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Abstract

A restarted symplectic Lanczos method for the Hamiltonian eigenvalue

problem is presented. The Lanczos vectors are constructed to form a symplectic

basis. Breakdowns and near-breakdowns are overcome by inexpensive implicit

restarts. The method is used to compute eigenvalues, eigenvectors and

invariant subspaces of large and sparse Hamiltonian matrices and low rank

approximations to the solution of continuous-time algebraic Riccati equations

with large and sparse coe�cient matrices.
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1 Introduction

Many applications require the numerical solution of the real Hamiltonian eigenvalue

problem

Hx = �x(1)

where

H =

"

A G

Q �A

T

#

2 IR

2n�2n

is large and sparse and

A;G = G

T

; Q = Q

T

2 IR

n�n

:

The eigenvalues of Hamiltonian matrices are used in algorithms to compute the

real and complex stability radius of matrices (see [11, 15]) and the H

1

{norm of

transfer matrices (see [16]). In computational chemistry the problem of �nding some

eigenvalues of largest modulus and the corresponding eigenvectors of a Hamiltonian

matrix arises in linear response theory, see e.g. [38].
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2 Benner and Fa�bender

The essential role of the continuous-time algebraic Riccati equation (CARE) in

control theory

Q+A

T

X +XA�XGX = 0(2)

and its connection to the Hamiltonian eigenproblem (1) is well known, see e.g.

[32, 34, 36] and the references given therein. The solution of CARE (2) with small and

dense coe�cient matrices (say n � 100) has been the topic of numerous publications

during the last 30 years. Even for these problems a numerically sound method, i.e.,

a strongly backwards stable method in the sense of [4], is yet not known. Only a few

attempts have been made to solve (1) for large and sparse matrices, e.g. [28, 30, 43].

In order to reduce both computational cost and workspace, it is crucial to use the

Hamiltonian structure.

It is well-known that for each Hamiltonian matrix H, we have

(JH)

T

= JH

where

J =

"

0 I

n

�I

n

0

#

(3)

and I

n

is the n�n identity matrix. The eigenvalues of a Hamiltonian matrix H occur

in pairs �;�� and if they are complex with nonzero real part even in quadruples

�; �;��;��. Symplectic matrices S are de�ned by the property S

T

JS = J for

S 2 IR

2n�2n

(this property is also called J-orthogonality). IfH is Hamiltonian and S is

symplectic, then S

�1

HS is Hamiltonian. Thus a structure-preserving and numerically

stable algorithm for the eigenproblem (1) should consist only of orthogonal symplectic

similarity transformations. An algorithm with this property was proposed in [10] for

the case that rank G = 1 or rank Q = 1. To the best of our knowledge, the only

exisiting algorithm for the general case satisfying this demand was proposed in [1].

But for growing dimension n, this method su�ers from convergence problems. The

Lanczos method proposed here for the large scale problem exploits the structure of

the problem by weakening orthogonality to J -orthogonality. In exact arithmetic, the

method would compute a symplectic (nonorthogonal) matrix S and a Hamiltonian

J -Hessenberg matrix

f

H such that

f

H = S

�1

HS =

2

6
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:(4)

The reduction of Hamiltonian matrices to Hamiltonian J -Hessenberg form serves

as initial step in the Hamiltonian SR algorithm proposed by Bunse{Gerstner and
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Mehrmann [8]. This algorithm is a QR-like method for the Hamiltonian eigenproblem

based on the SR decomposition. There,

f

H is computed by an elimination process.

During this elimination process the use of very badly conditioned matrices can not

always be circumvented. It is shown that the reduction of a Hamiltonian matrix

to such a Hamiltonian J -Hessenberg form does not always exist. The existence of

this reduction and also the existence of a numerically stable method to compute this

reduction is strongly dependent on the �rst column of the transformation matrix that

carries out the reduction.

A few attempts have been made to create structure-preserving methods using

a symplectic Lanczos method. The symplectic Lanczos method proposed by Mei

[37] works with the squared Hamiltonian matrix and su�ers from stability problems

as well as from breakdown. The structure-preserving symplectic Lanczos method

considered here creates a Hamiltonian J -Hessenberg matrix if no breakdowns or

near-breakdowns occur. Eigenvalue methods for such matrices and the application

to the solution of algebraic Riccati equations (2) are examined in [7, 8, 35, 36, 45].

In [22] Freund and Mehrmann present a symplectic look-ahead Lanczos algorithm

which overcomes breakdown by giving up the strict Hamiltonian J -Hessenberg form

(4). In this paper we combine the ideas of restarted Lanczos methods [12, 25, 46]

together with ideas to re
ect the Hamiltonian structure and present a restarted

symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. Implicitly

restarted Lanczos methods typically have a higher numerical accuracy than explicit

restarts and moreover they are more economical to implement.

In Section 2 the implictly restarted Lanczos method for nonsymmetric matrices

is reviewed. Section 3 describes the symplectic Lanczos method for Hamiltonian

matrices. In order to preserve the Hamiltonian J -Hessenberg form obtained from

the symplectic Lanczos method, an SR decomposition has to be employed in an

implicitly restarted symplectic Lanczos method. Thus in Section 4 all details of the

SR decomposition necessary for the restart are presented. The implicitly restarted

symplectic Lanczos method itself is derived in Section 5. Numerical properties of

the proposed algorithm are discussed in Section 6. Section 7 gives a survey over

applications of the method and in Section 8, we present some numerical examples.

2 The Implicitly Restarted Lanczos Method

Given v

1

; w

1

2 IR

n

and a nonsymmetric matrix A 2 IR

n�n

, the standard nonsym-

metric Lanczos algorithm [33] produces matrices P

k

= [p

1

; : : : ; p

k

] 2 IR

n�k

and

Q

k

= [q

1

; : : : ; q

k

] 2 IR

n�k

which satisfy the recursive identities

AP

k

= P

k

T

k

+ �

k+1

p

k+1

e

T

k

(5)

A

T

Q

k

= Q

k

T

T

k

+ 


k+1

q

k+1

e

T

k

:(6)

The vector e

k

is the kth unit vector and

T

k

=

2

6

6

6

6

6

4

�

1




2

�

2

.

.

.

.

.

.

.

.

.

.

.

.




k

�

k

�

k

3

7

7

7

7

7

5



4 Benner and Fa�bender

is a truncated reduction of A. Generally the elements �

j

and 


j

are chosen so

that j�

j

j = j


j

j and Q

T

k

P

k

= I

k

(bi-orthogonality). One pleasing result of this

bi-orthogonality condition is that multiplying (5) on the left by Q

T

k

yields the

relationship Q

T

k

AP

k

= T

k

.

In theory, the three-term recurrences in (5) and (6) are su�cient to guarantee

Q

T

k

P

k

= I

k

. Yet in practice, it is known [39] that bi-orthogonality will in fact be lost

when at least one of the eigenvalues of T

k

converges to an eigenvalue of A. (See also

[24] and the references therein.)

At each step of the nonsymmetric Lanczos tridiagonalization, an orthogonaliza-

tion is performed, which requires a division by the inner product of (multiples of) the

vectors produced at the previous step. Thus the algorithm su�ers from breakdown

and instability if any of these inner products is zero or close to zero. It is known

[29] that vectors q

1

and p

1

exist so that the Lanczos process with these as starting

vectors does not encounter breakdown. However, determining these vectors requires

knowledge of the minimal polynomial of A. Further, there are no theoretical results

showing that p

1

and q

1

can be chosen such that small inner products can be avoided.

Thus, no algorithm for successfully choosing p

1

and q

1

at the start of the computation

yet exists.

It is possible to modify the Lanczos process so that it skips over exakt breakdowns.

A complete treatment of the modi�ed Lanczos algorithm and its intimate connection

with orthogonal polynomials and Pad�e approximation was presented by Gutknecht

[26, 27]. Taylor [47] and Parlett, Taylor, and Liu [41] were the �rst to propose a look-

ahead Lanczos algorithm that skips over breakdowns and near-breakdowns. The price

paid is that the resulting matrix is no longer tridiagonal, but has a small bulge in the

tridiagonal form to mark each occurence of a (near) breakdown. Freund, Gutknecht,

and Nachtigal presented in [23] a look-ahead Lanczos code that can handle look-ahead

steps of any length.

A di�erent approach to overcome breakdowns and near-breakdowns is to modify

the starting vectors by an implicitly restarted Lanczos process. Given that P

k

and

Q

k

from (5) and (6) are known, an implicit Lanczos restart computes the Lanczos

factorization

A

e

P

k

=

e

P

k

e

T

k

+

e

r

k

e

T

k

(7)

A

T

e

Q

k

=

e

Q

k

e

T

T

k

+

e

q

k

e

T

k

(8)

which corresponds to the starting vectors

e

p

1

= �

p

(A� �I)p

1

e

q

1

= �

q

(A

T

� �I)q

1

(9)

without explicitly restarting the Lanczos process with the vectors (9). For a detailed

derivation see [25] and the related work in [12, 46].

In Section 5 we show how to use this approach to overcome (near) breakdown in

the symplectic Lanczos algorithm discussed in the next section. Another application

of the restart idea will be given in Section 7 where the symplectic Lanczos method is

used to �nd low-rank approximations to the solution of algebraic Riccati equations.
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3 A Symplectic Lanczos Method for Hamiltonian Matrices

In this section, we describe a symplectic Lanczos method to compute the reduced

Hamiltonian J -Hessenberg form (4) for a Hamiltonian matrix H similar to the one

proposed in [22]. The usual nonsymmetric Lanczos algorithm generates two sequences

of vectors. Due to the Hamiltonian structure of H it is easily seen that one of the

two sequences can be eliminated here and thus work and storage can essentially be

halved. (This property is valid for a broader class of matrices, see [21].)

In order to simplify the notation we use in the following a permuted version of H

and

f

H. Let

H

P

= PHP

T

;

f

H

P

= P

f

HP

T

; S

P

= PSP

T

; J

P

= PJP

T

with the permutation matrix P = P

n

where

P

n

= [e

1

; e

3

; : : : ; e

2n�1

; e

2

; e

4

; : : : ; e

2n

] 2 IR

2n�2n

:

If the dimension of P

n

is clear from the context, we leave o� the superscript.

From S

T

JS = J we obtain

S

T

P

J

P

S

P

= J

P

=

2

6
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.
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while S

�1

HS =

f

H yields

H

P

S

P

= S

P

f

H

P

= S

P

2
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:(10)

The structure preserving Lanczos method generates a sequence of matrices

S

2k

P

= [v

1

; w

1

; v

2

; w

2

; : : : ; v

k

; w

k

] 2 IR

2n�2k

satisfying

H

P

S

2k

P

= S

2k

P

f

H

2k

P

+ �

k+1

v

k+1

e

T

2k

(11)
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where

f

H

2k

P

= P

k

f

H

2k

P

k

T

is a permuted 2k � 2k Hamiltonian J -Hessenberg matrix

f

H

2k

of the form (10). The space spanned by the columns of S

2k

= P

n

T

S

2k

P

P

k

is

symplectic since S

2k

P

T

J

n

P

S

2k

P

= J

k

P

where P

j

J

j

P

j

T

= J

j

P

and J

j

is a 2j � 2j matrix

of the form (3).

