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y
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�

Abstract

This is the second part of a collection of benchmark examples for the numerical solution

of algebraic Riccati equations. After presenting examples for the continuous-time case

in Part I, our concern in this paper is discrete-time algebraic Riccati equations. This

collection may serve for testing purposes in the construction of new numerical methods,

but may also be used as a reference set for the comparison of methods.

1 Introduction

We present a collection of examples for discrete-time algebraic Riccati equations (DARE) of

the form

0 = A

T

XA�X � (A

T

XB + S)(R+ B

T

XB)

�1

(B

T

XA+ S

T

) + Q (1)

where A;Q;X 2 IR

n�n

, B; S 2 IR

n�m

, and R = R

T

2 IR

m�m

. The matrix Q = Q

T

may be

given in factored form Q = C

T

~

QC with C 2 IR

p�n

and

~

Q =

~

Q

T

2 IR

p�p

.

As it will be described below, (1) can be solved using its relationship to the symplectic pencil

de�ned by

L� �M =

"

^

A 0

�

^

Q I

n

#

� �

"

I

n

G

0

^

A

T

#

(2)

where

^

A = A� BR

�1

S

T

;

G = BR

�1

B

T

;

^

Q = Q� SR

�1

S

T

= C

T

~

QC � SR

�1

S

T

:
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If

^

A is invertible, this pencil is equivalent to the symplectic matrices

Z = M

�1

L =

"

^

A+ G

^

A

�T

^

Q �G

^

A

�T

�

^

A

�T

^

Q

^

A

�T

#

; (3)

or

~

Z = LM

�1

=

"

^

A �

^

AG

^

A

�T

�

^

Q

^

QG

^

A

�T

+

^

A

�T

#

: (4)

The DARE (1) arises, e.g., in (a) stochastic realization problems, and (b) linear-quadratic

control problems. In case (a), R is the measurement noise covariance and it is not uncommon

for this kind of matrix to be singular. For (b), R is the control weighting matrix and in the

discrete-time case, occasionally such a matrix can be singular, too. In these cases, the pencil

formulation (2) is not possible. An extended symplectic pencil (ESP) can then be formed by

~

L� �

~

M =

2

6

4

A 0 B

Q �I

n

S

S

T

0 R

3

7

5

� �

2

6

4

I

n

0 0

0 �A

T

0

0 �B

T

0

3

7

5

: (5)

To illustrate a problem where the DARE (1) arises, we consider the discrete-time linear-

quadratic control problem (case (b) from above).

Minimize

J(x

0

; u) =

1

2

1

X

k=0

�

y

T

k

~

Qy

k

+ 2x

T

k

Su

k

+ u

T

k

Ru

k

�

dt (6)

subject to the di�erence equation

x

k+1

= Ax

k

+ Bu

k

; k = 0; 1; : : : ; x

0

= �; (7)

y

k

= Cx

k

; k = 0; 1; : : : : (8)

If, for example,

~

Q � 0, R > 0, (A;B) stabilizable

1

, and (A;C) detectable

2

, then the solution

of the optimal control problem (6){(8) is given by the feedback law

u

k

= �(R+B

T

XB)

�1

(A

T

XB + S)

T

x

k

; k = 0; 1; : : : ;

where X is the unique stabilizing, positive semide�nite solution of (1) (see, e.g., [21, 28]).

One common approach to solve (1) is to compute the stable invariant subspace of the sym-

plectic matrix Z or the stable deating subspace of the (extended) symplectic pencil given

above, i.e., the invariant/deating subspace corresponding to the generalized eigenvalues of

L � �M ,

~

L � �

~

M , respectively, inside the unit circle (e.g., [18, 21, 24]). If this subspace is

spanned by

"

U

1

U

2

#

gn

gn

or

2

6

4

U

1

U

2

U

3

3

7

5

gn

gn

gm

; respectively;

and U

1

is invertible, then X = U

2

U

�1

1

is the stabilizing solution of (1), i.e., all the eigenvalues

of

F = A� B(R+ B

T

XB)

�1

(A

T

XB + S)

T

(9)

lie inside the unit circle.

1

(A;B) is (d-)stabilizable, if rank [A� �I; B] = n for all � with j�j � 1.

2

(A,C) is (d-)detectable, if (A

T

; C

T

) is (d-)stabilizable.
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At this point it should be noted that it is possible to transform a continuous-time algebraic

Riccati equation (CARE) into a DARE (and vice versa) via a (generalized) Cayley trans-

formation, i.e., the Hamiltonian matrix corresponding to the CARE is transformed into a

symplectic matrix/pencil. From this symplectic pencil it is possible to derive the coe�cient

matrices of a corresponding DARE under certain regularity assumptions; see [22]. In this

way, it is possible to obtain DARE examples from the �rst part of our benchmark collection.

We do not use this approach here, though, and restrict ourselves to data arising naturally in

a discrete-time setting and/or highlighting some of the properties of discrete-time algebraic

Riccati equations.

In the sequel we will use the following notation. Let A 2 IR

n�n

. By �(A) we denote the set

of eigenvalues or spectrum of A. The spectral norm of a matrix is given by

jjAjj =

q

maxfj�j : � 2 �(A

T

A)g

and the given matrix condition numbers are based upon the spectral norm,

�(A) = jjAjjjjA

�1

jj:

The Frobenius norm of a matrix will be denoted by jjAjj

F

and is given by

jjAjj

F

=

v

u

u

t

n

X

i;j=1

a

2

ij

:

All norms and condition numbers given in the sequel were computed by the MATLAB

3

functions norm and cond.

The examples are grouped in three sections. The �rst section contains parameter-free ex-

amples of �xed dimension while the second has parameter-dependent problems of �xed size.

