
Technische Universit�at Chemnitz-Zwickau

DFG-Forschergruppe \SPC" � Fakult�at f�ur Mathematik

Peter Benner Alan J. Laub Volker Mehrmann

A Collection of Benchmark Examples for

the Numerical Solution of Algebraic

Riccati Equations I:

Continuous-Time Case

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

\Scienti�c Parallel Computing"

SPC 95 22 Oktober 1995



A Collection of Benchmark Examples for the Numerical

Solution of Algebraic Riccati Equations I:

Continuous-Time Case

Peter Benner

�

Alan J. Laub

y

Volker Mehrmann

�

October 18, 1995

Abstract

A collection of benchmark examples is presented for the numerical solution of cont-

inuous-time algebraic Riccati equations. This collection may serve for testing purposes in

the construction of new numerical methods, but may also be used as a reference set for

the comparison of methods.

1 Introduction

We present a collection of examples for continuous-time algebraic Riccati equations (CARE)

of the form

0 = Q+ A

T

X +XA�XGX (1)

where A;G;Q;X 2 IR

n�n

. The matrices Q = Q

T

and G = G

T

may be given in factored

form Q = C

T

~

QC, G = BR

�1

B

T

with C 2 IR

p�n

, B 2 IR

n�m

,

~

Q =

~

Q

T

2 IR

p�p

, and

R = R

T

2 IR

m�m

. The corresponding Hamiltonian matrix is de�ned by

H =

"

A �G

�Q �A

T

#

=

"

A �BR

�1

B

T

�C

T

~

QC �A

T

#

2 IR

2n�2n

:

The coe�cient matrices in (1) often come from linear-quadratic control problems of the form

Minimize

J(x

0

; u) =

1

2

Z

1

0

�

y(t)

T

~

Qy(t) + u(t)

T

Ru(t)

�

dt (2)

subject to the dynamics

_x(t) = Ax(t) +Bu(t); x(0) = x

0

; (3)

y(t) = Cx(t): (4)

�
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If, for example,

~

Q � 0, R > 0, (A;B) stabilizable, and (A;C) detectable, then the solution of

the optimal control problem (2){(4) is given by the feedback law

u(t) = �R

�1

B

T

Xx(t)

where X is the unique stabilizing, positive semide�nite solution of (1) (see e.g. [31, 42]).

One common approach to solve (1) is to compute the stable invariant subspace of the Hamil-

tonian matrixH , i.e., the subspace corresponding to the eigenvalues of H in the open left half

plane (e.g. [11, 27, 28, 31, 42]). If this subspace is spanned by

"

U

1

U

2

#

and U

1

is invertible,

then X = U

2

U

�1

1

is the stabilizing solution of (1).

The examples are grouped in four sections. The �rst section contains parameter-free examples

of �xed dimension, the second parameter-dependent problems of �xed size. Sections 4 and

5 contain examples with scalable size where, in Section 5, the user can also choose one or

several parameters.

All presented examples may be generated by the FORTRAN 77 subroutine CAREX.F (see

Appendix A) and the MATLAB

1

function carex.m (see Appendix B). Appendix C describes

how to obtain the software.

The description of each example contains a table with some of the system properties. This

information is summarized in Appendix D. For all parameters needed in the examples there

exist default values that are also given in the tables. These default values are chosen in such

a way that the collection of examples can be used as a testset for the comparison of methods.

The tables contain information for one or more choices of the parameters. Underlined values

indicate the default values.

For each example, we provide norms and condition numbers of the stabilizing solution X and

the Hamiltonian matrix H . A large condition number of H may signal that one can expect

problems using the sign function method [15, 20, 38] since the underlying Newton iteration

depends on inversion of H . On the other hand, a large condition number may also be due to

a large norm of H rather than to ill conditioning with respect to inversion as in Example 20.

If no analytical solution is available, we computed approximations by the multishift algorithm

[1] and the Schur vector method [27]. If possible, these approximations were re�ned by

Newton's method [25] possibly combined with an exact line search [8, 9] to achieve the highest

possible accuracy. We then chose the approximate solution with smallest residual norm to

compute the properties of the example. (Note that this is not necessarily the most accurate

solution !) Only for Example 20, we used the sign function method to compute a �rst

approximation to the solution which was then re�ned by Newton's method combined with

exact line search.

By �(A) we denote the set of eigenvalues or spectrum of a matrix A. The spectral norm of a

matrix is given by

jjAjj =

q

maxfj�j : � 2 �(A

T

A)g

and the given matrix condition numbers are based upon the spectral norm,

�(A) = jjAjjjjA

�1

jj; A 2 IR

l�l

:

1

MATLAB is a trademark of The MathWorks, Inc.
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Norms and condition numbers were computed by the MATLAB functions norm and cond.

The \right" condition number of algebraic Riccati equations is still an open problem. It

has been studied in several papers. Usually, one refers to the condition number which was

introduced by Arnold [3], Arnold and Laub [4], and Byers [14] and the estimates and bounds

given by Kenney and Hewer [23]. Let

�

A,

�

G, and

�

Q be real n � n matrices \near" A, G,

and Q with respect to the 2-norm and in addition, assume G, Q to be symmetric positive

semide�nite. (

�

A,

�

G,

�

Q may be considered as perturbed input data.) De�ne �A =

�

A � A,

�G =

�

G�G, and �Q =

�

Q�Q. Then denoting the stabilizing solution of the CARE (1) by

X , the CARE condition number presented in [14, 23] is de�ned by

K

CARE

= lim

�!0

sup

�

jj�X jj

�jjX jj

: jj�Ajj � �jjAjj; jj�Gjj � �jjGjj; jj�Qjj � �jjQjj

�

:

Let Z

i

, i = 0; 1; 2, be the solutions of the Lyapunov equations

(A�GX)

T

Z

i

+ Z

i

(A�GX) = �X

i

; i = 0; 1; 2; (5)

and de�ne

K

U

=

jjZ

0

jjjjQjj+ 2

p

jjZ

0

jjjjZ

2

jjjjAjj+ jjZ

2

jjjjGjj

jjX jj

;

K

L

=

jjZ

0

jjjjQjj+ 2jjZ

1

jjjjAjj+ jjZ

2

jjjjGjj

jjX jj

:

Then one can prove (see [23]) that

1

3

K

L

� K

CARE

� K

U

:

If K

L

is close to K

U

, this provides a very good approximation to K

CARE

. Since this holds

for most of the examples, we only give the upper bound K

U

as an approximation for K

CARE

.

(Note that in [23] a more re�ned lower bound is given which in some cases is closer to K

U

.)

2 Parameter-free problems of �xed size

Example 1 [27, Example 1]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 1 2 { 2.41 5.83 3.00 3.00 5.04

This example can be used for a �rst veri�cation of any solver for (1) since the solution may be computed

by hand. The system matrices are

A =

�

0 1

0 0

�

; B =

�

0

1

�

; R = 1; Q =

�

1 0

0 2

�

:

The solution is given by

X =

�

2 1

1 2

�

and the spectrum of the closed-loop matrix

(A �BR

�1

B

T

X) =

�

0 1

�1 �2

�

is f�1; �1g.

3



Example 2 [27, Example 2]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 1 2 { 16.16 257.05 31.39 1 52.59

This is an example of stabilizable-detectable, but uncontrollable-unobservable data. We have the

following system matrices:

A =

�

4 3

�

9

2

�

7

2

�

; B =

�

1

�1

�

; R = 1; Q =

�

9 6

6 4

�

with stabilizing solution

X =

�

9(1 +

p

2) 6(1 +

p

2)

6(1 +

p

2) 4(1 +

p

2)

�

and closed-loop spectrum f�1=2; �

p

2g.

The remaining examples of this chapter consist of some real-world applications. The de-

scription of these problems is kept to the minimum necessary information. For the physical,

chemical, or engineering background see the given references and the references given therein.

Besides their original reference, Examples 3{5 may be found in [18].

Example 3 [7]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

4 2 4 { 7.82 55.78 6.12 215.28 21.90

Here the system matrices describe a mathematical model of an L-1011 aircraft.

A =

2

6

6

4

0 1 0 0

0 �1:89 0:39 �5:53

0 �0:034 �2:98 2:43

0:034 �0:0011 �0:99 �0:21

3

7

7

5

; B =

2

6

6

4

0 0

0:36 �1:6

�0:95 �0:032

0:03 0

3

7

7

5

;

Q =

2

6

6

4

2:313 2:727 0:688 0:023

2:727 4:271 1:148 0:323

0:688 1:148 0:313 0:102

0:023 0:323 0:102 0:083

3

7

7

5

; R = I

2

:

In this example, Q has one negative eigenvalue of order O(10

�3

). This may reect a small perturbation

in the input data. The computed stabilizing solution is nevertheless positive de�nite with eigenvalues

greater than one.

