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y

Abstract

This paper studies Newton's method for solving the algebraic Riccati equa-

tion combined with an exact line search. Based on these considerations we

present a Newton{like method for solving algebraic Riccati equations. This

method can improve the sometimes erratic convergence behavior of Newton's

method.

1 Introduction

We study the generalized continuous{time algebraic Riccati equation (CARE)

0 = R(X) = C

T

QC + A

T

XE + E

T

XA (1)

� (B

T

XE + S
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C)

T
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n�m

, R = R

T

2 IR

m�m

, Q = Q

T

2 IR

p�p

, C 2 IR

p�n

and S 2 IR

p�m

. This equation arises frequently in control problems. We will assume

that E and R are nonsingular and

"

Q S

S

T

R

#

� 0, where M � 0 denotes positive

semide�nite matricesM .

Often, the desired solution X is stabilizing in the sense that the eigenvalues of

the pencil (E;A�BR

�1

(B

T

XE + S

T

C)) have negative real parts. (By assumption

E is nonsingular, so all eigenvalues of the pencil are �nite.) In the sequel, this will

be denoted by �

�

E;A�BR

�1

(B

T

XE + S

T

C)

�

� C

�

. Assuming (E;A;B) strongly

stabilizable and (E;A;C) strongly detectable, such a positive semide�nite, stabilizing

solution exists and is unique [24]. Throughout this paper, we will call this stabilizing

solution X

�

.
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2 Benner and Byers

The algebraic Riccati equation (1) is a nonlinear system of equations. One of the

oldest, best studied, numerical methods for solving (1) is Newton's method [15, 19,

24, 27].

Algorithm 1 (Newton's method for solving CARE)

1. Choose some initial starting guess X

0

= X

T

0

:

2. FOR j = 0; 1; 2; : : :

2.1 K

j

 R

�1

(B

T

X

j

E + S

T

C):

2.2 Solve for N

j

in the Lyapunov equation

(A�BK

j

)

T

N

j

E + E

T

N

j

(A�BK

j

) = �R(X

j

):

2.3 X

j+1

 X

j

+N

j

:

END FOR

Algorithm 1 modi�es none of the coe�cient matrices and corrects iterate X

j

by

adding a (hopefully) small step N

j

. We prefer Algorithm 1 to some other mathe-

matically equivalent versions of Newton's method, because of its robustness in the

presence of rounding errors. The expensive part of Algorithm 1 is Step 2.2. The

cost mainly depends upon the chosen method for solving the Lyapunov equation.

This may be done using the Bartels{Stewart algorithm [3] or an extension to the case

E 6= I [11, 12].

It is well known that if (E;A;B) is strongly stabilizable, (E;A;C) is strongly

detectable, and X

0

is stabilizing, then the iteration converges to the desired stabi-

lizing solution X

�

[15, 19, 24, 27]. Ultimately, convergence is quadratic. At each

step � (E;A�BK

j

) � C

�

. After the �rst step, convergence is monotone. Besides

these convergence properties, Algorithm 1 provides all the ingredients for a condition

estimate of CARE and N

j

may be considered as estimate for the error X

�

�X

j

. (See

[6] for details.)

Although it ultimately converges rapidly, initially, the iteration may converge

slowly. Automatic stabilizing procedures like proposed in [1, 28, 29] may give choices

of X

0

that lie far from the solution X

�

. Sometimes the �rst Newton step N

0

is

disastrously large and many iterations are needed to �nd the region of rapid conver-

gence. If the Lyapunov equation is ill-conditioned it may be di�cult to compute an

accurate Newton step. (This sometimes signals that the algebraic Riccati equation

is ill-conditioned [6].) If the Newton step can not be calculated accurately, then the

usual convergence theory breaks down. Sometimes rounding errors or a poor choice

of X

0

cause Newton's method to converge to a non-stabilizing solution. For these rea-

sons, Newton's method is not often used by itself to solve algebraic Riccati equations.

However, when it is used as a defect correction method or for iterative re�nement

of an approximate solution obtained by a more robust method, it is often able to

squeeze out the maximum possible accuracy. (See, for example, [2, 7, 17, 18]).

To illustrate the di�culties of Newton's method, consider the following example.

(See also Example 6 in Section 4.)
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Example 1 This example is contrived to demonstrate both the above di�culties.

The coe�cient matrices are

A = S = 0; E = C = B = R = I

2

; Q = diag(1;

p

�);

where 0 < � < 1. The stabilizing solution is X

�

= diag(1; �

1=4

). Choosing X

0

=

diag(1; �) we obtain kX

�

�X

0

k

F

�

p

�kX

�

k

F

, but kN

0

k

F

� 0:5�

�

1

2

. Figure 1 shows

the behavior for � = 10

�8

.
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Figure 1: Example 1, residuals and relative errors for � = 10

�8

From the point of view of optimization theory, the Newton step gives a search di-

rection along which kR(X

j

)k

F

may be (at least approximately) minimized. Looking

at the abovementioned problems of Newton's method, one can think of a disastrous

�rst step as a too long step in the search direction, whereas the initial slow but mono-

tonic convergence suggests that one could take longer steps in that direction. Our

goal is to restore some robustness to Newton's method and to accelerate convergence

through step size control by exact line search.

