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Exact discretizations of two-point boundary value problems

Glinther Windisch

Summary. In the paper we construct exact three-point discretizations of linear
and nonlinear two-point boundary value problems with boundary conditions of
the first kind. The finite element approach uses basis functions defined by the
coefficients of the differential equations. All the discretized boundary value prob-
lems are of inverse isotone type and so are its exact discretizations which involve
tridiagonal M-matrices in the linear case and M-functions in the nonlinear case.

1. Introduction

Let u(x) be a solution of a two-point boundary value problem

Lu= f(z), 0<uz<l,
u(0) = uo, u(l) = uy. (1.1)

Using a finite set of grid points w, = {z;}74) C [0,1], a discretization method is
said to be "exact” at u(x) if it generates a system of equations

Lyup = fa, (1.2)
whose solution is given by {u(z;)} .
We shall illustrate this by a simple example. Consider

—u"=0, 0<z<l,

u(0) = uo, u(l) =u, (1.3)

which has the unique solution u(x) = ug+ (u; —ug) . Then, the standard finite

difference method on the uniform grid w;, = {x; =th, 1 =0,...,n4+1, h = nl?}
defined by
Yo = Uo,
_ yz‘—1—2hy2i+yi+1 = 0, 1=1,...,n, (1.4)
Yny1 = U1,
is exact because y; = u(x;) = uo + x;(ug — ug), ¢ = 0,...,n + 1 is the unique

solution of the system of linear equations (1.4).



2. Exact discretization of differential equations with constant
coefficients

In this section we consider the two-point boundary value problem

Lu=—u"4+b/~+cu= f(z), 0<a<l,

u(0) = ug, u(l) =uy, (2.1)

where b and ¢ are real constants. Furthermore, we assume that f(z) is at least
continuous. It is known that the solution wu(x) of problem (2.1) may exhibit
boundary layers, see [2], [3].

2.1 Exact discretization of Lu = —u"= f(x)

The solution of

Lu=—u"= f(z), 0<z<]l,

u(0) = uo, u(l) = u, (2.2)
is given by
u(z) = uo(l — @) + wyw + fy G(a, &) f(€)dE, (2.3)
where
5(1 - 51?)7 £ <,
G0 = { (2.4)
l’(l - 5)7 f >,

is the Green’s function of the differential operator of problem (2.2). It is obvious
that the Green’s function is symmetric and nonnegative, i.e. G(x,¢) = G(£, )

and G(x,&) > 0 for all (z,¢) € [0,1]%.

Let wp, = {0 =g < a1 < 23 < -+ <, < Tpy1 = 1} be a grid with step sizes
h; =x; —x;1 >0fore=1,...,n+ 1. Then, the three—point discretization of
problem (2.2)

“Eyit (B ) v v = U0 sdOF() de,

hit1

(2.5)



with yo = uo, Yny1 = vy and

el g < €<,
¢Z(€) = %7 Z; <€ Sxi—l—la @ = 17"'7”7 (26)
0, else,

is exact for any n > 1.
The latter statement will be proved by showing that
yi = u(ey) = wo(l —2;) +wzi + fy Glen OF(O)dE, i=1,....n, (2.7)

satisfy all of the equations (2.5). The proof is quite technical and it will be
therefore omitted here.

Next, we rewrite the exact discretization (2.5) of problem (2.2) in matrix form.
For this purpose define

1 1 1
A = tridiag| ——, —+ , — ,
g( hi " he b hm)m
¥y = (ylv"'vyn)Tv

b = (by,...,b))",
o= ot el d

o= [ ear©d, iz,

Uy

b = o [ o5 de

hn—l—l

Then, the linear equation system (2.5) has short form

where the tridiagonal matrix A = AT is an irreducible, weakly diagonally domi-
nant M-matrix with

hy+ -4 hpg

det A =
hl"'hn—l—l

>0

and A™' > 0. Thus, the solution (2.7) of the system of equations (2.8) is unique.