Section 4 contains examples of scalable size.

The coe�cient matrices of the presented examples are usually given in the same form as they

appear in the literature. Since in most cases S = 0, we omit S in all examples where this

property holds.

All presented examples may be generated by the FORTRAN 77 subroutine DAREX (see

Appendix A) and the MATLAB function darex (see Appendix B). Appendix C describes

how to obtain the software.

The description of each example contains a table with some of the system properties. This

information is summarized in Appendix D. For all parameters needed in the examples there

exist default values that are also given in the tables. These default values are chosen in such

a way that the collection of examples can be used as a testset for the comparison of methods.

The tables contain information for one or more choices of the parameters. Underlined values

indicate the default values.

For each example, we provide the condition number �(

^

A) which shows if the symplectic

matrix Z in (3) can be formed safely (though it is still favorable to use the pencil approach

and thereby avoiding a matrix inversion unless

^

A

�1

is \easy" to form). The column j�

C

max

j

indicates the absolute value of the closed-loop eigenvalue of largest modulus, i.e.,

j�

C

max

j = maxf j�j : � 2 �(F ) g

3

MATLAB is a trademark of The MathWorks, Inc.
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with F as in (9). These are the (generalized) eigenvalues of the symplectic matrix (pencils)

in (2), (3), and (5) inside the unit circle. Further, we give norms and condition numbers of

the stabilizing solution X . For examples without analytical solution available, we computed

approximations by the generalized Schur vector method [3, 24]. If possible, these approxima-

tions were re�ned by Newton's method [3, 12, 21] to achieve the highest possible accuracy.

We then chose the approximate solution with smallest residual norm and recomputed the

solution using the optimal scaling strategy proposed in [11]. This computed solution was

then used to determine the properties of the example.

The \right" condition number of algebraic Riccati equations is still an open problem although

the problem has been attacked by several papers during recent years, see, e.g., [11, 15, 26,

30]. For simplicity, here we use the condition number proposed in [11]. This condition

number measures the sensitivity of the stabilizing DARE solution with respect to �rst-order

perturbations by means of the Fr�echet derivative of the DARE at X . In [11] it is shown that,

assuming Q � 0, R > 0, the so de�ned condition number is given by

K

DARE

=

jj [Z

1

; Z

2

; Z

3

] jj

jjX jj

F

;

where

Z

1

= jjAjj

F

P

�1

�

I

n


 F

T

X + (F

T

X 
 I

n

)T

�

; (10)

Z

2

= �jjGjj

F

P

�1

�

^

A

T

X(I

n

+GX)

�1




^

A

T

X(I

n

+GX)

�1

�

; (11)

Z

3

= jjQjj

F

P

�1

: (12)

Here, denoting the jth unit vector by e

j

, the permutation matrix T is de�ned by

T =

n

X

i;j=1

e

i

e

T

j


 e

j

e

T

i

;

and P is the matrix representation of the Stein (discrete Lyapunov) operator


(Z) = Z � F

T

ZF:

The computation of K

DARE

therefore requires the solution of the linear equations (10){(12).

Since Kronecker products are involved, these systems get very large even for small numbers

of n. For larger n, an inverse power iteration can be employed to estimate jj [Z

1

; Z

2

; Z

3

] jj

F

(see [11]). This approach requires in each iteration step the solution of two Stein equations

corresponding to 
.
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2 Parameter-free problems of �xed size

Example 1 [17, Example 2]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

2 1 2 { 114.99 0.50 21.03 1 18.85

This is an example of stabilizable-detectable, but uncontrollable-unobservable data. We have the

following system matrices:

A =

�

4 3

�

9

2

�

7

2

�

; B =

�

1

�1

�

; R = 1; Q =

�

9 6

6 4

�

with stabilizing solution

X =

1+

p

5

2

�

9 6

6 4

�

and closed-loop spectrum f�1=2; (3�

p

5)=3 g.

Example 2 [17, Example 3], [16, Example 6.15]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

2 2 2 { 1.05 0.69 5:07� 10

�2

4.97 4.74

This example illustrates a linear-quadratic control problem as de�ned by (6){(8). The coe�cient

matrices are

A =

�

0:9512 0

0 0:9048

�

; B =

�

4:877 4:877

�1:1895 3:569

�

;

R =

�

1

3

0

0 3

�

; Q =

�

0:005 0

0 0:02

�

:

In [16, 17], solution matrices are given. We omit reproducing them here since they are not derived

analytically.

Example 3 [31, Example II]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

2 1 1 { 5.83 0.00 1.00 1.00 1

This example was used in [31] to demonstrate a compression technique for the extended pencil (5).

The data are given by

A =

�

2 �1

1 0

�

; B =

�

1

0

�

; Q =

�

0 0

0 1

�

; R = 0:

If interpreted in terms of a linear system as in (7){(8), Q can be written as

Q = C

T

~

QC; C = [ 0 1 ];

~

Q = 1:

The exact stabilizing solution isX = I

2

, and the closed-loop spectrum is f 0; 0 g. Due to the singularity

of R, the condition number K

DARE

is not de�ned here (represented by a value \1" in the table).

This example can be used, e.g., as a �rst test of any solver to deal with a singular weighting/measure-

ment noise covariance matrix.
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Example 4 [13]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

2 2 2 { 1 0.69 126.99 2:84� 10

3

1

This is another example with a singular R{matrix. Furthermore, we have a nonzero S{matrix. The

coe�cients of (1) are given by

A =

�

0 1

0 �1

�

; B =

�

1 0

2 1

�

; R =

�

9 3

3 1

�

;

Q =

1

11

�

�4 �4

�4 7

�

; S =

�

3 1

�1 7

�

:

Again, the DARE condition number K

DARE

can not be computed due to the singular R.