The idea discussed throughout this paper is to choose t

j

> 0 to minimize the

Frobenius norm of the next residual R(X

j+1

) = R(X

j

+ t

j

N

j

), i.e., to use an exact

line search along the Newton direction. Exact line searches along conjugate gradient

directions were used in [13] to solve (1). Line searches were also used in the Fletcher-

Powell/Davidon's method proposed in [22]. Section 2 shows that the extra cost of

doing an exact line search along the Newton direction is little more than the cost of

the unmodi�ed Newton Algorithm 1. In Section 3 we prove that exact line search

along the Newton direction converges quadratically to the stabilizing solution, if the

starting guess X

0

is stabilizing. Numerical examples in Section 4 demonstrate that

step size control usually saves some iterations compared to Newton's method. Some

�nal remarks and conclusions are given in Section 5.
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2 Step Size Control by Exact Line Search

Line searches are a well understood technique commonly used in numerical methods

for optimization [9]. The approach is to replace Step 2.3 in Algorithm 1 by

2.3' X

j+1

= X

j

+ t

j

N

j

where t

j

is a real scalar controlling the \length" of the step tN

j

. In our approach, t

j

is chosen to minimize some measure of the error. The line search is said to be exact

if t

j

is an exact (as opposed to approximate) minimizer.

At �rst we introduce some formulas which will often be used in the sequel.

R(X

j

+ tN

j

) = R(X

j

) + t

�

(A�BK

j

)

T

N

j

E + E

T

N

j

(A�BK

j

)

�

(2)

� t

2

E

T

N

j

BR

�1

B

T

N

j

E:

De�ning

V

j

= E

T

N

j

BR

�1

B

T

N

j

E;

and using Step 2.2 of Algorithm 1, i.e.,

(A�BK

j

)

T

N

j

E + E

T

N

j

(A�BK

j

) = �R(X

j

); (3)

we can rewrite (2) as

R(X

j

+ tN

j

) = (1 � t)R(X

j

)� t

2

V

j

: (4)

The Frobenius norm of a matrixM is de�ned by kMk

2

F

= trace(M

T

M). For any

symmetric matrixM , we have kMk

2

F

= trace(M

2

), and for any two matricesM and

N , trace(MN) = trace(NM).

Using these properties and (4), it is easy to derive that �nding t

j

to minimize

kR(X

j+1

)k

F

is equivalent to minimizing

f

j

(t) = trace

�

R(X

j

+ tN

j

)

2

�

= �

j

(1� t)

2

� 2�

j

(1 � t)t

2

+ 

j

t

4

: (5)

where

�

j

= trace(R(X

j

)

2

);

�

j

= trace (R(X

j

)V

j

) ;



j

= trace(V

2

j

):

This is a polynomial of degree at most four. If 

j

= trace(V

2

j

) > 0, it has either one

local minimum and no local maxima or two local minima and one local maximum.

If 

j

= 0, then V

j

= 0 and f

j

(1) = 0. Choosing t = t

j

= 1 minimizes f

j

.

Di�erentiating f

j

and using (4), we have

f

0

j

(t) = �2 � trace ((R(X

j

) + 2tV

j

)R(X

j

+ tN

j

))

= �2 � trace

�

(R(X

j

) + 2tV

j

)((1 � t)R(X

j

)� t

2

V

j

)

�

: (6)
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Remark 1 There exists a local minimum of f

j

at some value of t

j

2 [ 0; 2 ], because

f

0

j

(0) = �2 � trace (R(X

j

)

2

) � 0, and f

0

j

(2) = 2 � trace ((R(X

j

) + 4V

j

)

2

) � 0.

If R(X

j

) 6= 0, i.e., if X

j

is not a solution of (1), then f

0

j

(0) < 0 and the Newton step is

a descent direction of kR(X

j

+ tN

j

)k

F

from t = 0. It follows that for the minimizing

t

j

2 [ 0; 2 ], kR(X

j

+ t

j

N

j

)k

F

� kR(X

j

)k

F

and kR(X

j

+ t

j

N

j

)k

F

= kR(X

j

)k

F

if and

only if R(X

j

) = 0. That is, choosing t

j

2 [ 0; 2 ] to be the local minimizer of f

j

implies that the residual decreases as long as X

j

is not a solution of the CARE (1).

Remark 1 suggests that we modify Algorithm 1 as follows.

Algorithm 2 (Exact Line Search)

1. Choose some initial starting guess X

0

= X

T

0

.

2. FOR j = 0; 1; 2; : : :

2.1 K

j

 R

�1

(B

T

X

j

E + S

T

C).

2.2 Solve for N

j

in the Lyapunov equation

(A�BK

j

)

T

N

j

E + E

T

N

j

(A�BK

j

) = �R(X

j

):

2.3 V

j

 E

T

N

j

BR

�1

B

T

N

j

E.

2.4 Find a local minimizer t

j

2 [ 0; 2 ] of f

j

(t) using (5).

2.5 X

j+1

 X

j

+ t

j

N

j

END FOR

Remark 2 In case there are two local minima of f

j

in [ 0; 2 ], we can choose the one

giving the smaller residual. This is easily achieved using (5).

Remark 3 Using exact arithmetic, Algorithm 2 �nds the solution of scalar Riccati

equations in the �rst step.

Remark 4 There is a cheaper way to compute the residuals in each step. We can

compute R

0

= R(X

0

) and then using (4) we may set R

j+1

= (1 � t

j

)R

j

� t

2

j

V

j

for

j � 1. This recursion su�ers from subtractive cancellation as the R

j

's tend to zero.

The accuracy of the Newton step depends critically upon the accuracy with which

the residual is calculated [24]. Hence, we prefer to use the formulation of Step 2.2.