As this reduction is strongly dependent on the �rst column of the transformation

matrix that carries out the reduction, we must expect breakdown or near-breakdown

in the Lanczos process as they also occur in the reduction process to Hamiltonian

J -Hessenberg form, e.g. [8]. Assuming that no such breakdowns occur, a symplectic

Lanczos method can be derived as follows.

Let S

P

= [v

1

; w

1

; v

2

; w

2

; : : : ; v

n

; w

n

]. For a given v

1

, a Lanczos method constructs

the matrix S

P

columnwise from the equations

H

P

S

P

e

j

= S

P

f

H

P

e

j

; j = 1; 2; : : : :

That is, for odd numbered columns

H

P

v

m+1

= �

m+1

v

m+1

+ �

m+1

w

m+1

() �

m+1

w

m+1

= H

P

v

m+1

� �

m+1

v

m+1

=:

e

w

m+1

(12)

and for even numbered columns

H

P

w

m

= �

m

v

m�1

+ �

m

v

m

� �

m

w

m

+ �

m+1

v

m+1

() �

m+1

v

m+1

= H

P

w

m

� �

m

v

m�1

� �

m

v

m

+ �

m

w

m

=:

e

v

m+1

:(13)

Now we have to choose �

m+1

; �

m+1

such that S

T

P

J

P

S

P

= J

P

is satis�ed, that is we

have to choose �

m+1

; �

m+1

such that v

T

m+1

J

P

w

m+1

= 1. One possibility is to choose

�

m+1

= jj

e

v

m+1

jj

2

; �

m+1

= v

T

m+1

J

P

H

P

v

m+1

:

Premultiplying

e

v

m+1

by w

T

m

J

P

and using S

T

P

J

P

S

P

= J

P

yields

�

m

= �w

T

m

J

P

H

P

w

m

:

Thus we obtain the algorithm given in Table 1.

Note that only one matrix-vector product is required for each computed Lanczos

vector w

m

or v

m

. Thus an e�cient implementation of this algorithm requires

6n + (4nz + 32n)k 
ops

1

where nz is the number of nonzero elements in H

P

and

2k is the number of Lanczos vectors computed (that is, the loop is executed k times).

The algorithm as given in Table 1 computes an odd number of Lanczos vectors, for

a practical implementation one has to omit the computation of the last vector v

k+1

(or one has to compute an additional vector w

k+1

).

1

(Following [24], we de�ne each 
oating point arithmetic operation together with the associated integer

indexing as a 
op.)
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Algorithm : Symplectic Lanczos method

Choose an initial vector

e

v

1

2 IR

2n

;

e

v

1

6= 0.

Set v

0

= 0 2 IR

2n

.

Set �

1

= jj

e

v

1

jj

2

and v

1

=

1

�

1

e

v

1

.

for m = 1, 2, : : :do

(update of w

m

)

set

e

w

m

= H

P

v

m

� �

m

v

m

�

m

= v

T

m

J

P

H

P

v

m

w

m

=

1

�

m

e

w

m

(computation of �

m

)

�

m

= �w

T

m

J

P

H

P

w

m

(update of v

m+1

)

e

v

m+1

= H

P

w

m

� �

m

v

m�1

� �

m

v

m

+ �

m

w

m

�

m+1

= jj

e

v

m+1

jj

2

v

m+1

=

1

�

m+1

e

v

m+1

Table 1: Symplectic Lanczos Method

There is still some freedom in the choice of the parameters that occur in this

algorithm. Possibilities to remove these ambiguities have been discussed in [35].

Essentially, the parameters �

m

can be chosen freely. Here we set �

m

= 1. Likewise a

di�erent choice of the parameters �

m

; �

m

is possible.

In the symplectic Lanczos method as given above we have to divide by a parameter

that may be zero or close to zero. If such a case occurs for the normalization parameter

�

m+1

, the corresponding vector

e

v

m+1

is zero or close to the zero vector. In this case,

a symplectic invariant subspace of H (or a good approximation to such a subspace)

is detected. By rede�ning

e

v

m+1

to be any vector satisfying

v

T

j

J

P

e

v

m+1

= 0

w

T

j

J

P

e

v

m+1

= 0

for j = 1; : : : ;m, the algorithm can be continued. The resulting Hamiltonian J -

Hessenberg matrix is no longer unreduced; the eigenproblem decouples into two

smaller subproblems. In case

e

w

m

is zero (or close to zero), an invariant subspace

of H

P

with dimension 2m�1 is found (or a good approximation to such a subspace).

From (12) it is easy to see that in this case the parameter �

m

will be zero (or close to

zero). Two eigenvalues and one right and one left eigenvector can be read o� directly

from the reduced matrix

f

H

2m�2

as in (4).

Thus if either v

m+1

or w

m+1

vanishes, the breakdown is benign. If v

m+1

6= 0

and w

m+1

6= 0 but �

m+1

= 0, then the breakdown is serious. No reduction of the
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Hamiltonian matrix to a Hamiltonian J -Hessenberg matrix with v

1

as �rst column

of the transformation matrix exists. In this case we propose to use an implicit

restart technique to overcome the breakdown by changing the starting vector. Before

discussing this approach in Section 5, we need to introduce the SR decomposition

which will turn out to be fundamental in the restart process.

4 The SR Decomposition

In [12, 46] the decomposition T

k

� �I = QR and the corresponding QR step,

T

k

= Q

T

T

k

Q, play a key role in implicit restarts for the symmetric Lanczos method.

These transformations preserve the symmetry and tridiagonality of T

k

as well as the

orthogonality of the updated Lanczos basis vectors. In the implictly restarted Lanczos

method for nonsymmetric matrices [25], the HR decomposition and a corresponding

HR step [6] is used, as this transformation preserves sign-symmetry along with the

tridiagonality of the T

k

and the bi-orthogonality of the basis vectors.

Although symmetry is lacking in the symplectic Lanczos process de�ned above,

the resulting matrix

f

H

2k

P

is a permuted Hamiltonian J -Hessenberg matrix as in (10).

In order to preserve this structure and the J -orthogonality of the basis vectors it turns

out to be useful to employ an SR decompositon of

f

H

2k

P

� �I; � 2 IR. Besides this

single shift we study double shifts

�

f

H

2k

P

� �I

� �

f

H

2k

P

+ �I

�

where � 2 IR or � 2 {IR

({ =

p

�1). Double shifts with purely imaginary values turn out to be useful in

connection with the computation of low rank approximations to the solution of the

continuous-time algebraic Riccati equation as will be shown in Section 7.2.

The SR decomposition has been studied in e.g. [8, 14]. A slightly modi�ed version

of the notation of [8] will be employed here.

Defintion 4.1.

a) A matrix

H =

"

H

11

H

12

H

21

H

22

#

where H

ij

2 IR

n�n

is called a J -Hessenberg matrix if H

11

, H

21

, H

22

are upper

triangular matrices and H

12

is an upper Hessenberg matrix, i.e.,

H =

2

6

4

@ @@

@ @

3

7

5

:

H is called unreduced if H

21

is nonsingular and the upper Hessenberg matrix

H

12

is unreduced, i.e., has no zero entry in its �rst subdiagonal.

b) H is called a J -triangular matrix if H

11

, H

12

, H

21

, H

22

are upper triangular

matrices and H

21

has a zero main diagonal, i.e.,

H =

2

6

4

@ @

0

.

.

.

0

@

@

3

7

5
:



A restarted symplectic Lanczos method 9

c) H is called a J -tridiagonal matrix if H

11

, H

21

, H

22

are diagonal matrices and

H

12

is a tridiagonal matrix, i.e.,

H =

2

6

4

@ @@

@

@ @

3

7

5

:

Remark 4.1. A Hamiltonian J-Hessenberg matrix

f

H 2 IR

2n�2n

is J-tridiagonal and

Hamiltonian.

Theorem 4.1. Let X be a 2k � 2k nonsingular matrix. Then :

a) There exists a symplectic 2k � 2k matrix S and a J-triangular matrix R such

that X = SR if and only if all leading principal minors of even dimension of

PX

T

JXP

T

are nonzero.

b) Let X = SR and X =

e

S

e

R be SR factorizations of X. Then there exists a

matrix

D =

"

C F

0 C

�1

#

where C = diag(c

1

; : : : ; c

n

), F = diag(f

1

; : : : ; f

n

) such that

e

S = SD

�1

and

e

R = DR.

c) Let X =

f

H be an unreduced Hamiltonian J-Hessenberg matrix. If

f

H��I = SR,

� 2 IR, with S and R satisfying a) exists, then

c

H = S

�1
f

HS = RS + �I is a

Hamiltonian J-Hessenberg matrix.

d) If � in c) is an eigenvalue of

f

H, then

b

h

2k;2k

= �,

b

h

k;k

= �� and

b

h

2k;k

= 0.

e) Let X =

f

H be an unreduced Hamiltonian J-Hessenberg matrix. If the decom-

position (

f

H � �I)(

f

H + �I) = SR, � 2 IR or � 2 {IR, with S and R satisfying

a) exists, then

c

H = S

�1

f

HS is a Hamiltonian J-Hessenberg matrix.

f) If � in e) is an eigenvalue of

f

H, then

b

h

k;2k�1

=

b

h

k�1;2k

= 0 and the 2 � 2

submatrix

"

b

h

kk

b

h

k;2k

b

h

2k;k

b

h

2k;2k

#

has the eigenvalues � and ��.

Proof:

For the original statement and proof of a) see Theorem 11 in [17].

For the original statement and proof of b) see Proposition 3.3 in [8].

For the original statement and proof of c) and e) see Remark 4.1 in [8].

The proof of d) and f) follows the lines of [25, Theorem 2 (iii)].

For d) assume that a symplectic matrix S and a J -triangular matrix R

exist such that

f

H � �I = SR. In order to simplify the notation we use

in the following (as before) the permuted versions of

f

H, S and R :

f

H

P

= P

f

HP

T

; S

P

= PSP

T

; R

P

= PRP

T

:
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Since

f

H is an unreduced Hamiltonian J -Hessenberg matrix,

f

H

P

is an

unreduced upper Hessenberg matrix. Since R is a J -triangular matrix,

R

P

is an upper triangular matrix. With I

2k;2k�2

we denote the �rst 2k�2

columns of the 2k � 2k identity matrix.

Now partition the permuted matrices as follows

f

H

P

= [

f

H

2k;2k�2

P

j

e

h

2k�1

P

e

h

2k

P

]

S

P

= [S

2k;2k�2

P

j s

2k�1

P

s

2k

P

]

R

P

=

2

6

4

R

2k�2;2k�2

P

r

2k�1

P

r

2k�2

P

0 (r

P

)

2k�1;2k�1

(r

P

)

2k�1;2k

0 0 (r

P

)

2k;2k

3

7

5

where the matrix blocks and entries are de�ned as before. The columns

of

f

H

2k;2k�2

P

��I

2k;2k�2

are linear independent since

f

H

P

is unreduced. The

columns of S

2k;2k�2

P

are linear independent since S

P

is nonsingular. Hence

the matrix R

2k�2;2k�2

P

is nonsingular since

f

H

2k;2k�2

P

� �I

2k;2k�2

= S

2k;2k�2

P

R

2k�2;2k�2

P

:

It follows that

S

2k;2k�2

P

= (

f

H

2k;2k�2

P

� �I

2k;2k�2

)(R

2k�2;2k�2

P

)

�1

is an upper Hessenberg matrix and that

f

H

P

� �I is singular if and only

if (r

P

)

2k;2k

= 0.