Example 5 [14], [22, Example 2].

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

2 1 2 { 1 0.38 5.19 114.13 1.88

This example shows one of the major di�erences between the properties of continuous-time algebraic

Riccati equations and their discrete counterparts. Consider the DARE de�ned by

A =

�

0 1

0 0

�

; B =

�

0

1

�

; Q =

�

1 2

2 4

�

; R = 1:

The spectrum of the pencil L � �M in (2) is f 0; 1; �(3 �

p

5)=2 g. The DARE has exactly two

solutions,

X

1

=

�

1 2

2 2 +

p

5

�

; X

2

=

�

1 2

2 2�

p

5

�

:

but neither of them is negative semide�nite. On the other hand, (A; B) is controllable. In the case of

a continuous-time system, this property would assure the existence of a negative semide�nite solution.

The stabilizing solution in the control-theoretic sense is the positive de�nite solution X

1

.

Example 6 [1]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

4 2 4 { 1.01 0.94 35.36 3.34 30.58

The data of this example represent a simple control problem for a satellite. The system is given

by equations describing the small angle altitude variations about the roll and yaw axes of a satellite

in circular orbit. These equations originally form a second-order di�erential equation. A �rst-order

realization of this model and sampling every 0:1 seconds yields the system matrices

A =

2

6

6

4

0:998 0:067 0 0

�0:067 0:998 0 0

0 0 0:998 0:153

0 0 �0:153 0:998

3

7

7

5

; B =

2

6

6

4

0:0033 0:02

0:1 �0:0007

0:04 0:0073

�0:0028 0:1

3

7

7

5

:

The weighting matrices used in the performance index J(x

0

; u) in (6) are given by

Q =

~

Q =

2

6

6

4

1:87 0 0 �0:244

0 0:744 0:205 0

0 0:205 0:589 0

�0:244 0 0 1:048

3

7

7

5

; R = I

2

:
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Example 7 [19]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

4 2 4 { 19.86 0.99 2.06 183.33 790.37

This is a simple example of a control system having slow and fast modes.

A = 10

�3

�

2

6

6

4

984:75 �79:903 0:9054 �1:0765

41:588 998:99 �35:855 12:684

�546:62 44:916 �329:91 193:18

2662:4 �100:45 �924:55 �263:25

3

7

7

5

;

B = 10

�4

�

2

6

6

4

37:112 7:361

�870:51 0:093411

�11984:0 �4:1378

�31927:0 9:2535

3

7

7

5

; R = I

2

; Q = 0:01I

4

:

One complex conjugate pair of the computed closed-loop eigenvalues is located on a circle with radius

� 0:99 around the origin, i.e., is relatively close to the unit circle. Requiring that this distance should

not cause any problems for any DARE solver seems to be reasonable.

Example 8 [20, Example 4.3]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

4 4 4 { 378.60 � 1� 1:8� 10

�5

65.77 6:18� 10

11

5:12� 10

4

Here, the coe�cient matrices of (1) are constructed as follows. Given

A

0

=

2

6

6

4

0:4 0 0 0

1 0:6 0 0

0 1 0:8 0

0 0 0 �0:999982

3

7

7

5

; Q

0

=

2

6

6

4

2 �1 0 0

�1 2 �1 0

0 �1 2 0

0 0 0 0

3

7

7

5

;

V =

2

6

6

4

1 �1 �1 �1

0 1 �1 �1

0 0 1 �1

0 0 0 1

3

7

7

5

() V

�1

=

2

6

6

4

1 1 2 4

0 1 1 2

0 0 1 1

0 0 0 1

3

7

7

5

;

we obtain

A = V A

0

V

�1

=

2

6

6

4

�0:6 �2:2 �3:6 �5:400018

1 0:6 0:8 3:399982

0 1 1:8 3:799982

0 0 0 �0:999982

3

7

7

5

; B = V I

4

= V;

Q = V

�T

Q

0

V

�1

=

2

6

6

4

2 1 3 6

1 2 2 5

3 2 6 11

6 5 11 22

3

7

7

5

; R = I

4

:

A factorization in the control-theoretic sense, Q = C

T

~

QC, is therefore given by C := V

�1

and

~

Q := Q

0

.

All the generalized eigenvalues of L��M are real. The distance of the largest closed-loop eigenvalue to

the unit circle is � 1:8�10

�5

. The problem is designed so that �(L+M ) � 4�10

11

. Due to this large

condition number and the eigenvalues close to the unit circle, problems with the convergence of the

iteration process are to be expected when the DARE is solved via a method based on the sign function

iteration (e.g., the methods in [4, 9]). Note that K

DARE

signals only a very mild ill-conditioning of

the DARE.
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Example 9 [8, Section 2.7.4]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

5 2 5 { 23.52 0.98 73.90 73.73 100.81

The �fth-order linearized state-space model of a chemical plant presented in [10, 29] is discretized

by sampling every 0:5 seconds, yielding a discrete-time linear-quadratic control problem of the form

(6){(7) de�ned by

A = 10

�4

�

2

6

6

6

6

4

9540:70 196:43 35:97 6:73 1:90

4084:90 4131:70 1608:40 446:79 119:71

1221:70 2632:60 3614:90 1593:00 1238:30

411:18 1285:80 2720:90 2144:20 4097:60

13:05 58:08 187:50 361:62 9428:00

3

7

7

7

7

5

; B = 10

�4

�

2

6

6

6

6

4

4:34 �1:22

266:06 �104:53

375:30 �551:00

360:76 �660:00

46:17 �91:48

3

7

7

7

7

5

:

The weighting matrices in the cost functional (6) are chosen as identities, i.e., we have Q =

~

Q = I

5

and R = I

2

.