Example 4 [10]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

8 2 8 { 3.41 305.91 4.75 1:28� 10

3

33.58

A mathematical model of a binary distillation column with condenser, reboiler, and nine plates is

given by

A =

2

6

6

6

6

6

6

6

6

6

6

4

�0:991 0:529 0 0 0 0 0 0

0:522 �1:051 0:596 0 0 0 0 0

0 0:522 �1:118 0:596 0 0 0 0

0 0 0:522 �1:548 0:718 0 0 0

0 0 0 0:922 �1:640 0:799 0 0

0 0 0 0 0:922 �1:721 0:901 0

0 0 0 0 0 0:922 �1:823 1:021

0 0 0 0 0 0 0:922 �1:943

3

7

7

7

7

7

7

7

7

7

7

5

;
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B

T

= 10

�3

�

�

3:84 4:00 37:60 3:08 2:36 2:88 3:08 3:00

�2:88 �3:04 �2:80 �2:32 �3:32 �3:82 �4:12 �3:96

�

;

Q =

2

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0:5 0 0 0:1

0 1 0 0 0:1 0 0 0

0 0 1 0 0 0:5 9 0

0 0 0 1 0 0 0 0

0:5 0:1 0 0 0:1 0 0 0

0 0 0:5 0 0 0:1 0 0

0 0 0 0 0 0 0:1 0

0:1 0 0 0 0 0 0 0:1

3

7

7

7

7

7

7

7

7

7

7

5

; R = I

2

:

Note that Q is inde�nite and the computed stabilizing solution is inde�nite, too.

Example 5 [34]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

9 3 9 { 216.70 3:39� 10

3

2.73 1:10� 10

3

850.39

This is the data for a 9th-order continuous state space model of a tubular ammonia reactor. It should

be noted that the underlying model includes a disturbance term which is neglected in this context.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�4:019 5:12 0 0 �2:082 0 0 0 0:87

�0:346 0:986 0 0 �2:34 0 0 0 0:97

�7:909 15:407 �4:069 0 �6:45 0 0 0 2:68

�21:816 35:606 �0:339 �3:87 �17:8 0 0 0 7:39

�60:196 98:188 �7:907 0:34 �53:008 0 0 0 20:4

0 0 0 0 94:0 �147:2 0 53:2 0

0 0 0 0 0 94:0 �147:2 0 0

0 0 0 0 0 12:8 0 �31:6 0

0 0 0 0 12:8 0 0 18:8 �31:6

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

B

T

=

2

4

0:010 0:003 0:009 0:024 0:068 0 0 0 0

�0:011 �0:021 �0:059 �0:162 �0:445 0 0 0 0

�0:151 0 0 0 0 0 0 0 0

3

5

:

Q and R are chosen as identiy matrices of size 9 and 3, respectively.

Example 6 [17]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

30 3 5 { 1:44� 10

8

1:50� 10

10

3:56� 10

3

1 3:73� 10

9

This control problem for a J{100 jet engine is a special case of a multivariable servomechanism problem.

The system state is given by the state of the jet engine denoted by x

(1)

2 IR

16

, the actuators x

(2)

2 IR

8

,

and the sensors x

(3)

2 IR

6

. There are three actuators in this problem: one for the fuel ow (denoted

by x

(2;1)

2 IR

2

), one for the nozzle jet area (x

(2;2)

2 IR

3

), and one for the inlet guide vane position

(x

(2;3)

2 IR

3

). The fuel ow x

ff

, nozzle jet area x

nja

, and inlet guide vane positions x

igvp

themselves

are given by the �rst component of the corresponding state variables, i.e.,

x

ff

= x

(2;1)

1

; x

nja

= x

(2;2)

1

; x

igvp

= x

(2;3)

1

:

The dynamics of the sytem are then given by the following set of equations: The state of the jet engine

is described by

_x

(1)

= A

(1)

x

(1)

+ A

(1;2;1)

x

ff

+ A

(1;2;2)

x

nja

+ A

(1;2;3)

x

igvp

+B

(1)

u

(1)

;

5



where B

(1)

= 0 and

A

(1)

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�4:328D+00 1:714D�01 5:376D+00 4:016D+02 �7:246D+02 �1:933D+00 1:020D+00 �9:820D�01

�4:402D�01 �5:643D+00 1:275D+02 �2:335D+02 �4:343D+02 2:659D+01 2:040D+00 �2:592D+00

1:038D+00 6:073D+00 �1:650D+02 �4:483D+00 1:049D+03 �8:245D+01 �5:314D+00 5:097D+00

5:304D�01 �1:086D�01 1:313D+02 �5:783D+02 1:020D+02 �9:240D+00 �1:146D+00 �2:408D+00

8:476D�03 �1:563D�02 5:602D�02 1:573D+00 �1:005D+01 1:952D�01 �8:804D�03 �2:110D�02

8:350D�01 �1:249D�02 �3:567D�02 �6:074D�01 3:765D+01 �1:979D+01 �1:813D�01 �2:952D�02

6:768D�01 �1:264D�02 �9:683D�02 �3:567D�01 8:024D+01 �8:239D�02 �2:047D+01 �3:928D�02

�9:696D�02 8:666D�01 1:687D+01 1:051D+00 �1:023D+02 2:966D+01 5:943D�01 �1:997D+01

�8:785D�03 �1:636D�02 1:847D�01 2:169D�01 �8:420D+00 7:003D�01 5:666D�02 6:623D+00

�1:298D�04 �2:430D�04 2:718D�03 3:214D�03 �1:246D�01 1:037D�02 8:395D�04 9:812D�02

�1:207D+00 �6:717D+00 2:626D+01 1:249D+01 �1:269D+03 1:030D+02 7:480D+00 3:684D+01

�2:730D�02 �4:539D�01 �5:272D+01 1:988D+02 �2:809D+01 2:243D+00 1:794D�01 9:750D+00

�1:206D�03 �2:017D�02 �2:343D+00 8:835D+00 �1:248D+00 9:975D�02 8:059D�03 4:333D�01

�1:613D�01 �2:469D�01 �2:405D+01 2:338D+01 1:483D+02 1:638D+00 1:385D�01 4:488D+00

�1:244D�02 3:020D�02 �1:198D�01 �4:821D�02 5:575D+00 �4:525D�01 1:981D+01 1:249D�01

�1:653D+00 1:831D+00 �3:822D+00 1:134D+02 3:414D+02 �2:734D+01 �2:040D+00 �6:166D�01

: : :

: : :

9:990D�01 1:521D+00 �4:062D+00 9:567D+00 1:008D+01 �6:017D�01 �1:312D�01 9:602D�02

1:132D+01 1:090D+01 �4:071D+00 �5:739D�02 �6:063D�01 �7:488D�02 �5:936D�01 �9:602D�02

�9:389D�03 1:352D�01 5:638D+00 2:246D�02 1:797D�01 2:407D�02 1:100D+00 2:743D�02

�3:081D+00 �4:529D+00 5:707D+00 �2:346D�01 �2:111D+00 �2:460D�01 �4:686D�01 �3:223D�01

2:090D�03 �5:256D�02 �4:077D�02 �9:182D�03 �5:178D�02 3:425D�02 4:995D�03 �1:256D�02

�1:953D�02 �1:622D�01 �6:439D�03 �2:346D�02 �2:201D�01 �2:514D�02 �3:749D�03 �3:351D�02

1:878D�02 �2:129D�01 �9:337D�03 �3:144D�02 �2:919D�01 �3:370D�02 8:873D�02 �4:458D�02

2:253D�02 1:701D�01 8:371D�03 2:645D�02 2:560D�01 2:835D�02 �3:749D�02 3:635D�02

�4:999D+01 6:760D�02 3:946D+01 4:991D�03 8:983D�02 5:349D�03 0:000D+00 1:372D�02

�6:666D�01 �6:657D�01 5:847D�01 6:654D�05 1:347D�03 7:131D�05 0:000D+00 2:057D�04

2:854D�01 2:332D+00 �4:765D+01 3:406D�01 3:065D+00 3:624D�01 �4:343D�01 4:681D�01

�9:627D+00 �9:557D+00 3:848D+01 �5:001D+01 1:011D�01 1:203D�02 �4:686D�02 1:715D�02

�4:278D�01 �4:245D�01 1:710D+00 �2:000D+00 �1:996D+00 5:349D�04 �1:999D�03 7:544D�04

�4:414D+00 �4:354D+00 1:766D+01 �3:113D+00 �3:018D+00 �1:977D+01 �4:999D�02 1:509D�02

�1:127D�03 �6:760D�03 1:835D�02 �9:981D�04 �1:347D�02 �1:070D�03 �2:000D+01 �2:057D�03

5:004D�01 �1:437D�01 �2:416D+00 �1:073D�01 �1:078D+00 3:053D+01 1:989D+01 �5:016D+01

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

A

(1;2;1)

