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In the paper, the parallelization of multi-grid methods for solving second-order

elliptic boundary value problems in two-dimensional domains is discussed. The

parallelization strategy is based on a non-overlapping domain decomposition data

structure such that the algorithm is well-suited for an implementation on a parallel

machine with MIMD architecture. For getting an algorithm with a good paral-

lel performance it is necessary to have as few communication as possible between

the processors. In our implementation, communication is only needed within the

smoothing procedures and the coarse-grid solver. The interpolation and restriction

procedures can be performed without any communication.

New variants of smoothers of Gauss-Seidel type having the same communication

cost as Jacobi smoothers are presented. For solving the coarse-grid systems iterative

methods are proposed that are applied to the corresponding Schur complement

system.

Three numerical examples, namely a Poisson equation, a magnetic �eld problem,

and a plane linear elasticity problem, demonstrate the e�ciency of the parallel multi-

grid algorithm.
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1 Introduction

The numerical simulation of complex �eld problems requires highly e�cient algorithms as

well as computers with a high CPU power and a large storage capacity. The algorithms

used are often based on �nite element (FE) discretizations. Since the FE method is closely

connected with the domain decomposition (DD) idea, it is very natural to implement

the algorithms on multiple instruction multiple data (MIMD) parallel computers with

a message passing communication handling. Hereby, the domain 
 in which the �eld

problem is considered will be decomposed into subdomains 


i

, and the data associated

with the subdomains

�




i

are stored on processor P

i

. Using such a data distribution, the

generation of the FE triangulation (see, e.g., [14]) and the generation of the FE sti�ness

matrix as well as the load vector can be performed in parallel very well.

The FE discretization leads in general to a large scale system of (non-)linear algebraic

equations. The non-linear systems can be solved by utilizing a linearization technique,

e.g. a Newton method, such that the e�cient solution of large scale linear systems of FE

equations is a basic problem. We know that multi-grid (MG) methods are among the

most e�cient iterative solvers on sequential computers (see, e.g., [19, 21]). Therefore, it

is of interest to implement MG methods also on parallel computers in order to get a very

fast parallel solver. This topic is discussed extensively in [24] (see also the literature cited

therein).

Within a MG algorithm implemented on a parallel machine one has to choose the

smoothing procedures and the coarse-grid solver in such a way that the data exchange

between the processors, i.e. the communication cost, can be kept as small as possible. Us-

ing the data distribution described above, the restriction and the interpolation procedures

do not need any communication. Damped point-wise Jacobi smoothers and damped inex-

act block Jacobi smoothers are described in [4]. Both smoothers can be parallelized very

well. The inexact block Jacobi smoothers use point-wise Gauss-Seidel or ILU methods

for solving the corresponding block systems approximately. In [30] a smoother of Gauss-

Seidel type is discussed, where a block Gauss-Seidel iteration is performed on each pro-

cessor (subdomain). In this way the processors of two neighbouring subdomains produce

di�erent values for the unknowns corresponding to the common part of the subdomain

boundary. Therefore, after each smoothing step it is necessary to equalize these values,

i.e. an exchange of this data between the corresponding processors must be performed.

A parallel SOR (PSOR) smoother is proposed in [35]. Here, the set of mesh points is

partitioned into p disjoint sets 


h;i

which are further divided into three disjoint subsets




(k)

h;i

, k = 1; 2; 3, where 


(1)

h;i

and 


(3)

h;i

contain the mesh points of 


h;i

that are coupled

to the mesh points of 


h;j

with j < i and j > i, respectively. First, one SOR sweep

applied to the subproblems on 


(1)

h;i

, i = 1; 2; : : : ; p, is performed in parallel. After a data

exchange concerning the mesh points in 


(1)

h;i

, one SOR sweep is carried out in parallel

for the subproblems on 


(2)

h;i

and 


(3)

h;i

. In a last step, the new data corresponding to

the mesh points in 


(3)

h;i

are sent to the neighbouring processors. Other possibilities for

parallel smoothers are ILU smoothers [5], damped coupled alternating line Gauss-Seidel

smoothers [27], smoothers of Chebyshev type [32], and Gauss-Seidel smoothers which use

a multicolouring technique (see, e.g., [1]).

In the present paper we discuss the implementation of point-wise Gauss-Seidel smoo-

thers on MIMD computers. These smoothers use a special ordering of the nodes which

is typical for algorithms based on DD ideas (for more details see Subsection 3.3.1 and

[18]). The most important feature of this implementation is the fact that we need the
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same communication cost as for a point-wise Jacobi smoother.

The second main problem for getting an e�cient parallel MG code is the appropriate

choice of the coarse-grid solver. One possibility is a direct solver which runs on one

processor called processor P

0

. Here, each processor has to send its part of the defect vector

to the processor P

0

. Then, the coarse-grid system will be solved on processor P

0

and the

parts of the solution vector will be sent back to the corresponding processors. For getting

a good parallel performance, the MG algorithm is sometimes organized in such a way that

on the lower levels a smaller number of processors is involved in the computation process.

This leads to a good balance between processing and communication time on each level,

but within the restriction and the interpolation procedures communication is necessary

[4]. Another possibility for solving the coarse-grid system is the application of an iterative

method. This is more attractive in the case of a relatively �ne coarse-grid system. In our

implementation we want to use a preconditioned Schur complement conjugate gradient

method which involves all processors. This is caused by our discretization strategy, where

the system of FE equations corresponding to the coarsest mesh is also distributed to

all processors. An analogous idea, a dual Schur complement algorithm, for solving the

coarse-grid system is discussed in [28].

The present paper is organized as follows: In Section 2 we introduce the consid-

ered second-order elliptic boundary value problems in two-dimensional domains and some

notation. Section 3 is devoted to the implementation of the MG algorithm on MIMD

computers. The construction of the hierarchy of the FE triangulations and the DD data

structure used are discussed briey. The essential part of this paper is the presentation

of the parallel implementation of point-wise Gauss-Seidel smoothers which require the

same communication cost as point-wise Jacobi smoothers. Furthermore, we show that

the interpolation and restriction procedures within the MG algorithm can be performed

without any communication, and we analyse the communication cost for di�erent kinds

of MG cycles. In Section 4 three numerical examples, a Poisson equation, a magnetic �eld

problem, and a plane linear elasticity problem, are presented. We discuss the parallel per-

formance of the MG method on two kinds of parallel machines, namely on a GC/PP-128

machine and on a GCel-192 system.

2 Finite element discretization of the boundary value

problems and remarks on multi-grid algorithms

In this paper we consider second-order elliptic boundary value problems (BVP) in two-

dimensional domains. The weak formulation of such a problem can be written in the

form:

Find u 2 V

0

such that a(u; v) = hF; vi for all v 2 V

0

: (1)

The space V

0

is a subspace of the Sobolev space [H

1

(
)]

s

de�ned by the Dirichlet boundary

conditions on �

D

� @
 (meas �

D

> 0) which are supposed to be homogenized here. If it

is not stated otherwise, as e.g. in Subsection 4.3, the case s = 1 is considered.

We suppose that the bilinear form a(:; :) is symmetric, V

0

-elliptic, and V

0

-bounded. In

the right-hand side of the BVP (1), h:; :i : V

�

0

�V

0

! R

1

is the duality pairing, V

�

0

denotes

the dual space to V

0

, and F 2 V

�

0

is a linear and bounded functional on V

0

. Examples for

such BVPs are presented in Section 4.

Since the parallel MG methods described in Section 3 are based on DD ideas, the

discretization process of problem (1) starts with a decomposition of the domain 
 into
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non-overlapping subdomains 


i

, i.e.

�


 =

p

[

i=1

�




i

; 


i

\ 


i

0

= ; for i 6= i

0

: (2)

In each subdomain 


i

we generate a sequence of nested FE triangulations T

q

, q =

1; 2; : : : ; l, consisting of triangular elements. The mesh generation algorithm is realized in

such a way that it produces an admissible FE triangulation of the whole domain 
. A

more detailed description of the mesh generation is given in Subsection 3.1.