If we modify the optimal control problem (6){(8) by allowing the observation to depend upon

the control, we obtain the following problem:

Minimize

J(x

0

; u) =

1

2

1

X

k=0

�

y

T

k

~

Qy

k

+ u

T

k

~

Ru

k

�

dt (13)

subject to the di�erence equation

x

k+1

= Ax

k

+ Bu

k

; k = 0; 1; : : : ; x

0

= �; (14)

y

k

= Cx

k

+Du

k

; k = 0; 1; : : : :; (15)

then we can rewrite the cost functional (13) as

J(x

0

; u) =

1

2

1

X

k=0

�

x

T

Qx+ x

T

Su+ u

T

S

T

x+ u

T

Ru

�

dt (16)

where Q = C

T

~

QC, R =

~

R+D

T

~

QD, and S = C

T

~

QD.

The data of the following example come from such a problem.

Example 10 [7]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

6 2 2 { 1 0.67 2.53 37.38 3.94

The matrices of the linear system (A;B;C;D) are given by

A =

2

6

6

6

6

6

6

4

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

3

7

7

7

7

7

7

5

; B =

2

6

6

6

6

6

6

4

0 0

0 0

1 0

0 0

0 0

0 1

3

7

7

7

7

7

7

5

;

C =

�

1 1 0 0 0 0

0 0 0 1 �1 0

�

; D =

�

1 0

1 0

�

:

8



With

~

Q =

~

R = I

2

, we obtain the following coe�cient matrices for the DARE: A, B, C,

~

Q are de�ned

above, and

Q = C

T

~

QC =

2

6

6

6

6

6

6

4

1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 �1 0

0 0 0 �1 1 0

0 0 0 0 0 0

3

7

7

7

7

7

7

5

; R =

�

3 0

0 1

�

; S =

2

6

6

6

6

6

6

4

1 0

1 0

0 0

1 0

�1 0

0 0

3

7

7

7

7

7

7

5

:

The system properties are good-natured. The system can easily be transformed to a standard system

as in (2). Therefore, this example is helpful for �rst veri�cations of any DARE solver based on the

extended formulation given in (5) since the results can be compared to those obtained by any other

solver based on the formulation by the symplectic pencil (2).

Example 11 [25]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

9 3 2 { 1:58� 10

6

0.96 607.66 1 74.23

This is the data for a 9th-order discrete state-space model of a tubular ammonia reactor. It should be

noted that the underlying model includes a disturbance term which is neglected in this context.

The continuous state-space model of this problem was presented as Example 5 in the �rst part of

the benchmark collection [5]. Sampling every 30 seconds yields the following system matrices for the

discrete model:

A = 10

�2

�

2

6

6

6

6

6

6

6

6

6

6

6

6

4

87:01 13:50 1:159 0:05014 �3:722 0:03484 0 0:4242 0:7249

7:655 89:74 1:272 0:05504 �4:016 0:03743 0 0:4530 0:7499

�12:72 35:75 81:70 0:1455 �10:28 0:0987 0 1:185 1:872

�36:35 63:39 7:491 79:66 �27:35 0:2653 0 3:172 4:882

�96:00 164:59 �12:89 �0:5597 7:142 0:7108 0 8:452 12:59

�66:44 11:296 �8:889 �0:3854 8:447 1:36 0 14:43 10:16

�41:02 69:30 �5:471 �0:2371 6:649 1:249 0:01063 9:997 6:967

�17:99 30:17 �2:393 �0:1035 6:059 2:216 0 21:39 3:554

�34:51 58:04 �4:596 �0:1989 10:56 1:986 0 21:91 21:52

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

B

T

= 10

�4

�

2

4

4:76 0:879 1:482 3:892 10:34 7:203 4:454 1:971 3:773

�0:5701 �4:773 �13:12 �35:13 �92:75 �61:59 �36:83 �15:54 �30:28

�83:68 �2:73 8:876 24:80 66:80 38:34 20:29 6:937 14:69

3

5

:

In the discrete model, only the �rst and �fth state variables are used as outputs, i.e.,

C =

�

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

�

and the weighting matrices are chosen as

~

Q = 50I

2

and R = I

3

.
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3 Parameter-dependent problems of �xed size

Example 12

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

2 1 2 " = 100 1 0.00 1:00� 10

4

1:00� 10

4

2.65

" = 10

6

1 0.00 1:00� 10

12

1:00� 10

12

2.65

Here, the matrix A has a parameter and the coe�cient matrices of the DARE (1) are

A =

�

0 "

0 0

�

; B =

�

0

1

�

; R = 1; Q = I

2

:

The stabilizing solution is given by

X =

�

1 0

0 1 + "

2

�

and the closed-loop spectrum is f 0; 0 g.

For " = 100, this is Example 2 from [11]. As " ! 1, this becomes an example of a DARE which is

badly scaled in the sense of [27] due to the fact that jjAjj

F

� jjGjj

F

; jjQjj

F

. Obviously, the norm (and

condition) of the stabilizing solution X grow like "

2

whereas the DARE condition number K

DARE

remains constant.

Example 13 [27]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

3 3 3 " = 1 1 0.38 9.11 9.11 2.51

" = 10

6

1 0.38 9:11� 10

6

9.11 2.51

This example is constructed as follows. Let

A

0

= diag(0; 1; 3); V = I �

2

3

vv

T

; v

T

=

�

1 1 1

�

:

Then

A = V A

0

V; G =

1

"

I

3

; Q = "I

3

:

A factorization Q = C

T

~

QC can be obtained by setting C := V and

~

Q := Q; a factorization G =

BR

�1

B

T

is given by B = I

3

and R = ". This is used in both the FORTRAN 77 and MATLAB

implementations if a factored form is required.