Compared to Algorithm 1, the exact line search method requires some additional

computations. We need to compute the symmetric matrix

V

j

= E

T

N

j

BR

�1

B

T

N

j

E

in each iteration step. One way to compute V

j

e�ciently is as follows. Before start-

ing the iteration, we compute a Cholesky factorization of R, R = L

T

L, and then

store the product

^

B = BL

�1

in an n-by-m array. Since this is part of the residual
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computation, it is already part of Newton's method and hence does not contribute

any extra computations. With these settings, we can compute V

j

by

V

j

= (E

T

N

j

^

B)(E

T

N

j

^

B)

T

which requires 5n

2

m+ nm ops. (Following [14], we de�ne each oating point arith-

metic operation together with the associated integer indexing as a op.) In case

E = I, this reduces to 3n

2

m + nm ops. In many applications, m � n, and hence

the computation of this matrix is cheap compared to the Newton step.

Storing V

j

requires an extra work space of size n

2

. This amount of work space is

usually needed for the solution of the Lyapunov equation in Step 2.2 and can thus

be used to store V

j

. In case extra work space is not available, we could use the

fact that it is not necessary to store V

j

explicitly since it is only needed to compute

�

j

= trace(R(X

j

)V

j

) and 

j

= trace(V

2

j

). Thus we can compute V

j

columnwise and

update �

j

, 

j

with each computed column. Therefore, we only need work space of

size nm to store E

T

N

j

^

B and a vector of length n to store the currently computed

column of V

j

. This strategy adds another n

2

m ops to the computational cost since

it does not take advantage of the symmetry of V

j

.

Computing the coe�cients �

j

, �

j

, 

j

of f

j

and �nding the minimizing t

j

con-

tributes 3n inner products and some scalar operations which is negligible compared

to the O(n

3

) matrix multiplications and Lyapunov equation solutions. Using work

estimates from [11, 14] for solving the Lyapunov equation, we can conclude that for

m = n, each step of Algorithm 2 does less than 10% more work if E = I and less

than 5% more work if E 6= I than a single step of Algorithm 1. This comparison

becomes even more favorable the smaller m is in relation to n.

Note also that the cost of V

j

is approximately the same as the cost of calculating

the residual R(X

j

), so exact line search is competitive with other strategies that

require one or more extra residual calculations.

Remark 5 Newton's method as discussed in [19, 24, 27] di�ers from Algorithm 1 by

updating A

0

 A, A

j

 A

j�1

�BK

j

for j = 1; 2; : : :, and computing X

j+1

directly

from the Lyapunov equation. This version is slightly faster than Algorithm 1, but is

less robust in the presence of rounding errors.

Were we to formulate Algorithm 2 analogously, the exact line search would add

no signi�cant extra cost. (See [4].)

3 Convergence

Algorithm 2 recasts the nonlinear equation (1) as a non-linear least squares problem.

The convergence theory for this approach is well known and largely satisfactory. (For

example, see [9, x 6.5].) However, convergence | even convergence to a solution |

is not su�cient. Often the symmetric, positive semide�nite, stabilizing solution is

required. In this section, we show that under certain assumptions, Algorithm 2 has

guaranteed convergence from a stabilizing starting guess to the stabilizing solution.
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In order to simplify notation, we will use the following de�nitions. By assumption

E is nonsingular, so we may rewrite (1) as

R(X) =

~

R(

~

X) =

~

F +

~

A

T

~

X +

~

X

~

A�

~

X

~

G

~

X (7)

where

~

A = E

�1

(A�BR

�1

S

T

C);

~

X = E

T

XE;

~

F = C

T

(Q� SR

�1

S

T

)C;

~

B = E

�1

B;

~

G =

~

BR

�1

~

B

T

:

Let X

j

be the sequence of approximate solutions produced by Algorithm 2 applied

to (1) with starting guess X

0

and let

~

X

j

be the sequence of approximate solutions

produced by Algorithm 2 applied to (7) with starting guess

~

X

0

= E

T

X

0

E. It is easy

to verify that

~

X

j

= E

T

X

j

E. Note that because E is nonsingular, the boundedness,

convergence (or lack thereof), and rate of convergence of the two sequencesX

j

and

~

X

j

are identical and � (E;A�BX

j

) � C

�

if and only if

~

A�

~

G

~

X

j

is stable. The residual

satis�es

~

R(

~

X

j

) = R(X

j

), and X

�

satis�es R(X

�

) = 0 if and only if

~

X

�

= E

T

X

�

E

satis�es

~

R(

~

X

�

) = 0. Note further that the sequence of step sizes t

j

produced by

Algorithm 2 is equal in both cases. The coe�cient matrices

~

F and

~

G =

~

BR

�1

~

B

T

are

symmetric, positive semide�nite, because

"

Q S

S

T

R

#

and R are.

In Remark 1, it was observed that a local minimizer of kR(X

j

+ tN

j

)k

F

can be

found in the interval [ 0; 2 ]. Now we show that this interval is the natural search

interval in order to obtain stabilizing iterates X

j

.

The inertia of a matrixM is the triple In(M) = (�(M); �(M); �(M)) where �(M),

�(M), and �(M) are the number of eigenvalues with positive, negative, and zero real

part respectively. In the sequel, we will write In(M) � In(N) for any two n � n

matricesM and N such that �(M) � �(N) and �(M) � �(N).

We will need the following version of Lyapunov's inertia theorem which can be

found, for example, in [20, page 447].

Theorem 6 If AH + HA

T

= W � 0, where H is symmetric and �(A) = 0, then

In(H) � In(A).

We will use a trivial corollary of Theorem 6.

Corollary 7 If AH +HA

T

= �W � 0, where H is symmetric and �(A) = 0, then

In(�H) � In(A).

Further, we need a result relating the Lyapunov stability theory and detectability.