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�4:570D�02

1:114D�01

2:153D�01

3:262D�01

9:948D�03

2:728D�02

1:716D�02

�7:741D�02

3:855D�02

5:707D�04

5:727D+00

1:392D�01

6:172D�03

6:777D�02

1:880D�03

1:677D�01

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; A

(1;2;2)

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�4:516D+02

�5:461D+02

1:362D+03

2:080D+02

�9:839D+01

7:162D+01

7:171D+01

�1:412D+02

�7:710D+00

�1:144D�01

�1:745D+03

�2:430D+01

�1:082D+00

1:660D+01

9:147D+00

4:358D+02

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; A

(1;2;3)

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�1:058D+02

�6:575D+00

1:346D+01

�2:888D+00

5:069D�01

9:608D+00

8:571D+00

�8:215D�01

�4:371D�02

�6:359D�04

�8:940D+00

�2:736D�01

�1:183D�02

3:980D�01

�8:241D�01

�5:994D+01

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

6



The actuator for the fuel ow is de�ned by

_x

(2;1)

= A

(2;1)

x

(2;1)

+ B

(2;1)

u

(2;1)

=

�

0 1

�500 �60

�

x

(2;1)

+

�

0

500

�

u

(2;1)

;

the nozzle jet area actuator is given by

_x

(2;2)

= A

(2;2)

x

(2;2)

+B

(2;2)

u

(2;2)

=

2

4

0 1 0

0 0 1

�3600 �708 �106:72

3

5

x

(2;2)

+

2

4

0

0

3600

3

5

u

(2;2)

;

and the inlet guide vane position actuator is described by

_x

(2;3)

= A

(2;3)

x

(2;3)

+ B

(2;3)

u

(2;3)

=

2

4

0 1 0

0 0 1

�12000 �5240 �150

3

5

x

(2;3)

+

2

4

0

0

12000

3

5

u

(2;3)

:

Since the actuator states are originally given as third-order di�erential equations, the �rst entry of

x

(2;i)

, i = 1; 2; 3, in the �rst-order model equations above represents the state of the actuators.

Finally, the sensor state is given by

_x

(3)

= A

(3)

x

(3)

+A

(3;1)

x

(1)

+B

(3)

u

(3)

=

2

6

6

6

6

6

6

4

�33:3 0 0 0 0 0

0 �20 0 0 0 0

0 0 �20 0 0 0

0 0 0 �20 0 0

0 0 0 0 0 1

0 0 0 0 �0:306 �1:86

3

7

7

7

7

7

7

5

x

(3)

+

2

6

6

6

6

6

6

6

6

4

33:3x

(1)

1

20x

(1)

2

20x

(1)

3

20x

(1)

5

0:645(x

(1)

12

+ x

(1)

13

)

�0:894(x

(1)

12

+ x

(1)

13

)

3

7

7

7

7

7

7

7

7

5

+ 0 � u

(3)

:

We can thus write the above equations in the standard form _x = Ax+ Bu with

A =

2

6

6

6

6

4

A

(1)

�

A

(1;2;1)

0

� �

A

(1;2;2)

0 0

� �

A

(1;2;3)

0 0

�

0

0 A

(2;1)

0 0 0

0 0 A

(2;2)

0 0

0 0 0 A

(2;3)

0

A

(3;1)

0 0 0 A

(3)

3

7

7

7

7

5

;

B =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0

.

.

.

.

.

.

.

.

.

0 0 0

B

(2;1)

0 0

0 B

(2;2)

0

0 0 B

(2;3)

0 0 0

.

.

.

.

.

.

.

.

.

0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

7



The output of the system is given by

y = Cx

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

4:865D�01 1:383D�02 0:000D+00 7:418D�05 1:538D�05

�6:741D�01 2:789D�06 0:000D+00 5:496D�06 1:201D�04

5:392D+00 0:000D+00 0:000D+00 4:790D�06 �2:579D�03

9:542D+01 0:000D+00 0:000D+00 1:478D�04 �1:609D�04

2:403D+01 �1:081D�02 0:000D+00 �1:504D�02 1:618D�02

1:052D+01 �5:545D�05 0:000D+00 �6:503D�05 �1:071D�03

8:190D�01 4:722D�05 0:000D+00 8:820D�05 �9:561D�05

�4:492D�01 0:000D+00 0:000D+00 4:999D�06 �5:503D�06

5:195D�01 0:000D+00 0:000D+00 3:434D�06 �3:732D�06

8:437D�01 0:000D+00 0:000D+00 2:727D�05 �2:996D�05

�1:863D+00 0:000D+00 1:000D+00 1:128D�06 �1:234D�06

5:709D�02 0:000D+00 0:000D+00 4:002D�06 �4:380D�06

4:815D�01 0:000D+00 0:000D+00 3:673D�05 �4:024D�05

3:428D+00 0:000D+00 0:000D+00 4:290D�06 �4:721D�06

2:161D+00 0:000D+00 0:000D+00 �4:958D�06 5:324D�06

7:681D�02 0:000D+00 0:000D+00 5:609D�06 �6:103D�06

�6:777D�02 1:282D�04 0:000D+00 1:030D�06 8:109D�06

0:000D+00 0:000D+00 0:000D+00 0:000D+00 0:000D+00

�4:205D+02 3:353D�01 0:000D+00 �1:193D�02 2:328D�02

0:000D+00 0:000D+00 0:000D+00 0:000D+00 0:000D+00

0:000D+00 0:000D+00 0:000D+00 0:000D+00 0:000D+00

3:297D+01 6:804D�01 0:000D+00 �5:806D�03 1:178D�04

0:000D+00 0:000D+00 0:000D+00 0:000D+00 0:000D+00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0:000D+00 ::: ::: ::: 0:000D+00

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

T

2

6

6

6

6

4

x

(1)

x

(2;1)

x

(2;2)

x

(2;3)

x

(3)

3

7

7

7

7

5

:

R and

~

Q are chosen as identities of appropriate size such that G = BB

T

, Q = C

T

C.

The data of this example di�er by 10 orders of magnitude and the norm and condition number of H

are quite large. The eigenvalues of H vary in magnitude from O(10

�1

) to O(10

2

); all of them are of

multiplicity one and do not appear in any kind of clusters. Thus, no numerical problems should be

expected from the eigenvalue distribution.

3 Parameter-dependent problems of �xed size

Example 7 [4, Example 1]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 1 1 " = 1 2.95 2.54 2.45 12.91 2.57

" = 10

�6

2.96 5.20 2:00� 10

12

8:00� 10

12

3.00

Consider the system de�ned by

A =

�

1 0

0 �2

�

; B =

�

"

0

�

;

R = 1; C =

�

1 1

�

;

~

Q = 1:

8



The exact solution of the Riccati equation is

X =

2

6

6

6

4

1 +

p

1 + "

2

"

2

1

2 +

p

1 + "

2

1

2 +

p

1 + "

2

1

4

 

1�

"

2

�

2 +

p

1 + "

2

�

2

!

3

7

7

7

5

:

As " ! 0, the matrix pair (A;B) becomes unstabilizable and x

11

tends to 1. Numerical methods

for computing the stable invariant subspace of H yield condition estimates for U

1

of order 1="

2

in

accordance to �(X) � 8="

2

.

Example 8 [4, Example 3]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 2 1 " = 1:0 1:01� 10

4

6:78� 10

7

9:88� 10

3

4:16� 10

3

54.42

" = 10

�8

1:01� 10

6

1:46� 10

8

9:30� 10

3

9:38� 10

6

6:69� 10

9

This is an example with increasingly ill-conditioned control weighting matrix R.

A =

�

�0:1 0

0 �0:02

�

; B =

�

0:1 0

0:001 0:01

�

;

R =

�

1 + " 1

1 1

�

; C =

�

10 100

�

;

~

Q = 1:

If " < 1, then �(R) = O(1=") and as "! 0, the elements of G = BR

�1

B

T

become increasingly large.

Example 9 [24, Example 2]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 1 2 " = 1 1.62 2.62 2.73 3.73 4.15

" = 10

6

1:00� 10

6

1:00� 10

6

1:41� 10

3

2:00� 10

6

8:66� 10

5

" = 10

�6

1.00 1:00� 10

12

1:00� 10

6

1:00� 10

6

5:00� 10

11

In this example, the matrix A contains a parameter ".