As solution we get

X = V diag(x

1

; x

2

; x

3

)V

where

x

1

= ";

x

2

= "

�

1 +

p

5

�

2

;

x

3

= "

�

9 +

p

85

�

2

:

The closed-loop spectrum is given by �

1

= 0, �

2

=

�

3�

p

5

�

2

, and �

3

=

�

11�

p

85

�

6

.

For growing ", the corresponding symplectic pencil (2) becomes more and more badly scaled which leads

to a signi�cant loss of accuracy in all DARE solvers based on eigenvalue methods. This demonstrates

the need to use an appropriate scaling as proposed in [11].
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Example 14 [6, 24]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

� = 2:0, D = 1:0,

K = 2:0, r = 0:25

1 9:62� 10

�2

1.05 1.05 6.20

4 1 1 � = 10

8

, D = 1:0,

K = 1:0, r = 0:25

1 � 1�

p

5� 10

�8

3:09� 10

7

3:09� 10

7

1:79� 10

8

� = 10

�6

, D = 1:0,

K = 1:0, r = 0:25

1 2:0� 10

�7

1.25 1.25 4:21� 10

12

The following system describes a very simple process control of a paper machine. The continuous-time

model with a time delay is sampled at intervals of length D which yields a singular transition matrix

A. The time delay is equal to the length of three sampling intervals. The other parameters de�ning

the system are a �rst-order time constant � and the steady-state gain K. The linear system (7){(8) is

then given by

A =

2

6

6

4

1�D=� 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

; B =

2

6

6

4

KD=�

0

0

0

3

7

7

5

; C =

�

0 0 0 1

�

:

The weighting matrices used in this example are R = r and

~

Q = 1. De�ning

� = 1�

D

�

; � =

KD

�

;

it can be shown that the solutions of the DARE (1) are given by

X = diag (x

i

; 1; 1; 1 )

where x

i

, i = 1; 2, solve the scalar quadratic equation

(�

2

� 1)x+ 1�

�

2

�

2

r + �

2

x

x

2

= 0;

whence

x

i

=

1

2�

2

�

r(�

2

� 1) + �

2

�

q

(r(�

2

� 1) + �

2

)

2

+ 4�

2

r

�

: (17)

The stabilizing positive semide�nite solution of (1) is thus de�ned by the unique positive solution x

1

of (17) and the closed-loop eigenvalues are

�

1

=

�r

r + �

2

x

1

=

(� �D)�r

�

2

r + (DK)

2

x

1

; �

2

= �

3

= �

4

= 0:

Due to the variety of parameters in this example, it is possible to investigate DAREs with critical

properties in many aspects. Since these properties merely rely on �, �, and r, these e�ects can be

produced by keeping K and D constant and varying � (and r). Since j�

C

max

j = �

1

, for � � D;K the

largest closed-loop eigenvalue approaches the unit disk. For � � D;K the norm and condition of X

become large and the DARE becomes ill conditioned with respect to K

DARE

.

11



4 Examples of scalable size

Example 15 [24, Example 3]

n m p parameter �(A) j�

C

max

j jjXjj �(X) K

DARE

n 1 n n = 10, r = 1 1 0.00 10.00 10.00 11.01

n = 100, r = 1 1 0.00 100.0 100.0 279.75

Consider the DARE de�ned by

A =

2

6

6

6

6

6

4

0 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 0 1

0 : : : 0 0

3

7

7

7

7

7

5

2 IR

n�n

; B =

2

6

6

6

4

0

.

.

.

0

1

3

7

7

7

5

; R = r; Q = I

n

:

The stabilizing solution has a very simple form, namely,

X = diag ( 1; 2; : : : ; n ):

The closed-loop eigenvalues are all zero, that is, the spectrum of the symplectic pencil L� �M in (2)

is given by the generalized eigenvalues �

1

= : : : = �

n

= 0 and �

n+1

= : : : = �

2n

=1.

This example can be used to test any DARE solver for growing dimension of the problem. The DARE

condition number K

DARE

increases only slowly and for any order of the DARE, jjXjj = �(X) = n.

Note further that the choice of r does not inuence the stabilizing solution X but for r < 1, the

condition number K

DARE

behaves like 1=r.

12



A The FORTRAN 77 subroutine DAREX

This is the prolog of a FORTRAN 77 subroutine for generating all presented examples. The

subroutine was documented according to standards for SLICOT

4

[23].

Besides calls to LAPACK and BLAS [2], DAREX calls the subroutines SP2SY and SY2SP

which are used to convert symmetric matrices from general storage mode to packed storage

mode and vice versa. These subroutines are provided together with darex.f. If you have no

access to LAPACK and BLAS, please contact the authors.

For some of the examples, DAREX reads the data from data �les delivered together with

darex.f. These are Examples 6{9 and 11. The corresponding data �les (in ASCII format) are

DAREX6.DAT, DAREX7.DAT, DAREX8.DAT, DAREX9.DAT, and DAREX11.DAT.

Note that the references given in the prolog of DAREX refer to those given at the end of the

prolog and do not correspond to the references of this paper.

SUBROUTINE DAREX(NO, N, M, P, NPAR, DPARAM, A, LDA, B, LDB, C,

1 LDC, Q, LDQ, R, LDR, S, LDS, X, LDX, NOTE,

2 STORE, WITHC, WITHG, WITHS, RWORK, IERR)

C

C PURPOSE

C

C To generate the benchmark examples for the numerical solution of

C the discrete-time algebraic Riccati equation (DARE)

C

C T T T -1 T T

C 0 = A X A - X - (A X B + S) (R + B X B) (B X A + S ) + Q.