(c) follows directly from the above. Since S

2k;2k�2

P

is upper Hessenberg,

S

P

is upper Hessenberg and S is a symplectic J -Hessenberg matrix and

thus R

P

S

P

is upper Hessenberg and RS is a J -Hessenberg matrix. Hence

c

H = RS � �I = S

�1

f

HS is a Hamiltonian J -Hessenberg matrix.)

If

f

H

P

��I is singular, then (r

P

)

2k;2k

= 0 and thus the (2k�1; 2k) element

of

c

H

P

is zero. Let the parameters of

c

H = RS + �I be denoted by

b

�

n

;

b

�

n

;

b




n

;

b

�

n

;

b

�

n

. Then we have

b

�

k

= �� and

b

�

k

= 0, i.e.,

c

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

b

�

1

b

�

1

b

�

1

.

.

.

b

�

1

.

.

.

.

.

.

b

�

k�1

.

.

.

.

.

.

b

�

k

��

b

�

k

b

�

k

b

�

1

�

b

�

1

.

.

.

.

.

.

b

�

k�1

�

b

�

k�1

0 �

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

f) follows analogous to d). Assume that a symplectic matrix S and a

J -triangular matrix R exist such that (

f

H��I)(

f

H+�I) = SR. As before
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we will use the permuted versions of

f

H , S and R. Since

f

H is an unreduced

Hamiltonian J -Hessenberg matrix,

f

H

P

is an unreduced upper Hessenberg

matrix. Thus

f

H

2

P

is, as the product of two unreduced upper Hessenberg

matrices, no longer upper Hessenberg, but has an additional second lower

subdiagonal with nonzero entries. Since R is a J -triangular matrix, R

P

is an upper triangular matrix.

Now partition the permuted matrices as follows :

f

H

2

P

= [(

f

H

2

P

)

2k;2k�2

j (

e

h

2

P

)

2k�1

(

e

h

2

P

)

2k

];

S

P

= [S

2k;2k�2

P

j s

2k�1

P

s

2k

P

];

R

P

=

2

6

4

R

2k�2;2k�2

P

r

2k�1

P

r

2k�2

P

0 (r

P

)

2k�1;2k�1

(r

P

)

2k�1;2k

0 0 (r

P

)

2k;2k

3

7

5
;

where (

f

H

2

P

)

2k;2k�2

and S

2k;2k�2

P

are the �rst 2k�2 columns of

f

H

2

P

and S

P

,

respectively, and R

2k�2;2k�2

P

is the leading (2k � 2) � (2k � 2) principal

submatrix of R

P

. The columns of (

f

H

2

P

)

2k;2k�2

� �

2

I

2k;2k�2

are linear

independent since

f

H

P

is unreduced. The columns of S

2k;2k�2

P

are linear

independent since S

P

is nonsingular. Hence the matrix R

2k�2;2k�2

P

is

nonsingular since

(

f

H

2

P

)

2k;2k�2

� �

2

I

2k;2k�2

= S

2k;2k�2

P

R

2k�2;2k�2

P

:

It follows that

S

2k;2k�2

P

=

�

(

f

H

2

P

)

2k;2k�2

� �

2

I

2k;2k�2

�

(R

2k�2;2k�2

P

)

�1

is upper Hessenberg with an additional nonzero second lower subdiagonal

and that

f

H

2

P

� �

2

I is singular if and only if the trailing 2 � 2 principal

submatrix of R

P

is zero.

Observe that

c

H

2

= (S

�1

f

HS)

2

= S

�1

f

H

2

S = RS+�

2

I: If � is an eigenvalue

of

f

H, then the kth and 2kth row and column of R are zero. Statement

f) follows from a comparison of the coe�cients in

c

H

2

and RS + �

2

I,

noting that �

k�1

6= 0 as the second lower subdiagonal of S

P

is nonzero

and R

2k�2;2k�2

P

is nonsingular.

p

Assuming its existence, the SR decomposition and SR step (that is,

c

H = S

�1

f

HS)

possesses many of the desirable properties of the QR method. For the remainder of

this section, it will be assumed that the SR decomposition always exists. A discussion

of the existence and stability of the SR step in the context of the Lanczos algorithm

is provided in Section 6.

An algorithm for explicitly computing S and R is presented in [8]. As with

explicit QR steps, the expense of explicit SR steps comes from the fact that both

S

�1

and S have to be computed explicitly. A preferred alternative is the implicit SR

step, an analogue to the Francis QR step [19, 20, 24, 31]. The �rst implicit rotation is



12 Benner and Fa�bender

selected so that the �rst columns of the implicit and the explicit S are equivalent. The

remaining implicit rotations perform a bulge-chasing sweep down the subdiagonal to

restore the J -Hessenberg form. As the implicit SR step is analogous to the implicit

QR step, this technique will only be sketched here.

As shown in [7], a necessary and su�cient condition for the existence of an

orthogonal SR decomposition M = SR (S symplectic and orthogonal) is that M

is of the form

M =

"

A B

�B A

#

e

R

where A;B 2 IR

n�n

and

e

R is an upper J -triangular matrix. Therefore in general we

have to employ nonorthogonal symplectic elimination matrices, too.

For the computation of an SR decomposition we use three types of elementary

symplectic matrices (for a detailed discussion see [8, 40]).

� For k 2 f1; : : : ; ng and c; s 2 IR with c

2

+ s

2

= 1 de�ne a symplectic Givens

(Jacobi) matrix (of type I) by

J(k; c; s) =

"

C S

�S C

#

where C;S 2 IR

n�n

are diagonal matrices C = I

n

+ (c� 1)e

k

e

T

k

and S = se

k

e

T

k

.

� For k 2 f2; : : : ; ng and y 2 IR de�ne a symplectic Gauss(ian elimination) matrix

by

G(k; y) =

"

D Y

0 D

�1

#

where Y is the n� n matrix

Y =

 

y

(1 + y

2

)

1

4

!

(e

k�1

e

T

k

+ e

k

e

T

k�1

)

with only two nonzero entries in the positions (k; k � 1) and (k � 1; k) and D

is the n� n diagonal matrix

D = I

n

+

 

1

(1 + y

2

)

1

4

� 1

!

(e

k�1

e

T

k�1

+ e

k

e

T

k

):

� For k 2 f1; : : : ; ng and c; s 2 IR with c

2

+ s

2

= 1 de�ne a symplectic Givens

matrix of type II by

R(k; c; s) =

"

U(k; c; s) 0

0 U(k; c; s)

#

where U(k; c; s) is the n� n Givens matrix

U(k; c; s) = diag(I

k�1

;

"

c s

�s c

#

; I

n�k�1

):
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Remark 4.2.

a) J(k; c; s) is orthogonal and symplectic.

b) J(k; c; s) is a 2n � 2n Givens rotation in planes k and n+ k.

c) G(k; y) is a nonorthogonal symplectic matrix.

d) G(k; y)

�1

=

"

D

�1

�Y

0 D

#

.

e) cond

2

(G(k; y)) = (1 + y

2

)

1

2

+ jyj, where cond

2

(A) is the condition number of a

matrix A with respect to the spectral norm, i.e., cond

2

(A) = jjAjj

2

jjA

�1

jj

2

.

f) Among all possible symplectic nonorthogonal elimination matrices which serve

the same purpose as G(k; y), the symplectic Gauss matrices are optimally

conditioned [8].

g) R(k; c; s) is orthogonal and symplectic.

h) R(k; c; s) is the direct sum of two n� n Givens matrices.

i) Replacing U(k; c; s) by a Householder matrix and de�ning analogously a block

diagonal matrix R yields a symplectic Householder matrix (see [40]). This kind

of orthogonal symplectic matrices will not be used here.

We will use the following notation

� J(k; c; s) = sgivens(k; a; b),

where sgivens generates a symplectic Givens rotation in planes k and n + k

such that

J(k; c; s)(ae

k

+ be

n+k

) = �e

k

; 1 � k � n:

� G(k; y) = sgauss(k; a; b),

where sgauss generates a symplectic Gaussian elimination matrix such that

G(k; y)(ae

k

+ be

n+k�1

) = �e

n+k�1

; 1 � k � n:

� R(k; c; s) = sgivens2(k; a; b),

where sgivens2 �rst generates an orthogonal Givens rotation U(k; c; s) such

that

U(k; c; s)(ae

k

+ be

k+1

) = 
e

k

; 1 � k � n� 1

and then sets

R(k; c; s) =

"

U(k; c; s) 0

0 U(k; c; s)

#

:

For a presentation of algorithms for the computation of the symplectic reductions see

e.g. [8, 40].
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Now we illustrate the construction of implicit SR steps. First we will describe

the single shift

f

H � �I, � 2 IR, on a 6 � 6 example. As before we will consider the

permuted case

f

H

P

� �I = S

P

R

P

. Thus we have to use permuted versions of the

elementary symplectic rotations

G

P

(k; y) = PG(k; y)P

T

= diag(I

2k�4

;

2

6

6

6

4

r t

1

r

t r

1

r

3

7

7

7

5

; I

2n�2k

)

with r = (1 + y

2

)

�

1

4

, t = yr,

R

P

(k; c; s) = PR(k; c; s)P

T

= diag(I

2k�1

;

2

6

6

6

4

c s

c s

�s c

�s c

3

7

7

7

5

; I

2n�2k�3

);

and a 2n � 2n Givens rotation in planes 2k � 1 and 2k,

J

P

(k; c; s) = PJ(k; c; s)P

T

:

Because of the uniqueness of the reduction to J -Hessenberg form, the �rst rotation

of the implicit SR step has to be selected so that the �rst columns of the implicit and

explicit S

P

are equivalent (as in the implicit QR step). Thus we have to transform

x = (

f

H

P

� �I)e

1

= [�

1

� �; �

1

; 0; : : : ; 0]

T

to a multiple of e

1

. That is, we have to

annihilate the second element of x, i.e., �

1

, while preserving all existing zeros. This

can be done by a transformation with a matrix of type J

P

(1; c; s). Computing the

similarity transformation

f

H

(1)

P

= J

P

(1; c

1

; s

1

)

f

H

P

J

T

P

(1; c

1

; s

1

) we obtain

f

H

(1)

P

=

2

6

6

6

6

6

6

6

6

4

x x 0 x 0 0

x x 0 
 0 0


 x x x 0 x

0 0 x x 0 0

0 0 0 x x x

0 0 0 0 x x

3

7

7

7

7

7

7

7

7

5

:

Here x denotes an arbitrary matrix element,
 denotes an additional matrix element.