A =

�

0 "

0 0

�

; B =

�

0

1

�

; R = 1; Q = I

2

:

The exact solution, which is stabilizing for " > 0, is given by

X =

2

4

p

1 + 2"

"

1

1

p

1 + 2"

3

5

:

As " grows, kXk increases like

p

" and the Riccati equation becomes ill conditioned in terms of

K

CARE

and K

U

. Closed-loop eigenvalues are

�

�

1

2

�
p

1 + 2" �

p

1� 2"

�

�

and hence one eigenvalue

approaches 0 as "! 0. In this case, �(X) = O(1=") and �(H) = O(1="

2

).

Hence, this example may be used to test the ability of a CARE solver to deal with bad scaling due to

the A{matrix and mild ill conditioning ("! +1), with closed-loop eigenvalues close to the imaginary

axis as well as very ill-conditioned Hamiltonian matrices ("! 0).

9



Example 10 [6]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 2 2 " = 1 3.16 2.24 6.16 2.55 2.45

" = 10

�7

2.56 1:28� 10

14

4.00 1:66� 10

7

3:76� 10

3

Here, the system matrices are

A =

�

"+ 1 1

1 " + 1

�

; G = I

2

; Q =

�

"

2

0

0 "

2

�

:

The exact stabilizing solution X of (1) is given by (note the correction in x

12

= x

21

from [6])

x

11

= x

22

=

1

2

�

2("+ 1) +

p

2("+ 1)

2

+ 2 +

p

2"

�

;

x

12

= x

21

=

x

11

x

11

� (" + 1)

:

As " ! 0, then H becomes increasingly ill conditioned, i.e., �(H) = O(1="

2

), whereas �(X) behaves

like 1=". Note that for " = 10

�7

, then K

L

= 2:0 which is three orders of magnitude smaller than

K

U

. This shows that K

U

, K

L

may sometimes be far apart and thus, K

U

may overestimate K

CARE

by orders of magnitude.

Example 11 [22]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2 1 2 " = 1 10.60 24.15 2.62 6.85 8.11

" = 0 15.44 58.42 2.62 6.85 1

Let

A =

�

3� " 1

4 2� "

�

; B =

�

1

1

�

; R = 1; Q =

�

4" � 11 2" � 5

2"� 5 2" � 2

�

:

This example represents a type of algebraic Riccati equation arising in H

1

{control problems as pre-

sented, e.g., in [30]. The matrix

X =

�

2 1

1 1

�

solves (1) for arbitrary ". This is the stabilizing solution for " > 0 and for " = 0 it is still the solution

obtained by anH{invariant Lagrangian subspace, i.e., the required solution in the sense ofH

1

{control.

The spectrum of H is f�" � jg. Hence the closed-loop eigenvalues approach the imaginary axis as

"! 0.

Note that K

U

= 1 for " = 0 does not represent an ill-conditioned Riccati equation. In this case, the

condition number K

CARE

as given in [23] is not de�ned.

Example 12 [36]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

3 3 3 " = 1 3.16 2.24 6.16 2.55 2.45

" = 10

6

3:54� 10

6

3.54 6:00� 10

12

3.00 2.73

This example is constructed as follows. Let

V = I �

2

3

vv

T

; v

T

=

�

1 1 1

�

10



and

A

0

= " diag(1; 2; 3); Q

0

= diag(

1

"

; 1; "):

Then

A = V A

0

V; G =

1

"

I

3

; Q = V Q

0

V:

Note that a factorization Q = C

T

~

QC can be obtained by setting C := V and

~

Q := Q

0

. This is used

in both the FORTRAN 77 and MATLAB implementations if a factored form is required.

As solution we get

X = V diag(x

1

; x

2

; x

3

)V

where

x

1

= "

2

+

p

"

4

+ 1;

x

2

= 2"

2

+

p

4"

4

+ ";

x

3

= 3"

2

+

p

9"

4

+ "

2

:

For growing ", the corresponding Hamiltonianmatrix becomes more and more badly scaled which leads

to a signi�cant loss of accuracy in all CARE solvers based on eigenvalue methods. This demonstrates

the need to use an appropriate scaling as proposed in [24, 33].

Example 13 [16]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

4 1 2 " = 1 1.63 116.85 22.29 1:03� 10

3

93.04

" = 10

�6

1:00� 10

12

5:72� 10

13

13.17 9:10� 10

8

4:06� 10

13

The data of this example describes a magnetic tape control problem.

A =

2

6

6

4

0 0:4 0 0

0 0 0:345 0

0 �0:524=" �0:465=" 0:262="

0 0 0 �1="

3

7

7

5

; B =

2

6

6

4

0

0

0

1="

3

7

7

5

;

Q = diag(1; 0; 1; 0); R = 1:

A full rank factorization C

T

C of Q yields

C =

�

1 0 0 0

0 0 1 0

�

:

As "! 0, the pair (A;B) becomes unstabilizable and all condition numbers increase. The Hamiltonian

matrix H becomes very badly scaled.

Example 14 [4, Example 2]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

4 1 1 " = 1 4.45 9.90 11.84 140.08 36.43

" = 10

�6

4.24 17.94 1.00 1.00 1:00� 10

13

Here, we have the following system matrices:

A =

2

6

6

4

�" 1 0 0

�1 �" 0 0

0 0 " 1

0 0 �1 "

3

7

7

5

; B =

2

6

6

4

1

1

1

1

3

7

7

5

; R = 1; C =

2

6

6

4

1

1

1

1

3

7

7

5

T

;

~

Q = 1:

As "! 0, a pair of complex conjugate eigenvalues of the Hamiltonian matrix H approaches the imag-

inary axis, (A;B) gets close to an unstabilizable system, and the CARE becomes fairly ill conditioned

as measured by K

U

.

11



4 Examples of scalable size without parameters

Example 15 [27, Example 4], [5]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2N � 1 N N � 1 N = 5 10.00 41.01 12.24 1 11.10

N = 20 10.00 425.44 28.80 1 50.94

The matrices presented here describe a mathematicalmodel of position and velocity control for a string

of high-speed vehicles. (This problem is also known as \smart highway" or \intelligent highway".) If

N vehicles are to be controlled, the size of the system matrices will be n = 2N � 1.

A =

2

6

6

6

6

6

6

6

6

6

4

A

11

A

12

0 : : : 0

0 A

22

A

23

0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 A

N�2;N�2

A

N�2;N�1

0

0 A

N�1;N�1

�

0

�1

�

0 : : : 0 0 �1

3

7

7

7

7

7

7

7

7

7

5

2 IR

(2N�1)�(2N�1)

;

where

A

k;k

=

�

�1 0

1 0

�

for 1 � k � N � 1;

A

k;k+1

=

�

0 0

�1 0

�

for 1 � k � N � 2;

and

G = diag(1; 0; 1; 0; : : : ; 1; 0; 1);

Q = diag(0; 10; 0; 10; : : : ; 0; 10; 0):

Full rank factorizations of G and Q are G = BB

T

, Q = 10C

T

C = C

T

~

QC, where

B =

2

6

6

6

6

6

6

6

6

6

6

4

1 0 : : : : : : 0

0 0

.

.

.

0 1

0 0

.

.

.

.

.

.

0

0 0 : : : 0 1

3

7

7

7

7

7

7

7

7

7

7

5

2 IR

(2N�1)�N

;

C =

2

6

6

6

4

0 1 0 : : : 0

0 0 0 1 0 : : : 0

.

.

.

.

.

.

0 : : : : : : 0 1 0

3

7

7

7

5

2 IR

(N�1)�(2N�1)

;

~

Q = 10I

N�1

:

The stabilizing solution is singular (rank(X) = n � 1). The system does not have any particular bad

properties for growing n. All condition numbers only grow very slowly. The closed-loop eigenvalues

are all of magnitude O(1). Hence, this example is especially well suited for testing how an algorithm

behaves when the dimension of the problem increases.

12



Example 16 [27, Example 5]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

n n n n = 8 4.12 4.12 1.00 8.12 5.00

n = 64 4.12 4.12 1.00 8.12 5.00

In this example, all system matrices and the solution of (1) are circulant.

A =

2

6

6

6

6

6

6

6

4

�2 1 0 : : : 0 1

1 �2 1 0 : : : 0

0 1 �2 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1

1 0 : : : 0 1 �2

3

7

7

7

7

7

7

7

5

; G = Q = I

n

:

Most eigenvalues of the Hamiltonian matrix have multiplicity 2. For invariant subspace methods that

use deation techniques (e.g., Hamiltonian SR [12, 13, 40], multishift QR [1, 37]), this may cause a

lot of deation steps and hence may slow down convergence. Growth of the problem size n does not

inuence norms and condition numbers. All the closed-loop modes � are real and of magnitude O(1).

Therefore, this example is perfectly suited to test the behavior of algorithms for growing problem size.

The CARE may be solved using an inverse discrete Fourier transformation and the theory of circulant

matrices. The stabilizing solution is the circulant matrix

X =

2

6

6

6

6

6

4

x

0

x

n�1

x

n�2

: : : x

1

x

1

x

0

x

n�1

: : : x

2

x

2

x

1

x

0

.