We shall show now that the system of linear equations (2.5) also results from
a finite element discretization of problem (2.2). For this purpose, we start with
weak formulation of problem (2.2).

Define
U = {u(z) € W3(0,1), w(0) = ug, u(l) = 1w},

o1

V = W, (0,1),

1
a(u,v) = / u'v' dex.
0

Then, we seek a function u € U such that

a(u,v) = [y wo' dx = [y of de, YvelV. (2.9)

We define the finite dimensional approximation of problem (2.9) as follows. First,
we supplement the set of functions (2.6) with the two functions

{ et 0< <,

e w, <6<

9o(£) = Pnt1(§) = {

0, else, 0, else,

and introduce

Uy = {un(x) = uoo(z) + Zn: Yidi(x) + urdna(z), yw € R, i=1,...,n},

Vi = span{¢i(x) } iy

Second, seek uy € Uj, such that
alun, é;) = [y ¢:if dv  i=1,...,n. (2.10)

Now, it has been found that the finite element approximation (2.10) is equivalent
to the exact discretization (2.8) because of

A = tridiag (a(di-1, &) , a(di, &) » a(Pit1 i))psn »

where



a(giin, ¢i) = fy biqbide = —i,
a(¢i,¢i) = fo (67 de = L4k

a(Piz1, i) = fol ¢;+1¢; de = —4

2.2 Exact discretization of Lu = —u"+cu= f(z), ¢>0

For any constant ¢ > 0, the unique solution of

Lu=—-u"4+cu=f(x), 0<a<l,

u(0) = ug, u(l) =uy, (2.11)
is given by
u(z) = up U= g ST (L G, €) F(€)de (2.12)

where G.(x,¢) is the Green’s function of the differential operator of problem

(2.11) defined dy

sinh(y/¢(1—=)) sinh(1/c€)
Ge(z,§) G (2.13)
(x, €)= .
sinh(y/cz) sinh(y/¢c(1-¢))
VTV R

It is thus clear that G.(x,¢) is symmetric and nonnegative. This means that

Go(z,8) = G, 2) and Ge(x,£) > 0 for all (z,£) € [0, 1]%

Now let us consider the exact discretization of problem (2.11) on the uniform
gridw, ={a;, =th, i=0,....n4+1, h = nl? :

It turns out that the three-point discretization

—yi—1 + 2cosh(\/ch) yi — yiz1 = % Jo i) f(€) dE,
(2.14)

with yo = wg , Yn41 = u1 and



sinh(Vele—riza)) - 50 <6< gy

sinh(/ch) ’
Pi§) = L) g <6 <agyy, i=1,....n, (2.15)
0, else,

is exact for any n > 1.

In order to prove this statement, we have to show that

yi = u(;) = uo Si“ﬁﬁﬁjgf"” + uls;?ﬂlﬂf“” + o Gel(i, €) f(€)dE,

(2.16)

is the solution of the system of equations (2.14). The proof will be omitted here
because it only needs technical details.

To get an impression how the functions ;(¢) differ from the pieceweise linear
functions ¢;(¢) defined by (2.6) we illustrate the behaviour of ;(&) for ¢ = 16,

see Figure 1.

Figure 1

The left-hand side expression of the exact discetization (2.14) can be deduced
directly from the Taylor series expansion

—v(x — h) + 2cosh(v/ch) v(z) — v(x + h) = Zrzk( )-I-C v(x )) hzk,

which holds true for any function v € O, where rop € IR, £ =1,2,..., are well-
defined coefficients. Exploiting this for the solution wu(x) of the homogeneous
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differential equation, we get
—u(x —h)+ ZCosh(\/Eh)u(:Jc) —u(x+h)=0,
because —u" + cu = 0 implies —u®¥)(z) + Fu(z) =0 for k =1,2,... .