Now we have to perform a bulge-chasing sweep down the diagonal to restore the

desired permuted J -tridiagonal form. This can be done by the algorithm JHESS

given in [8] which reduces an (arbitrary) 2n�2n matrix to J -Hessenberg form. If the

algorithm is applied to a Hamiltonian matrix, then the resulting condensed form will

be a J -triangular form. Due to the special structure of

f

H

(1)

P

the algorithm greatly

simpli�es :

To preserve the zeros already present in the �rst column, we have to apply a

matrix of type G

P

(2; y) to annihilate the (3; 1) entry. This can be done if the (2; 1)

entry is nonzero, for a discussion of a breakdown or near-breakdown see Section 6.
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Then

f

H

(2)

P

= G

P

(2; y)

f

H

(1)

P

G

�1

P

(2; y) =

2

6

6

6

6

6

6

6

6

4

x x 
 x 0 0

x x 0 0 0 0

0 x x x 0 x

0 
 x x 0 0

0 0 0 x x x

0 0 0 0 x x

3

7

7

7

7

7

7

7

7

5

:

The additional zero in position (2; 4) is achieved because

f

H

(2)

P

is a permuted

Hamiltonian matrix. Now the entry in position (4; 2) is eliminated by applying a

matrix of type J(2; c; s) giving

f

H

(3)

P

= J

P

(2; c; s)

f

H

(2)

P

J

T

P

(2; c; s) =

2

6

6

6

6

6

6

6

6

4

x x 0 x 0 0

x x 0 0 0 0

0 x x x 0 x

0 0 x x 0 


0 0 
 x x x

0 0 0 0 x x

3

7

7

7

7

7

7

7

7

5

:

The additional zero in position (1; 3) is achieved again because

f

H

(3)

P

is a permuted

Hamiltonian matrix. We have the same situation as after the construction of

f

H

(1)

P

, but

the bulge has moved 2 rows and columns further down. Therefore these additional

elements can be chased down along the diagonal analogous to the last two steps.

This gives rise to the sequence of similarity transformations to perform an implicit

single-shifted SR step as given in Table 2.

Note that sgauss

p

and sgivens

P

are the permuted versions of sgauss and sgivens.

An e�cient implementation of this algorithm requires 100k�65 
ops for the similarity

transformations and 28kn � 16n 
ops for the update of S

P

. All transformation

matrices in the loop have as a �rst column a multiple of e

1

which re
ects the fact

that the SR decomposition is essentially determined by the �rst column of S and

thus by J

P

(1; c; s).

Next we will illustrate the double shift case (

f

H � �I)(

f

H + �I), � 2 IR or � 2 {IR

on an 8 � 8 example. As before the �rst rotation of the implicit SR step has to be

selected so that the �rst columns of the implicit and explicit S

P

are equivalent. Thus

we have to transform x = (

f

H��I)(

f

H+�I)e

1

= [�

2

1

��

2

+�

1

�

1

; 0; �

1

�

2

; 0; : : : ; 0]

T

(with

f

H as in (10)) to a multiple of e

1

. Therefore we have to eliminate the third entry of

x, i.e. �

1

�

2

, while preserving all existing zeros. This can be done by a transformation

of type R

P

(1; c; s): A similarity transformation of

f

H

P

with R

P

yields

f

H

(1)

P

= R

P

(1; c; s)

f

H

P

R

T

P

(1; c; s) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x x 
 x 0 
 0 0

x x 
 
 0 0 0 0


 x x x 0 x 0 0


 
 x x 0 0 0 0

0 
 0 x x x 0 x

0 0 0 0 x x 0 0

0 0 0 0 0 x x x

0 0 0 0 0 0 x x

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:
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Algorithm : Implicit SR step with single shift

Given a permuted Hamiltonian J -Hessenberg matrix

f

H

P

2 IR

2k�2k

and S

P

2 IR

2n�2k

with S

T

P

J

n

P

S

P

= J

k

P

.

Choose a shift � 2 IR.

Set

f

H

(0)

P

=

f

H

P

.

(Compute �rst column of S)

Set J

P

(1; c; s) = sgivens

P

(1; �

1

� �; �

1

)

f

H

(1)

P

= J

P

(1; c; s)

f

H

(0)

P

J

T

P

(1; c; s).

S

P

= S

P

J

T

P

(1; c; s).

(Chase the bulge)

for i = 3; 5; : : : ; 2k � 1

Set G

P

(

i+1

2

; y) = sgauss

P

(

i+1

2

; (

e

h

(i�2)

P

)

i�1;i�2

; (

e

h

(i�2)

P

)

i;i�2

)

f

H

(i�1)

P

= G

P

(

i+1

2

; y)

f

H

(i�2)

P

G

�1

P

(

i+1

2

; y)

S

P

= S

P

G

�1

P

(

i+1

2

; y).

J

P

(

i+1

2

; c; s) = sgivens

P

(

i+1

2

; (

e

h

(i�1)

P

)

i;i�1

; (

e

h

(i�1)

P

)

i+1;i�1

)

f

H

(i)

P

= J

P

(

i+1

2

; c; s)

f

H

(i�1)

P

J

T

P

(

i+1

2

; c; s)

S

P

= S

P

J

T

P

(

i+1

2

; c; s).

Table 2: Implicit SR Step | Single Shift Case

Now we have to perform a bulge-chasing sweep down the diagonal to restore the

desired permuted J -tridiagonal form. This can again be done by the algorithm JHESS

given in [8] which reduces a 2n � 2n Hamiltonian matrix to J -triangular form. Due

to the special structure of

f

H

(1)

P

we can use a simpli�ed version of this algorithm :

As before, in each step we will obtain additional zeros because the iterates

f

H

(i)

P

are permuted Hamiltonian matrices. Using a matrix of type J

P

(3; c; s) we eliminate

the element in position (4; 1) and obtain

f

H

(2)

P

= J

P

(3; c; s)

f

H

(1)

P

J

T

P

(3; c; s) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x x 
 x 0 
 0 0

x x 0 
 0 0 0 0


 x x x 0 x 0 0

0 
 x x 0 
 0 0

0 
 
 x x x 0 x

0 0 0 0 x x 0 0

0 0 0 0 0 x x x

0 0 0 0 0 0 x x

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

To preserve the zeros already present in the �rst column, we have to apply a matrix

of type G

P

(2; y) to annihilate the (3; 1) entry. This can be done if the (2; 1) entry is
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nonzero. Then

f

H

(3)

P

= G

P

(2; y)

f

H

(2)

P

G

�1

P

(2; y) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x x 
 x 0 
 0 0

x x 0 0 0 0 0 0

0 x x x 0 x 0 0

0 
 x x 0 
 0 0

0 
 
 x x x 0 x

0 0 0 0 x x 0 0

0 0 0 0 0 x x x

0 0 0 0 0 0 x x

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Now the entry in position (4; 2) is eliminated by applying a matrix of type J(2; c; s)

giving

f

H

(4)

P

= J

P

(2; c; s)

f

H

(3)

P

J

T

P

(2; c; s) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x x 0 x 0 
 0 0

x x 0 0 0 0 0 0

0 x x x 0 x 0 0

0 0 x x 0 
 0 0

0 
 
 x x x 0 x

0 0 0 0 x x 0 0

0 0 0 0 0 x x x

0 0 0 0 0 0 x x

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Eliminating the entry in position (5; 2) with a matrix of type R

P

(2; c; s) yields

f

H

(5)

P

= R

P

(2; c; s)

f

H

(4)

P

R

T

P

(2; c; s) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x x 0 x 0 0 0 0

x x 0 0 0 0 0 0

0 x x x 
 x 0 


0 0 x x 
 
 0 0

0 0 
 x x x 0 x

0 0 
 
 x x 0 0

0 0 0 
 0 x x x

0 0 0 0 0 0 x x

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

We have the same situation as after the construction of

f

H

(1)

P

, but the bulge has

moved 2 rows and columns further down. Therefore these additional elements can be

chased down along the diagonal analogous to the last four steps. This gives rise to

the sequence of similarity transformations to perform an implicit double-shifted SR

step as given in Table 3.

Note that sgauss

p

, sgivens

P

, and sgivens2

P

are the permuted versions of sgauss,

sgivens, and sgivens2, respectively. An e�cient implementation of this algorithm

requires 247k � 167 
ops for the similarity transformations and 54nk � 30n 
ops for

the update of S

P

. As before, the �rst column of the S factor of the SR decomposition

is determined by the �rst column of R

P

(1; c; s) which is re
ected by the fact that the

�rst column of all transformation matrices in the loop is a multiple of e

1

.

The algorithm for the implicit double shift uses 4k � 3 transformations, the

algorithm for the implicit single shift 2k � 1. In the double shift case, 3k � 2
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Algorithm : Implicit SR step with double shift

Given a permuted Hamiltonian J -Hessenberg matrix

f

H

P

2 IR

2k�2k

and S

P

2 IR

2n�2k

with S

T

P

J

n

P

S

P

= J

k

P

.

Choose a shift � 2 IR.

(Compute �rst column of S)

Set R

P

(1; c; s) = sgivens2

P

(1; �

2

1

+ �

2

+ �

1

�

1

; �

1

�

2

)

f

H

P

= R

P

(1; c; s)

f

H

P

R

T

P

(1; c; s).

S

P

= S

P

R

T

P

(1; c; s).

(Chase the bulge)

for i = 3; 5; : : : ; 2k � 1

Set J

P

(

i+1

2

+ 1; c; s) = sgivens

P

(i; (

e

h

P

)

i;i�2

; (

e

h

P

)

i+1;i�2

)

f

H

P

= J

P

(

i+1

2

+ 1; c; s)

f

H

P

J

T

P

(

i+1

2

+ 1; c; s)

S

P

= S

P

J

T

P

(

i+1

2

+ 1; c; s).

G

P

(

i+1

2

; y) = sgauss

P

(

i+1

2

; (

e

h

P

)

i�1;i�2

; (

e

h

P

)

i;i�2

)

f

H

P

= G

P

(

i+1

2

; y)

f

H

P

G

�1

P

(

i+1

2

; y)

S

P

= S

P

G

�1

P

(

i+1

2

; y).

J

P

(

i+1

2

; c; s) = sgivens

P

(

i+1

2

; (

e

h

P

)

i;i�1

; (

e

h

P

)

i+1;i�1

)

f

H

P

= J

P

(

i+1

2

; c; s)

f

H

P

J

T

P

(

i+1

2

; c; s)

S

P

= S

P

J

T

P

(

i+1

2

; c; s).

R

P

(

i+1

2

; c; s) = sgivens2

P

(

i+1

2

; (

e

h

P

)

i+2;i�1

; (

e

h

P

)

i;i�1

)

f

H

P

= R

P

(

i+1

2

; c; s)

f

H

P

R

T

P

(

i+1

2

; c; s)

S

P

= S

P

R

T

P

(

i+1

2

; c; s).

