

+ 2y

i

� y

i+1

� y

i

(y

i+1

� y

i�1

) s(h) = 0; i = 1; : : : ; n;

y

n+1

= tanh

�

1

2�

�

;

(5.7)

is exact at solution (5.6), where

s(h) =

cosh

(

h

�

)

�1

sinh

(

h

�

)

=

1

2

h

�

�

1

24

�

h

�

�

3

+O

�

h

�

�

5

; (5.8)

which satis�es

s(h) 2 (�1; 1); s

0

(h) =

1

�(cosh(

h

�

) + 1)

> 0;

The solution of the system of nonlinear equation (5.7) is given by

y

i

= u(x

i

) = tanh

�

x

i

2�

�

; i = 0; : : : ; n+ 1: (5.9)

22



6. Conclusions

We are now going to comment the results and point out some further problems.

All of the two{point boundary value problems stated in Sections 2 to 4 exhibit the

property of inverse isotonicity (sind "von monotoner Art", see [1]). This means

Lu = f(x) � Lv = g(x); 0 < x < 1;

u(0) = u

0

� v(0) = v

0

; u(1) = u

1

� v(1) = v

1

;

implies

u(x) � v(x); 0 � x � 1:

The representations of its solution (2.3), (2.12), (2.22), (3.3) and (4.3) con�rm

these assertions directly.

The presented exact three{point discretizations of the boundary value problems

(2.2), (2.11), (2.20) and (3.2) yield in any case systems of linear equations Ay = b,

where A is a tridiagonal M-matrix, see [5]. The system matrix A is symmetric

if the Green's function of the corresponding di�erential operator is symmetric

and it is not symmtric vice versa. Furthermore, the exact discretization of the

nonlinear inverse isotone problem (4.1) yields a nonlinear system of equations

F (y) = b, where F (y) is an M-function, see [5].

In each case, the right-hand side vector b = b(u

0

; u

1

; f(x)) of the exact discretiza-

tions is isotone according to its arguments, i.e.

u

0

� v

0

; u

1

� v

1

; f(x) � g(x); 8x 2 [0; 1];

implies

b(u

0

; u

1

; f(x)) � b(v

0

; v

1

; g(x)):

Hence, we get for the solutions of the systems of equations Ay = b that

A

�1

b(u

0

; u

1

; f(x)) � A

�1

b(v

0

; v

1

; g(x))

which reects the inverse isotonicity in the exact discretizations. The same asser-

tion holds true for y = F

�1

(b) because the inverse function F

�1

of an M-function

F (y) exists and is isotone, i.e.

F

�1

(b(u

0

; u

1

; f(x))) � F

�1

(b(v

0

; v

1

; g(x))):
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Similar results are possible if the boundary conditions of �rst kind are replaced

by other types of boundary conditions, for instance, by boundary conditions of

second or third type, or by mixed.

One of the further questions is how to apply this results if the di�erential equation

contains variable coe�cients.

We remark that it is also possible to construct exact (2s+1){point discretizations

with s � 2 over a uniform grid �!

h

for the stated two{point boundary value

problems. For linear problems, the resulting system of linear equations Ay = b

involves a banded monotone matrixAwhich also guaranties the inverse isotonicity

of the exact discretizations.

References

[1] Collatz,L.: Funktionalanalysis und numerische Mathematik, Springer-

Verlag, Berlin, Heidelberg, New York, 1968

[2] Doolan,E.P., Miller,J.J.H., Schilders,W.H.A.: Uniform numerical methods

with initial and boundary layers, Poole Press, Dublin, 1980

[3] Gro�mann,Ch.,Roos,H.-G.: Numerik partieller Di�erentialgleichungen,

Teubner, Stuttgart, 1992

[4] Mickens,R.E.: A best �nite-di�erence scheme for the Fisher equation, Nu-

merical Methods for Partial Di�erential Equations, 10, 1994, 581 - 585

[5] Windisch,G.: M-matrices in numerical analysis, Teubner, Leipzig, 1989

24



Other titles in the SPC series:

95 1 T. Apel, G. Lube. Anisotropic mesh re�nement in stabilized Galerkin methods

Januar 1995.