Corresponding to each triangulation, the FE subspaces V

q

� V

0

, q = 1; 2; : : : ; l, are

de�ned by

V

q

= spanf'

q;m

; m = 1; 2; : : : ; N

q

g ; (3)

where N

q

denotes the number of nodes in 
 [ �

N

(�

N

= @
 n

�

�

D

). The functions '

q;m

de�ne the usual nodal basis of piecewise linear functions.

The sequence of FE subspaces V

q

results in a sequence of FE schemes:

Find u

q

2 V

q

such that a(u

q

; v

q

) = hF; v

q

i for all v

q

2 V

q

(4)

approximating problem (1) on the triangulations T

q

, q = 1; 2; : : : ; l. These problems can

be written in matrix representation, i.e.:

Find u

q

2 R

N

q

such that K

q

u

q

= f

q

(5)

with u

q

= ('

q;1

'

q;2

: : : '

q;N

q

) u

q

, the sti�ness matrices K

q

= [a('

q;n

; '

q;m

)]

N

q

m;n=1

, and

the load vectors f

q

= [hF;'

q;m

i]

N

q

m=1

.

We want to apply a MG algorithm for solving the systems of algebraic FE equa-

tions (5). Within this algorithm, the mesh T

q

0

, q

0

� 1, will be used as the coarsest mesh

such that we get a (l� q

0

+1){grid algorithm. One iteration step (cycle) of this algorithm

is performed in the following way.

One cycle of a (l � q

0

+ 1){grid algorithm

Let the kth iterate u

(k;0)

l

be given.

1. Pre-smoothing

u

(k;1)

l

= G

V

l

(�

l;1

;K

l

; f

l

; u

(k;0)

l

) :

2. Coarse-grid correction

(a) Compute the defect

d

(k)

l

= f

l

�K

l

u

(k;1)

l

:

(b) Restrict the defect to the (l � 1){level mesh

d

(k)

l�1

= I

l�1

l

d

(k)

l

:

(c) Solve the coarse-grid system

K

l�1

w

(k)

l�1

= d

(k)

l�1

by means of �

l�1

iteration steps of a (l � q

0

){grid algorithm (with the initial

guess 0) if l � 1 > q

0

, otherwise by means of a preconditioned conjugate

gradient algorithm =)

e

w

(k)

l�1

:
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(d) Interpolate

e

w

(k)

l�1

onto the �ner mesh T

l

and correct the approximate u

(k;1)

l

u

(k;2)

l

= u

(k;1)

l

+ I

l

l�1

e

w

(k)

l�1

:

3. Post-smoothing

u

(k;3)

l

= G

N

l

(�

l;2

;K

l

; f

l

; u

(k;2)

l

) :

Set u

(k+1;0)

l

= u

(k;3)

l

:

In dependence on the choice of the parameters �

q;1

, �

q;2

, and �

q�1

, q = l; l�1; : : : ; q

0

+1,

we get the V -cycle (�

q;1

= �

1

, �

q;2

= �

2

, �

q�1

= 1), the W -cycle (�

q;1

= �

1

, �

q;2

= �

2

,

�

q�1

= 2), and the generalized V -cycle (gV -cycle, �

q�1;1

= 2�

q;1

, �

q�1;2

= 2�

q;2

, �

q�1

= 1).

We can also perform the F -cycle, a cycling scheme between the V -cycle and the W -cycle.

The F -cycle is de�ned as follows: For l = q

0

+ 1 the F - and the V -cycle are identical, for

l � q

0

+ 2 �rst a F -cycle and then a V -cycle are performed for solving the (l � 1){level

coarse-grid system.

The application of the various MG cycles leads to MG algorithms with di�erent con-

vergence properties. If the solution u of the BVP (1) is regular, i.e. u 2 H

2

(
), then

the convergence rate of the MG V -cycle is independent of the discretization parameter.

This convergence result is proved for MG algorithms with di�erent kinds of smooth-

ing procedures, e.g. in [6] with Richardson smoothers, in [3, 7] with general symmetric

smoothers, and in [8] with smoothers based on subspace decompositions (point, line,

and block versions of Jacobi and Gauss-Seidel iteration). For non-regular solutions u,

i.e. u 2 H

1+�

(
) with 0 < � < 1, the convergence factor of the MG V -cycle approaches

one as 1 � O(l

(��1)=�

) [7, 8]. An analogous result is proved without any assumption on

the regularity of the solution u for MG algorithms with Jacobi smoothers in [10] and with

SOR smoothers in [34]. In [7, 8] it is shown that the convergence rate of the generalized

V -cycle does not depend on the discretization parameter even in the case of a non-regular

solution. The same statement is true for the W -cycle [3, 19]. The convergence rate of

the F -cycle goes to one as 1�O(l

�(1��)

2

=�

), i.e. the F -cycle has an asymptotically better

convergence factor than the V -cycle (see, e.g., [23]).

3 Parallel multi-grid algorithm

In this Section we describe an implementation of a MG algorithm on MIMD parallel com-

puters with message-passing. The basis of the parallelization strategy is a non-overlapping

DD data structure which will be discussed in Subsection 3.2. This data structure allows

to perform the MG interpolation and restriction procedures without any communication

such that data exchange is needed within the smoothers and the coarse-grid solver only.

We present in Subsection 3.3.1 Gauss-Seidel type smoothers which require the same com-

munication cost as Jacobi smoothers but yield in general more robust MG algorithms (see

also Section 4). For solving the systems of algebraic FE equations on the coarsest grid,

a parallel version of the preconditioned conjugate gradient (PCG) method applied to the

corresponding Schur complement system is used, see Subsection 3.5.

3.1 Hierarchical triangulations

We assume that the decomposition (2) of the domain 
 into p non-overlapping subdomains




i

is given. Since we want to use MG methods we have to generate a sequence of nested

4



triangular meshes T

q

, q = 1; 2; : : : ; l. The construction of the coarsest mesh T

1

starts with

a decomposition of the coupling boundary �

C

=

S

p

i=1

@


i

into so-called basic lines �

C;j

(j = 1; 2; : : : ; j

C

) with �

C

=

S

j

C

j=1

�

�

C;j

, �

C;j

\ �

C;j

0

= ; for j 6= j

0

. We suppose that a

basic line is either a part of the intersection of a subdomain boundary with the boundary

of the domain 
, �

C;j

� @


i

\ @
, or a part of the intersection of the boundaries of two

neighbouring subdomains, �

C;j

� @


i

\ @


i

0

(i 6= i

0

), see also Figure 1.
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�
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�
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Figure 1: Decomposition of the coupling boundary into basic lines

For each basic line �

C;j

, j = 1; 2; : : : ; j

C

, we �x the number of nodes which are to

be generated in the triangulation T

1

as well as the method of distribution of the nodes

(e.g. equidistant distribution, re�nement in direction of the starting or the ending point

of the basic line). On the basis of this distribution of nodes, the program PARMESH

[14] (see also [15]) generates in parallel FE triangulations of the subdomains 


i

which

result in an admissible FE triangulation of the whole domain 
. In the present version

of this mesh generator the basic lines are assumed to be straight lines, arcs of a circle,

or parabolas, respectively. The �ner triangulations T

q

, q = 2; 3; : : : ; l, are obtained by a

successive re�nement process, i.e. all triangles of the triangulation T

q�1

are divided into

four smaller subtriangles. This re�nement process can be performed in parallel without

any communication (see, e.g., [15]).

In each triangulation the nodes are classi�ed into three groups: the cross-points (ver-

tices), i.e. the starting and the ending points of the basic lines (marked by the symbol in

Figure 1), the edge coupling nodes, i.e. the nodes which are generated on the basic lines,

and the inner nodes.