Lemma 8 If H = H

T

satis�es

AH +HA

T

= �W � �C

T

C (8)

where (A;C) de�nes a detectable pair, then

�(A) = n() �(H) = 0:
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Proof: Assume �rst �(A) = n, that is, A is stable. Then �(H) = 0 follows immedi-

ately from Corollary 7.

Now, for the opposite direction, �(H) = 0 implies that H is positive semide�nite.

To prove that �(A) = n, we assume the contrapositive, i.e., A has at least one

eigenvalue � with Re(�) � 0. We denote the corresponding right eigenvector by w.

Since (A;C) is detectable, Cw 6= 0. Thus, from (8) we obtain

0 > �w

H

C

T

Cw � w

H

(A

T

H +HA)w = 2Re(�)w

H

Hw

which contradicts the positive semide�niteness of H.

The following lemma shows that the iterates

~

X

j

+ t

j

~

N

j

are stabilizing if the

starting guess

~

X

0

is stabilizing,

Lemma 9 Suppose that (

~

A;

~

C) is detectable where

~

F =

~

C

T

~

C is a full-rank factor-

ization of

~

F . If

~

A �

~

G

~

X

j

is stable and t 2 [ 0; 2 ], then

~

A �

~

G(

~

X

j

+ t

~

N

j

) is also

stable.

Proof: The Newton Step

~

N

j

is determined by

(

~

A�

~

G

~

X

j

)

T

(

~

X

j

+

~

N

j

) + (

~

X

j

+

~

N

j

)(

~

A�

~

G

~

X

j

) = �

~

F �

~

X

j

~

G

~

X

j

(9)

� �

~

F:

Since

~

A�

~

G

~

X

j

is stable, Lemma 8 implies that

~

X

j

+

~

N

j

is positive semide�nite. On

the other hand, for t 2 [ 0; 2 ], (9) is equivalent to

(

~

A�

~

G(

~

X

j

+ t

~

N

j

))

T

(

~

X

j

+

~

N

j

) + (

~

X

j

+

~

N

j

)(

~

A�

~

G(

~

X

j

+ t

~

N

j

))

= �

~

F � (

~

X

j

+ t

~

N

j

)

~

G(

~

X

j

+ t

~

N

j

) + t(t� 2)

~

N

j

~

G

~

N

j

� �

~

F:

Now Lemma 8 and the positive semide�niteness of

~

X

j

+

~

N

j

imply that

~

A�

~

G(

~

X

j

+t

~

N

j

)

is stable.

The Lyapunov operator corresponding to the Lyapunov equations in Step 2.2 of

Algorithm 2 is de�ned by

~




j

(Z) = (

~

A�

~

G

~

X

j

)

T

Z + Z(

~

A�

~

G

~

X

j

)

for Z 2 IR

n�n

and j = 1; 2; : : :. A corollary of Lemma 9 is that with a stabilizing

starting guess, Algorithm 2 can not fail due to a singular Lyapunov operator.

Corollary 10 If (

~

A;

~

C) is detectable,

~

X

0

is stabilizing, and Algorithm 2 is applied

to (7), then the Lyapunov operator

~




j

in Step 2.2 is nonsingular for all j and the

sequence of approximate solutions

~

X

j

is well de�ned.

Remark 11 Under the stronger hypothesis of observability of the matrix pair (

~

A;

~

C)

and by using the Lyapunov inertia theorem for controllable matrix pairs given, e.g.,

in [20, Section 13.1, Theorem 4] in an \observability form", the proof of Lemma 9

can be modi�ed to obtain the following result.
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If the Lyapunov operator in Step 2.2 of Algorithm 2 is nonsingular, then for all

t 2 [ 0; 2 ], we have In

�

~

A�

~

G

~

X

j

�

= In

�

~

A�

~

G(

~

X

j

+ tN

j

)

�

and

�

�

~

A�

~

G

~

X

j

�

= �

�

~

A�

~

G(

~

X

j

+ tN

j

)

�

= 0:

In other words, the inertia of

~

A �

~

G

~

X

j

is invariant throughout Algorithm 2 and

Corollary 10 applies to every starting guess for which �(

~

A �

~

G

~

X

0

) = 0. This ob-

servation shows that Algorithm 2 can also be used for computing a solution of (1)

di�erent from the stabilizing one. For example, the antistabilizing solution

~

X

+

of (7)

is characterized by the property that the eigenvalues of

~

A �

~

G

~

X

+

are in the open

right half plane. According to the above remark, this solution can be computed by

Algorithm 2 using an antistabilizing starting guess.

We will need the following technical characterization of controllability.

Lemma 12 Suppose that A 2 IR

n�n

, B 2 IR

n�m

, R 2 IR

m�m

, and R is symmetric

positive de�nite. The pair (A;B) is controllable if and only if the only matrix Y = Y

T

satisfying Y BR

�1

B

T

Y = 0 and A

T

Y + Y A � 0 is Y = 0.

Since the proof is rather technical, it is given in Appendix A.

As seen in Remark 1, the sequence of residuals

~

R(

~

X

j

) produced by Algorithm 2

is monotonically decreasing and, in particular, bounded. The next lemma shows that

if (

~

A;

~

B) is controllable, then the iterates

~

X

j

are also bounded.

Lemma 13 Suppose that

~

X

j

, j = 1; 2; 3; : : : is a sequence of symmetric, n-by-n

matrices such that

~

R(

~

X

j

) is bounded. If (

~

A;

~

B) is a controllable pair, then the sequence

~

X

j

is bounded.

