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Abstract

We discuss the pole placement problem for single-input or multi-

input control models of the form _x = Ax + Bu. This is the problem

of determining a linear state feedback of the form u = Fx such that

in the closed-loop system _x = (A + BF )x, the matrix A + BF has

a prescribed set of eigenvalues. We analyze the conditioning of this

problem and show that it is an intrinsically ill-conditioned problem,

and especially so when the system dimension is large. Thus even the

best numerical methods for this problem may yield very bad results.

On the other hand, we also discuss the question of whether one

really needs to solve the pole placement problem. In most circum-

stances what is really required is stabilization or that the poles are

in a speci�ed region of the complex plane. This related problem may

have much better conditioning. We demonstrate this via the example

of stabilization.

1 Introduction

Consider a linear control system model of the form

_x = Ax +Bu; x(0) = x

0

(1)

where A 2 IR

n�n

and B 2 IR

n�m

. We discuss the state-feedback problem,

i.e., choosing a feedback matrix F 2 IR

m�n

such that in the closed-loop
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system

_x = (A+BF )x; x(0) = x

0

(2)

the spectrum of A+BF is a prescribed set of eigenvalues P := f�

1

; : : : ; �

n

g.

Equivalently, the transfer matrix (sI �A� BF )

�1

B has poles at �

1

; : : : ; �

n

.

Throughout this paper we assume that this problem is solvable for any

speci�ed set of poles, which is equivalent to the system (1) being controllable,

i.e., Rank[�I � A;B] = n for all complex numbers �.

Many algorithms have been proposed for this problem, but as we show

in the sequel, the pole placement problem is, in general, an intrinsically

ill-conditioned problem. Hence, all known methods may yield bad results,

even if they are numerically stable. It is a well-known but often overlooked

fact in numerical analysis [10, 28, 29] that one has to distinguish between

the conditioning of a problem and the stability of an algorithm. In general,

these two concepts have nothing to do with each other. Nevertheless, they

are sometimes confused.

A problem is ill conditioned if small perturbations to the data can yield

large changes in the solution, while a numerical algorithm is (backwards)

unstable if the computed solution is the exact solution of a problem that is

far away from the original problem [28]. As a consequence, one can guarantee

that the computed solution of a problem is close to the exact solution only

if the problem is well conditioned and the algorithm used is stable. In all

other cases it can be expected that the computed solution is far from the

exact solution.

Many approaches to analyzing the conditioning of the pole placement

problem have been proposed; see, for example, [2, 5, 6, 16, 18, 24]. We

survey the current state of the research in this area in Sections 2 and 3 and

demonstrate that the pole placement problem is, in general, very ill condi-

tioned, especially if the dimension of the system becomes large. This means

that small perturbations can lead to drastic changes in the placed eigenval-

ues. This is disastrous not only because of the rounding errors committed

in the computation of the feedback, but also because of the fact that the

data and the model to which pole placement is applied are usually noisy

and corrupted by measurement or modeling errors. So we cannot expect, in

general, that the poles that are placed have anything to do with the actual

modes of the practical problem.

Much e�ort has been devoted in recent years to devising numerically

stable algorithms for the solution of the pole placement problem. Recent

state-of-the-art algorithms and software, together with discussion of numer-
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ical sensitivity issues and numerical experimentation, should be consulted

in [20]. It is the purpose of this paper to discuss the pole placement prob-

lem and not pole placement algorithms. The reason for this is that often

the pole placement problem is only used as a substitute problem to solve

another problem, like the stabilization of a system or the movement of poles

into a speci�ed region of the complex plane. These problems often have

much better conditioning [12].

So the �rst question that somebody who wants to solve a pole placement

problem should ask ought to be: Is this really the problem I want to solve?

We are not aware of any realistic application where one truly wants to have

the poles exactly at speci�c positions.