Table 3: Implicit SR Step | Double Shift Case

of these transformations are orthogonal (k in the single shift case). These are

known to be numerically stable. Thus, in both algorithms (k � 1) transformation

of type G

P

have to be used. Problems can arise here because of breakdown or near

breakdown. If we eliminate the jth nonzero entry of a vector x with G

P

(j; y) and x

j�1

is very small relative to x

j

, then y = �x

j

=x

j�1

, and therefore the condition number

jjG

P

(j; y)jj

2

= (1 + y

2

)

1

2

+ jyj will be very large. A transformation with G

P

(j; y) will

then cause a dramatic growth of rounding errors. We come back to this problem in

Section 6.
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5 A Restarted Symplectic Lanczos Method

Given that a 2n� 2k matrix S

2k

P

is known such that

H

P

S

2k

P

= S

2k

P

f

H

2k

P

+ �

k+1

v

k+1

e

T

2k

(14)

as in (11), an implicit Lanczos restart computes the Lanczos factorization

H

P

�

S

2k

P

=

�

S

2k

P

�

H

2k

P

+

�

�

k+1

�v

k+1

e

T

2k

(15)

which corresponds to the starting vector

�v

1

= �(H

P

� �I)v

1

without having to explicitly restart the Lanczos process with the vector �v

1

. Such

an implicit restarting mechanism will now be derived analogous to the technique

introduced in [25, 46].

For any permuted symplectic 2k � 2k matrix S

P

, (14) can be reexpressed as

H

P

(S

2k

P

S

P

) = (S

2k

P

S

P

)(S

�1

P

f

H

2k

P

S

P

) + �

k+1

v

k+1

e

T

2k

S

P

:

De�ning

�

S

2k

P

= S

2k

P

S

P

,

�

H

2k

P

= S

�1

P

f

H

2k

P

S

P

this yields

H

P

�

S

2k

P

=

�

S

2k

P

�

H

2k

P

+ �

k+1

v

k+1

e

T

2k

S

P

:(16)

Let s

ij

be the (i; j)th entry of S

P

. If we choose S

P

from the permuted SR

decomposition

f

H

2k

P

� �I = S

P

R

P

, then from the proof of Theorem 4.1 we know

that S

P

is an upper Hessenberg matrix. Thus the residual term in (16) is

�

k+1

v

k+1

(s

2k;2k�1

e

T

2k�1

+ s

2k;2k

e

T

2k

):

In order to obtain a residual term of the desired form vector times e

T

2k

we have to

truncate o� a portion of (16). Rewriting (16) as

H

P

�

S

2k

P

= [

�

S

2k�2

P

; �v

k

; �w

k

; v

k+1

]

2

6

6

6

6

4

�

H

2k�2

P

0

�

�

k

e

2k�3

�

�

k

e

T

2k�2

�

�

k

�

�

k

0 ��

k

�

�

�

k

0 �

k+1

s

2k;2k�1

�

k+1

s

2k;2k

3

7

7

7

7

5

we obtain as a new Lanczos identity

H

P

�

S

2k�2

P

=

�

S

2k�2

P

�

H

2k�2

P

+

�

�

k

�v

k

e

T

2k�2

:(17)

Here,

�

�

k

,

�

�

k

,

�

�

k

, ��

k

denote parameters of

�

H

2k

P

, �

k+1

a parameter of

f

H

2k

P

. In addition,

�v

k

; �w

k

are the last two column vectors from

�

S

2k

P

, while v

k+1

is the next to last column

vector of S

2k

P

.

As the space spanned by the columns of S

2k

= P

n

T

S

2k

P

P

k

is symplectic, and

S

P

is a permuted symplectic matrix, the space spanned by the columns of

�

S

2k�2

=

P

n

T

�

S

2k�2

P

P

k�1

is symplectic. Thus (17) is a valid Lanczos factorization for the new
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starting vector �v

1

= �(H

P

��I)v

1

. Only one additional step of the symplectic Lanczos

algorithm is required to obtain (15) from (14).

Note that in the symplectic Lanczos process the vectors v

j

of S

2k

P

satisfy the

condition kv

j

k

2

= 1 and the parameters �

j

are chosen to be one. This is no longer

true for the odd numbered column vectors of S

P

generated by the SR decomposition

and the parameters

�

�

j

from

�

H

2k

P

and thus for the new Lanczos factorization (17).

In our applications we have to compute a truncated reduction

f

H

2j

P

of H

P

with

j � n. In case the symplectic Lanczos method breaks down before

f

H

2j

can be

computed, we propose to employ a single shifted implicit restart as described above

to overcome the breakdown.

In connection with the computation of low rank approximations to the solution

of continuous-time algebraic Riccati equations we will use a double shifted restarted

Lanczos method to remove a pair of purely imaginary eigenvalues from

f

H

2k

P

.

Therefore here we will give the derivation of the corresponding formulas. Using

the decomposition (

f

H

2k

P

� {�I)(

f

H

2k

P

+ {�I) = S

P

R

P

, we obtain as before from (14)

H

P

�

S

2k

P

=

�

S

2k

P

�

H

2k

P

+ �

k+1

v

k+1

e

T

2k

S

P

(18)

with

�

S

2k

P

= S

2k

P

S

P

;

�

H

2k

P

= S

�1

P

f

H

2k

P

S

P

. Just the matrix S

P

is now di�erent from above.

As it is the S-factor of the permuted SR decomposition of (

f

H

2k

P

� {�I)(

f

H

2k

P

+ {�I), S

P

is no longer an upper Hessenberg matrix, but has an additional lower subdiagonal.

Denoting the (i; j)th entry of S

P

by s

ij

, the residual term in (18) is

�

k+1

v

k+1

(s

2k;2k�2

e

T

2k�2

+ s

2k;2k�1

e

T

2k�1

+ s

2k;2k

e

T

2k

):

In order to obtain a residual term of the desired form vector times e

T

2k

we have to

truncate o� a portion of (18). Rewriting (18) as

H

P

�

S

2k

P

= [

�

S

2k�2

P

; �v

k

; �w

k

; v

k+1

]

2

6

6

6

6

4

�

H

2k�2

P

0

�

�

k

e

2k�3

�

�

k

e

T

2k�2

�

�

k

�

�

k

0 ��

k

�

�

�

k

�

k+1

s

2k;2k�2

e

T

2k�2

�

k+1

s

2k;2k�1

�

k+1

s

2k;2k

3

7

7

7

7

5

;

we obtain as a new Lanczos identity

H

P

�

S

2k�2

P

=

�

S

2k�2

P

�

H

2k�2

P

+ r

k

e

T

2k�2

:(19)

The new residual vector is given by

r

k

=

�

�

k

�v

k

+ �

k+1

s

2k;2k�2

v

k+1

:

As before we can argue that (19) is a valid Lanczos factorization for the new starting

vector �v

1

= �(H

P

� {�I)(H

P

+ {�I)v

1

. Only one additional step of the symplectic

Lanczos algorithm is required to obtain (15) from (14).

The extension of this technique to the multiple shift case is straightforward.
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6 Numerical Properties of the Implicitly Restarted Sym-

plectic Lanczos Method

6.1 Stability Issues

It is well known that for general Lanczos-like methods the stability of the overall

process is improved when the norm of the Lanczos vectors is chosen to be equal to

1 [41, 47]. Thus, Freund and Mehrmann propose in [22] to modify the prerequisite

S

T

P

J

P

S

P

= J

P

of our symplectic Lanczos method to

S

T

P

J

P

S

P

=

2

6

6

6

6

6

6

6

6

6

6

6

4

0 �

1

��

1

0

0 �

2

��

2

0

.

.

.

0 �

n

��

n

0

3

7

7

7

7

7

7

7

7

7

7

7

5

=: �

and

jjv

j

jj

2

= jjw

j

jj

2

= 1; j = 1; : : : ; n:

For the resulting algorithm and a discussion of it we refer to [22]. It is easy to see

that

f

H

P

= S

�1

P

H

P

S

P

is no longer a permuted Hamiltonian J -Hessenberg matrix, as

S is only almost symplectic, but

�

f

H

P

= (�

f

H

P

)

T

:

Thus

f

H = P

T

f

H

P

P still has the desired form of a Hamiltonian J -Hessenberg matrix

but the upper right n � n block is no longer symmetric. Therefore

f

H is diagonally

similar to a Hamiltonian J -Hessenberg matrix.

Unfortunately an SR step does not preserve the structure of

f

H and thus this

modi�ed version of the symplectic Lanczos method can not be used in connection

with our restart approaches.

Without some form of reorthogonalization any Lanczos algorithm is numerically

unstable. Hence we re-J -orthogonalize each Lanczos vector as soon as it is computed

against the previous ones via

w

m

= w

m

+ S

2m�2

P

J

m�1

P

S

2m�2

P

T

J

n

P

w

m

;

v

m+1

= v

m+1

+ S

2m

P

J

m

P

S

2m

P

T

J

n

P

v

m+1

:

This re-J -orthogonalization is costly, it requires 16n(m � 1) 
ops for the vector w

m

and 16nm 
ops for v

m+1

. Thus, if 2k Lanczos vectors v

1

; w

1

; : : : ; v

k

; w

k

are computed,

the re-J -orthogonalization adds 16n(k + 1)k � 32n 
ops to the overall cost of the

symplectic Lanczos method.

For standard Lanczos algorithms, di�erent reorthogonalization techniques have

been studied (for references see e.g [24]). Those ideas can be used to design analogous

re-J -orthogonalizations for the symplectic Lanczos method.
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Another important issue is the numerical stability of the SR step employed in

the restart. As pointed out before, during the SR step on the 2k � 2k Hamiltonian

J -Hessenberg matrix, all but k� 1 transformations are orthogonal. These are known

to be numerically stable. For the k � 1 nonorthogonal symplectic transformations

that have to be used, we choose among all possible transformations the ones with

optimal (smallest possible) condition number.

6.2 Why Implicit Restarts ?

Implicit restarts have some advantages over explicit restarts as will be discussed in

this section. First of all, implicit restarts are more economical to implement. Assume

we have to employ a restart after k steps of the symplectic Lanczos method. An

implicit single shift restart requires

28n � k + 16n + (100k � 65) 
ops for the implicit SR step

and 38n + 4nz 
ops for one additional Lanczos step

and 32n � k � 16n 
ops for re-J -orthogonalization.

That is a total of 4nz + 60n � k + 38n + 100k � 65 
ops.

An explicit restart requires

4nz � k + 32n � k + 6n 
ops for k Lanczos steps

and 16n � (k + 1)k � 32n 
ops for re-J -orthogonalization.

This sums up to 4nz � k + 16n � k

2

+ 48n � k � 26n 
ops. If an explicit restart with

the starting vector �v

1

= (H

P

� �I)v

1

would be performed, this would add another

8n

2

+ 2n to this 
op count.

From these numbers we can conclude that performing an implicit restart is

signi�cantly cheaper than explicitly restarting the Lanczos iteration. This is due

to the fact that an implicit SR step is usually cheaper than k Lanczos steps (4nz

+ 28n � k + 54n + (100k � 65) 
ops vs. 4nz � k + 32n � k + 6n 
ops). Besides

we have to re-J -orthogonalize only once while an explicit restart would require a

re-J -orthogonalization in each iteration step. For di�erent re-J -orthogonalization

techniques implicit restarts are also advantageous. For double shifted or multishifted

restarts the implicit technique is still favourable although the di�erence in the 
op

count becomes smaller.