Proof: We will prove the contrapositive: if

~

X

j

is unbounded, then (

~

A;

~

B) is not

controllable. Without loss of generality we may assume that lim

j!1

k

~

X

j

k

F

=1. (If not,

we may consider a subsequence for which this assertion holds.) De�ne �

j

= k

~

X

j

k

F

and

~

Y

j

=

~

X

j

=�

j

. The

~

Y

j

's are bounded, so there is a convergent subsequence which

we may assume without loss of generality is the whole sequence. Let

~

Y = lim

j!1

~

Y

j

.

Note that

~

Y 6= 0. From de�nition (7), we have

1

�

j

�

~

F �

~

R(

~

X

j

)

�

+

~

A

T

~

Y

j

+

~

Y

j

~

A = �

j

~

Y

j

~

BR

�1

~

B

T

~

Y

j

(10)

Because

~

R(

~

X

j

) is bounded, the �rst term on the left-hand-side of (10) tends to zero

as j !1. The second term approaches the �nite limit

~

A

T

~

Y +

~

Y

~

A. From the right-

hand-side, it is clear that this is a limit of positive semide�nite matrices, and hence is

positive semide�nite. Dividing (10) by �

j

and letting j !1 gives

~

Y

~

BR

�1

~

B

T

~

Y = 0.

It follows from Lemma 12 that (

~

A;

~

B) is uncontrollable.

We are now ready to prove that Algorithm 2 reduces the residual

~

R(

~

X

j

) (and

hence R(X

j

)) asymptotically to zero if the computed step sizes are bounded away

from zero.
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Theorem 14 If (

~

A;

~

B) is a controllable pair, and the sequence of step sizes t

j

com-

puted by Algorithm 2 is uniformly bounded from below by t

L

> 0, then the residual

norms k

~

R(

~

X

j

)k

F

decrease monotonically to zero and cluster points of the sequence

~

X

j

are solutions of the algebraic Riccati equation (1).

Proof: Lemma 13 shows that the sequence of approximate roots

~

X

j

is bounded.

Consequently, the steps t

j

~

N

j

are also bounded. Here

~

N

j

= E

T

N

j

E and t

j

is the step

size computed by minimizing

~

f

j

(t) = k

~

R(

~

X

j

+ t

~

N

j

)k

2

F

. The t

j

2 [ 0; 2 ] also form a

bounded sequence and since we assumed 0 < t

L

� t

j

for all j, the

~

N

j

's are bounded,

too. Select a subsequence

~

X

j

k

of the

~

X

j

's such that

^

X = lim

k!1

~

X

j

k

,

^

t = lim

k!1

t

j

k

,

and

^

N = lim

k!1

~

N

j

k

exist. Note that the residual norms k

~

R(

~

X

j

)k

F

are monotonically

decreasing, so they approach a limit and hence

k

~

R(

^

X +

^

t

^

N)k

F

= k

~

R(

^

X)k

F

: (11)

Thus, the coe�cients �

j

k

, �

j

k

, and 

j

k

in (5) approach limits and the minimum value

of the polynomial

^

f (t) = k

~

R(

^

X + t

^

N)k

2

F

is the limit of the minimum values of the

~

f

j

k

's, i.e., lim

k!1

f

j

k

(t

j

k

) =

^

f (

^

t) �

^

f(0). However, using (11), we obtain

^

f (0) = k

~

R(

^

X)k

F

= k

~

R(

^

X +

^

t

^

N)k

F

=

^

f(

^

t):

It follows that

^

f

0

(0) = 0. But as observed in Remark 1,

^

f

0

(0) = �2k

~

R(

^

X)k

2

. There-

fore,

~

R(

^

X) = 0.

Collecting the results derived so far, we have the following convergence result for

Newton's method with exact line search.

Theorem 15 Suppose (

~

A;

~

B) de�nes a controllable matrix pair and (

~

A;

~

C) is de-

tectable where

~

F =

~

C

T

~

C is a full-rank factorization of

~

F . If Algorithm 2 is applied

to the algebraic Riccati equation (7) with a stabilizing starting guess

~

X

0

and the com-

puted step sizes t

j

are bounded away from zero, then

~

X

�

= lim

j!1

~

X

j

exists and is the

stabilizing solution of (7).

Proof: Lemma 9 and Corollary 10 imply that

~

X

j

is well de�ned and stabilizing for

all j. Lemma 13 implies that the sequence

~

X

j

is bounded and we can therefore apply

Theorem 14 from which we can conclude that lim

j!1

~

R(

~

X

j

) = 0 and cluster points of the

sequence X

j

are stabilizing solutions of (1). However, under the given assumptions,

the stabilizing solution of (7) is unique. A bounded sequence with only one cluster

point is convergent.

Remark 16 The above convergence result relies on the fact that t

j

� t

L

for all j

and a given constant t

L

> 0. We can modify Algorithm 2 such that the step size is

set to one if t

j

drops below a prescribed (small) constant. By (9) it is clear that the

so-de�ned new iterateX

j+1

= X

j

+N

j

is positive semide�nite. We can now apply the

Newton iteration (Algorithm 1) with the \starting guess" X

j+1

and use the standard
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convergence theory for Newton's method [19, 24, 27] to show that iterates produced

by this hybrid algorithm converge to the stabilizing solution of (1).

In our numerical experiments, very small step sizes occured only at the very

beginning of the iteration if the starting guess already yielded a residual norm within

the order of the limiting accuray. In such a case, neither Newton's method nor Exact

Line Search can be expected to improve the accuracy of the approximate solution of

(1) any further.