C

C as presented in [1]. Here, A,Q,X are real N-by-N matrices, B,S are

C N-by-M, and R is M-by-M. The matrices Q and R are symmetric and Q

C may be given in factored form

C

C T

C (I) Q = C Q0 C .

C

C Here, C is P-by-N and Q0 is P-by-P. If R is nonsingular, the DARE

C can be rewritten equivalently as

C

C -1

C 0 = X - A X (I_n + G X) A - Q

C

C where I_n is the N-by-N identity matrix and

C

C -1 T

C (II) G = B R B .

C

4

Subroutine LIbrary in COntrol and Systems Theory
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C ARGUMENT LIST

C ARGUMENTS IN

C

C NO - INTEGER.

C The number of the benchmark example to generate according

C to [1].

C

C N - INTEGER.

C This integer determines the actual state dimension, i.e.,

C the order of the matrix A as follows:

C N is fixed for the examples of Sections 2 and 3 of [1],

C i.e., currently Examples 1-14.

C NOTE that N is overwritten for Examples 1-14 and for the

C other example(s) if N is set by default.

C

C M, P - INTEGER.

C M is the number of columns in the matrix B and the order

C of the matrix R (in control problems, the number of

C inputs of the system).

C P is the number of rows in the matrix C from (I) (in

C control problems, the number of outputs of the system).

C Currently, M and P are fixed or determined by N for all

C examples and thus are not referenced on input.

C NOTE that M and P are overwritten and M .LE. N and

C P .LE. N for all examples.

C

C NPAR - INTEGER.

C Number of input parameters supplied by the user.

C Examples 1-11 (Section 2 of [1]) have no parameters.

C Examples 12-13 (Section 3 of [1]) each have one DOUBLE

C PRECISION parameter which may be supplied in DPARAM(1).

C Example 14 has 4 DOUBLE PRECISION parameters which may

C be supplied in DPARAM(1) - DPARAM(4).

C Example 15 has one INTEGER parameter which determines the

C size of the problem. This parameter may be supplied in

C the input argument N. Besides, this example has one

C DOUBLE PRECISION parameter which may be supplied in

C DPARAM(1).

C If the input value of NPAR is less than the number of

C parameters of the Example NO (according to [1]), the

C missing parameters are set by default.

C

C DPARAM - DOUBLE PRECISION array of DIMENSION at least ndp.

C Double precision parameter vector where ndp is the

C number of DOUBLE PRECISION parameters of Example NO

C (according to [1]). For all examples, ndp <= 4. For

C explanation of the parameters see [1].

14



C DPARAM(1) defines the parameters 'epsilon' for the

C examples in Section 3 (NO = 12,13), the parameter 'tau'

C for NO = 14, and the parameter 'r' for NO = 15.

C For Example 14, DPARAM(2) - DPARAM(4) define in

C consecutive order 'D', 'K', and 'r'.

C If NPAR is smaller than the number of used parameters in

C Example NO (as described in [1]), default values are

C used and returned in corresponding components of DPARAM.

C NOTE that those entries of DPARAM are overwritten which

C are used to generate the example but were not supplied by

C the user.

C

C LDA - INTEGER.

C The leading dimension of array A as declared in the

C calling program.

C LDA .GE. N where N is the order of the matrix A, i.e.,

C the output value of the integer N.

C

C LDB - INTEGER.

C The leading dimension of array B as declared in the

C calling program.

C LDB .GE. N (output value of N).

C

C LDC - INTEGER.

C The leading dimension of array C as declared in the

C calling program.

C LDC .GE. P where P is either defined by default or

C depends upon N. (For all examples, P .LE. N, where N is

C the output value of the argument N.)

C

C LDQ - INTEGER.

C If full storage mode is used for Q, i.e., STORE = 'F'

C or 'f', then Q is stored like a 2-dimensional array

C with leading dimension LDQ. If packed symmetric storage

C mode is used, then LDQ is not referenced.

C That is, if STORE = 'F' or STORE = 'f', then

C LDQ .GE. N if WITHC = .FALSE.

C LDQ .GE. P if WITHC = .TRUE.

C

C LDR - INTEGER.

C If full storage mode is used for the array R, i.e.,

C STORE = 'F' or 'f', then R is stored like a 2-dimensional

C array with leading dimension LDR. If packed symmetric

C storage mode is used, then LDR is not referenced.

C That is, if STORE = 'F' or STORE = 'f', then

C LDR .GE. M if WITHG = .FALSE.

C LDR .GE. N if WITHG = .TRUE.

15



C

C LDS - INTEGER.

C The leading dimension of array S as declared in the

C calling program.

C LDS .GE. N if S is to be returned (see MODE PARAMETER

C WITHS). Otherwise, LDS is not referenced.

C

C LDX - INTEGER.

C The leading dimension of array X as declared in the

C calling program.

C LDX .GE. N if an exact solution is available (Examples

C 1,3,5,12-15). Otherwise, X is not referenced.

C

C ARGUMENTS OUT

C

C N - INTEGER.

C The order of the matrix A.

C

C M - INTEGER.

C The number of columns of matrix B and the order of the

C matrix R.

C

C P - INTEGER.

C The number of rows of the matrix C from (I).

C

C DPARAM - DOUBLE PRECISION array of DIMENSION at least 7.

C Double precision parameter vector. For explanation of the

C parameters see [1].