Next, we introduce a matrix formulation of the exact discretization (2.14). For
this let

e
A = W tridiag (—1 , 2cosh(y/ch) , _1)nm’
¥y = (ylv"'vyn)Tv
b o= (bi,...,b,)7,
_ Ve '
by = WUO‘F/O hi(€) f(€) dg,
o= [ w©f© & iz,
_ Ve !
by = mul ‘|'/0 ba(€) f(E) dE.
Thus, (2.14) is equivalent to
Ay = b, (2.17)

where the tridiagonal matrix A = AT is an irreducible, strictly diagonally domi-
nant M-matrix with A= > 0.

The exact discretization (2.17) of problem (2.11) is also deducable by a finite
element method which uses the function system {v;(x)}, defined by (2.15).

With the same U,V as in Section 2.1 we now define the bilinear form
1
alu,v) = / (u'v" + cuv) dx.
0

Then, the weak form of problem (2.11) is defined as follows: Seek u(x) € U such
that

a(u,v) = fy (o' + cuv) de = [} vf dz, YvelV. (2.18)
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For a finite dimensional approximation of problem (2.18), we supplement the
function system {«;(£)}7; with the two functions

sinh(Velzi=8)) g < ¢ < o
sinh(y/ch) ’ - = b
lbo(f) = {

0, else,

sinh(y/ch) —5 ="

snh(VE(€—wa)) <]
77Z)n—|—1(€) =

0, else,

and define

Up = {uh(x) = U(ﬂl)o(l') + Z y2¢2(x) + u1¢n+1(:1:), Yi € IR? @ = 17 s 7n}7

=1

Vi = 5}7@”{1/%(3?) -

Thus, seek uy € Uy, such that
a(uh7¢i) = fOl (u/h@/); +c uh¢2) de = fOl 77be dl’, @ = 17 SRR (219)

To show now that the finite element approach (2.19) leads to the exact discretiza-
tion (2.17), we have to compute a(tx, ;) for k =¢ — 1,4, + 1. In fact, we find
the entries of the matrix

A =tridiag (a(i—1, i), a(ti, ;) altiq, ¢2))m<n )

as

a(i1,;) = fol (Vi + e himapy) de = — sinh\(/\g/gh)7

a(bort) = LD e () de = DLl

(i) = f (Sl e o) de = — i

We leave the verification of the latter three relations to the reader because it only
needs a certain amount of rather technical integrations.




Remarks

1. Consider the standard finite difference discretization

Yo = Uo,
—Yi—1 + (2 + hzc)yi —Yit1 — th(xz)v i = 17 N
Yn+1 = U1,

of problem (2.11) on the uniform grid w,. For ¢ > 0 and f(x) # 0 it
can never be an exact discretization because the coefficient (2 + hzc) of y;
represents only the first two terms of the Taylor series expansion

2¢2h?t
41

ZCosh(\/Eh) =24 ch®+

and the right-hand side is approximated by

sinh(y/ch) [t T
— | wders©) de = wt ),

2. If we let ¢ — +0 in the exact discretization (2.14), we immediately derive
the exact discretization (2.5) of problem (2.2).

2.3 Exact discretization of Lu = —u"+bu'+ cu= f(x), bjc€ IR, c>0

We turn our attention now to the construction of an exact discretization of the
boundary value problem

Lu=—u"4+b/~+cu= f(z), 0<a<l,

u(0) = ug, u(l) = uy. (2.20)
Suppose now that
b,c e IR with c>0, max{c, |b]} > 0. (2.21)

Then problem (2.20) has a unique solution u(z).

We start with the representation of u(x). From assumptions (2.21) we get that
the characteristic equation

A4 bA+ec=0



of the homogeneous differential equation Lu = 0 has two different real roots

b— b+ 4e b+ 0%+ 4e

A= ———————— N =
2 5 < 1 5
It holds
)\1 + )\2 = b, )\1)\2 = —¢C,
eM—e >0, (A1 — A)(eM — €M) > 0.