But even if one really wants to solve the pole placement problem, one

usually has to specify further conditions since, except for the single-input

case (m = 1), the solution is not unique. In the multi-input problem, there

are many di�erent ways to resolve the non-uniqueness in the pole placement

problem. Usually a certain speci�ed cost function is minimized to make

the solution unique or at least locally unique. It is clear that one wants to

obtain a closed-loop system that is robust to perturbations, not only because

of rounding errors in the computations but also because of modeling errors

and noise. To obtain such a solution, the cost function that is minimized

in [14] is the condition number of the eigenvector matrix of the closed-loop

system, since it is well known that this is a measure of the sensitivity of

the eigenvalues under perturbations [23]. Another cost function that has

been discussed in the context of stabilization, e.g. [12], is the distance to

instability, i.e., the smallest perturbation that makes the system unstable.

Analogously, if the issue is to place the poles into a certain region in the

complex plane, then maximizing the distance to the boundary of this region

would be appropriate. E�ective algorithms for these latter minimization

problems are not known but one can usually get quite good results if one

solves a linear-quadratic optimal control problem instead [12, 13]. Another

measure that is often minimized is the norm of the feedback matrix F ,

since in many cases a large norm of the feedback matrix is responsible for

bad solutions of the pole placement problem [15]. But even if the norm

of the feedback is small the resulting closed-loop system may be very ill

conditioned.

Each of these measures has the disadvantage that to obtain the opti-

mum, the complexity of the methods increases greatly. A compromise was

introduced in [27], whereby the minimization of the norm of the feedback

matrix is carried out locally at each step of the pole placement method.
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Despite all these di�culties, pole placement is used frequently as a sub-

stitute for other potentially better-conditioned problems.

2 The Single-Input Pole Placement Problem

In this section, we discuss the following single-input pole placement problem:

Given a linear system

_x = Ax+ bu; x(0) = x

0

(3)

where A 2 IR

n�n

and b 2 IR

n

, �nd a vector f 2 IR

n

such that the closed-loop

system

_x = (A+ bf

T

)x (4)

has a prescribed set of poles P := f�

1

; : : : ; �

n

g, i.e., the spectrum of A+bf

T

is P . Since we want to have a real closed-loop system, we assume that the set

P is closed under complex conjugation. We assume throughout this section

that the pair (A; b) is controllable, so it is known that a unique solution

exists.

The perturbation analysis for this problem has been the subject of many

publications [2, 5, 6, 14, 16, 18]. The most recent and most complete �rst-

order perturbation result for this problem was given by Sun [24]. We state

this result here for completeness. To do so, we �rst introduce some notation.

For a given solution to the pole placement problem (3), let the eigende-

composition of the closed-loop system matrix be given by

A+ bf

T

= X�X

�1

; (5)

where � = diag(�

1

; : : : ; �

n

). Let X =: [x

1

; : : : ; x

n

] and X

�1

=: Y =:

[y

1

; : : : ; y

n

]. (Note that we are assuming that the poles to be assigned are

pairwise distinct; we thus have a complete set of eigenvectors.) Now let

a = vec(A) and � =

h

�

1

; : : : ; �

n

i

T

, where the vec operator forms a vector

of length n

2

by successively stacking the n columns of A on top of each

other. Then the Jacobians of the mapping from the data (a; b; �) to the

solution of the pole placement problem (see [24]) are given by

(�W

�1

f

W

a

;�W

�1

f

W

b

;�W

�1

f

W

�

)

respectively, where
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W

f

: = (Y diag(

1

y

T

1

b

; : : : ;

1

y

T

n

b

))

�1

W

a

: = (D

1

(X)X

�1

; : : : ; D

n

(X)X

�1

)

W

b

: = diag(f

T

x

1

; : : : ; f

T

x

n

)X

�1

W

�

: = �I

n

and

D

i

(X) := diag(x

i1

; : : : ; x

in

) (6)

and I

n

is the identity matrix of size n.