Algorithm 2 inherits its quadratic convergence from Newton's method. To show

this, we show that in the region of quadratic convergence of Newton's method the

choice of t = 1 does a good job of minimizing kR(X + tN)k

F

[25]. Suppose that

~

X

j

is within the region of quadratic convergence of Newton's method. In this case [24],

~

N

j

=

~

X

�

�

~

X

j

+O

�

k

~

X

�

�

~

X

j

k

2

F

�

(12)

and

k

~

R(

~

X

j

+

~

N

j

)k

F

= O

�

k

~

X

�

�

~

X

j

k

2

F

�

: (13)

The residual produced by Algorithm 2 satis�es

~

R(

~

X

j+1

)

=

~

R(

~

X

�

+ (

~

X

j

+

~

N

j

�

~

X

�

) + (t

j

� 1)

~

N

j

)

= (

~

A�

~

G

~

X

�

)

T

(

~

X

j

+

~

N

j

�

~

X

�

) + (

~

X

j

+

~

N

j

�

~

X

�

)(

~

A�

~

G

~

X

�

)

+ (t

j

� 1)

�

(

~

A�

~

G

~

X

�

)

T

~

N

j

+

~

N

j

(

~

A�

~

G

~

X

�

)

�

�

�

(

~

X

j

+

~

N

j

�

~

X

�

) + (t

j

� 1)

~

N

j

�

~

G

�

(

~

X

j

+

~

N

j

�

~

X

�

) + (t

j

� 1)

~

N

j

�

:

Taking norms, using (12), and recognizing that jt

j

� 1j � 1 gives

k

~

R(

~

X

j

+ t

j

~

N

j

)k

F

(14)

� 2jt

j

� 1jk

~

X

�

�

~

X

j

k

F

kA�GX

�

k

F

+O

�

k

~

X

j

�

~

X

�

k

2

F

�

:

Recall that t

j

2 [ 0; 2 ] is chosen to minimize k

~

R(

~

X

j

+ t

~

N

j

)k

F

, so (13) implies

k

~

R(

~

X

j

+ t

j

~

N

j

)k

F

� k

~

R(

~

X

j

+

~

N

j

)k

F

= O

�

k

~

X

�

�

~

X

j

k

2

F

�

: (15)

It follows from (14) and (15) that jt

j

� 1j = O(k

~

X

�

�

~

X

j

k

F

). Hence,

k

~

X

�

�

~

X

j+1

k

F

= k

~

X

�

�

�

~

X

j

+

~

N

j

+ (t

j

� 1)

~

N

j

�

k

F

� k

~

X

�

�

�

~

X

j

+

~

N

j

�

k

F

+ j1� t

j

jk

~

N

j

k

F

= O

�

k

~

X

�

�

~

X

j

k

2

F

�

:

The following theorem summarizes the convergence theory. At the risk of some

ambiguity, the theorem does not specify which precise variation of controllability

and detectability of descriptor systems is required. Common controllability and

detectability de�nitions for descriptor systems coincide in this case, because E is

nonsingular [30, 31].
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Theorem 17 If (E;A;B) is controllable, (E;A;C

T

(Q � SR

�1

S

T

)C) is detectable,

and X

0

= X

T

0

is stabilizing in the sense that � (E;A�BK

0

) � C

�

, then the se-

quence of approximate solutions X

j

produced by the modi�ed Algorithm described

in Remark 16 converges quadratically to the stabilizing solution X

�

, at each step,

� (E;A�BK

j

) � C

�

, and the residual norms kR(X

j

)k

F

converge monotonically

and quadratically to zero.

This theorem is more general than the one stated in [24] since it does not require X

0

to be positive semide�nite. In contrast to Newton's method, the iterates X

j

are not

necessarily positive semide�nite and they do not necessarily converge monotonically

(in terms of de�niteness). On the other hand, the theorem needs the strong hypothesis

of controllability. The numerical examples in Section 4 suggest that this can be

weakened to stabilizability but at this writing, we are not aware of a proof for this

conjecture.

4 Numerical examples

Newton's Method (Algorithms 1), and Exact Line Search (Algorithm 2) were imple-

mented as MATLAB [23] functions. We compared the algorithms on the examples of

the benchmark collection for continuous-time algebraic Riccati equations [5], several

randomly generated examples, and some examples contrived to make Algorithm 1

perform poorly.

Although theoretical results ensure the existence of a minimizing t

j

2 [ 0; 2 ] as

well as kR(X

j

+ t

j

N

j

)k

F

� kR(X

j

)k

F

in each step, rounding errors may cause loss

of these properties. This is usually caused by catastrophic loss of signi�cance in the

computation of the residual R(X

j

). It is a sign that the limiting accuracy has been

reached.

For our experiments we did not use the hybrid algorithm proposed in Remark

16 in order to demonstrate the behaviour of Exact Line Search and to monitor the

possible convergence of the t

j

's to zero.

All computations were done under MATLABVersion 4.2a [23] on Hewlett Packard

Apollo series 700 computers under IEEE double precision and machine precision

" = 2:2204 � 10

�16

at the Technical University Chemnitz{Zwickau, Germany.

Example 1, continued

Using the same starting guess X

0

as before, one step of Exact Line Search reduced

kR(X

j

)k

F

as much as twenty-four steps of Newton's method. This is consequence

of Remark 3, since the example actually consists of two uncoupled scalar Riccati

equations. The starting guess fortuitously satis�es one of the two uncoupled scalar

Riccati equations. With the poor starting guess X

0

= 100I Exact Line Search took

9 iterations to converge while Newton's method took 17.

Example 2 We randomly generated about 50 examples with 5 � n � 100 and

1 � m; p � n, using normal distribution. Q and R were either set to I

p

and I

m

respectively or generated by Q = Q

T

0

Q

0

, R = R

T

0

R

0

. A stabilizing starting guess X

0
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was generated by the method described in [1, 15, 28]. On average, the exact line search

method needed 20% fewer iterations than Newton's method. The number of iterations

saved tended to be greater for larger values of n, m, and p. For n = m = p = 100,

Exact Line Search needed up to 40% fewer iterations.