Then the solution of problem (2.20) is given by
() = wpS R m G o S [ G, €) f(€) dE, (2.22)

where G, (x, £) is Green’s function of the differential operator of problem (2.20).
For (z,&) € [0, 1]*, we have

(M 222 _ Aoty ) (e=doé =M1
(M—A2)(eM —er2) , <,
Gep(x,€) = (2.23)
(5>\1$_5>\2$)(5>\1(1—6)_5>\2(1—€)) >
(a=da) (1 =e%2) .tz

In any case it holds that G.,(x,&) > 0 for (z,£) € [0, 1]

We remark that b = 0, ¢ > 0implies \; = \/c = —Ay, hence G.o(z,&) = G.(x,§),
see (2.13).

Ifb#£0,c>0,then G.p(x,€&) # Gep(E, ) for all a # €.

We now shall next turn to the exact three-point discretization of problem (2.20)

on the uniform grid w;, with step size h = # One can show that

—(eM — e yiy + 2sinh (A — A)h) i — (7" — e M) yigy =
(2.24)
2(Cosh((/\/\11_—A/\22)h)—1) T a6 f(€) de, i=1,...,n,

where yo = ug, Yny1 = ug and
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e r2(é—zi1) _ —M(é—zi_1)

c—Aah_—Aih , Ti1 < f < z;,
) _ Mz —8) _ Ao(zip1-8) .
Xl(f) - ) e>\1h_z>\2h ) ;< f < Tiya, v=1,...,n, (225)
0, else,

is an exact discretization of problem (2.20).

For the proof, a calculation reveals that

eMtremi _ phamithe eMTi _ phaz

+ uy

yi = u(x;) = ug

[ Goten 1@ de

eM — e eM — e

is solution of the system of linear equations (2.24). It will be seen later on that
this solution is unique.

We have depicted one such function y;(«) just defined for the values b =8, ¢ = 12
in Figure 2.

Figure 2 e

The idea for the left-hand side expression of exact discretization (2.24) is to use
a finite difference scheme for Lu = 0 of type

u(z—h)—=2u(z)+u(z+h u(lz+h)—ulz—h
s | jutetiste) | () (2.26)

11



where «(h)?, 3(h) have to be chosen such that (2.26) is exact discretization on
the uniform grid wy,.

Assuming temporarily b # 0,c¢ > 0, we are able to determine unique a(h)? and
B(h). Substituting expression (2.22) for f(x) =0 in (2.26) gives

sinh((A—A2)h)+sinh(Axh)—sinh(A1 A

a(h)? = % ( sinh)(/\)lh)—sigqh(/\lh) Gt )
b sinh((A1—X2)h)+sinh(Ash)—sinh(A A

Bh) = ¢ ( cosh)(/\)lh)—cc()sh(/\)gh) Gt

Making use of the latter two expressions in (2.26) and multiplying then (2.26)
through by (sinh((A; — A2)h) + sinh(Azh) — sinh(A1h))/c  gives the left-hand

side expression of (2.24) after rearranging the coefficients.

Next we describe the exact discretization (2.24) in matrix form. Define

- A= Ag
P B(cosh((h — \)h) — 1)’

A = pitridiag (—(eAlh — M) 2sinh((A — Ag)h), —(e72" — e_Alh))

b
nxXn

¥y = (ylv"'vyn)Tv
b = (by,...,b))",
1
b= pet =Mt [ a(Of(6) d
1 .
b= [ ) de. P=2. . n—1,
1
b = (e =+ [ (€0 de,
Thus, we may write the exact discretization (2.24) as
Ay = b. (2.27)

The matrix A is an irreducible tridiagonal M-matrix.
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To see this, we remark that Ay < 0 < Ay implies
p>0, eMh el T _emMh 500 25inh((A\ — A2)h) > 0,

so that A isirreducible, off-diagonally nonpositive and diagonally positive. Hence,
A is an irreducible L-matrix. The proof is complete if we can show that A has
diagonal dominance property.