For the global numbering of the nodes in each triangulation the following order is

used: cross-points, edge coupling nodes on �

C;1

, edge coupling nodes on �

C;2

, : : : , edge

coupling nodes on �

C;j

C

, inner nodes of 


1

, inner nodes of 


2

, : : : , inner nodes of 


p

. An

analogous local numbering of the nodes is employed on each processor.
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3.2 Non-overlapping domain decomposition data structure

The numbering of the nodes described in Subsection 3.1 induces the following block struc-

ture of the systems (5) of algebraic FE equations

0

B

@

K

q;V

K

q;V E

K

q;V I

K

q;EV

K

q;E

K

q;EI

K

q;IV

K

q;IE

K

q;I

1

C

A

0

B

@

u

q;V

u

q;E

u

q;I

1

C

A

=

0

B

B

@

f

q;V

f

q;E

f

q;I

1

C

C

A

: (6)

Here, the indices \V", \E", and \I" correspond to the cross-points (vertices), the edge

coupling nodes, and the inner nodes, respectively. The sti�ness matrices K

q

and the load

vectors f

q

can be represented as sums of super-element (subdomain) sti�ness matrices

K

q;i

and super-element load vectors f

q;i

. With the (N

q;i

� N

q

) Boolean matrices A

q;i

mapping some global vector v

q

2 R

N

q

of nodal variables into the super-element vector

v

q;i

2 R

N

q;i

of variables associated with the subdomain

�




i

only, we get

K

q

=

p

X

i=1

A

T

q;i

K

q;i

A

q;i

and f

q

=

p

X

i=1

A

T

q;i

f

q;i

: (7)

The matrices K

q;i

and the vectors f

q;i

have the same block structure as given in (6).

On each processor P

i

only the corresponding super-element sti�ness matrix K

q;i

and the

super-element load vector f

q;i

are stored. A consequence of this storage is the following:

If we need the elements of the matrix K

q;V

and the vector f

q;V

or the elements of the

matrix K

q;E

and the vector f

q;E

on a processor we have to perform a summation over

cross-points or over edge coupling nodes, respectively. In order to get the elements of the

matrix K

q;V E

also a summation over the edge coupling nodes is necessary. Since each

inner node belongs to one processor only, the processor P

i

has the full information about

the elements of the matrixK

q;I;i

and the vector f

q;I;i

. Figure 2 shows the triangulation of

a square, and Figure 3 illustrates the structure of the corresponding matrices A

T

q;i

K

q;i

A

q;i

,

i = 1; : : : ; 4. In Figure 4 the part

K

q;C

=

 

K

q;V

K

q;V E

K

q;EV

K

q;E

!

(8)

of the corresponding matrix K

q

is presented. As mentioned above, there are elements of

the matrix K

q

for which the real value is known on a processor only after a summation

over the cross-points or the edge coupling nodes, respectively. This elements are marked

with the grey colour. All other elements of the matrix K

q

are stored on exactly one

processor.

For the implementation of parallel solvers it is convenient to introduce two types of

distribution of vectors to the processors P

i

(see, e.g., [17, 18]). A vector v

q

is said to be

of overlapping type if v

q

is stored on processor P

i

as v

q;i

= A

q;i

v

q

. A vector f

q

of adding

type is stored on processor P

i

as f

q;i

such that f

q

=

P

p

i=1

A

T

q;i

f

q;i

. For example, in the MG

algorithm which we describe in Section 2, the load vector f

l

and the defect vector d

(k)

l

are

of adding type whereas the vectors of the approximate solutions u

(k;�)

l

and the correction

vector ~w

(k)

l�1

are of overlapping type.

Within the smoothing procedures and within the coarse-grid solver used in the MG

algorithm it is necessary to convert a vector of adding type into a vector of overlapping

6



type (see Subsection 3.3 and Subsection 3.5). This type conversion requires a data ex-

change of the order O(N

0:5

q

) between the processors. Here, the communication is realized

via a (virtual) hypercube topology and direct links (under PARIX) between processors

containing adjacent subdomains. A library of standard communication routines [16] is

used. The data exchange for the type conversion of a vector is split into two steps. In the

�rst one, the so-called cross-point communication, the components of the vector which

correspond to the cross-points are accumulated. This accumulation is realized via form-

ing a cube sum. In the second step the components of the vector corresponding to the

edge coupling nodes are accumulated. For the nodes on each part �

C;j

of the coupling

boundary we have only a data exchange between two neighbouring subdomains, i.e. only

a local communication which will be called communication over the edge coupling nodes.

A more detailed discussion of the communication procedures can be found in [2].
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Figure 2: A triangulation of a square

3.3 Smoothing procedures

The implementation of Gauss-Seidel type smoothers and Jacobi smoothers is discussed

in this Subsection. Both smoothers are based on the block structure (6) of the systems

of algebraic FE equations and need the same communication cost, i.e., they need in each
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Figure 3: The matrices A

T

q;i

K

q;i

A

q;i

((a) for i = 1, (b) for i = 2, (c) for i = 3, and

(d) for i = 4) corresponding to the triangulation in Figure 2
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Figure 4: The left upper part K

q;C

of the matrix K

q
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smoothing step the communication cost for the conversion of a vector of adding type into

a vector of overlapping type.

To keep the explanation as simple as possible, we describe the smoothers for MG

algorithms which are applied to BVPs with a scalar solution u.

In the following it is supposed that at least one edge coupling node is generated on

each part �

C;j

(j = 1; 2; : : : ; j

C

) of the coupling boundary and that there exists no edge in

the triangulation T

1

connecting nodes on two di�erent parts �

C;j

and �

C;j

0

. Under these

assumptions the matrices K

q;V

are diagonal matrices and the matrices K

q;E

are block-

diagonal matrices with tridiagonal blocks. Using the numbering of the nodes described in

Subsection 3.2, the matrices K

q;I

are also block-diagonal matrices with the blocks K

q;I;i

(see also Figure 3). The blocks K

q;I;i

have no special structure.

3.3.1 Smoothers of Gauss-Seidel type

One iteration step of a point-wise Gauss-Seidel iteration is de�ned as follows:

Let the kth iterate u

(k)

q

be given. The new approximate solution u

(k+1)

q

will be com-

puted in the following way:

K

q;V

u

(k+1)

q;V

= f

q;V

� K

q;V E

u

(k)

q;E

� K

q;V I

u

(k)

q;I

(9)

(D

q;E

+ L

q;E

) u

(k+1)

q;E

= f

q;E

� K

q;EV

u

(k+1)

q;V

� U

q;E

u

(k)

q;E

� K

q;EI

u

(k)

q;I

(10)

(D

q;I

+ L

q;I

) u

(k+1)

q;I

= f

q;I

� K

q;IV

u

(k+1)

q;V

� K

q;IE

u

(k+1)

q;E

� U

q;I

u

(k)

q;I

: (11)

Here, L

q;�

, D

q;�

, and U

q;�

(� stands for E and I, respectively) are a strict lower triangular

matrix, a diagonal matrix, and a strict upper triangular matrix, respectively, with K

q;�

=

L

q;�

+D

q;�

+ U

q;�

.

The block structure of the matricesK

q;E

and K

q;I

allows a decomposition of the system

of algebraic equations (10) into j

C

decoupled systems of algebraic equations

(D

q;E;j

+ L

q;E;j

) u

(k+1)

q;E;j

= f

q;E;j

�K

q;EV;j

u

(k+1)

q;V;j

� U

q;E;j

u

(k)

q;E;j

�K

q;EI;j

u

(k)

q;I

; (12)

j = 1; 2; : : : ; j

C

, and a decomposition of the system of equations (11) into p decoupled

systems

(D

q;I;i

+ L

q;I;i

) u

(k+1)

q;I;i

= f

q;I;i

�K

q;IV;i

u

(k+1)

q;V;i

�K

q;IE;i

u

(k+1)

q;E;i

� U

q;I;i

u

(k)

q;I;i

; (13)

i = 1; 2; : : : ; p.

We want to solve the systems of equations (9) { (11) in parallel. The aim is that

on each processor P

i

only those components of the vectors u

(k+1)

q;V

, u

(k+1)

q;E

, and u

(k+1)

q;I

are

determined, which are associated with the subdomain

�




i

. For realizing this aim we need

on each processor P

i

those parts of the matrices K

q;V

and K

q;E

in assembled form which

correspond to the nodes in

�




i

. As mentioned in Subsection 3.2, this assembly requires

communication. Since the diagonal matrix K

q;V

and the diagonal parts as well as the

subdiagonal parts of the symmetric tridiagonal blocks of the matrix K

q;E

can be handled

as vectors of adding type, we have to perform once the cross-point communication which

is necessary in the �rst step of the type conversion of a vector, and twice we need the

communication over the edge coupling nodes (see also Subsection 3.2). It is clear that this

assembly must be performed for all levels q only once before starting the MG algorithm.