We also explicitly generated examples with stabilizable, but uncontrollable data.

Although the convergence theory derived in Section 3 was based on assuming control-

lability, Exact Line Search converged to the stabilizing solution for all these examples.

This suggests that the convergence theory also holds if controllability is weakened to

stabilizability.

Convergence of the step sizes t

j

to zero was never observed for the randomly

generated examples.

The next examples are taken from [5]. Here, we report only the most intriguing

results obtained by testing the exact line search method for all those examples. As for

the randomly generated examples (see Example 2), no convergence problems occured

for uncontrollable data and convergence of the step sizes to zero was never observed.

Example 3 This is Example 15 in [5] and Example 4 in [21]. The system matrices

describe a mathematical model of position and velocity control for a string of N

high-speed vehicles. We have n = 2N � 1, m = N , and p = N � 1.

A =

2

6

6

6

6

6

6

6

6

6

6

6

4

A

11

A

12

0 : : : 0

0 A

22

A

23

0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 A

N�2;N�2

A

N�2;N�1

0

0 A

N�1;N�1

0

�1

0 : : : 0 0 �1

3

7

7

7

7

7

7

7

7

7

7

7

5

where

A

k;k

=

"

�1 0

1 0

#

; 1 � k � N � 1;

A

k+1;k

=

"

0 0

�1 0

#

; 1 � k � N � 2;

and

E = R = C = I

n

; S = 0;

B = diag(1; 0; 1; 0; : : : ; 1; 0; 1);

Q = diag(0; 10; 0; 10; : : : ; 0; 10; 0);

Stabilizing starting guesses X

0

were generated by the method described in [1, 15, 28].

Table 1 shows the number of iterations and the Frobenius norm of the last absolute

and relative residual. (

^

X denotes the computed approximation to X

�

.)

From these �gures we see that the number of saved iterations tends to increase

with growing problem size n as it was also observed for the randomly generated

examples, see Example 2.
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Newton's method Exact Line Search

n it. kR(

~

X)k

F

kR(

^

X)k

F

k

^

Xk

F

it. kR(

^

X)k

F

kR(

^

X)k

F

k

^

Xk

F

9 5 1:2 � 10

�13

6:1 � 10

�15

5 5:6 � 10

�15

2:9 � 10

�16

29 7 1:4 � 10

�14

3:3 � 10

�16

5 5:0 � 10

�14

1:2 � 10

�15

49 7 6:9 � 10

�14

1:1 � 10

�15

6 2:2 � 10

�14

3:6 � 10

�16

99 8 8:2 � 10

�14

8:1 � 10

�16

6 3:8 � 10

�14

3:8 � 10

�16

149 9 6:5 � 10

�14

4:7 � 10

�16

6 6:9 � 10

�14

5:0 � 10

�16

199 9 1:1 � 10

�13

6:5 � 10

�16

6 8:0 � 10

�14

4:6 � 10

�16

Table 1: Example 3

Example 4 This is Example 14 from [5] and Example 2 from [2]. Here, A depends

upon a parameter �. If � ! 0, the system approaches one which is unstabilizable and

a conjugate complex pair of the closed loop eigenvalues approaches the imaginary

axis. The system matrices are given by

A =

2

6

6

6

4

�� 1 0 0

�1 �� 0 0

0 0 � 1

0 0 �1 �

3

7

7

7

5

; B = C

T

=

2

6

6

6

4

1

1

1

1

3

7

7

7

5

;

E = I

4

; Q = R = 1; S = 0:

Stabilizing starting guesses X

0

were generated by the method described in [1, 15, 28].

Figures 2{5 show the behavior of the algorithms for several values of �. The number

of iterations saved by using the exact line search method instead of Newton's method

increases with � approaching zero.

Example 5 The data of this example describes a magnetic tape control problem [8],

[5, Example 13].

A =

2

6

6

6

4

0 0:4 0 0

0 0 0:345 0

0 �0:524=� �0:465=� 0:262=�

0 0 0 �1=�

3

7

7

7

5

; B =

2

6

6

6

4

0

0

0

1=�

3

7

7

7

5

; R = 1;

E = I

4

; C =

"

1 0 0 0

0 0 1 0

#

; Q = I

2

; S = 0:

Since A has one zero and 3 stable eigenvalues,

X

0

=

2

6

6

6

4

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

3

7

7

7

5

is a stabilizing starting guess. As � ! 0, (A;B) gets close to an unstabilizable matrix

pair. Figure 6 shows the behavior for � = 10

�3

; 10

�5

.
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Figure 2: Example 4, � = 1
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Figure 3: Example 4, � = 10

�2

0 2 4 6 8 10 12 14 16 18 20
10

-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

no. of iterations

F
ro

be
ni

us
 n

or
m

 o
f r

es
id

ua
l

delta = 1e-4,  ’o’ - Newton’s method,  ’+’ - exact line search

Figure 4: Example 4, � = 10
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Figure 5: Example 4, � = 10
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Figure 6: Residual norms in Example 5
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Example 6 One of the situations in which defect correction or iterative re�nement

[7, 17, 18] has the most to o�er is when the Riccati equation is highly ill-conditioned.