We get that A is weakly row diagonally dominant in the case ¢ =0, b # 0,
and, that A is strictly row diagonally dominant if ¢ >0, b € IR.

For this, let r;, ¢« = 1,...,n, denote the row sums of A. In any case we have
r1>0and r, >0. Fort=2,....n — 1 we get

r; = 2sinh((A; — A\g)h) — (eMh — et2h) — (e7h2h — ¢l
= — 8sinh (Aé—h) sinh (%) sinh (ﬁ%ﬁ) .
The case ¢ =0, b= 0 implies A\, =0 and hence r; =0 for: =2,...,n — 1. Then

the matrix A is an irreducible and weakly row diagonally dominant L-matrix.

Assuming ¢ > 0, we get Ay < 0 < Ay. Thus, r; > 0 forz =2,...,n — 1 and the
matrix A is a strictly row diagonally dominant L-matrix.

Therefore, under assumption (2.21) the matrix A is an irreducible tridiagonal
M-matrix with A™* > 0. This proves that the given solution y; = u(z;) for
i =0,...,n+ 1, of the exact discretization (2.24) is unique.

The M-matrix A is symmetic if and only if b6 = 0 holds.
To see this remember that b = 0 implies 0 < \/c = A; = —A,. Putting this in the
definition of the matrix A yields

A=2p tridiag(—sinh(y/ch),sinh(2v/ch), — sinh(v/ch))pxpn = AT

For b # 0 it follows that A\ + Ay = b # 0. Hence A # AT because of

A1h A2h A1h
— _ (& c c
e A2h e A1h / e/\lh eAQl’L‘

eQutr)h bl

Let the case b # 0, ¢ = 0 briefly catch our attention. This assumption implies

b+ |b
)\1:+T||:b+207 )\2:7:b_§07 )\1—)\2:|b|>0



Then the matrix A has the form
A=p tridiag(—(eb+h —e"™ ), 2sinh(]b|h), —(e7 " — e_b+h))nxn £ AT,

B 1o
where p = smm—s-

Our next goal is to show that the exact discretization (2.27) of problem (2.20)
also results from the application of Galerkin’s method. The crucial question,
of course, is to adapt the basic function system to the boundary value problem
(2.20). The hint how to choose the best basic function system comes directly
from the right-hand side terms of the exact discretization (2.24).

We start with a weak formulation of problem (2.20). Let U,V be the function
sets defined in Section 2.1. Then, seek u(x) € U such that

1 1
a(u,v):/ (o' + b u'v + ¢ uv) d:z;:/ vf de, YvelV.
0

0

To derive a finite dimensional approximation of the just stated weak formulation
of problem (2.20), we first supplement the set of function (2.25) with

er1(z1—8) _Aa(x1—¢)

AP Azh ) 0< f < 71,

Xo(f) =

0, else,

e—22(6—7n)_—A({—zn)

c—22h_—X R , x, < f <1,

Xn+1 (f) =
0, else.

We now define
Uh = {uh(x) = uOXO(x) + Z szz(l') + U1Xn+1($), Yy; € IRv 1= 17 cee 7n}7
=1
Vi, = span{xi(z)}i,.

Then, seek uy(x) € Uy which satisfies
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alun, i) = fo (WXt +bupxi +cupys) de = [y xif d,
(2.28)
1 =1

sy M

Now we can show that the system of linear equations (2.28) is equivalent to (2.27)
which represents the exact discretization of problem (2.20). It holds true that

A = tridiag(a(xi=1, Xi)> a(Xis Xi)» @(Xig1s Xi) Jnxn-

The computation of the integrals a(y, x;) for k =¢—1,4¢,¢4 1, which define the
nonzero entries of the matrix A, proves the assertion.