C DPARAM(1) defines the parameters 'epsilon' for the

C examples in Section 3 (NO = 12,13), the parameter 'tau'

C if NO = 14, and the parameter 'r' if NO = 15.

C For Example 14, DPARAM(2) - DPARAM(4) define in

C consecutive order 'D', 'K', and 'r'.

C

C A - DOUBLE PRECISION array of DIMENSION (LDA,N).

C The leading N by N part of this array contains the

C coefficient matrix A of the DARE.

C

C B - DOUBLE PRECISION array of DIMENSION (LDB,M).

C If WITHG = .FALSE., then array B contains the coefficient

C matrix B of the DARE.

C Otherwise, B is used as workspace.

C

C C - DOUBLE PRECISION array of DIMENSION (LDC,N).

C If WITHC = .TRUE., then array C contains the matrix C of

C the factored form (I) of Q.

C Otherwise, C is used as workspace.
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C

C Q - DOUBLE PRECISION array of DIMENSION at least qdim.

C If STORE = 'F' or 'f', then qdim = LDQ*nq.

C If STORE = 'U', 'u', 'L' or 'l', then qdim = nq*(nq+1)/2.

C If WITHC = .FALSE., then nq = N and the array Q

C contains the coefficient matrix Q of the DARE.

C If WITHC = .TRUE., then nq = P and the array Q contains

C the matrix Q0 from (I).

C The symmetric matrix contained in array Q is stored

C according to MODE PARAMETER STORE.

C

C R - DOUBLE PRECISION array of DIMENSION at least rdim.

C If STORE = 'F' or 'f' then rdim = LDR*nr.

C If STORE = 'U', 'u', 'L' or 'l' then rdim = nr*(nr+1)/2.

C If WITHG = .FALSE., then nr = M and the array R

C contains the coefficient matrix R of the DARE.

C If WITHG = .TRUE., then nr = N and the array R contains

C the matrix G from (II).

C The symmetric matrix contained in array R is stored

C according to MODE PARAMETER STORE.

C

C X - DOUBLE PRECISION array of DIMENSION (LDX,xdim).

C If an exact solution is available (NO = 1,3,5,12-15),

C then xdim = N and the leading N-by-N part of this array

C contains the solution matrix X. Otherwise, X is not

C referenced.

C

C NOTE - CHARACTER*70.

C String containing short information about the chosen

C example.

C

C WORK SPACE

C

C RWORK - DOUBLE PRECISION array of DIMENSION at least N*N.

C

C MODE PARAMETERS

C

C STORE - CHARACTER.

C Specifies the storage mode for arrays Q and R.

C STORE = 'F' or 'f': Full symmetric matrices are stored in

C Q and R, i.e., the leading N-by-N

C (M-by-M, P-by-P) parts of these

C arrays each contain a symmetric

C matrix.

C STORE = 'L' or 'l': Matrices contained in arrays Q and R

C are stored in lower packed mode, that

C is, the lower triangle of a k-by-k

17



C (k=N,M,P) symmetric matrix is stored

C by columns, i.e., the matrix entry

C Q(i,j) is stored in the array entry

C Q(i+(2*k-j)*(j-1)/2) for j <= i.

C STORE = 'U' or 'u': Matrices contained in arrays Q and R

C are stored in upper packed mode, that

C is, the upper triangle of a k-by-k

C (k=N,M,P) symmetric matrix is stored

C by columns, i.e., the matrix entry

C G(i,j) is stored in the array entry

C G(i+j*(j-1)/2) for i <= j.

C Otherwise, CAREX returns with an error.

C

C WITHC - LOGICAL.

C Indicates whether the matrices C, Q0 as in (I) are to be

C returned as follows.

C WITHC = .TRUE., C is returned in array C and Q0 is

C returned in array Q.

C WITHC = .FALSE., the coefficient matrix Q of the DARE is

C returned in array Q, whereas C and Q0

C are not returned.

C

C WITHG - LOGICAL.

C Indicates whether the matrix G in (II) or the matrices B

C and R are returned as follows.

C WITHG = .TRUE., the matrix G from (II) is returned in

C array R, whereas the matrices B and R

C are not returned.

C WITHG = .FALSE., the coefficient matrices B and R of the

C DARE are returned in arrays B and R.

C

C WITHS - LOGICAL.

C Indicates whether the coefficient matrix S of the DARE

C is returned as follows.

C WITHS = .TRUE., the coefficient matrix S of the DARE is

C returned in array S.

C WITHS = .FALSE., the coefficient matrix S of the DARE is

C not returned.

C

C ERROR INDICATOR

C

C IERR - INTEGER.

C Unless the routine detects an error (see next section),

C IERR contains 0 on exit.

C

C WARNINGS AND ERRORS DETECTED BY THE ROUTINE

C
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C IERR = 1 : (NO .LT. 1) or (NO .GT. NEX).

C (NEX = number of available examples.)

C IERR = 2 : (N .LT. 1) or (N .GT. LDA) or (N .GT. LDB) or

C or (P .GT. LDC) or (WITHS and N .GT. LDS) or

C (N .GT. LDX and solution is available) or

C ((STORE = 'F' or STORE = 'f') and

C ((WITHC .EQ. .FALSE. and N .GT. LDQ) or

C (WITHC .EQ. .TRUE. and P .GT. LDQ)) or

C ((WITHG .EQ. .FALSE. and M .GT. LDR) or

C (WITHG .EQ. .TRUE. and N .GT. LDR))).

C IERR = 3 : MODE PARAMETER STORE had an illegal value on input.

C IERR = 4 : Data file could not be opened or had wrong format.

C IERR = 5 : Division by zero.