.

.

.

.

.

.

.

.

.

.

.

x

n�1

x

n�2

: : : x

0

3

7

7

7

7

7

5

;

where for i = 0; : : : ; n� 1,

x

i

=

1

n

n�1

X

k=0

(

�2 + 2 cos

�

2�k

n

�

+

s

5� 8 cos

�

2�k

n

�

+ 4 cos

2

�

2�k

n

�

)

!

ik

n

(6)

and !

i

n

is an nth root of unity. Note that the coe�cient of the second term of the radicand should be

8 instead of 4 as in [27]. Since the imaginary part of the sum in (6) adds to 0, !

ik

n

may be replaced by

cos

�

2�ki

n

�

for keeping computations real.

5 Parameter-dependent examples of scalable size

Example 17 [27, Example 6]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

n 1 1 n = 21, q = r = 1:0 1.00 1.00 2:41� 10

9

1 1:26� 10

9

n = 21, q = r = 100:0 100.0 1:00� 10

4

2:41� 10

11

1 1:26� 10

9

This example describes a system of n integrators connected in series and a feedback controller is

supposed to be applied to the nth system. (For more details about the physical background see [27].)

A =

2

6

6

6

6

6

4

0 1 0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 0 1

0 : : : 0 0

3

7

7

7

7

7

5

; B =

2

6

6

6

4

0

.

.

.

0

1

3

7

7

7

5

; R = r; C =

2

6

6

6

4

1

0

.

.

.

0

3

7

7

7

5

T

;

~

Q = q:

13



The eigenvalues of the Hamiltonian matrix are the roots of

�

2n

+ (�1)

n

qr = 0:

It is known that x

1n

=

p

qr (note the correction from [27]). Therefore, the relative error in x

1n

, i.e.,

jx

1n

�

p

qrj

p

qr

, may be used as an indicator of the accuracy of the results. The di�culty in this example

lies in the fact that U

1

becomes extremely ill conditioned with respect to inversion as n increases and

the elements of X become very large in magnitude. Observe that the condition number of U

1

for

the second parameter combination is two orders of magnitude greater than for the �rst combination

whereas K

U

remains constant. This reects the fact that both values may (or may not) signal some

kind of ill conditioning of the CARE.

Example 18 [39]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

n 1 1 n = 20,

a = 0:05, b = c = 0:1,

[ �

1

; �

2

] = [ 0:1; 0:5 ],

[ 

1

; 

2

] = [ 0:1; 0:5 ].

260.22 547.34 1:02� 10

�4

1 495.49

n = 100,

a = 0:01, b = c = 1:0,

[ �

1

; �

2

] = [ 0:2; 0:3 ],

[ 

1

; 

2

] = [ 0:2; 0:3 ].

1:22� 10

3

1:40� 10

5

7:10� 10

�4

1 1:03� 10

4

The data of this example come from a linear-quadratic control problem of one-dimensional heat ow.

This problem is described in terms of in�nite-dimensional operators on a Hilbert space. Using a

standard �nite element approach based on linear B{splines, a �nite-dimensional approximation to

the problem may be obtained by the solution of algebraic Riccati equations (1). If N denotes the

approximation index, then with this approach we obtain a system of order n = N � 1. The data are

constructed as follows.

The linear B{splines de�ne the tridiagonal Gram matrix

M

N

=

1

6N

2

6

6

6

6

6

6

6

4

4 1 0 : : : 0

1 4 1

.

.

.

.

.

.

.

.

.

.

.

.

1 4 1

0 : : : 1 4

3

7

7

7

7

7

7

7

5

:

Then the system matrices are given by

A = M

�1

N

K

N

; B = M

�1

N

b

N

; R = 1; C = c

T

N

;

~

Q = 1;

where the sti�ness matrix K

N

2 IR

n�n

is de�ned as

K

N

= �aN

2

6

6

6

6

6

6

6

4

2 �1 0 : : : 0

�1 2 �1

.

.

.

.

.

.

.

.

.

.

.

.

�1 2 �1

0 : : : �1 2

3

7

7

7

7

7

7

7

5

14



and b

N

; c

N

2 IR

n�1

are given by

(b

N

)

i

=

Z

1

0

�(s)'

N

i

(s)ds; i = 1; : : : ; n;

(c

N

)

i

=

Z

1

0

(s)'

N

i

(s)ds; i = 1; : : : ; n:

Here f'

N

i

g

n

i=1

is the B{spline basis for the chosen �nite-dimensional subspace of the underlying Hilbert

space. The functions �;  2 L

2

(0; 1) used here are de�ned by

�(s) =

�

b; s 2 [ �

1

; �

2

]

0; otherwise

(s) =

�

c; s 2 [ 

1

; 

2

]

0; otherwise

Thus, besides the system dimension n, the problem has the parameters a, b, c, �

1

, �

2

, 

1

, and 

2

. The

default values given in the table are taken from [39]. Any other parameter combination may be used

for generating the data. Increasing values of n, respectively N , result in a �ner grid for the underlying

approximation scheme.

Approximate solution of in�nite-dimensional operator Riccati equations is one source of large-

scale matrix Riccati equations. Another is the optimal control problem for second-order

models as described for example in [19, 29]. In this type of problems, the dynamical system

is given in terms of a second-order di�erential equation

M �z + L _z +Kz = Du (7)

and an associated output

y = Nz + P _z (8)

or alternatively

~y =

"

N 0

0 P

# "

z

_z

#

(9)

where z 2 IR

`

, M;L;K 2 IR

`�`

, D 2 IR

`�m

, and N;P 2 IR

p�`

. Often, M and K are

symmetric where M is positive de�nite, K is positive semide�nite, and L is the sum of a

symmetric positive semide�nite and a skew-symmetric matrix. Usually, M is called the mass

matrix, L is the Rayleigh matrix representing damping (the symmetric part) and gyroscopic

(the skew-symmetric part) forces, and K is the sti�ness matrix. Second-order models are

often used to model mechanical systems such as large exible space structures.

A �rst-order realization of this problem may be obtained by introducing the state vector

x =

"

z

_z

#

. This yields a system of the form

_x =

"

0 I

�M

�1

K �M

�1

L

#

x+

"

0

M

�1

D

#

u (10)

y = [ N P ]x; (11)

or, with (9),

~y =

"

N 0

0 P

#

x: (12)
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This is a standard system as in (3) with n = 2`. The weighting matrices

~

Q and R in the cost

functional (2) can then be chosen depending on the problem.

Here we give two examples of linear-quadratic control problems for second-order models.

Example 19 [21, Example 3]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2` 2 2` ` = 30,

� = 4:0, � = 4:0, � = 1:0

2.19 1:14� 10

5

218.02 447.98 1:52� 10

3

This is a model of a string consisting of coupled springs, dashpots, and masses as shown in Figure 1.

The inputs are two forces, one acting on the left end of the string, the other one on the right end. For

2

k k

d d

mm m m

f f1

Figure 1: Coupled Spring Experiment (k � �, m � �, d � �)

this problem, the matrices in (7), (9) are

M = �I

`

; L = �I

`

; N = P = I

`

;

K = �

2

6

6

6

6

6

6

6

4

1 �1 0 : : : 0 0

�1 2 �1 : : : 0 0

0 �1 2 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

: : :

0 0 : : : �1 2 �1

0 0 : : : 0 �1 1

3

7

7

7

7

7

7

7

5

; D =

2

6

6

6

6

6

6

6

6

4

1 0

0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0

0 �1

3

7

7

7

7

7

7

7

7

5

:

The cost functional (2) is chosen as J(x

0

; u) =

R

1

0

�

y(t)

T

y(t) + u(t)

T

u(t)

�

dt, i.e.,

~

Q = I

2`

and R = I

2

.

Example 20 [35, 41]

n m p parameter jjHjj �(H) jjXjj �(X) K

U

2` � 1 ` ` ` = 211 4:06� 10

11

5:50� 10

14

7:21� 10

7

1:40� 10

22

3:00� 10

8

This example describes a problem arising in power plants. We consider a model of a rotating axle with

several masses placed upon it. These masses may be parts of turbines or generators and are assumed

to be symmetric with respect to the axle. The input to the system consists of changing loads which

act on the masses. This causes vibrations in the axle. The aim is to minimize the moments between

two neighboring masses in order to maximize the life expectancy of the axle.

The system matrices in (7) and (8) are given as

M =

2

6

4

�

1

.

.

.

�

`

3

7

5

; K =

2

6

6

6

6

6

4

�

1

��

1

��

1

�

1

+ �

2

��

2

.

.

.

.

.

.

.

.

.