We get
a(Xi-1, Xi) = fol (i XG FbXi_ixi + ¢ Ximixi) do = — é(Aclo_sﬁf()A(f:h;)Z)Ai))v
alxixs) = 3 (OGP Hbxte (W) de = MGTimamsiet
a(Xiy1, Xi) = fol (X§+1X§ + b Xipxi ¢ XipiXi) do = — (Azl(c_oAsi)(((i_lj;);)_—Ai;)

As in all previous cases, the computation of the latter three terms only needs
elementary integrations. The reader will find out no difficulty in doing this.

3. Exact discretization of Lu = —(p(z)u') = f(x)
Assume p(x) > 0 for « € [0, 1] with
1
0<g=Jfy 5 < oo (3.1)

Then, the unique solution u(x) of

Lu=—(plz)u') = f(z), 0<a<l,

u(0) = ug, u(l) =uy, (3.2)
has the form
u(w) = [} [t o Gola, (e, (3.3)



with Green’s function

& d 1 4
goﬁfxfi)v €<$,

Gplz,§) = d f . ‘ (3.4)
1 1 t x_t > 7.

We mention that Green’s function G,(x, £) of the differential operator of problem
(3.2) is symmetric and nonnegative on [0, 1]*.

Letwp, ={0=ag< a1 <3<+ <, <Tpy; = 1} and define
p; = ;’_% i=1,...,n+1. (3.5)

It can be shown that the three-point discretization of problem (3.2)

yirr = Jo mi(€)S (&) dé,

_p%. Yi-1 + (p%—l-L) Yi —

Pit+1 Pit+1
(3.6)
v=1,...,n,
with yo = uo, Yny1 = vy and
L ( € dt i1 dt 1 dt
ﬁ(fl’zlp f__ f )7 51?2'—1§f§:1?¢,
. — 1 Titl dt 1 ﬂ _ dt & dt . . .
mi(¢) Pit19 ( f l’z+1 p(t) Jo p(t)) w < S, (37)
0, else,
for:=1,...,n is exact for any n > 1.
All we need to prove is that
yi=ule) = [ 5+ 5 50+ o Golen ) F(€)dE,
(3.8)

=1 n

9o ey 9

satisfy the system of linear equations (3.6). We leave the details of the proof to
the reader because it requires

To analyse qualitative properties of the system of linear equations (3.6), we next

16



rewrite it in matrix form. Setting
. 1 1 1 1
A = iridiag (—— , —+ y — ) )
bi  Pi Pita Dit+1 n
¥y = (ylv"'vyn)T
b - (bl,...,n)T

bl = —I_/ 771 df?

b = / WOSE & i=Tne,

pn—l—l

we get

Ay =5 (3.9)

as short form of (3.6), where A = AT is an irreducible, weakly diagonally domi-
nant M-matrix. Hence, the solution (3.8) is unique.

We shall now derive the just obtained exact discretization of problem (3.2) from
the application of a finite element method which uses the function system {n;(x)}

defined by (3.7).
Let U and V be the same as in Section 2.1 and define

a(u,v) = fy plx)u'v'de.

Then we seek a function v € U such that

a(u,v) = [y pla)u'v de = [y vf dz, Yo e V. (3.10)

Before we are going to formulate a finite dimensional approximation of the weak
form (3.10) on the grid wy,, we define

L1 dt 1 dt 1 dt & dt
p1q( p f _fxlp fp )7 0§€§$17
no(¢) =

0, else,

Pn+19

1 (f;np f&ﬂ xn dtfl dt)7 v, < E<1
77n+1(€):

0, else.