Theorem 1 (Corollary 3.5 in [24]) Given a controllable system (3) and a

set P = f�

1

; : : : ; �

n

g (closed under complex conjugation), where �

i

6= �

j

for

i 6= j, suppose that A and b are slightly perturbed to

~

A and

~

b. Suppose further

that P is slightly perturbed to

~

P = f

~

�

1

; : : : ;

~

�

n

g (also closed under complex

conjugation). Let f;

~

f be the solutions to the pole placement problem for

(3) with the data A; b; � and

~

A;

~

b;

~

�, respectively (the de�nition for

~

� being

obvious). Then for any consistent matrix norm k � k and vector norm k � k

consistent with it, we have

k

~

f � fk � �

f

+ O

0

B
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1

C

A

:

Here

�

f

= k�(~a� a) + 	(

~

b� b) + �(

~

�� �)k

�

f

= k�kk~a� ak+ k	kk

~

b� bk+ k�kk

~

�� �k

with

� = �W

�1

f

W

�

= Y diag(

1

y

T

1

b

; : : : ;

1

y

T

n

b

) (7)

� = �W

�1

f

W

a

= ��(D

1

(X)X

�1

; : : : ; D

n

(X)X

�1

)

	 = �W

�1

f

W

b

= ��diag(f

T

x

1

; : : : ; f

T

x

n

):
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Note that the assumption that the closed-loop poles �

j

are distinct is a

necessary assumption to have a chance for a well-conditioned problem at

all, since it is well known that multiple eigenvalues are very sensitive to

perturbations; see e.g. [10], [29].

Based on this result, in [24] the following group of condition numbers for

the pole placement problem is obtained (in the Euclidean vector norm and

the associated matrix spectral norm k � k

2

):

�

A

(f) := k�k

2

(8)

�

b

(f) := k	k

2

(9)

�

�

(f) := k�k

2

: (10)

We can only expect good results from a �nite precision algorithm for

the single-input pole placement problem if the data are such that all these

condition numbers are small. However, our examples show that when the

system dimension is bigger than about 15, the condition numbers usually

are very large. (Note that the condition numbers in (8){(10) are based on

the spectral decomposition of the closed-loop system A + bf

T

, hence even

the computed condition numbers may not be accurate when A+bf

T

is very

ill conditioned.)

The numerical examples in this paper were performed in Matlab version

4.1 on an HP 715-33 workstation, with machine epsilon � � 2:22� 10

�16

.

Example 1 In a �rst test we took random examples. The elements of

the system matrices A; b were random numbers uniformly distributed in

(�100; 100). The systemmatrixA was of increasing dimension up to 35. The

real parts of the assigned poles were random numbers uniformly distributed

in (�100; 0) and the imaginary parts of the assigned poles were uniformly

distributed in (�100; 100). Sets of poles to be assigned for each system

consisted of the maximal number of complex conjugate pairs. This means

that when the system order was even, there was no real pole to be assigned

and when the system order was odd, there was only one real pole to be

assigned. The Matlab code of [19] was used to perform the pole placement.

For each speci�ed system size varying from 1 to 35, a hundred pole placement

tests were performed. The computed numerical values for the group of

condition numbers in (8){(10), as well as kfk

2

and cond(X), the condition

number of the eigenvector matrix of A + bf

T

, are shown in Table 1 for

system sizes 5, 15, 25, and 35. The average of magnitudes (ave) is the sum

of magnitudes divided by 100.
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K

�

K

A

K

b

kfk

2

cond(X)