��

n�2

�

n�2

+ �

n�1

��

n�1

��

n�1

�

n�1

3

7

7

7

7

7

5

;
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L =

2

6

6

6

6

6

4

�

1

+ 

1

�

1

�

1



1

+ �

2

+ 

2

�

2

.

.

.

.

.

.

.

.

.

�

`�2



`�2

+ �

`�1

+ 

`�1

�

`�1

�

`�1



`�1

+ �

`

3

7

7

7

7

7

5

; D = I

`

;

N =

2

6

6

6

4

0 0

�

1

��

1

.

.

.

.

.

.

�

`�1

��

`�1

3

7

7

7

5

; P =

2

6

6

6

4

1 0



1

�

1

.

.

.

.

.

.



`�1

�

`�1

3

7

7

7

5

:

Hence the mathematical model of this problem is de�ned by ` and the parameter vectors

� 2 IR

`

| the moments of inertia of the masses,

� 2 IR

`

| the outer damping forces,

 2 IR

`�1

| the damping forces between two neighboring masses, and

� 2 IR

`�1

| the spring constants of the axle part between two neighboring masses.

The resulting system is neither observable nor detectable. We may overcome this problem by elimi-

nating the unobservable state variable as follows.

At �rst, a linear transformation in the state space is performed. It is known that such a transformation

preserves the system properties (i.e., controllability, observability, stabilizability, detectability) if the

transformation matrix is regular; see, e.g., [42].

As transformation matrix we choose

T =

�

0

^

T

^

T 0

�

2 IR

2`�2`

;

where

^

T 2 IR

`�`

is the lower triangular matrix

^

T =

2

6

6

6

6

6

4

1 0

1 �1

1 �1 �1

.

.

.

.

.

.

.

.

.

.

.

.

1 �1 �1 : : : �1

3

7

7

7

7

7

5

:

The inverse of T is

T

�1

=

�

0

^

T

�1

^

T

�1

0

�

;

^

T

�1

=

2

6

6

6

6

6

4

1

1 �1

1 �1

.

.

.

.

.

.

1 �1

3

7

7

7

7

7

5

:

The resulting system corresponding to (10) is then given by

_

x̂ =

^

Ax̂+

^

Bu;

y =

^

Cx̂;

where x̂ = T

�1

x and

^

A = T

�1

�

0 I

�M

�1

K �M

�1

L

�

T =

�

�

^

T

�1

M

�1

L

^

T �

^

T

�1

M

�1

L

^

T

I 0

�

;

^

B = T

�1

�

0

M

�1

�

=

�

^

T

�1

M

�1

0

�

; (13)

^

C = [N P ]T = [P

^

T N

^

T ]:
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Now the (`+1)st columns of

^

A and

^

C are zero, that is, the (`+1)st component of x̂ is the undetectable

state variable. We thus obtain a stabilizable/detectable system with the same input/output behavior as

(13) by removing this component from the system. This is equivalent to removing the (`+1)st columns

of

^

A and

^

C and the (`+1)st rows of

^

A and

^

B. The resulting system matrices are A 2 IR

(2`�1)�(2`�1)

,

B 2 IR

(2`�1)�`

, and C 2 IR

`�(2`�1)

.

The weightingmatrix

~

Q in the cost functional (2) is chosen to normalize the rows ofC, i.e.,

~

Q = W

T

C

W

C

where W

C

2 IR

`�`

is a diagonal weighting matrix such that the rows of W

C

C have unit length. The

control weighting matrix R is chosen as an identity matrix of size ` � `.

As default values we use data provided by [26] corresponding to a generator axle in a power plant. The

dimension of the problem (` = 211) prevents printing the data. For generating the system matrices

we provide data �les for use with FORTRAN 77 and MATLAB (see Appendices A and B).

For the default data, the Hamiltonian matrix has a very large norm and condition number despite

the scaling of the output matrix. (Without the scaling corresponding to W

C

, these values are even

larger by about 10 orders of magnitude.) This is due to the large entries in A, i.e., the large values

�

j

. The reference solution was computed by the sign function method as proposed in [15] where the

defect correction was performed using Newton's method combined with exact line search [9]. Due to

the bad scaling of this example, it was necessary to scale the Lyapunov equation (5) by jjAjj

1

when

computing K

U

.
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A The FORTRAN 77 subroutine CAREX.F

This is the prolog of a FORTRAN 77 subroutine for generating all presented examples. The

subroutine was documented according to standards for SLICOT

2

[32]. For some of the ex-

amples, CAREX reads the data from data �les delivered together with CAREX.F. These

are Examples 3{6 and 20. The corresponding data �les are CAREX3.DAT, CAREX4.DAT,

CAREX5.DAT, CAREX6.DAT, and CAREX20.DAT.

A data �le for Example 20 may be supplied by the user. In this case, on entry to CAREX, N

must contain the integer `, i.e., the order of the second order model (7) and the CHARACTER

variable DATAF must contain the name of the �le. In the data �le, the user must provide in

consecutive order vectors � (length `), � (length `),  (length `� 1), and � (length `� 1).

Besides calls to LAPACK and BLAS [2], CAREX calls the subroutines SP2SY and SY2SP

which are used to convert symmetric matrices from general storage mode to packed storage

mode and vice versa. These subroutines are provided together with CAREX.F and the

necessary data �les. If you have no access to LAPACK and BLAS, please contact the authors.

SUBROUTINE CAREX(NO, N, M, P, NPAR, DPARAM, DATAF, A, LDA, B,

1 LDB, C, LDC, G, LDG, Q, LDQ, X, LDX, NOTE, STORE,

2 FORM, RWORK, IERR)

C

C PURPOSE

C

C To generate the benchmark examples for the numerical solution of

C continuous-time algebraic Riccati equations as presented in [1]

C

C 0 = Q + A'X + XA - XGX

C

C corresponding to the Hamiltonian matrix

C

C ( A -G )

C H = ( T ).

C ( -Q -A )

C

C A,G,Q,X are real N-by-N matrices, Q and G are symmetric and may

C be given in factored form

C

C -1 T T

C (I) G = B R B , (II) Q = C Q0 C .

C

C Here, C is P-by-N, Q0 P-by-P, B N-by-M, and R M-by-M, where Q0

C and R are symmetric. In linear-quadratic control problems,

C usually Q0 is positive semidefinite and R positive definite.

C

C ARGUMENT LIST

C ARGUMENTS IN

C

2

Subroutine LIbrary in COntrol and Systems Theory
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C NO - INTEGER.

C The number of the benchmark example to generate according

C to [1].

C

C N - INTEGER.

C This integer determines the actual state dimension, i.e.,

C the order of the matrix A as follows:

C N = number of vehicles for Example 15.

C N = order of matrix A for Examples 16-18.

C N = dimension of second-order system, i.e., order of

C stiffness matrix for Examples 19 and 20. The order of

C the output matrix A is 2*N for Example 19 and 2*N-1

C for Example 20.

C N is fixed for the examples of Sections 2 and 3 of [1],

C i.e., currently Examples 1-14.

C NOTE that N is overwritten for Examples 1-14 and for the

C other examples if N is set by default.

C

C M, P - INTEGER.

C M is the number of columns in the matrix B from (I) (in

C control problems, the number of inputs of the system).

C P is the number of rows in the matrix C from (II) (in

C control problems, the number of outputs of the system).

C Currently, M and P are fixed or determined by N for all

C examples and thus are not referenced on input.

C NOTE that M and P are overwritten.

C

C NPAR - INTEGER.

C Number of input parameters supplied by the user.

C Examples 1-6 (Section 3 of [1]) have no parameters.

C Examples 7-14 (Section 4 of [1]) each have one DOUBLE

C PRECISION parameter which may be supplied in DPARAM(1).

C Examples 15,16 have one INTEGER parameter which determines

C the size of the problem. This parameter may be supplied in

C the input argument N.

C Examples 17-19 have one INTEGER (supplied in N) and

C several DOUBLE PRECISION parameters (supplied in DPARAM).

C If for Example 20 user supplied data is to be used, i.e.,

C NPAR > 0, the INTEGER input argument N must contain an

C INTEGER l (as described in [1]) and the CHARACTER input

C argument DATAF must contain the name of a data file.

C If the input value of NPAR is less than the number of

C parameters of the Example NO (according to [1]), the

C missing parameters are set by default.

C

C DPARAM - DOUBLE PRECISION array of DIMENSION at least 7.

C Double precision parameter vector. For explanation of the

20



C parameters see [1].

C DPARAM(1) defines the parameters 'epsilon' for the

C examples in Section 3 (NO = 7,...,14), the parameter 'q'

C for NO = 17, 'a' for NO = 18, and 'mu' for NO = 19.

C DPARAM(2) defines parameters 'r' for NO = 17, 'b' for

C NO = 18, and 'delta' for NO = 19.