17



Now let
Up = {uh(x) = UOUO(@') + Z ylnl(x) + U177n+1(51?)7 Yi € IRv @ = 17 s 7n}7
=1

Vio = span{ni(z)}iy,

and seek uj, € U, such that

alup,n;) = fol plx)ulnide = fol n: f dez, 1=1,...,n. (3.11)

From (3.11) now results the exact discretization (3.8) of problem (3.2). To see
this, we prove that

A =tridiag (a(ni—1,n:)s a(i75)s a(Dig1576)),,50 -

A straightforward calculation shows that

a(ni—1,m;) = fol p(il/’)??;_ﬂ?; dv = T opi?

a(nin) = o pla)(ng)? de =

B |-
3
+
£

a(ig, i) = Jo p(@)nigan; do = —

Remarks

1. Assuming p(x) = 1, we get immediately p; = h; = 2, — 2,1 and n;(2) =
éi(x) for all indices i, see (3.5) and (3.7), respectively. In this case, the
exact approximation (3.6) is identical with the exact approximation (2.5)
of problem (2.2), see Section 2.1 .

2. Problem (3.2) also covers boundary layer problems. For example, consider
problem (3.2) with f(z) = 0 and p(z) = ¢~**. Then the differential equation
reduces to —u” + bu’ = 0, where for |b| > 1 boundary layers may occure.
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4. Exact discretization of Lu = —(®(u))" = f(x)

Consider the nonlinear boundary value problem

Lu=—(®w)" = f(z), 0<z<l,

u(0) = ug, u(l) =uy,
with
®(u) € CY(IR) such that  ®'(u) > 0, Vu € IR. (4.2)

Then there exists ®~! which we need in the sequel.

Remark that
—(k(u)u") = f(x) with  k(u) >0

can be transformed via ®(u) = [i' k(t) dt into the differential equation of
problem (4.1).

One checks easily now that

u(w) =7 (1 —2)®(uo) + x®(wr) + f3 Gla, &) f(£)dE) = (4.3)

o7 (1= )(uo) + ) + (1 =) [ €006 de+o [ (1= ©fe) de)

is the solution of problem (4.1), where G/(x,¢) is Green’s function of the differ-
ential operator of problem (2.2), see Section 2.1.

Let wp, = {0 =ap <21 <2<+ <xp, < apyp =1} with hy =a; — 2,1 >0
fore =1,...,n+ 1. It turns out that the following three-point discretization of
problem (4.1)

—%¢waﬂ4é+aﬂ@w%w;@mﬂﬁwg@@ﬂo&,( |
4.4

with yo = o, Yn41 = up and the system of basis functions {¢;(x)}", defined by
(2.5) is an exact discretization of problem (4.1) for any n > 1.
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Substituting

gi = ulws) = 071 (1= ) ®(uo) + 2:®(ur) + fi Gl ) F(€) de ).
(4.5)
1=1

n

9o ey 9

in (4.4) and applying the results of Section 2.1 gives the proof.

For ®(u) # u the exact discretization (4.4) of problem (4.1) is a system of non-
linear equations.

Next we shall rewrite the nonlinear equation system (4.4) in short form. For this
purpose let

F(y) = (fl(y)v"'vfn(y))T p IR" — Ian

1 1 1
A = (5 +50) @)= )
1 1 1 1
F) = = e+ (4 ) 00— e O =2
1 1
R = = W)+ (1 ) B
o= o 0+ [ @) de,
o= [ oOf© de i=2.m,
1 1
b = g B+ [ 6a(5(6) de
The exact discretization (4.4) now becomes
F(y) = b. (4.6)
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The function F'(y) is an M-function on IR"™ because

F'(y) = tridiag (—hii, hii—l— Lo )nxndiag(q)’(yl),...,q)’(yn))nxn

hig1 hig1

= Ag¢(y)

is an M-matrix for all y € R". This follows directly from the fact that A is an
M-matrix, see Section 2.1, and that

o(y) = diag (®'(y1),..., 9 (y,)) >0 with det ¢(y) >0 Vye IR".

Thus F(y) = b has at most one solution. Its unique solution is given by (4.5).

5. Exact discretization of some nonlinear differential operators

In this section we shall briefly describe exact discretizations of two nonlinear
boundary value problems. To do this, it is necessary to have expressions of the

solutions at which a discretization may be exact. In each case we assume a

uniform grid wy, with step size h = nl?