Rounding errors make it unlikely that any Riccati solver will produce much accu-

racy, but with its excellent, structure preserving rounding error properties, Newton's

method is likely to squeeze out as much accuracy as possible. This example is con-

trived to be highly ill-conditioned. Here we use n = m = p,

E = R = I A = S = 0 B = 10

3

I C = I �

2

n

ee

T

where e 2 IR

n

is the vector of ones, and

Q = diag(

1

9

1

;

1

9

2

;

1

9

2

;

1

9

3

;

1

9

3

; : : :):

The exact stabilizing solution is given by

X

�

= 10

�6

C

T

QC:

We obtained the starting guess as X

0

= (X+X

T

)=2 where X is the \solution" of (1)

computed by the MATLAB function care provided by A. Laub which implements the

Schur vector method [21] extended to the generalized algebraic Riccati equation (1) as

discussed in [2]. (Although the stabilizing solution X

�

is symmetric, rounding errors

in care may cause it to return a nonsymmetric \solution.") Observe in Figures 7

and 8 that Newton's method increases the initial residual norm by several orders of

magnitude. Predictably, the graph of relative errors closely matched the graph of

residuals.

This is an extremely ill-conditioned example. Using the condition number K

+

proposed in [6, 16] we obtain K

+

= 1:8 � 10

9

for n = 40 and K

+

= 4:3 � 10

11

for

n = 50. Rounding errors made while forming C

T

QC are su�cient to change the

smaller eigenvalues and corresponding invariant subspaces of the solution X

�

and

the closed loop system A � BR

�1

B

T

X

�

by over 100%. The closed loop poles are

so close to the imaginary axis that the symmetrized care solution for n = 50 did

not appear to be stabilizing as it should have been; one of the smaller eigenvalues of

A�BR

�1

B

T

X

0

computed by MATLAB was of the wrong sign. (Exact Line Search

preserves inertia, so for n = 50 it did not converge to a stabilizing solution either.)

The relative errors in Figures 7 and 8 are consistent with the condition number

and the precision of the arithmetic. Notice in Figure 7 that for n = 40, re�ning the

care solution reduced the relative error by more than three orders of magnitude. In

both examples, the �rst Newton step is a disaster. Although in the n = 50 case,

re�ning the care solution did not signi�cantly reduce its relative error, Exact Line

Search keeps the residual small but Newton's method does not.

5 Conclusions

We have introduced and studied an exact line search method based on Newton's

method for solving (generalized) continuous{time algebraic Riccati equations. This
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Figure 7: Residual norms and relative errors in Example 6, n = 40
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Figure 8: Residual norms and relative errors in Example 6, n = 50

method has convergence properties similar to Newton's method. Numerical experi-

ments show that in some cases, it signi�cantly reduces the number of iteration steps.

In addition, it is more robust in the presence of rounding errors. Used as a defect

correction method or for iterative re�nement it maximizes the e�ciency of Newton's

method to obtain the highest possible accuracy.

The same technique may be used to improve the behavior of the secant method

proposed in [10], the simpli�ed Newton method [26] or for Newton's method applied

to the solution of (generalized) discrete{time algebraic Riccati equations.

Numerical experiments suggest that the convergence theory for the exact line

search method also holds if the assumed controllability is weakened to stabilizability

and the assumption that the step sizes are bounded from below is dropped. However,

at this writing we can not prove these conjectures. This will be the topic of further

investigations.
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A Proof of Lemma 12

We will prove the contrapositive of the statement in Lemma 12: the pair (A;B) is

uncontrollable if and only if there exists Y = Y

T

6= 0 such that Y BR

�1

B

T

Y = 0 and

A

T

Y + Y A � 0.

If (A;B) is uncontrollable, then there exists a left eigenvector w of A that lies in

the left null space of B. Let �

r

be the real part of the corresponding eigenvalue of A.

If Y = sign (�

r

)ww

T

, then Y BR

�1

B

T

Y = ww

T

BR

�1

B

T

ww

T

= 0 and A

T

Y + Y A =

2j�

r

jY = j�

r

jww

T

is positive semide�nite.

For the converse, assume that there exists a symmetric matrix Y 6= 0 such that

A

T

Y +Y A � 0 and Y BR

�1

B

T

Y = 0. We will show that (A;B) is uncontrollable by

constructing a left eigenvector of A belonging to the left null space of B.

By choosing an appropriate orthonormal basis, we may arrange that A, Y and

BR

�1

B

T

take the form

BR

�1

B

T

=

2

6

4

h k n� h� k

h G

11

0 0

k 0 0 0

n� h� k 0 0 0

3

7

5

and by analogous partitioning

Y =

2

6

4

0 0 0

0 Y

22

0

0 0 0

3

7

5
; A =

2

6

4

A

11

A

12

A

13

A

21

A

22

A

23

A

31

A

32

A

33

3

7

5

where G

11

and Y

22

are nonsingular. The assumption that Y 6= 0 implies that k >

0. However, it is possible that either h = 0 or n � h � k = 0 in which case the

corresponding rows and columns do not appear. In this basis, A

T

Y + Y A takes the

form

A

T

Y + Y A =

2

6

4

h k n � h� k

h 0 A

T

21

Y

22

0

k Y

22

A

21

A

T

22

Y

22

+ Y

22

A

22

Y

22

A

23

n� h� k 0 A

T

23

Y

22

0

3

7

5
:

By hypothesis, this matrix is positive semide�nite, so Y

22

A

21

= 0 and Y

22

A

23

= 0. It

follows from the nonsingularity of Y

22

that A

21

= 0 and A

23

= 0.

Let w

2

2 IR

k

be a left eigenvector of A

22

. De�ne w 2 IR

n

as w = [w

1

; w

2

; w

3

]

where w

1

= 0 2 IR

h

and w

3

= 0 2 IR

n�h�k

. The vector w is a left eigenvector of A

belonging to the left null space of B.
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