C DPARAM(3) defines 'c' for NO = 18 and 'kappa' for NO = 19.

C DPARAM(4) - DPARAM(7) are only used to generate Example

C 18 and define in consecutive order the intervals

C ['beta_1', 'beta_2'], ['gamma_1', 'gamma_2'].

C If NPAR is smaller than the number of used parameters in

C Example NO (as described in [1]), default values are

C used and returned in corresponding components of DPARAM.

C NOTE that those entries of DPARAM are overwritten which

C are used to generate the example but were not supplied by

C the user.

C

C DATAF - CHARACTER*255.

C The name of a data file supplied by the user. In the

C current version, only Example 20 allows a user-defined

C data file. This file must contain consecutively DOUBLE

C PRECISION vectors mu, delta, gamma, and kappa. The length

C of these vectors is determined by the input value for N.

C If on entry N = l, then mu, delta must each contain l,

C gamma, kappa each l-1 DOUBLE PRECISION values.

C

C LDA - INTEGER.

C The leading dimension of array A as declared in the

C calling program.

C LDA .GE. N where N is the order of the matrix A, i.e.,

C the output value of the integer N.

C

C LDB - INTEGER.

C The leading dimension of array B as declared in the

C calling program.

C LDB .GE. N (output value of N).

C

C LDC - INTEGER.

C The leading dimension of array C as declared in the

C calling program.

C LDC .GE. P where P is either defined by default or

C depends upon N. (For all examples, P .LE. N, where N is

C the output value of the argument N.)

C

C LDG - INTEGER.

C If full storage mode is used for G, i.e., STORE = 'F'

C or 'f', then G is stored like a 2-dimensional array
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C with leading dimension LDG. If packed symmetric storage

C mode is used, then LDG is not referenced.

C LDG .GE. N if STORE = 'F' or 'f'.

C

C LDQ - INTEGER.

C If full storage mode is used for Q, i.e., STORE = 'F'

C or 'f', then Q is stored like a 2-dimensional array

C with leading dimension LDQ. If packed symmetric storage

C mode is used, then LDQ is not referenced.

C LDQ .GE. N if STORE = 'F' or 'f'.

C

C LDX - INTEGER.

C The leading dimension of array X as declared in the

C calling program.

C LDX .GE. N.

C

C ARGUMENTS OUT

C

C N - INTEGER.

C The order of matrix A.

C

C M - INTEGER.

C The number of columns of matrix B from (I), rank(G) <= M.

C

C P - INTEGER.

C The number of rows of matrix C from (II), rank(Q) <= P.

C

C DPARAM - DOUBLE PRECISION array of DIMENSION at least 7.

C Double precision parameter vector. For explanation of the

C parameters see [1].

C DPARAM(1) defines the parameters 'epsilon' for the

C examples in Section 3 (NO = 7,...,14), the parameter 'q'

C for NO = 17, 'a' for NO = 18, and 'mu' for NO = 19.

C DPARAM(2) defines 'r' for NO = 17, 'b' for NO = 18, and

C 'delta' for NO = 19.

C DPARAM(3) defines 'c' for NO = 18 and 'kappa' for NO = 19.

C DPARAM(4) - DPARAM(7) are only used to generate Example

C 18 and define in consecutive order the intervals

C ['beta_1', 'beta_2'], ['gamma_1', 'gamma_2'].

C

C A - DOUBLE PRECISION array of DIMENSION (LDA,N).

C The leading N by N part of this array contains the

C coefficient matrix A of the ARE.

C

C B - DOUBLE PRECISION array of DIMENSION (LDB,M).

C If (FORM .EQ. 'F' or 'f' or 'G' or 'g') then array B

C contains the matrix B of the factored form (I) of G.
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C Otherwise, B is used as workspace.

C

C C - DOUBLE PRECISION array of DIMENSION (LDC,N).

C If (FORM .EQ. 'F' or 'f' or 'Q' or 'q') then array C

C contains the matrix C of the factored form (II) of Q.

C Otherwise, C is used as workspace.

C

C G - DOUBLE PRECISION array of DIMENSION at least ng.

C If STORE = 'F' or 'f' then ng = LDG*N.

C If STORE = 'U' or 'u' or 'L' or 'l' then ng = N*(N+1)/2.

C If (FORM .EQ. 'P' or 'p' or 'Q' or 'q'), then array G

C contains the coefficient matrix G of the ARE.

C If (FORM .EQ. 'F' or 'f' or 'G' or 'g'), then array G

C contains the 'control weighting matrix' R of G's factored

C form as in (I).

C The symmetric matrix contained in array G is stored

C according to MODE PARAMETER STORE.

C

C Q - DOUBLE PRECISION array of DIMENSION at least nq.

C If STORE = 'F' or 'f' then nq = LDQ*N.

C If STORE = 'U' or 'u' or 'L' or 'l' then nq = N*(N+1)/2.

C If (FORM .EQ. 'P' or 'p' or 'G' or 'g'), then array Q

C contains the coefficient matrix Q of the ARE.

C If (FORM .EQ. 'F' or 'f' or 'Q' or 'q'), then array Q

C contains the 'output weighting matrix' Q0 of Q's factored

C form as in (II).

C The symmetric matrix contained in array Q is stored

C according to MODE PARAMETER STORE.

C

C X - DOUBLE PRECISION array of DIMENSION (LDX,N).

C If an exact solution is available (NO = 1,2,7,9-12,16),

C then the leading N-by-N part of this array contains

C the solution matrix X. Otherwise, X is not referenced.

C

C NOTE - CHARACTER*70.

C String containing short information about the chosen

C example.

C

C WORK SPACE

C

C RWORK - DOUBLE PRECISION array of DIMENSION at least N*MAX(4,N).

C

C MODE PARAMETERS

C

C FORM - CHARACTER.

C Specifies the output format of the examples, i.e., if Q

C and G are returned in factored form (I),(II), or not.
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C FORM = 'P' or 'p': The matrices Q and G are returned.

C FORM = 'G' or 'g': G is returned in factored form, i.e.,

C B and R from (I) are returned, array Q

C contains the coefficient matrix Q.

C FORM = 'Q' or 'q': Q is returned in factored form, i.e.,

C C and Q0 from (II) are returned, array

C G contains the coefficient matrix G.

C FORM = 'F' or 'f': Q and G are given in factored form,

C i.e., B, R, C, and Q0 from (I) and (II)

C are returned.

C Otherwise, CAREX returns with an error.

C NOTE that for factored forms, output array G contains R

C from (I) whereas output array Q contains Q0 from (II).

C

C STORE - CHARACTER.

C Specifies the storage mode for arrays G and Q.

C STORE = 'F' or 'f': Full symmetric matrices are stored in

C G and Q, i.e., the leading N-by-N

C part of these arrays each contain a

C symmetric matrix.

C STORE = 'L' or 'l': Matrices contained in arrays G and Q

C are stored in lower packed mode,

C i.e., the lower triangle of a

C symmetric n-by-n matrix is stored by

C columns, e.g., the matrix entry

C G(i,j) is stored in the array entry

C G(i+(2*n-j)*(j-1)/2) for j <= i.

C STORE = 'U' or 'u': Matrices contained in arrays G and Q

C are stored in upper packed mode,

C i.e., the upper triangle of a

C symmetric n-by-n matrix is stored by

C columns, e.g., the matrix entry

C G(i,j) is stored in the array entry

C G(i+j*(j-1)/2) for i <= j.

C Otherwise, CAREX returns with an error.

C

C ERROR INDICATOR

C

C IERR - INTEGER.

C Unless the routine detects an error (see next section),

C IERR contains 0 on exit.

C

C

C WARNINGS AND ERRORS DETECTED BY THE ROUTINE

C

C IERR = 1 : (NO .LT. 1) or (NO .GT. NEX).

C (NEX = number of available examples.)
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C IERR = 2 : (N .LT. 1) or (N .GT. LDA) or (N .GT. LDB) or

C (N. GT. LDX) or (P .GT. LDC).

C IERR = 3 : MODE PARAMETER STORE had an illegal value on input.

C IERR = 4 : MODE PARAMETER FORM had an illegal value on input.

C IERR = 5 : Data file could not be opened or had wrong format.

C IERR = 6 : Division by zero.

C IERR = 7 : G can not be computed as in (I) due to a singular R

C matrix.

C

C REFERENCE

C

C [1] P. BENNER, A.J. LAUB, and V. MEHRMANN

C A Collection of Benchmark Examples for the Numerical Solution

C of Algebraic Riccati Equations I: Continuous-Time Case.

C Technical Report SPC 95_22, Fak. f. Mathematik,

C TU Chemnitz-Zwickau (Germany), October 1995.

C [2] E. ANDERSON ET AL.