5.1 Exact discretization of Lu = —u" + %uQ =0

Consider
_ 3,,2 —
Lu = —u" + Su 0, O<a<l, (5.1)
u(0) =4, wu(l)=1,
see [1]. Problem (5.1) has two solutions
up(z) = (1-;195)27 ug(x) is an elliptic function. (5.2)
It can be seen now that
Yo = 47
— vt g Sy g (1-Bu) = 00 i=1..m, (5.3)
Yny1 = 17
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is exact discretization of problem (5.1) at its solution uq(x) because

is a solution of the nonlinear equation system (5.3). The interesting fact is, that
we have to approximate the term u? over three grid points. At the other solution
us(x) of problem (5.1) the given approximation (5.3) is not exact. Nevertheless,
the system of nonlinear equations (5.3) has not only the solution (5.4).

5.2 Exact discretization of Lu = —cu” —uu' =0, €>0

Consider the boundary value problem

Lu=—cu" —uu' =0, 0<ax<l,

u(0) =0, u(l)=tanh (L), (5.5)

which has the solution
u(x) = tanh (%) . (5.6)
The discretization of problem (5.5)

y0:07

—Yio1 + 2y — Yir1 — ¥i (i1 — yim1) s(h) = 0, e=1,....n,  (5.7)

Ynt1 = tanh (i) )
is exact at solution (5.6), where
cosh( &)-1 3 5
sh) =i =3 - (1) 0 (), (58)

which satisfies

1
e(cosh(%) +1)

s(h) € (—1,1), $§'(h) = > 0,

The solution of the system of nonlinear equation (5.7) is given by

y; = u(x;) = tanh (%), 1=0,....,n+1. (5.9)
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6. Conclusions
We are now going to comment the results and point out some further problems.

All of the two—point boundary value problems stated in Sections 2 to 4 exhibit the
property of inverse isotonicity (sind ”von monotoner Art”, see [1]). This means

Lu = f(z) < Lv = g(a), 0<a<l,

U(O) = Ug S U(O) = Vo, u(l) = Uy S v(l) = vy,
implies
u(z) <w(z), 0<a <1,

The representations of its solution (2.3), (2.12), (2.22), (3.3) and (4.3) confirm
these assertions directly.

The presented exact three-point discretizations of the boundary value problems
(2.2), (2.11), (2.20) and (3.2) yield in any case systems of linear equations Ay = b,
where A is a tridiagonal M-matrix, see [5]. The system matrix A is symmetric
if the Green’s function of the corresponding differential operator is symmetric
and it is not symmtric vice versa. Furthermore, the exact discretization of the
nonlinear inverse isotone problem (4.1) yields a nonlinear system of equations

F(y) = b, where F(y) is an M-function, see [5].

In each case, the right-hand side vector b = b(uo, uq, f(2)) of the exact discretiza-
tions is isotone according to its arguments, i.e.

up < wg,  ug <y, f(a) <glx), VYeel0,1],
implies
b(ug, u1, f(x)) < b(vg, v1,g(x)).
Hence, we get for the solutions of the systems of equations Ay = b that
A7 (g, ur, f(2)) < A7 b(vo, v1, g(2))
which reflects the inverse isotonicity in the exact discretizations. The same asser-

tion holds true for y = F~!(b) because the inverse function F'~* of an M-function
F(y) exists and is isotone, i.e.

F (buo, u, f(2))) < F7 (bvo, vr, g(2))).
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Similar results are possible if the boundary conditions of first kind are replaced
by other types of boundary conditions, for instance, by boundary conditions of
second or third type, or by mixed.

One of the further questions is how to apply this results if the differential equation
contains variable coefficients.

We remark that it is also possible to construct exact (2s+1)—point discretizations
with s > 2 over a uniform grid w; for the stated two—point boundary value
problems. For linear problems, the resulting system of linear equations Ay = b
involves a banded monotone matrix A which also guaranties the inverse isotonicity
of the exact discretizations.
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