C IERR = 6 : G can not be computed as in (II) due to a singular R

C matrix. This error can only occur if

C (WITHG .EQ. .TRUE.).

C
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B The MATLAB function darex

The prolog of the MATLAB function darex is listed below. For all listed examples, it is

possible to return the matrices A, B, R, Q, and the factors C,

~

Q = Q0. G = BR

�1

B

T

can

also be returned if R is nonsingular. Otherwise, the output argument G will contain an empty

matrix. If the solution is not available, the output argument X contains an empty matrix,

too. Otherwise, X is returned as well as the DARE condition number K

DARE

computed by

the MATLAB function darecond.

Note that the references given in the prolog of darex refer to those given at the end of the

prolog and do not correspond to the references of this paper.

function [A,B,Q,R,S,X,parout,G,C,Q0]=darex(index,parin)

%DAREX

%

% Test examples for the discrete-time algebraic Riccati equation (DARE)

%

% -1

% (I) 0 = DR(X) = A'XA - X - (A'XB + S) (R + B'XB) (B'XA + S') + Q

%

% Here, A,Q, and X are n-by-n matrices, B and S are n-by-m, and R is

% m-by-m. Q and R are symmetric and X is the required solution matrix.

% One common approach to solve DAREs is to compute a deflating subspace

% of the symplectic pencil

%

% -1

% ( A - B R S 0 ) ( I G )

% (II) L - s M := ( -1 ) - s ( -1 )

% ( S R S' - Q I ) ( 0 (A - B R S')')

%

% -1

% where G = B R B' is a symmetric n-by-n matrix. Q may also be given

% in factored form, Q = C' Q0 C, where C is a p-by-n and Q0 is a p-by-p

% matrix.

% NOTE that for DAREs, R being a singular matrix is not uncommon. In this

% case, the symplectic pencil cannot be formed as in (II), but a solution

% of the DARE can be computed via a deflating subspace of the extended

% pencil

%

% ( A 0 B ) ( I 0 0 )

% (III) LL - s MM := ( Q -I S ) - s ( 0 -A' 0 ) .

% ( S' 0 R ) ( 0 -B' 0 )

%

% For examples with singular R-matrix, G can not be computed and is thus

% not returned.

%

% Input:

% - index: number of example to generate, indices refer to example
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% numbers in [1].

% - parin: input parameters (optional, defaults values given in [1])

% For Example number

% + 1-11: not referenced ([1], Section 2).

% + 12-13: parin(1) = real-valued scalar.

% + 14 : parin(1:4) = [tau, D, K, r], real-valued scalars.

% + 15 : parin(1) = n = problem size.

% parin(2) = r = real-valued scalar.

%

% Output:

% - A, B, Q, R, S: coefficient matrices of DARE as in (I).

% - X : exact solution of DARE (if available), usually the

% stabilizing solution.

% If an exact solution is not available, the empty matrix

% is returned.

% - parout : vector with system properties,

% parout(1:3) = [n, m, p].

% parout(4) = 2-norm condition number of A.

% The following parameters are only returned if an

% solution of the DARE is available:

% parout(5) = radius of smallest circle enclosing the

% closed-loop spectrum.

% parout(6) = 2-norm of X.

% parout(7) = 2-norm condition number of X.

% parout(8) = condition number of DARE as defined in [2].

% - G, C, Q0 : optional output matrices as defined above. NOTE that

% G can only be computed if R is nonsingular. Otherwise,

% G contains on output the empty matrix.

%

% References:

%

% [1] P.BENNER, A.J. LAUB, V. MEHRMANN: 'A Collection of Benchmark

% Examples for the Numerical Solution of Algebraic Riccati

% Equations II: Discrete-Time Case', Tech. Report SPC 95_23,

% Fak. f. Mathematik, TU Chemnitz-Zwickau (Germany), December 1995.

% [2] T. GUDMUNDSSON, C. KENNEY, A.J. LAUB: 'Scaling of the Discrete-Time

% Algebraic Riccati Equation to Enhance Stability of the Schur

% Solution Method', IEEE Transactions on Automatic Control, vol. 37,

% no. 4, pp. 513-518, 1992.

% Peter Benner, Volker Mehrmann (TU Chemnitz-Zwickau, Germany),

% Alan J. Laub (University of California at Santa Barbara)

% 12-14-1995
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C How to obtain the software

The codes corresponding to this paper may be obtained via anonymous ftp at TU Chemnitz-

Zwickau. Proceed as follows.

> ftp ftp.tu-chemnitz.de

> Name: anonymous

> Password: your complete e-mail address

> cd pub/Local/mathematik/Benner

Observe the capital \L" in Local !

Now get the compressed FORTRAN 77 subroutines darex.f, sp2sy.f, sy2sp.f, data �les, a

sample Make�le, and a sample program example.f together with an introductory README

�le by

> get darex f.tar.Z

or the compressed MATLAB function �les darex.m, darecond.m and an introductory README

�le by

> get darex m.tar.Z

After exiting ftp, extracting the MATLAB codes and data �les is achieved by the following

commands:

> uncompress darex m.tar.Z

> tar xf darex m.tar

Analogously, the FORTRAN 77 codes and corresponding data �les are obtained by

> uncompress darex f.tar.Z

> tar xf darex f.tar

In both cases, the command tar xf creates a directory containing all required �les. For

darex m.tar.Z, this directory is called darex m and for darex f.tar.Z, it will be darex f. If any

problems occur in obtaining or running the codes, please contact one of the authors.
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�2

4.97 4.74
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4 2 2 2 { { 1 0.69 126.99 2:84� 10

3

1

5 2 1 2 { + 1 0.38 5.19 114.13 1.88
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