Performing an explicit restart with (H

P

��I)v

1

or (H

P

��I)(H

P

+�I)v

1

as new

starting vector, one is forced to directly multiply the old starting vector by matrices

of the form (H

P

� �I). This can be avoided by the implicit method.

Note that the starting vector v

1

can be expressed as a linear combination of the

eigenvectors y

i

of H

P

:

v

1

=

2n

X

i=1

�

i

y

i

:

Then a single shifted starting vector takes the form

�v

1

= �(H

P

� �I)v

1

= �

2n

X

i=1

�

i

(�

i

� �)y

i
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where the �

i

are the eigenvalues corresponding to y

i

. As the single shift selected will

be real, applying such a modi�cation to v

1

tends to emphasize those eigenvalues of

H

P

in �v

1

which correspond to eigenvalues �

i

with the largest positive or negative

real part (depending on whether the chosen shift is positive or negative). Thus it is

possible that the vector �v

1

will be dominated by information only from a few of the

eigenvalues with largest real part. An implicit restart directly forms

�

S

2k

P

from a wide

range of information available in S

2k

P

and this should give better numerical results

than the explicit computation of �v

1

.

As an example consider

H = U

"

A 0

0 �A

T

#

U

T

where A = diag(�10

5

; 9; 8; 7; 6; 5; 4; 3;

"

2 1

�1 2

#

) is a block diagonal matrix and U

is the product of randomly generated symplectic Householder and Givens matrices.

The eigenvalues of H can be read o� directly. The following computations were done

using MATLAB

2

on a SUN Sparc10. The starting vector v

1

is chosen randomly.

After 4 steps of the symplectic Lanczos method the resulting 8 � 8 Hamiltonian

J -Hessenberg matrix

f

H

8

has the eigenvalues

�(

f

H

8

) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9:999999999999997e + 05

�9:999999999999997e + 05

3:040728370123861e + 00

�3:040728370123995e + 00

9:200627380564711e + 00

�9:200627380564642e + 00

9:477682371618508e + 00

�9:477682371618551e + 00

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

To remove an eigenvalue pair from

f

H

8

one can perform an implicit double shift restart

as described in Section 5. Removing the two eigenvalues of smallest absolute value

from

f

H

8

, we obtain a Hamiltonian J -Hessenberg matrix

�

H

6

impl

whose eigenvalues are

�(

�

H

6

impl

) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9:999999999999994e + 05

�9:999999999999994e + 05

9:200627382497721e + 00

�9:200627382497721e + 00

9:477682372414739e + 00

�9:477682372414737e + 00

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

:

From Theorem 4.1 f) it follows that these have to be the 6 eigenvalues of

f

H

8

which

have not been removed. As can be seen, we loose 4 � 5 digits during the implicit

restart. Performing an explicit restart with the explicitly computed new starting

2

MATLAB is a trademark of The MathWorks, Inc.
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vector �v

1

= (H � �I)(H + �I)v

1

yields a Hamiltonian J -Hessenberg matrix

�

H

6

expl

with eigenvalues

�(

�

H

6

expl

) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9:999999999999999e + 05

�9:999999999999999e + 05

9:200679454660859e + 00

�9:200679454660861e + 00

9:477559041923007e + 00

�9:477559041923007e + 00

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

:

This time we lost up to 10 digits. As a general observation from a wide range of

numerical tests, the explicit restart looses at least 2 digits more than the implicit

restart.

6.3 Breakdowns in the SR Factorization

So far we have assumed that the SR decomposition always exists. Unfortunately

this assumption does not always hold. If there is a starting vector

e

v

1

for which the

explicitly restarted symplectic Lanczos method breaks down, then it is impossible

to reduce the Hamiltonian matrix H to Hamiltonian J -Hessenberg form with a

transformation matrix whose �rst column is

e

v

1

. Thus, in this situation the SR

decomposition of (H � �I) or (H � �I)(H + �I) can not exist.

As will be shown in this section, this is the only way that breakdowns in the SR

decomposition can occur. In the single shift SR step, only transformations of the type

G

P

and J

P

are used. As the latter ones are orthogonal symplectic Givens rotations,

their computation can not break down. Thus the only source of breakdown can be

one of the symplectic Gaussian eliminations G

P

.

Theorem 6.1. Suppose the Hamiltonian J-Hessenberg matrix

f

H

2k

corresponding

to (11) is unreduced and let � 2 IR. Let G

P

(j; y) be the jth permuted symplectic Gauss

transformation required in the SR step on (

f

H

2k

P

� �I). If the �rst j � 1 permuted

symplectic Gauss transformations of this SR step exist, then G

P

(j; y) fails to exist if

and only if �v

T

j

J

P

H

P

�v

j

= 0 with �v

j

as in (17).

Proof:

The proof follows the lines of [25, Theorem 3].

Assume that the �rst j � 1 permuted symplectic Gauss transformations

G

P

(

i+1

2

; y

i

); i = 3; 5; : : : ; 2j � 1 exist and let

"

b

S

2j

P

0

0 I

#

= J

P

(1; c

1

; s

1

)

j

Y

i=2

G

P

(i; y

i

)J

P

(i; c

i

; s

i

):

Then from (11),

H

P

S

2j

P

= S

2j

P

f

H

2j

P

+ �

j+1

v

j+1

e

T

2j

;

we obtain

H

P

�

S

2j

P

=

�

S

2j

P

�

H

2j

P

+ �

j+1

v

j+1

e

T

2j

b

S

2j

P

where

�

S

2j

P

= S

2j

P

b

S

2j

P

and

�

H

2j

P

= (

b

S

2j

P

)

�1

f

H

2j

P

b

S

2j

P

.
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Since

(

�

S

2j

P

)

T

J

n

P

�

S

2j

P

= J

j

P

;

it follows that

� J

j

P

(

�

S

2j

P

)

T

J

n

P

H

P

�

S

2j

P

=

�

H

2j

P

:(20)

The leading (2j + 2)� (2j + 2) principal submatrix of

"

b

S

2j

P

0

0 I

#

�1

f

H

2k

P

"

b

S

2j

P

0

0 I

#

is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

�

1

�

�

1

0

�

�

2

��

1

�

�

�

1

0 0

0

�

�

2

.

.

.

.

.

.

0 0

.

.

.

.

.

.

.

.

.

�

�

j

�

�

j

0 x

2

.

.

.

��

j

�

�

�

j

0 x

1

x

1

x

2

�

j+1

�

j+1

0 0 �

j+1

��

j+1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

as �

j+1

e

T

2j

b

S

2j

P

= [0; � � � ; 0; x

1

; x

2

]

T

because

b

S

2j

P

is an upper Hessenberg

matrix. On the other hand, this leading principal submatrix can be

expressed as

�J

j+1

P

[

�

S

2j

P

jv

j+1

jw

j+1

]

T

J

n

P

H

P

[

�

S

2j

P

jv

j+1

jw

j+1

]

using (20). That is

2

6

6

4

�

H

2j

P

�J

j

P

(

�

S

2j

P

)

T

J

n

P

H

P

v

j+1

�J

j

P

(

�

S

2j

P

)

T

J

n

P

H

P

w

j+1

�w

T

j+1

J

n

P

H

P

�

S

2j

P

�

j+1

�

j+1

v

T

j+1

J

n

P

H

P

�

S

2j

P

�

j+1

��

j+1

3

7

7

5

:

Thus we have

x

1

= �w

T

j+1

J

n

P

H

P

�v

j

x

2

= �w

T

j+1

J

n

P

H

P

�w

j

:

The next step in the implicit SR step eliminates x

1

using a transformation

of type G

P

. This can be done if ��

j

is nonzero. Hence, the SR step breaks

down if ��

j

= 0 and thus implies a breakdown in the symplectic Lanczos

method.

The opposite implication follows from the uniqueness of the symplectic

Lanczos method.

p

A similar theorem can be shown for the double shift case considered in Section 7.2.
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7 Applications

7.1 Approximating Eigenvalues and Eigenvectors of Hamil-

tonian Matrices

Lanzcos-type algorithms are especially well-suited for computing some of the extremal

eigenvalues of a matrix. As a well-known fact, Lanczos algorithms usually produce

Ritz values (i.e., eigenvalues of the reduced matrix) which converge very fast to the

extremal eigenvalues of the original matrix (see e.g. [24]).

The computed Ritz values can also be used as shifts either in the restart process

(Section 7.2) or to accelerate convergence in the SR algorithm for computing a

low rank approximation of the corresponding algebraic Riccati equation (see [45]).

Besides, purely imaginary Ritz values of odd multiplicity signal that a stable k-

dimensional invariant subspace of the computed

f

H

2k

does not exist. This will be

considered in Section 7.2.

Computing the Ritz values after the k{th symplectic Lanczos step requires the

computation of the eigenvalues of a 2k � 2k Hamiltonian J -Hessenberg matrix as in

(4). This can be done using the standard Hessenberg QR algorithm which requires

O(k

3

) 
ops. We present two di�erent approaches which require only O(k

2

) 
ops.

7.1.1 Approximating the Eigenvalues of a Hamiltonian J-Hessenberg

Matrix Using a Square Reduced Method

Squaring

f

H

2k

, we obtain a matrix of the following structure :

�

f

H

2k

�

2

=M

2k

=

"

M

k

1

M

k

2

0 M

k

1

T

#

=

2

6

4

@@

@

0

.

.

.

0

@

@

@@

@

3

7

5
(21)

where

M

k

1

=

2

6

6

6

6

6

6

6

4

�

1

 

2

�

2

�

2

 

3

�

3

.

.

.

.

.

.

.

.

.

.

.

.

 

k

�

k

�

k

3

7

7

7

7

7

7

7

5

;

�

j

= �

2

j

+ �

j

�

j

; j = 1; : : : ; k;

�

j

= 


j

�

j�1

; j = 2; : : : ; k;

 

j

= 


j

�

j

; j = 2; : : : ; k:

Hence the eigenvalues of M

2k

may be obtained by computing the eigenvalues

f

b

�

1

; : : : ;

b

�

k

g of the nonsymmetric tridiagonal matrix M

k

1

. Therefore, �(

f

H

2k

) =

f�

q

b

�

1

; : : : ;�

q

b

�

k

g which re
ects the structure of the spectrum of the Hamiltonian

matrix

f

H

2k

.

This approach is similar to Van Loan's square reduced algorithm [49]. There, a

general Hamiltonian matrix H is �rst reduced to the so-called square reduced form,
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i.e., a symplectic orthogonal matrix U is computed such that

(U

T

HU)

2

=

"

N

1

N

2

0 N

T

1

#

=

2

6

4

@@

@

@

3

7

5

:(22)

Then the eigenvalues of H are computed by taking the square roots of the eigenvalues

of the upper Hessenberg matrix N

1

. Since Hamiltonian J -Hessenberg matrices are

already square reduced, the reduction process (22) can be skipped in our case.

Besides, M

1

is tridiagonal whereas in the general case, the corresponding block

N

1

is an upper Hessenberg matrix. Unfortunately, the tridiagonal matrix M

1

is

nonsymmetric such that we either have to give up numerical stability or preservation

of the tridiagonal structure when computing the eigenvalues.