9



Within each smoothing step the following operations are performed: First on each

processor P

i

those components of the right-hand side of the system (9) are computed

which are associated with the subdomain

�




i

. There are representations of the matrices

K

q;V E

, K

q;V I

, and the vector f

q;V

which are analogous to (7). Hence, the right-hand

side of system (9) is a vector of adding type. After a type conversion into a vector of

overlapping type, each processor P

i

can determine the components of the vector u

(k+1)

q;V

corresponding to

�




i

.

Then we have to solve the system of algebraic equations (10). Solving this system

of equations in parallel means that on processor P

i

those systems (12) are solved which

correspond to the parts �

C;j

, j 2 J

C;i

, of the subdomain boundary @


i

= [

j2J

C;i

�

C;j

. We

compute the vectors

r

q;E;j

= f

q;E;j

�K

q;EV;j

u

(k+1)

q;V;j

�K

q;EI;j

u

(k)

q;I;i

;

j 2 J

C;i

, on each processor P

i

and convert these vectors r

q;E;j

into vectors �r

q;E;j

of

overlapping type. After this type conversion the systems of equations

(D

q;E;j

+ L

q;E;j

)u

(k+1)

q;E;j

= �r

q;E;j

� U

q;E;j

u

(k)

q;E;j

;

j 2 J

C;i

, can be solved on processor P

i

without any communication.

Each processor P

i

has the full information about the right-hand side and the matrix

D

q;I;i

+ L

q;I;i

of the corresponding system of equations (13). Therefore, these systems of

equations can be solved in parallel without any communication.

Consequently, in each smoothing step we have only the communication cost which

is necessary for the conversion of one vector of adding type into a vector of overlapping

type. Of course, we have a small overhead of computational work within this parallel

implementation since most components of the vectors u

(k+1)

q;V

and u

(k+1)

q;E

are computed on

two or more processors. But this overhead is only of lower order, i.e. of order O(N

0:5

q

).

Remark 3.1

(i) Using the same ideas as described above we can de�ne a Gauss-Seidel type smoother

which works in reverse order.

(ii) If equation (10) is replaced by

K

q;E

u

(k+1)

q;E

= f

q;E

� K

q;EV

u

(k+1)

q;V

� K

q;EI

u

(k)

q;I

(14)

we get another variant of a Gauss-Seidel type smoother. System (14) decomposes

into j

C

decoupled systems of equations

K

q;E;j

u

(k+1)

q;E;j

= f

q;E;j

�K

q;EV;j

u

(k+1)

q;V;j

�K

q;EI;j

u

(k)

q;I

;

with tridiagonal matrices K

q;E;j

, j = 1; 2; : : : j

C

. For solving these systems of equa-

tions, a standard Gauss algorithm for tridiagonal matrices (see, e.g., [29]) will be

used. We compare MG algorithms with this smoother and the point-wise Gauss-

Seidel smoother in Subsections 4.2 and 4.3.

(iii) If there exist edges in the triangulation T

1

connecting nodes on two di�erent parts

�

C;j

and �

C;j

0

of the coupling boundary, then the system (10) can not be decom-

posed into j

C

decoupled systems of algebraic FE equations. In this case we replace

10



equation (10) by the following equations

r

(k+1)

q;E

= f

q;E

�K

q;EV

u

(k+1)

q;V

�K

q;E

u

(k)

q;E

�K

q;EI

u

(k)

q;I

(D

q;E

+ L

0

q;E

)w

(k+1)

q;E

= r

(k+1)

q;E

(15)

u

(k+1)

q;E

= u

(k)

q;E

+ w

(k+1)

q;E

:

We get the matrix (D

q;E

+ L

0

q;E

) from the matrix (D

q;E

+ L

q;E

) by omitting the

non-zero elements which result from edges connecting nodes on two di�erent parts

of the coupling boundary. Therefore, system (15) can be solved in parallel in the

same way as described above for the system (10).

(iv) If the solution u of the BVP (1) is a vector function, i.e. u 2 [H

1

(
)]

s

with s > 1,

then the smoother is modi�ed. We replace all operations with the elements of the

matrix K

q

by block operations with the corresponding (s� s) blocks.

3.3.2 Smoother of Jacobi type

Using again the block structure (6) of the systems of algebraic FE equations, one iteration

step of a smoother of Jacobi type can be written in the form:

K

q;V

u

(k+1)

q;V

= (1� !)K

q;V

u

(k)

q;V

� ! (f

q;V

� K

q;V E

u

(k)

q;E

� K

q;V I

u

(k)

q;I

)

D

q;E

u

(k+1)

q;E

= (1� !)D

q;E

u

(k)

q;E

� ! (f

q;E

� K

q;EV

u

(k)

q;V

� (L

q;E

+ U

q;E

)u

(k)

q;E

� K

q;EI

u

(k)

q;I

)

D

q;I

u

(k+1)

q;I

= (1� !)D

q;I

u

(k)

q;I

� ! (f

q;I

� K

q;IV

u

(k)

q;V

� K

q;IE

u

(k)

q;E

� (L

q;I

+ U

q;I

)u

(k)

q;I

) :

The smoothing parameter ! has to be chosen in an appropriate way (see, e.g., [31]

and the numerical results in Section 4).

If we assemble the matricesK

q;V

and D

q;E

before starting the smoothing procedure on

the level q, we can implement the Jacobi smoother in a manner analogous to the Gauss-

Seidel smoother. Therefore, we have for both smoothers the same communication cost

within each smoothing step. Using our non-overlapping DD data structure the described

implementations are the best possibilities with respect to the communication cost.

3.4 Interpolation and restriction procedures

Since the BVP (1) is discretized with piecewise linear trial functions, linear interpolation

is used within the MG algorithm. The interpolation operator I

q

q�1

maps a vector ~w

q�1

2

R

N

q�1

onto a vector ~w

q

2 R

N

q

. All components of the vector ~w

q

, which are associated

with nodes of the triangulation T

q�1

, are equal to the corresponding components of the

vector ~w

q�1

. The components of the vector ~w

q

corresponding to the new nodes in the

triangulation T

q

are de�ned as the mean value of those components of the vector ~w

q�1

which are associated with the father nodes. Since the father nodes of a new node in

�




i

also belong to

�




i

and since the correction vectors ~w

(k)

q�1

, ~w

(k)

q

are stored as vectors

of overlapping type (see Subsection 3.2), the interpolation procedure can be performed

in parallel without any communication. On each processor P

i

we carry out the local

interpolation procedure ~w

q;i

= I

q

q�1;i

~w

q�1;i

, where the operators I

q

q�1;i

, i = 1; 2; : : : ; p, are

de�ned in the same way as the operator I

q

q�1

. From the obvious relations

~w

q;i

= I

q

q�1;i

A

q�1;i

~w

q�1

and ~w

q;i

= A

q;i

I

q

q�1

~w

q�1
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we get

I

q

q�1;i

A

q�1;i

= A

q;i

I

q

q�1

and A

T

q�1;i

(I

q

q�1;i

)

T

= (I

q

q�1

)

T

A

T

q;i

: (16)

As usual, the restriction operator I

q�1

q

is de�ned by I

q�1

q

= (I

q

q�1

)

T

. For the parallel

implementation of the restriction procedure we introduce the local restriction operators

I

q�1

q;i

as I

q�1

q;i

= (I

q

q�1;i

)

T

. Then the operations

d

q�1;i

= I

q�1

q;i

d

q;i

(17)

are performed simultaneously on the processors P

i

. Since the defect vectors d

q

and d

q�1

are stored as vectors of adding type, we obtain by using relation (16)

d

q�1

=

p

X

i=1

A

T

q�1;i

d

q�1;i

=

p

X

i=1

A

T

q�1;i

I

q�1

q;i

d

q;i

=

p

X

i=1

I

q�1

q

A

T

q;i

d

q;i

= I

q�1

q

p

X

i=1

A

T

q;i

d

q;i

= I

q�1

q

d

q

;

i.e. the simultaneous realization of (17) is justi�ed.