C LAPACK Users' Guide, second edition.

C SIAM, Philadelphia, PA (1994).

C

C CONTRIBUTOR

C

C Peter Benner and Volker Mehrmann (TU Chemnitz-Zwickau)

C Alan J. Laub (University of California, Santa Barbara)

C

C KEYWORDS

C

C algebraic Riccati equation, Hamiltonian matrix

C

C REVISIONS

C

C 1995, January 18.

C 1995, October 12.

C

C***********************************************************************
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B The MATLAB function carex.m

The prolog of the MATLAB function carex.m is listed below. For all listed examples, it is

possible to return the matrices A, G, Q and the factors B, R, C,

~

Q = Q0. If the solution

is not available, the output matrix X contains an empty matrix. Otherwise, X is returned

as well as the upper and lower bounds K

U

and K

L

for K

CARE

computed by a MATLAB

function carecond. Note that carecond uses the Lyapunov solver lyap from the MATLAB

CONTROL TOOLBOX.

For Examples 6 and 20, we provide data �les carex6.mat and carex20.mat, respectively.

These �les contain the necessary data for the corresponding examples in internal MATLAB

format. For Example 20, the user may provide a data �le containing an integer l and column

vectors mu, delta, gamma, and kappa of appropriate size such that in a MATLAB environment,

the command

>> load <filename>

would generate the necessary information. The name of this �le can then serve as input to

carex which generates the system matrices according to this data.

function [A,G,Q,X,parout,B,R,C,Q0]=carex(index,parin)

%CAREX

%

% Test examples for the continuous-time algebraic Riccati equation

%

% (CARE) 0 = Q + A' X + X A - X G X.

%

% Here, A, G, Q, X are n-by-n matrices, G and Q are symmetric.

% G, Q may be in factored form G = B R^(-1) B', Q = C' Q0 C.

% Then B is n-by-m, R m-by-m, C p-by-n, and Q0 is p-by-p. The

% corresponding Hamiltonian matrix is defined as

%

% ( A -G ) ( A -B/R B')

% H := Ham(A,G,Q) := ( ) = ( ).

% (-Q -A') (-C' Q0 C -A' )

%

% Input:

% - index : number of example to generate, indices refer to example

% numbers in [1].

% - parin : input parameters (optional, default values given in [1]).

% For Example number

% + 1- 6: not referenced ([1], Section 2).

% + 7-14: parin(1) = real-valued scalar, ([1], Section 3).

% + 15 : parin(1) = N, n = 2*N-1, m = N, p = N-1.

% + 16-18: parin(1) = n = problem size = size of A, G, Q, X.

% + 17 : parin(2) = Q0 (real scalar).

% parin(3) = R (real scalar).

% + 18 : parin(2:8) = real-valued scalars, where

% parin(2:4) = [a, b, c].

26



% parin(5:6) = [beta_1,beta_2].

% parin(7:8) = [gamma_1,gamma_2].

% + 19 : parin(1) = l = number of springs (n = 2l).

% parin(2:4) = [mu, lambda, kappa].

% + 20 : parin = name of data file containing the number of masses

% l (n = 2*l-1), and the vectors mu, delta, gamma,

% kappa described in [1].

%

% Output:

% - A, G, Q : system matrices from CARE.

% - X : exact stabilizing solution of CARE (if available).

% If an exact solution is not available, the empty matrix

% is returned.

% For Example 17, X = X(1,n) = X(n,1) = sqrt(Q0*R), which

% is the only available information.

% - parout : Vector with system properties,

% parout(1:3) = [n, m, p]

% parout(4) = norm(H) = 2-norm of H = Ham(A,G,Q)

% parout(5) = 2-norm condition number of H.

% The following parameters are only returned if an analytical

% solution of the CARE is available:

% parout(6) = 2-norm of X

% parout(7) = 2-norm condition number of X

% parout(8:9) = [KU,KL] = upper and lower bound for condition

% number of CARE (see [2]) (not available for

% Example 11).

%

% - B,R,C,Q0: optional output matrices if factored form is required.

%

% References:

%

% [1] P.BENNER, A.J. LAUB, V. MEHRMANN: 'A Collection of Benchmark

% Examples for the Numerical Solution of Algebraic Riccati

% Equations I: Continuous-Time Case', Tech. Report SPC 95_23,

% Fak. f. Mathematik, TU Chemnitz-Zwickau (Germany), October 1995.

% [2] C. KENNEY, G. HEWER: 'The sensitivity of the algebraic and

% differential Riccati equations', SIAM J. Control. Optim.,

% vol. 28 (1990), pp.50-69.
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C How to obtain the software

The codes corresponding to this paper may be obtained via anonymous ftp at TU Chemnitz-

Zwickau. Proceed as follows.

> ftp ftp.tu-chemnitz.de

> Name: anonymous

> Password: your complete e-mail address

> cd pub/Local/mathematik/Benner

Observe the capital \L" in Local !

Now get the compressed FORTRAN 77 subroutines CAREX.F, SP2SY.F, SY2SP.F, a sample

Make�le and program as well as the data �les CAREX3.DAT, CAREX4.DAT, CAREX5.DAT,

CAREX6.DAT, CAREX20.DAT by

> get carex f.tar.Z

or the compressed MATLAB functions carex.m, carecond.m and data �les carex6.mat,

carex20.mat by

> get carex m.tar.Z

After exiting ftp, extracting the MATLAB codes and data �les is achieved by the following

commands:

> uncompress carex m.tar.Z

> tar xf carex m.tar

Analogously, the FORTRAN 77 codes and corresponding data �les are obtained by

> uncompress carex f.tar.Z

> tar xf carex f.tar

In both cases, the command tar xf creates a directory containing all required �les. For

carex m.tar.Z, this directory is called carex m and for carex f.tar.Z, it will be carex f.

If there occur any problems obtaining or running the codes please contact one of the authors.

D Reference table

Table 1 on the next page summarizes the properties of all the presented examples. A value

\1" for �(X) or �(H) means that the corresponding matrix is not invertible with respect

to the numerical rank computed by MATLAB. K

U

= 1 represents a singular Lyapunov

equation (5). The column X

�

indicates whether an analytical stabilizing solution is available

(\+") or not (\{").
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no. n m p default X

�

jjHjj �(H) jjXjj �(X) K

U

1 2 1 2 { + 2.41 5.83 3.00 3.00 5.04

2 2 1 2 { + 16.16 257.05 31.39 1 52.59

3 4 2 4 { { 7.82 55.78 6.12 215.28 21.90

4 8 2 8 { { 3.41 305.91 4.75 1:28� 10

3

33.58

5 9 3 9 { { 216.70 3:39� 10

3

2.73 1:10� 10

3

850.39

6 30 3 5 { { 1:44� 10

8

1:50� 10

10

3:56� 10

3

1 3:73� 10

9

7 2 1 1 " = 10

�6

+ 2.96 5.20 2:00� 10

12

8:00� 10

12

3.00

8 2 2 1 " = 10

�8

{ 1:01� 10

6

1:46� 10

8

9:30� 10

3

9:38� 10

6

6:69� 10

9

9 2 1 2 " = 10

6

+ 1:00� 10

6

1:00� 10

6

1:41� 10

3

2:00� 10

6

8:66� 10

5

10 2 2 2 " = 10

�7

+ 2.56 1:28� 10

14

4.00 1:66� 10

7

3:76� 10

3

11 2 1 2 " = 0 + 15.44 58.42 2.62 6.85 1

12 3 3 3 " = 10

6

+ 3:54� 10

6

3.54 6:00� 10

12

3.00 2.73

13 4 1 2 " = 10

�6

{ 1:00� 10

12

5:72� 10

13

13.17 9:10� 10

8

4:06� 10

13

14 4 1 1 " = 10

�6

{ 4.24 17.94 1.00 1.00 1:00� 10

13

15 2N � 1 N N � 1 N = 20 { 10.00 425.44 28.80 1 50.94

16 n n n n = 64 + 4.12 4.12 1.00 8.12 5.00

17 n 1 1 n = 21, q = r = 1:0 { 1.00 1.00 2:41� 10

9

1 1:26� 10

9

18 n 1 1 n = 100,

a = 0:01, b = c = 1:0,

[�

1

; �

2

] = [0:2; 0:3],

[

1

; 

2

] = [0:2; 0:3]

{ 1:22� 10

3

1:40� 10

5

7:10� 10

�4

1 1:03� 10

4

19 2` 2 2` ` = 30,

� = � = 4:0, � = 1:0

{ 2.19 1:14� 10

5

218.02 447.98 1:52� 10

3

20 2`� 1 ` ` ` = 211 { 4:06� 10

11

5:50� 10

14

7:21� 10

7

1:40� 10

22

3:00� 10

8

T
a
b
l
e
1

2
9
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