95 2 M. Meisel, A. Meyer. Implementierung eines parallelen vorkonditionierten Schur-

Komplement CG-Verfahrens in das Programmpaket FEAP. Januar 1995.

95 3 S. V. Nepomnyaschikh. Optimal multilevel extension operators. January 1995

95 4 M. Meyer. Gra�k-Ausgabe vom Parallelrechner f�ur 3D-Gebiete. Januar 1995

95 5 T. Apel, G. Haase, A. Meyer, M. Pester. Parallel solution of �nite element

equation systems: e�cient inter-processor communication. Februar 1995

95 6 U. Groh. Ein technologisches Konzept zur Erzeugung adaptiver hierarchischer

Netze f�ur FEM-Schemata. Mai 1995

95 7 M. Bollh�ofer, C. He, V. Mehrmann. Modi�ed block Jacobi preconditioners for

the conjugate gradient method. Part I: The positive de�nit case. January 1995

95 8 P. Kunkel, V. Mehrmann, W. Rath, J. Weickert. GELDA: A Software Package

for the Solution of General Linear Di�erential Algebraic Equation. February

1995

95 9 H. Matthes. A DD preconditioner for the clamped plate problem. February 1995

95 10 G. Kunert. Ein Residuenfehlersch�atzer f�ur anisotrope Tetraedernetze und Dreieck-

snetze in der Finite-Elemente-Methode. M�arz 1995

95 11 M. Bollh�ofer. Algebraic Domain Decomposition. March 1995

95 12 B. Nkemzi. Partielle Fourierdekomposition f�ur das lineare Elastizit�atsproblem in

rotationssymmetrischen Gebieten. M�arz 1995

95 13 A. Meyer, D. Michael. Some remarks on the simulation of elasto-plastic problems

on parallel computers. March 1995

95 14 B. Heinrich, S. Nicaise, B. Weber. Elliptic interface problems in axisymmetric

domains. Part I: Singular functions of non-tensorial type. April 1995

95 15 B. Heinrich, B. Lang, B. Weber. Parallel computation of Fourier-�nite-element

approximations and some experiments. May 1995

95 16 W. Rath. Canonical forms for linear descriptor systems with variable coe�cients.

May 1995

95 17 C. He, A. J. Laub, V. Mehrmann. Placing plenty of poles is pretty preposterous.

May 1995



95 18 J. J. Hench, C. He, V. Ku�cera, V. Mehrmann. Dampening controllers via a

Riccati equation approach. May 1995

95 19 M. Meisel, A. Meyer. Kommunikationstechnologien beim parallelen vorkondi-

tionierten Schur-Komplement CG-Verfahren. Juni 1995

95 20 G. Haase, T. Hommel, A. Meyer and M. Pester. Bibliotheken zur Entwicklung

paralleler Algorithmen. Juni 1995.

95 21 A. Vogel. Solvers for Lam�e equations with Poisson ratio near 0.5. June 1995.

95 22 P. Benner, A. J. Laub, V. Mehrmann. A collection of benchmark examples for

the numerical solution of algebraic Riccati equations I: Continuous-time case.

October 1995.

95 23 P. Benner, A. J. Laub, V. Mehrmann. A collection of benchmark examples for

the numerical solution of algebraic Riccati equations II: Discrete-time case. to

appear: December 1995.

95 24 P. Benner, R. Byers. Newton's method with exact line search for solving the

algebraic Riccati equation. October 1995.

95 25 P. Kunkel, V. Mehrmann. Local and Global Invariants of Linear Di�erential-

Algebraic Equations and their Relation. July 1995.

95 26 C. Israel. NETGEN69 - Ein hierarchischer paralleler Netzgenerator. August

1995.

95 27 M. Jung. Parallelization of multigrid methods based on domain decomposition

ideas. September 1995.

95 28 P. Benner, H. Fa�bender. A symplectic restarted Lanczos method for the Hamil-

tonian eigenvalue problem. October 1995.

Some papers can be accessed via anonymous ftp from server ftp.tu-chemnitz.de,

directory pub/Local/mathematik/SPC. (Note the capital L in Local!)