3.5 Coarse-grid solvers

We use parallelized PCG methods applied to the corresponding Schur complement system

(K

q

0

;C

�K

q

0

;CI

K

�1

q

0

;I

K

q

0

;IC

) u

q

0

;C

= f

q

0

;C

�K

q

0

;CI

K

�1

q

0

;I

f

q

0

;I

as coarse-grid solvers. The matrix K

q

0

;C

is de�ned in (8) with q = q

0

and K

q

0

;CI

=

K

T

q

0

;IC

= (K

q

0

;IV

K

q

0

;IE

)

T

. Within the coarse-grid solver, communication is required

during the computation of the two scalar products and in the preconditioner, whereas all

other operations are completely parallel. A non-standard formulation of the PCG method

which minimizes the communication between the processors (see [25, 26]) is used. The

advantage of this formulation is the fact that the two scalar products per iteration step

can be computed immediately one after another. Thus, both values can be sent together

and hence communication (start{up time) is reduced. The matrix by vector multiplication

with the Schur complement matrix (K

q

0

;C

�K

q

0

;CI

K

�1

q

0

;I

K

q

0

;IC

) makes use of a Cholesky

factorization of the matrices K

q

0

;I;i

, i = 1; 2; : : : ; p.

There are some possibilities for de�ning the preconditioner, e.g., we can choose the

diagonal part of the matrix K

C

, BPX-preconditioners with a global cross-point system

[11, 33], or BPS-preconditioners using ideas of Dryja [13] on the coupling boundaries

and a global cross-point system (see also [9]). In the case of the BPX and the BPS

preconditioners we need a hierarchy of partitions of the coupling boundary. In general,

such a hierarchy does not exist for the mesh T

q

0

. Therefore, we generate a sequence of

nested auxiliary meshes down to a mesh which contains the cross-points only. After a

mapping between the original mesh on the coupling boundary and the �nest auxiliary

mesh we perform the BPX- or BPS-algorithm on the sequence of auxiliary meshes.

The preconditioners require communication in the order of the communication cost

for the type conversion of a vector on level q

0

.

3.6 Analysis of the cost of arithmetical work and the commu-

nication cost

Now we want to analyse the cost of arithmetical work and the communication cost for

one MG cycle. This cost is given in Table 1. Therein, W

q;s

denotes the cost of arith-

metical work for one smoothing step, � = �

1

+ �

2

, W

q;T

describes the cost of arithmetical

12



work for the computation of the defect, the restriction procedure, and the interpolation

procedure on level q, and W

q

0

stands for the cost of arithmetical work for solving the

coarse-grid system. The communication cost for one smoothing step is denoted by C

q;s

,

q > q

0

, and C

q

0

stands for the communication cost within the coarse-grid solver. The

communication cost C

q;s

is the cost which we need for the type conversion of a vector (see

also Subsection 3.3). The communication cost C

q

0

depends on the number of iterations

of the coarse-grid solver. In each of these iteration steps we have communication in the

order of the communication cost for one type conversion of a vector.

Cost of arithmetical work Communication cost

V

l

X

q=q

0

+1

[�W

q;s

+W

q;T

] +W

q

0

l

X

q=q

0

+1

�C

q;s

+ C

q

0

F

l

X

q=q

0

+1

(l � q + 1)[�W

q;s

+W

q;T

] + (l � q

0

)W

q

0

l

X

q=q

0

+1

(l � q + 1)�C

q;s

+ (l� q

0

)C

q

0

gV

l

X

q=q

0

+1

[2

l�q

�W

q;s

+W

q;T

] +W

q

0

l

X

q=q

0

+1

2

l�q

�C

q;s

+ C

q

0

W

l

X

q=q

0

+1

2

l�q

[�W

q;s

+W

q;T

] + 2

l�q

0

�1

W

q

0

l

X

q=q

0

+1

2

l�q

�C

q;s

+ 2

l�q

0

�1

C

q

0

Table 1: Cost of arithmetical work and communication cost for the di�erent MG

cycles

Table 1 shows that the V -cycle is the cheapest variant with respect to the cost of

arithmetical work and the communication cost. But this cycle has the worst convergence

rate. The question arises which cycle will lead to the fastest MG algorithm for getting an

approximate solution of the system of equations (5) with a certain accuracy. The answer

can be di�erent for implementations on sequential and parallel computers. On parallel

machines it is important to have as few communication steps as possible. Therefore,

the V - or the F -cycle will give the fastest MG algorithm in many applications (see also

Section 4).

4 Numerical results

In this Section, we present three examples which will show the e�ciency of the parallel MG

algorithm. In order to compare the performance on di�erent multiprocessor systems, we

carried out the computations on a GC/PP-128 machine and on a GCel-192 system. The

�rst one is provided with 128 processors of the type PowerPC-601 installed at 64 nodes

in a 2D-grid topology. The multiprocessor system GCel-192 works with 192 processors of

the type T805. On the GC/PP-128 machine each processor has a memory of 16 MByte

and on the other one a memory of 4 MByte.

Our algorithms are implemented in the program FEM



BEM [15]. All communication

between the processors is realized via a (virtual) hypercube topology using a library of

standard communication routines [16].
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4.1 Poisson equation

As �rst example we consider the BVP (1) with

a(u; v) =

Z




r

T

vru dx and hF; vi =

Z




1 v dx

in the domain 
 = (0; 1) � (0; 1). The space V

0

is de�ned by V

0

= fv 2 H

1

(
) :

v = 0 on @
g.

The domain 
 is divided into p (p = 4, 16, or 64) congruent subdomains. Figure 2

in Subsection 3.2 shows a triangulation of the domain 
 and the decomposition into four

subdomains.

In Table 3 we show the performance of the parallel MG algorithm on di�erent num-

bers of processors and on di�erent multiprocessor systems. The triangulation T

q

�

used as

coarsest mesh T

q

0

within the MG algorithm is obtained by dividing all triangles of the tri-

angulation from Figure 2 into four congruent subtriangles. In this way we have as coarsest

mesh T

q

0

a triangulation with 545 nodes and 1024 elements. The �ner triangulations T

q

,

q = q

�

+1; : : : ; l, are constructed by a successive re�nement process in which each triangle

of the triangulation T

q�1

is divided into four congruent subtriangles. Table 2 contains the

number of nodes N

q

in the triangulations T

q

, q = q

�

� 2; q

�

� 1; q

�

; : : : ; l.

level q q

�

� 2 q

�

� 1 q

�

q

�

+ 1 q

�

+ 2 q

�

+ 3 q

�

+ 4 q

�

+ 5 q

�

+ 6

N

q

41 145 545 2113 8321 33025 131585 525313 2099201

Table 2: Number of nodes in the triangulations T

q

, q = q

�

� 2; q

�

� 1; : : : ; q

�

+ 6

In Table 3 we give the number l

u

= q�q

�

+1 of levels used, the number of MG iterations

#it, and the total time needed for solving the system of �nite element equations on level

l

f

= l

u

+ q

�

�1. This total time includes the time for the communication, i.e. the time for

input, output and waiting of the processors, as well as the time for the processing. The

numbers in parentheses are the percentage of the communication time which we measure

during the program run. Because of the uniform distribution of the subdomains to the

processors all processors have the same load.

Within the MG algorithm two pre- and two post-smoothing steps of the Gauss-Seidel

smoother forward described in Subsection 3.3.1 are used. For solving the coarse-grid

system, a Schur complement PCG method with a BPS preconditioner is applied, where

a coarse-grid solution with a relative accuracy of "

PCG;q

�
= 0:05 is computed. In the case

of the computation on one processor, the coarse-grid solver is a direct solver based on the

Cholesky factorization. The coarse-grid systems have the same size for the computations

on 1, 4, 16, or 64 processors, but the number of unknowns of the corresponding Schur

complement system is growing with the number of processors, and the size of the matrices

K

q

�

;I;i

is decreasing. Therefore, the coarse-grid solvers di�er for computations on di�erent

numbers of processors. The MG algorithm is started with the initial guess u

(0;0)

l

f

= 0,

and it is terminated when a relative defect of 10

�6

is achieved. We observe a very fast

convergence of the V -cycle such that we do not test the other MG cycles for this example.