Structure preserving methods for computing eigenvalues of unsymmetric tridiago-

nal matrices include the LR algorithm [44] and the recently proposed DQR algorithm

[48]. All these methods require only O(k

2

) 
ops, but may su�er from numerical in-

stabilities. For a discussion of these methods we refer to the references given above

and the references therein.

For a detailed discussion of Van Loan's algorithm see [9, 49]. Squaring the

Hamiltonian matrix may cause a loss of accuracy. A worst case bound for the

eigenvalues computed by Van Loan's method indicates that one may loose essentially

half of the signi�cant digits compared to eigenvalues computed by the QR algorithm.

This is observed rather seldom in practice, though. On the other hand, this method

re
ects the structure of the spectrum of Hamiltonian matrices, whereas the standard

QR algorithm often does not �nd exactly k eigenvalues in each half plane since small

perturbations may cause the computed eigenvalues to cross the imaginary axis.

7.1.2 Computing Eigenvalues and Eigenvectors by the SR Algorithm

Given a Hamiltonian J -Hessenberg matrix

f

H =

f

H

0

2 IR

2k�2k

as in (4), the

SR algorithm computes a sequence of orthogonal and nonorthogonal symplectic

similarity transformation matrices S

j

, j = 0; 1; : : :, that preserve this structure, i.e.,

f

H

j+1

= S

�1

j

f

H

j

S

j

is a Hamiltonian J -Hessenberg matrix for all j = 0; 1; : : :. The

sequence

f

H

j

converges to a Hamiltonian matrix

f

H

SR

= (S

SR

)

�1

f

HS

SR

=

"

D

1

D

2

0 �D

T

1

#

(23)

where D

1

, D

2

are block diagonal k�k matrices with blocks of size 1�1 or 2�2 and all

transformations S

j

are accumulated in the symplectic matrix S

SR

. The eigenvalues

of

f

H are thus given by D

1

and their counterparts in �D

T

1

. The eigenvectors

corresponding to the eigenvalues contained in D

1

are given by the �rst k columns of

S

SR

. If (�

i

; s

i

) represents such a right eigenpair, then because of the Hamiltonian

structure, the corresponding left eigenpair is (��

i

; s

T

i

J). If only eigenvalues are

desired, the SR algorithm is an O(k

2

) algorithm. If eigenvectors and/or invariant

subspaces are required, S

SR

has to be formed explicitly which requires O(k

3

) 
ops.

For a detailed discussion of QR-type algorithms based on SR decompositions see e.g.

[8, 14, 35, 45].
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Now assume that we have performed k steps of the symplectic Lanczos procedure

and thus obtained the identity (after permuting back)

HS

2k

= S

2k

f

H

2k

+ �

k+1

�v

k+1

e

T

2k

:(24)

We can use the SR algorithm to compute eigenvalues and eigenvectors of

f

H

2k

.

Setting

f

H =

f

H

2k

and D

i

= D

k

i

, i = 1; 2, in (23) and multiplying (24) from the right

by S

SR

yields

HS

2k

S

SR

= S

2k

S

SR

"

D

k

1

D

k

2

0 �D

k

1

T

#

+ �

k+1

�v

k+1

e

T

2k

S

SR

:(25)

Thus the Ritz values are the eigenvalues �

j

of D

k

1

and their counterparts ��

j

. Now

assume �

j

is a converged Ritz value, i.e., a su�cient approximation to an eigenvalue

of H. As in standard Lanczos type algorithms, an approximation to the (right)

eigenvector corresponding to �

j

can be read o� from (25) if

kHy

j

� �

j

y

j

k =








�

k+1

�v

k+1

e

T

2k

s

j








 = j�

k+1

(s

j

)

2k

j k�v

k+1

k(26)

is su�ciently small (see e.g. [5]), here y

j

= S

2k

S

SR

e

j

and s

j

= S

SR

e

j

. Thus the last

row of S

SR

shows which Ritz values and Ritz vectors yield good approximations to

eigenvalues and eigenvectors of H.

Another application of the SR algorithm and of (25) is described in the next

section.

7.2 Low-Rank Approximations to Invariant Subspaces of

Hamiltonian Matrices and Solutions of Algebraic Ric-

cati Equations

It is well known that the solution of the CARE (2),

Q+A

T

X +XA�XGX = 0;

is connected to the invariant subspaces of the corresponding Hamiltonian matrix. If

the columns of

"

V

W

#

2 IR

2n�n

span an invariant subspace of H and V 2 IR

n�n

is

invertible, then X = �WV

�1

solves (2). For discussion of existence and uniqueness

of such solutions and further issues like symmetry see e.g. [32, 36, 42].

In control theory one is usually concerned with the symmetric (positive semide�-

nite) stabilizing solution of (2), i.e., a solution

c

X such that A�G

c

X is stable. Under

the conditions that (A;G) is stabilizable, (Q;A) is detectable, such a solution ex-

ists, is unique and may be determined by computing the stable invariant subspace

of H. For simpli�cation we will in the following assume that these conditions hold.

Note that under these conditions, the Hamiltonian matrix does not have any purely

imaginary eigenvalues.

Now suppose we have computed k steps of the symplectic Lanczos algorithm.

Thus we obtain the 2k � 2k Hamiltonian J -Hessenberg matrix

f

H

2k

. For a moment
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we will assume that

f

H

2k

has no purely imaginary eigenvalues. Hence we can compute

an invariant subspace of

f

H

2k

by the SR algorithm as in (23). In [8] it is described

how to separate the stable invariant subspace from (23) by symplectic similarity

transformations which preserve the structure of (24). We can thus assume that D

k

1

is stable and that the �rst k columns of S

SR

span the stable invariant subspace of

f

H

2k

. Combined with the Lanczos factorization we again obtain (25). If

Y

k

= S

2k

S

SR

= [Y

k

1

Y

k

2

]; Y

k

1

; Y

k

2

2 IR

2n�k

;(27)

we can conclude that the columns of Y

k

1

span an approximate stable H-invariant

subspace of dimension k if








HY

k

1

� Y

k

1

D

k

1








 = j�

k+1

j








�v

k+1

e

T

2k

Y

k

1








(28)

is su�ciently small.

We want to use this low-rank approximate stableH-invariant subspace to compute

a low rank approximation to the solution of the CARE (2). So far it is not clear what

is the best way to obtain such a solution, especially because there may be di�erent

interpretations of what is the \best" low rank approximation. In the following we

will describe one possibility to construct such a low rank approximation.

Since S

2k

T

J

n

�v

k+1

= 0 and Y

k

satis�es the symplecticity property

Y

k

T

J

n

Y

k

= J

k

(29)

we obtain from (25)

J

k

T

Y

k

T

J

n

HY

k

=

"

D

k

1

D

k

2

0 �D

k

1

T

#

(30)

and from the lower left block of this equation

� Y

k

21

T

AY

k

11

+ Y

k

11

T

QY

k

11

� Y

k

21

T

GY

k

21

� Y

k

11

T

A

T

Y

k

21

= 0(31)

where Y

k

1

=

"

Y

k

11

Y

k

21

#

. Let Y

k

11

= Z

k

R

k

be an \economy size" QR factorization,

i.e., Z

k

2 IR

n�k

has orthonormal columns and R

k

2 IR

k�k

is an upper triangular

matrix. If Y

k

11

has full column rank, R

k

is invertible. Premultiplying (31) by R

k

�T

and postmultiplying by R

k

�1

yields

�R

k

�T

Y

k

21

T

AZ

k

+ Z

k

T

QZ

k

�R

k

�T

Y

k

21

T

GY

k

21

R

k

�1

� Z

k

T

A

T

Y

k

21

R

k

�1

= 0:(32)

Setting X

k

= �Y

k

21

R

k

�1

Z

k

T

we obtain

Z

k

T

�

X

k

A+Q�X

k

GX

k

+A

T

X

k

�

Z

k

= 0:(33)

The computedX

k

may now be considered as a low rank approximation to the solution

of (2). From the symplecticity property (29) it is easy to verify that X

k

is symmetric

and from (30) we obtain

Z

k

T

(A�GX

k

)Z

k

= R

k

D

k

1

R

k

�1

+ E

k

1

(34)
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where E

k

1

is the upper left k � k block of Z

k

T

(�

k+1

�v

k+1

e

T

2k

S

SR

). From (33) and (34)

it is clear that in exact arithmetic for k = n, X

k

is the required stabilizing solution

of (2).

By now, we have assumed that

f

H

2k

has no eigenvalues on the imaginary axis.

Under the above assumptions, H has no purely imaginary eigenvalues. But for

f

H

2k

,

k < n, computed by the Lanczos process, in general this property (and also the

stabilizability{detectability condition) does not hold. Thus we may expect

f

H

2k

to

have purely imaginary eigenvalues for some k. If this happens,

f

H

2k

does not have a

stable, k-dimensional invariant subspace.

One way to remove these eigenvalues is to employ a double shifted restart as

in (18). Suppose

f

H

2k

has ` pairs of purely imaginary eigenvalues denoted by

{�

1

;�{�

1

; : : : ; {�

`

;�{�

`

. We can then perform a double shifted implicit restart

corresponding to the starting vector �v

1

= �(H � {�

1

I)(H + {�

1

I)v

1

to obtain the

new Lanczos identity (19) which after permuting back reads

H

�

S

2k�2

=

�

S

2k�2

�

H

2k�2

+ �r

k

e

T

2k�2

:(35)

Because of Theorem 4.1 the Hamiltonian J -Hessenberg matrix

�

H

2k�2

has the same

eigenvalues as

f

H

2k

besides the removed pair �{�

1

. The remaining pairs of purely

imaginary eigenvalues can be removed with another ` � 1 double shifted implicit

restarts to obtain a new Lanczos factorization

H

�

S

2(k�`)

=

�

S

2(k�`)

�

H

2(k�`)

+ �r

k�`+1

e

T

2(k�`)

(36)

where the eigenvalues of

�

H

2(k�`)

are those eigenvalues of

f

H

2k

having nonzero real

parts. The starting vector corresponding to the Lanczos factorization (36) is the

multishift vector

�v

1

= �(H � {�

`

I)(H + {�

`

I) � : : : � (H � {�

1

I)(H + {�

1

I)v

1

:

Thus it is possible to compute a low rank approximate stable H-invariant subspace

of dimension k � ` and the corresponding Riccati solution. If an approximation of

dimension k is required, we may use the same approach as in [25] where restarts

are used to obtain a stable reduced order system. Performing ` symplectic Lanczos

steps, we obtain from

�

H

2(k�`)

a new Hamiltonian J -Hessenberg matrix

�

H

2k

with

hopefully no eigenvalues on the imaginary axis. If there are again purely imaginary

eigenvalues, we have to repeat the restart process. In our numerical experiments, this

never produced an

�

H

2k

having again ` (or even more) pairs of purely imaginary Ritz

values. With this approach we obtain after a �nite number of restarts a Hamiltonian

J -Hessenberg matrix of required dimension having only eigenvalues with nonzero real

part.
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8 Numerical Results

In this section we present some examples to demonstrate the ability of the proposed

algorithm to overcome (near) breakdown and one example to show the typical

behaviour of the symplectic Lanczos method. An example where the restart process

is used to remove eigenvalues was already given in Section 6.2.