The scaled e�ciency S(p

1

; p

2

), p

1

< p

2

, given in Table 3 is de�ned by

S(p

1

; p

2

) =

p

1

p

2

�

T (p

1

)

N(p

1

)

�

N(p

2

)

T (p

2

)

;
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where T (p

1

) (T (p

2

)) denotes the total time on p

1

(p

2

) processors, and N(p

1

) (N(p

2

)) is

the total number of unknowns in the computation. We compute the scaled e�ciency by

using the last line of each column in the Table 3. In the one processor case, we have 5

MG iterations for l

u

= 2, but 6 MG iterations are needed for l

u

= 3, l

u

= 4, and l

u

= 5

in the cases of 4, 16, and 64 processors, respectively. Therefore, the scaled e�ciency is

referred to 9.9 sec which would be the time for 6 MG on one processor.

GCel-192 GC/PP-128

l

u

#it Total time [sec] (communication) [%] Total time [sec] (communication) [%]

1 proc. 4 proc. 16 proc. 64 proc. 1 proc. 4 proc. 16 proc. 64 proc.

2 5 8.25 5:41 (3) 1:57 (22) 2:59 (48) 0:19 0:29 (58) 0:52 (90) 1:16 (95)

3 6 12:80 (2) 4:45 (12) 4:48 (47) 0:96 0:63 (46) 0:86 (85) 2:01 (86)

4 6 14:02 ( 5) 7:54 (35) 3:99 1:55 (24) 1:33 (70) 2:33 (92)

5 6 17:62 (18) 5:00 (10) 2:62 (43) 3:05 (85)

6 6 7:27 (19) 4:59 (66)

7 6 9:51 (37)

S(1; p) 0.76 0.69 0.55 0.79 0.54 0.42

S(p; 4p) 0:76 0:90 0:79 0:79 0:69 0:76

Table 3: The performance of the parallel MG algorithm on di�erent numbers of processors

and di�erent machines

On 1, 4, or 16 processors it is possible to use a coarser triangulation T

q

0

than the

triangulation T

q

�

as coarsest mesh within the MG algorithm. Of course, we can also

consider a �ner triangulation as coarsest mesh for the MG iteration. In Table 4 the best

possible MG algorithm for solving the problem with N unknowns are given. Table 4

contains the total time and the number of levels l

u

used. The coarse-grid solution is

computed with a relative accuracy of 2

q

�

�q

0

"

PCG;q

�

.

GCel-192 GC/PP-128

N Total time [sec] / levels Total time [sec] / levels

1 proc. 4 proc. 16 proc. 64 proc. 1 proc. 4 proc. 16 proc. 64 proc.

2113 8:25 = 2 3:49 = 4 1:46 = 3 2:59 = 2 0:18 = 3 0:29 = 2 0:52 = 2 1:16 = 2

8321 12:71 = 5 4:36 = 4 3:59 = 2 0:96 = 3 0:61 = 4 0:73 = 2 1:33 = 2

33025 13:93 = 5 7:41 = 3 3:94 = 6 1:55 = 4 1:31 = 3 1:65 = 2

131585 17:49 = 4 4:73 = 4 2:60 = 4 2:23 = 3

525313 6:77 = 4 4:16 = 3

2099201 9:13 = 5

Table 4: The best possible MG algorithms for solving a system of equation with

N unknowns

Table 4 shows that we get the best MG algorithms on the GC/PP-128 machine if we

use relatively �ne coarse-grid systems. This is caused by the high processing power and

the relatively slow communication performance of this machine. From Table 3 we can see
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that the arithmetical work runs about 30 times faster on the GC/PP-128 machines than

on the GCel-192 system, but the communication is only slightly faster.

Next, we investigate the inuence of di�erent smoothers on the convergence rate.

Here, we give only the results which are obtained on the GC/PP-128 machine with 16

processors. In Table 5, we summarize the numbers of iterations and the total time [sec]

needed by the application of the di�erent smoothers. Two pre- and two post-smoothing

steps of the Gauss-Seidel forward method are denoted by GS(2f,2f); GS(fb,fb) is the

application of one Gauss-Seidel step forward and one Gauss-Seidel step backward in the

pre-smoothing as well as in the post-smoothing. The other notations are to be understood

in an analogous way. All other components of the MG algorithm are the same as in the

experiments given in Table 3. Table 5 shows that we get the best convergence if only the

Gauss-Seidel smoother forward or the Gauss-Seidel smoother backward are applied.

GS(2f,2f) GS(2b,2b) GS(2f,2b) GS(2b,2f) GS(fb,fb) GS(bf,bf)

l

u

#it time #it time #it time #it time #it time #it time

2 5 0.52 5 0.52 6 0.63 7 0.73 7 0.74 7 0.73

3 6 0.86 6 0.86 6 0.85 7 1.00 8 1.14 8 1.12

4 6 1.33 6 1.31 6 1.31 8 1.72 8 1.72 8 1.70

5 6 2.62 6 2.77 7 3.13 8 3.56 8 3.55 8 3.55

6 6 7.27 6 7.30 7 8.98 8 10.22 8 10.27 8 10.16

Table 5: Comparison of the di�erent smoothers

4.2 Magnetic �eld problem

We can describe a non-linear stationary magnetic �eld problem by means of the BVP (1).

Here, the bilinear form a(:; :) and the right-hand side hF; :i are de�ned in the following

way:

a(u; v) =

Z




�(x; jruj)r

T

vru dx and hF; vi =

Z




(Sv �H

0;x

2

@v

@x

1

+H

0;x

1

@v

@x

2

) dx :

The solution u is the x

3

-component of the vector potential

~

A. The x

3

-component of

the current density is represented by S, and the vector

~

H = (H

0;x

1

;H

0;x

2

; 0)

T

describes

the magnetization of permanent magnets. The function �(x; jruj) is constant for not

ferromagnetic materials (e.g. copper, air, vacuum), i.e. �(x; jruj) = �

�1

0

�

�1

r

with the

absolute permeability �

0

and the relative permeability �

r

. Properties of the function �

for ferromagnetic materials are formulated in [20].

The non-linearity is handled by means of a nested Newton algorithm, where in each

Newton step the parallel MG algorithm is used for solving the corresponding linear prob-

lem (see [20]). In the present paper we neglect the non-linearity and assume that the

function �(x; jruj) = �(x) is constant within each material. In this way we demonstrate

the applicability of our MG algorithm to problems with jumps in the coe�cient function.

A direct current motor which is excited by permanent magnets serves as test problem.

Figure 5 shows the cross-section of this motor and its decomposition into 64 subdomains.

Furthermore, the coarsest mesh T

q

0

= T

1

(1456 nodes) used within the MG algorithm is

given in this �gure.
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(a) iron �

r

= 1353, (b) permanent magnet �

r

= 1:15,

(c) sheet-metal shell �

r

= 1687, (d) air �

r

= 1

(a)

(b)

(c)

(d)

Figure 5: Cross-section of the motor, decomposition into subdomains, and the coarsest

mesh

In order to demonstrate the scalability of our MG algorithm we consider an additional

test problem, a quarter of the original motor, such that we are in the position to compare

problems on 16 and 64 processors.

Again we perform the calculations on the two types of parallel computers. The ingre-

dients of the MG algorithm are the same as described in Subsection 4.1 for the Poisson

equation. The computations on 2, 3, : : :, 6 levels are summarized in Table 6. The scaled

e�ciency S in the last line is de�ned in Subsection 4.1. We compare the application

of the BPX and BPS preconditioners within the Schur complement conjugate gradient

(SCCG) method for solving the coarse-grid system. In both cases the coarse-grid solution

is computed with a relative accuracy "

PCG

= 10

�1

.

GCel-192 GC/PP-128

#it Total time [sec] (communication) [%] Total time [sec] (communication) [%]

BPX-SCCG BPS-SCCG BPX-SCCG BPS-SCCG

16 proc. 64 proc. 16 proc. 64 proc. 16 proc. 64 proc. 16 proc. 64 proc.

7 4:59 (35) 18:63 (45) 4:16 (22) 14:62 (26) 1:85 (92) 5:21 (93) 1:18 (87) 3:03 (88)

9 9:57 (30) 29:34 (43) 9:18 (20) 24:16 (27) 2:72 (89) 7:79 (92) 1:92 (84) 4:97 (89)

11 27:62 (16) 53:43 (33) 27:16 (13) 47:19 (22) 4:16 (82) 11:27 (90) 3:21 (77) 7:85 (85)

14 111:18 ( 7) 145:36 (18) 110:55 ( 6) 136:88 (12) 8:09 (64) 18:42 (80) 6:83 (57) 13:90 (74)

15 18:47 (36) 30:99 (59) 17:13 (31) 26:11 (52)

S 0.77 0.81 0.60 0.66

Table 6: Comparison of the performance of the parallel MG algorithm on di�erent

numbers of processors and di�erent machines

The solution u of this BVP belongs only to a space H

1+�

(
) with 0 < � < 1. This

leads to the growing number of iterations of the MG algorithm with the V -cycle (see also
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Section 2). Table 6 shows that the MG algorithm with the BPS-SCCG coarse-grid solver

is slightly faster than the MG algorithm which uses the BPX-SCCG solver. The BPS-

SCCG solver needs more iterations than the BPX-SCCG but the communication cost

within one iteration step is lower. Therefore, the application of the BPS-SCCG seems to

be more favourable.

In Figure 6 we present two bar graphs for the test problem with 16 processors on the

two parallel machines. The bar graphs indicate the time proportion between communi-

cation and processing. Each bar shows the input time including waiting (left, grey), the

output time including waiting (middle, black), and the processing time (right, white), in

relation to the total time for each of the 16 processors. Obviously, the processing time

di�ers for di�erent load caused by the decomposition of the domain. Therefore, the pro-

cessors with less load have to wait for the others. The percentage of the communication

time given in Table 6 we get by the relation

1�

max

i=1;2;:::;p

fprocessing time on processorP

i

g

total time

:

15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

INPUT OUTPUT CPU   110.55 sec

  

  

15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

INPUT OUTPUT CPU  17.13 sec

  

  

Figure 6: Communication and processing time (top: GCel-192, bottom: GC/PP-128)

From Section 2 we know that the F -cycle, the generalized V -cycle, and the W -cycle,

respectively, will produce a MG algorithm which needs fewer iterations than that with the

V -cycle. Of course, the application of these MG cycles leads to more arithmetical work

within each iteration step. In Table 7 we compare the application of the di�erent MG

cycles for the computation on 16 processors. We see that the V -cycle gives the fastest

MG algorithm except for the problem with 6 levels, where the F -cycle is faster.

Next, we compare the inuence of di�erent smoothers on the convergence rate (see

Table 8) of the MG algorithm with l

u

= 2; 3; : : : ; 6 levels.. In Table 8 we use the same

notation as in Table 6. Within the MG algorithm we apply additionally the Jacobi

smoother with ! = 0:71 (J(2,2) means two pre- and two post-smoothing steps) and the

Gauss-Seidel type smoother described in Remark 3.1 (ii). This smoother is denoted by

GS

b

(2f,2f). Again the Gauss-Seidel smoother forward leads to the best MG algorithm.
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GCel-192 GC/PP-128

l

u

V-cycle gV-cycle F-cycle W-cycle V-cycle gV-cycle F-cycle W-cycle

#it time #it time #it time #it time #it time #it time #it time #it time

2 7 4.16 7 4.16 7 4.16 7 4.16 7 1.18 7 1.18 7 1.18 7 1.18

3 9 9.18 8 9.28 7 11.04 7 11.04 9 1.92 8 1.98 7 2.55 7 2.55

4 11 27.16 9 29.21 8 31.22 8 35.26 11 3.21 9 3.90 8 4.88 8 5.99

5 14 110.55 9 100.30 8 92.54 8 111.61 14 6.83 9 8.20 8 8.37 8 12.98

6 15 17.13 9 20.73 8 16.78 8 30.27

Table 7: Comparison of the di�erent MG cycles

GS

b

(2f,2f) GS(2f,2f) GS(2b,2b) GS(2f,2b) GS(2b,2f) GS(fb,fb) GS(bf,bf) J(2,2)

#it time #it time #it time #it time #it time #it time #it time #it time

7 1.17 7 1.18 7 1.21 9 1.52 8 1.36 9 1.51 11 1.90 22 2.20

9 1.91 9 1.92 9 1.98 10 2.21 10 2.19 12 2.59 12 2.63 16 4.14

11 3.18 11 3.21 12 3.68 12 3.62 13 3.88 16 4.73 15 4.49 21 7.71

14 6.84 14 6.83 15 7.86 15 7.63 16 8.03 19 9.54 18 9.04 27 16.32

15 17.04 15 17.13 17 21.30 17 20.14 17 20.09 20 23.53 19 22.50 30 39.72

Table 8: Comparison of the di�erent smoothers

In Table 7 we see that the convergence rate of the MG V -cycle is relatively slow. We

know that MG algorithms can be used for de�ning preconditioners of the PCG method

implicitly (see, e.q., [22]). Table 9 shows results obtained by means of a parallel PCG

method applied to the systems of algebraic FE equation (5). Within the PCG method the

preconditioner is de�ned by one MG V -cycle with two Gauss-Seidel steps backward in the

pre-smoothing and two Gauss-Seidel steps forward in the post-smoothing as well as the

BPS-SCCG method as coarse-grid solver. The resulting algorithm is called MG(1)-PCG

method.

GCel-192 GC/PP-128

#it Total time [sec] (communication) [%] Total time [sec] (communication) [%]

BPX-SCG BPS-SCG BPX-SCG BPS-SCG

16 proc. 64 proc. 16 proc. 64 proc. 16 proc. 64 proc. 16 proc. 64 proc.

6 4:49 (35) 17:94 (44) 3:81 (22) 13:06 (25) 1:80 (91) 4:97 (93) 1:05 (87) 2:65 (88)

7 8:40 (27) 24:90 (41) 7:76 (19) 19:50 (26) 2:29 (89) 6:51 (92) 1:52 (83) 3:99 (88)

8 23:37 (14) 42:24 (30) 22:41 (11) 35:90 (20) 3:26 (81) 8:42 (89) 2:35 (74) 5:62 (84)

8 76:29 ( 6) 95:29 (16) 75:48 ( 5) 88:85 (10) 5:12 (59) 10:97 (78) 4:28 (52) 8:17 (71)

8 11:69 (31) 18:28 (54) 10:86 (26) 15:49 (46)

S 0.81 0.86 0.65 0.71

Table 9: Comparison of the performance of the parallel MG(1)-PCG algorithm on di�erent

numbers of processors and di�erent machines
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4.3 Plane linear elasticity problem

In this Subsection we want to compute the displacement �eld u = (u

1

; u

2

)

T

2 V

0

(V

0

=

fu 2 [H

1

(
)]

2

: u = 0 on �

D

g) which is caused by a surface traction g

N

= (g

N;1

; g

N;2

)

T

.

The displacement �eld u is the solution of the BVP (1), where

a(u; v) =

Z




e

T

(v) �(u) dx and hF; vi =
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, and �(u) = De(u).

The components "
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, i; j = 1; 2, of the strain tensor are de�ned by
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for the state of plane stress. Here, E denotes the Young's elasticity modulus, and � is the

Poisson's ratio.

In our example we have E = 1000: and � = 0:3. The domain 
 is shown in Figure 7

(see also [12]).
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Figure 7: The decomposition of the domain 
 into 32 subdomains and a triangulation

We want to analyse the scalability of the parallel MG algorithm. In our computations

the discretized BVP is solved on 1, 2, 8, and 32 processors. Figure 7 shows the decompo-

sition of the domain 
 into 32 subdomains. The decomposition into 2 or 8 subdomains is

made in an analogous way. The coarsest triangulation T

q

0

used within the MG algorithm

is also illustrated in Figure 7. This triangulation contains 512 elements and 281 nodes.

Table 10 contains the number of nodes N

q

in the triangulations T

q

, q = q

0

; q

0

+ 1; : : : ; l.

Since on each processor the same number of nodes is stored all processors have the

same load.

In Table 11 we give the number l

u

= q � q

0

+ 1 of levels used, the number of MG

iterations #it, and the total time needed for solving the system of �nite element equations
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level q q

0

q

0

+ 1 q

0

+ 2 q

0

+ 3 q

0

+ 4 q

0

+ 5

N

q

281 1073 4193 16577 65921 262913

Table 10: Number of nodes in the triangulations T

q

, q = q

0

; q

0

+ 1; : : : ; q

0

+ 5

on level l

f

= l

u

+ q

0

� 1. This total time includes the time for the communication, i.e. the

time for input, output and waiting of the processors, as well as the time for processing.