All computations were done using MATLAB

3

Version 4.2c on a SUN SPARC10

with IEEE double precision arithmetic and machine precision " = 2:2204 � 10

�16

.

In case the symplectic Lanczos method encounters a serious breakdown (or near

breakdown), that is if �

j

= 0 for some j (or j�

j

j < tol where tol is an appropriately

chosen value), then an implicit single shifted restart as discussed in Section 5 is

employed. If breakdown occurs during the restart or if the original breakdown

condition persists after the restart, the implicit restart is repeated at most 3 times

with a di�erent randomly chosen shift. After three consecutive unsuccessful recovery

attempts, the restart attempts are stopped and an explicit restart with a new random

starting vector is initiated.

We tested the restarted symplectic Lanczos method for the Hamiltonian matrices

corresponding to the continuous-time algebraic Riccati equations given in the

benchmark collection [3]. Restarts were only encountered in very few cases and

we never had to perform an explicit restart when choosing a random starting vector.

To demonstrate the restart process we report the two most intriguing of those

examples. Due to a special starting vector the implicit restart fails for the

�rst example and an explicit restart has to be performed. The second example

demonstrates a serious breakdown overcome by an implicit restart.

Example 1: (See [2, Example 1] and [3, Example 7].) The �rst example shows that

a serious breakdown can not always be overcome by employing an implicit restart.

Let

H =

2

6

6

6

4

1 0 � 0

0 �2 0 0

1 1 �1 0

1 1 0 2

3

7

7

7

5

:

As a starting vector v

1

for the symplectic Lanczos method we choose e

1

. During the

�rst step of the symplectic Lanczos algorithm the following quantities are computed:

�

1

= 1; �

1

= 1; w

1

= e

2

+ e

4

�

1

= �; �

2

= 3; v

2

= e

4

:

For the second step

e

w

2

and �

2

have to be computed :

e

w

2

= e

4

; �

2

= 0:

A serious breakdown is encountered. An implicit restart with the new starting vector

v

1

= (H

P

� �I)e

1

= [1� �; 1; 0; 1]

T

3

MATLAB is a trademark of The MathWorks, Inc.
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will break down at the same step, as any further restart will. In fact, any restart

with a starting vector v

1

of the form [a; b; 0; c]

T

will break down as this implies that

w

1

=

1

�

1

2

6

6

6

4

�b

a� 2b

0

a+ �

3

7

7

7

5

; �

1

= a

2

� 2ab� �b

2

; �

1

=

�

�

1

and

v

2

= e

4

as before. For any vector of the form v = [0; 0; 0; x]

T

we have v

T

J

P

H

P

v = 0 and thus

a serious breakdown. If our starting vector is of the form [a; b; 0; c]

T

, then the new

starting vector in the single shifted restart is of the same form and thus the serious

breakdown can not be overcome by implicit single shifted restarts. An explicit restart

with a random starting vector is successful.

Example 2 : (See [13] and [3, Example 13].) The second example demonstrates a

serious breakdown overcome by an implicit single shifted restart. Let

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0:4 0 0 0 0 0 0

0 0 0:345 0 0 0 0 0

0 �524000 �465000 262000 0 0 0 0

0 0 0 �10

6

0 0 0 10

12

1 0 0 0 0 0 0 0

0 0 0 0 �0:4 0 524000 0

0 0 1 0 0 �0:345 465000 0

0 0 0 0 0 0 �262000 10

6

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

As a starting vector v

1

for the symplectic Lanczos method we choose e

1

. During the

�rst step of the symplectic Lanczos algorithm the following quantities are computed:

�

1

= 1; �

1

= 1; w

1

= e

2

� e

1

�

1

= �1; �

2

= 0:4; v

2

= �e

4

:

A serious breakdown is encountered as �

2

= 0. After an implicit restart with the new

starting vector v

1

= (H

P

� �I)e

1

= [��; 1; 0; 0; 0; 0; 0; 0]

T

, the breakdown condition

�

2

= 0 persists. Thus the restart is repeated with a di�erent shift

e

� yielding the new

starting vector v

1

= (H

P

�

e

�I)(H

P

� �I)e

1

= [

e

��;�� �

e

�; 0;�0:4; 0; 0; 0; 0]

T

: This

restart is successful.

Example 3 : We did a vast number of test runs using randomly chosen Hamiltonian

matrices and randomly chosen starting vectors (as well as the starting vector e

1

).

The occurence of a serious breakdown is very unlikely here as these test examples

typically have nice properties. Table 4 reports the distribution of the values of �

i

for

2000 randomly chosen 100�100 Hamiltonian matrices and randomly chosen starting

vectors as the symplectic Lanczos method was used to compute 20 Lanczos vectors,

that is the algorithm ran for 10 steps.
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interval for �

i

number of occurences

j�

i

j < 10

�6

0

10

�6

� j�

i

j < 10

�5

2

10

�5

� j�

i

j < 10

�4

9

10

�4

� j�

i

j < 10

�3

113

10

�3

� j�

i

j < 10

�2

1010

10

�2

� j�

i

j < 10

�1

7717

10

�1

� j�

i

j < 10

0

10123

10

0

� j�

i

j < 10

1

26

10

1

� j�

i

j < 10

2

1000

10

2

� j�

i

j 0

Table 4: Distribution of �

i

The occurence of a near breakdown is dependent on the value chosen for tol.

Choosing tol too small (like tol =

p

" where " is the 
oating point relative accuracy)

results in almost no breakdown, choosing tol too large in too many. A good choice

is dependent on the desired goals : the desired accuracy, the desired speed, etc. A

breakdown during the implicit SR step was never encountered during these test runs.

As expected from a Lanczos method, the Ritz values converge to the eigenvalues

of largest modulus after a small number of steps.

Example 4 : In computational chemistry, large eigenvalue problems arise for

example in linear response theory. The simplest model of a response function for the

response of a single self-consistent-�eld state to an external perturbation is realized

by the time-dependent Hartree{Fock model. This leads to the generalized eigenvalue

problem (see [38])

"

A B

B A

#

x = �

"

� �

�� ��

#

x:(37)

Here, A; B; � 2 IR

n�n

are symmetric and � 2 IR

n�n

is skew-symmetric. For a closed

shell Hartree-Fock wave function we have � = I

n

and � = 0. Thus, the generalized

eigenvalue problem (37) reduces to the standard Hamiltonian eigenvalue problem

"

A B

�B �A

#

x = �x:

The order of the matrices considered in linear response theory can easily reach

n = 10

6

; 10

7

. Computations with such models require a thorough implementation

as well as adequate data structures and are planned for the future. Here we want

to present only a simple model and the results obtained by the symplectic Lanczos

process. The chosen example is similar to an example presented in [18] where special

versions of the Lanczos algorithm for matrices as given in (37) are examined.

Let n = 100, D = diag (d

1

; : : : ; d

n

) and

^

D = diag (

^

d

1

; : : : ;

^

d

n

), where d

1

= 200:0,

d

2

= 100:0, d

3

= 50:0, d

i

= (i� 1) � 0:001 for i = 4; : : : ; n and

^

d

1

=

^

d

2

=

^

d

3

= 0:0,
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^

d

i

= i � 0:0001. Now set A = U

T

D

1

U and B = U

T

D

2

U with a Householder matrix

U = I

n

� 2

ww

T

w

T

w

where w = [ 1; 2; : : : ; 100]. The resulting matrix

H =

"

A B

�A �B

#

is Hamiltonian and has eigenvalues

f�200:0; �100:0; �50:0;��

4

; : : : ;��

n

g

where 0:001 < j�

i

j < 0:1 for i = 4; : : : ; n.

After three steps of the symplectic Lanczos algorithm (without re-J -orthogo-

nalization) we obtain the Ritz values

�1.999991457279083e+02, �9.931554785773068e+01, �3.371968773385778e+01.

That is, the largest eigenvalue value is approximated with a relative accuracy of

O(10

�5

). The next Lanczos step yields the Ritz values

�1.999999999999998e+02, �9.999999999999989e+01, �4.999999999997731e+01,

�8.451080813545205e�02,

i.e., the three largest Ritz values have (almost) converged to the three largest

eigenvalues of H. Thus, one can expect a loss of symplecticity (J -orthogonality)

in the Lanczos vectors and, as in standard Lanczos algorithms, that the converged

eigenvalues will be duplicated. In fact, after 9 iterations we have Ritz values

�1.999999999999999e+02, �9.999999999999999e+01, �5.000000000000038e+01,

�1.999999999999997e+02, �9.999999999985583e+01, �4.999999974747666e+01,

�9.524662688488485e�02, �7.720710855953188e�02, �3.757475009324353e�02.

Using complete re-J -orthogonalization, this e�ect is avoided and we obtain after 9

steps the following Ritz values :

�1.999999999999999e+02, �9.999999999999993e+01, �4.999999999999997e+01,

�9.754957790699192e�02, �9.154380154101090e�02, �8.237785481069571e�02,

�6.786890886560507e�02, �4.923341543122169e�02, �1.448276946901055e�02.

These �rst results give rise to the hope that the (restarted) symplectic Lanczos

algorithm is an e�cient tool for the numerical solution of large scale Hartree{Fock

problems.

9 Concluding Remarks

We have presented a symplectic Lanczos method for the Hamiltonian eigenproblem

which is used to approximate a few eigenvalues and associated eigenvectors and to

compute a low rank approximation to the stable invariant subspace of a Hamiltonian

matrix which can be used to approximate the stabilizing solution of continuous-

time algebraic Riccati equations. Unfortunately, the symplectic Lanczos process

can break down before the desired number of eigenvalues is computed. When used

to compute a low rank approximation to the solution of continuous-time algebraic
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Riccati equations, there is no guarantee that the symplectic Lanczos process yields a

reduced Hamiltonian matrix

f

H

2k

having a stable k{dimensional invariant subspace

due to purely imaginary Ritz values. Inexpensive implicit restarts are developed

which can be used to overcome (near) breakdowns in the symplectic Lanczos process

and to remove the undesirable purely imaginary Ritz values.

As in the standard nonsymmetric Lanczos method one can expect convergence

of eigenvalues after a small number of steps. A restarted symplectic Arnoldi method

can be formulated along the lines of our restarted symplectic Lanczos method. But as

stated in [41] : When both the column and the row subspaces contain, respectively,

p

�

approximations to the eigenvectors of � then the Ritz values will be an �-approximation

to �. This can not happen with one-sided approximations (as the Arnoldi method

yields) unless the matrix is normal.

Our analysis shows that the implicitly restarted symplectic Lanczos method is

an e�cient tool for extracting a few eigenvalues of large Hamiltonian matrices.

Nevertheless the method needs to be tested on a broader range of problems.

We have presented a possibility how the method can be used to approximate the

solution of algebraic Riccati equations. But it is yet not clear what is the best way

to form an approximate solution X from a low-rank approximation to the stable

invariant subspace of the Hamiltonian matrix. This will be the topic of further

studies. Future work will also include the study of symplectic Lanczos methods

for the (generalized) symplectic eigenvalue problem and the related discrete-time

algebraic Riccati equation as well as combinations of the restart process with look-

ahead approaches.
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