The numbers in parentheses are the percentage of the communication time which we

measure during the program run. The scaled e�ciency given in the last two lines of

Table 11 is de�ned in Subsection 4.1.

Within the MG algorithm two pre- and two post-smoothing steps of the Gauss-Seidel

smoother forward described in Subsection 3.3.1 are used. Since the solution u of the

BVP (1) is a vector function, the Gauss-Seidel smoother which uses operations with (2�2)

blocks (see Remark 3.1 (iv)) is applied. The coarse-grid solver is a Schur complement PCG

method with the BPS preconditioner, and the coarse-grid solutions are computed with a

relative accuracy of "

PCG;q

0

= 0:05. In the case of the computation on one processor, the

coarse-grid solver is a direct solver based on the Cholesky factorization. The coarse-grid

systems have the same size for the computations on 1, 2, 8, or 32 processors, but the

number of unknowns of the corresponding Schur complement system is growing with the

number of processors, and the size of the matrices K

q

0

;I:i

is decreasing. Therefore, the

coarse-grid solvers di�er for computations on di�erent numbers of processors. The MG

algorithm (V -cycle) is started with the initial guess u

(0;0)

l

f

= 0, and it is terminated when

a relative defect of 10

�6

is achieved.

GCel-192 GC/PP-128

l

u

#it Total time [sec] (communication) [%] Total time [sec] (communication) [%]

1 proc. 2 proc. 8 proc. 32 proc. 1 proc. 2 proc. 8 proc. 32 proc.

2 16 41.64 76:21 (1) 15:14 (10) 15:44 (27) 1:41 2:30 (25) 2:30 (78) 4:11 (90)

3 20 106:38 (1) 38:74 ( 6) 26:97 (26) 5:86 5:24 (16) 3:90 (67) 6:43 (89)

4 22 124:74 ( 2) 53:26 (18) 15:63 ( 7) 7:71 (43) 9:02 (83)

5 23 143:64 ( 8) 21:23 (19) 13:94 (65)

6 23 28:09 (37)

S(1; p) 0.76 0.64 0.56 0.74 0.54 0.41

S(p

1

; p

2

) 0:76 0:84 0:86 0:79 0:73 0:75

Table 11: The performance of the parallel MG algorithm on di�erent numbers of proces

sors and di�erent machines

Table 11 shows that the scalability on the GCel-192 system is slightly better than on

the GC/PP-128 machine. From this table we can see that the convergence rate of the

MG V -cycle is relatively slow. In order to get an algorithm with a better convergence we

can employ other MG cycles or we can use one MG V -cycle for de�ning a preconditioner

in the PCG method. In this case we use two Gauss-Seidel steps backward in the pre-

smoothing and two Gauss-Seidel steps forward in the post-smoothing. The resulting

PCG method is called MG(1)-PCG method. Both possibilities for getting algorithms
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with better convergence properties are discussed in the following. At �rst, we investigate

the convergence properties of the generalized V -cycle, the F -cycle, and the W -cycle.

Table 12 shows that these cycles give a MG algorithm with a faster convergence than

that with the V -cycle, but the total time needed on both multiprocessor systems is higher

than that of the V -cycle. The computations for Table 12 are performed on 32 processors.

GCel-192 GC/PP-128

l V-cycle gV-cycle F-cycle W-cycle V-cycle gV-cycle F-cycle W-cycle

#it time #it time #it time #it time #it time #it time #it time #it time

2 16 15.44 16 15.44 16 15.44 16 15.44 16 4.11 16 4.11 16 4.11 16 4.11

3 20 26.97 18 26.62 18 40.25 18 40.25 20 6.43 18 6.61 18 9.89 18 9.89

4 22 53.26 18 55.72 18 82.13 18 97.37 22 9.02 18 10.74 18 16.68 18 20.66

5 23 143.64 18 161.93 18 191.19 18 261.44 23 13.94 18 21.22 18 26.76 18 44.24

6 23 28.19 18 48.57 18 47.47 18 98.31

Table 12: Comparison of the di�erent MG cycles

In Table 13 we summarize some results concerning the MG(1)-PCG method. Com-

paring Tables 11 and 13 we can see that the MG(1)-PCG algorithm converges faster than

the MG algorithm. Furthermore, the MG(1)-PCG method has a better scalability.

GCel-192 GC/PP-128

l

u

#it Total time [sec] (communication) [%] Total time [sec] (communication) [%]

1 proc. 2 proc. 8 proc. 32 proc. 1 proc. 2 proc. 8 proc. 32 proc.

2 8 35.73 49:55 (1) 8:30 ( 8) 7:92 (26) 0:97 1:23 (32) 1:06 (77) 2:07 (90)

3 9 110:20 (1) 23:68 ( 4) 13:30 (23) 3:19 2:50 (14) 1:67 (64) 2:87 (88)

4 9 80:80 ( 1) 28:35 (14) 11:96 7:10 ( 6) 3:25 (37) 3:67 (81)

5 9 86:42 ( 6) 9:07 (16) 5:64 (62)

6 9 11:97 (34)

S(1; p) 0.63 0.85 0.79 0.89 0.69 0.52

S(p

1

; p

2

) 0:63 1:34 0:93 0:89 0:78 0:75

Table 13: The performance of the parallel MG(1)-PCG algorithm on di�erent numbers

of processors and di�erent machines

Finally, we analyse the inuence of di�erent smoothers on the convergence rate of the

V -cycle. In Table 14 we use the notation introduced in Table 5 (Subsection 4.1) and

Table 8 (Subsection 4.2) . Since we have in this example a vector function u as solution

of the BVP, we apply the block version of the smoothers (see Remark 3.1 (iv)). The

smoothing parameter ! for the Jacobi smoother is 0.96. We determined this parameter

experimentally. All results given in Table 14 are obtained on 32 processors. Obviously,

we get the best algorithm if we use only the Gauss-Seidel smoother forward or the Gauss-

Seidel smoother backward. Furthermore, we see that the smoother GS

b

(2f,2f) described in

Remark 3.1 (ii) gives a slightly faster MG algorithm than the application of the smoother

GS(2f,2f).

Further numerical examples can be found in [20], where the parallel MG algorithm is

also compared with parallel DD PCG methods.
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l GS

b

(2f,2f) GS(2f,2f) GS(2b,2b) GS(2f,2b) GS(2b,2f) GS(fb,fb) J(2,2)

#it time #it time #it time #it time #it time #it time #it time

2 16 4.07 16 4.11 18 4.62 22 5.64 21 5.46 27 6.96 32 9.55

3 20 6.36 20 6.43 21 6.53 24 7.54 24 7.62 31 9.72 39 15.42

4 22 8.90 22 9.02 22 8.57 25 9.98 26 10.40 31 12.28 42 21.75

5 23 13.72 23 13.94 23 13.33 26 15.38 27 15.95 32 18.82 44 32.51

6 23 28.17 23 29.72 23 27.50 26 31.35 27 32.62 32 38.44 44 57.23

Table 14: Comparison of the di�erent smoothers

5 Conclusions

Based on a non-overlapping DD data structure a uniform concept for the parallel genera-

tion of the hierarchy of FE triangulations, the generation of the systems of FE equations,

and the solution algorithm is presented.

The data structure used allows to parallelize Jacobi smoothers and point-wise Gauss{

Seidel smoothers very well. Hereby, the Gauss{Seidel smoother makes use of the block

structure of the system of FE equations induced by the classi�cation of the nodes into

cross-points, edge coupling nodes, and inner nodes. This idea can be extended easily to

the 3D case, where we have additionally face coupling nodes.

As coarse-grid solvers within the MG algorithm, PCG methods applied to the Schur

complement system are proposed. These solvers bene�t by the good convergence proper-

ties of well-known DD algorithms.

The parallel MG algorithm is implemented on two kinds of MIMD computers, namely

on a GC/PP-128 machine and on a GCel-192 system. Numerical examples demonstrate

the performance of the MG algorithm on both multiprocessor systems. The computations

show that one should distribute the data to the processors in such a way that the storage

capacity of the processors is utilized fully. Then we get the best proportion between

processing and communication time.
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