n = 5

min 1:5e� 02 7:7e� 02 1:8e� 02 7:1e� 01 8:4e+ 00

ave 3:9e� 01 2:3e+ 03 5:3e+ 02 2:5e+ 01 2:9e+ 04

max 9:7e+ 00 1:9e+ 05 3:5e+ 04 6:0e+ 02 2:6e+ 06

n = 15

min 4:6e� 02 5:1e+ 03 2:2e+ 03 2:5e+ 00 2:3e+ 06

ave 1:4e+ 01 1:1e+ 11 2:3e+ 10 8:6e+ 02 2:2e+ 11

max 9:9e+ 02 6:4e+ 12 1:0e+ 12 6:0e+ 04 1:3e+ 13

n = 25

min 1:5e� 01 9:1e+ 10 1:7e+ 10 9:8e+ 00 2:7e+ 12

ave 5:4e+ 01 5:8e+ 13 1:1e+ 13 3:1e+ 03 4:6e+ 14

max 4:3e+ 03 7:1e+ 14 3:3e+ 14 2:5e+ 05 3:1e+ 15

n = 35

min 3:6e� 01 1:0e+ 13 4:8e+ 11 2:3e+ 01 8:3e+ 12

ave 4:7e+ 01 1:5e+ 14 2:3e+ 13 3:1e+ 03 8:5e+ 14

max 2:0e+ 03 1:2e+ 15 2:7e+ 14 1:4e+ 05 8:0e+ 15

Table 1: Computed condition numbers in Example 1.
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log10(K_lam) +++

Figure 1: Condition numbers in Example 1, logarithmic scale.

The average of the group of condition numbers, kfk

2

, and cond(X) for

varying system sizes are shown in Figures 1 and 2.

This example demonstrates that as the system size increases, the pole

placement problem becomes more ill conditioned. So does the closed-loop

system A+ bf

T

.

Previously an extensive test was carried out in [18], where several pole

placement methods were compared on random test problems with variable

dimensions. The overall conclusion also from these tests is that the sensi-

tivity of closed-loop eigenvalues increases drastically with the system size.

Note that random examples are usually well-conditioned problems, since

the set of ill-conditioned problems is usually a lower dimensional variety.

Hence, the probability that one is close to an ill-conditioned problem is

small [7]. But here this is not the case, from which we may also infer that

the single-input pole placement problem is itself ill conditioned.

Example 2 Let A = 0:1�diag(1; 2; : : : ; n), b =

h

1 2 : : : n

i

T

. Suppose

that we wish to assign the eigenvalues to be �n;�(n�1); : : : ;�1. Note that
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Figure 2: cond(X) and kFk

2

in Example 1, logarithmic scale.

the system was designed such that the desired poles are far away from the

eigenvalues of A. We again used the Matlab code of [19]. The computed

values for the group of condition numbers in (8){(10), as well as kfk

2

and

cond(X) for varying n up to 15 are shown in Figures 3 and 4.

In the case n = 15, only 8 eigenvalues were assigned by the pole place-

ment code and 7 poles were detected as nearly uncontrollable.

A system that is nearly uncontrollable is certainly expected to be ill

conditioned for the pole placement problem. But the ill conditioning may

occur even if the system is far from being uncontrollable.

So far we have discussed �rst-order perturbation theory. For the single-

input problem there is also another approach that we can take. We can

express the solution of the single-input pole placement problem directly as

the solution of a linear system.

Proposition 2 Consider a controllable system (3) and a set P = f�

1

; : : : ; �

n

g

(closed under complex conjugation), where �

i

6= �

j

for i 6= j. Let f be

the solution of the single-input pole placement problem for (3), i.e., the
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Figure 3: Condition numbers in Example 2, logarithmic scale.

spectrum of A + bf

T

is P. Suppose that A is diagonalizable and has the

eigendecomposition A = Z�Z

�1

with � = diag(�

1

; : : : ; �

n

). Assume that

f�

1

; : : : ; �

n

g \ P = ;. Let

^

b = Z

�1

b and

^

f

T

= f

T

Z. Then

^

f is the so-

lution of the linear system CB

^

f = �e, where e is the vector of all ones,

B = diag(

^

b

1

; : : : ;

^

b

n

), and C is the Cauchy matrix

C :=

2

6

4

(�

1

� �

1

)

�1

: : : (�

n

� �

1

)

�1

.

.

.

.

.

.

.

.

.

(�

1

� �

n

)

�1

: : : (�

n

� �

n

)

�1

3

7

5

: (11)

Proof. Let �

i

be an eigenvalue of A+ bf

T

. Then det(A+ bf

T

� �

i

I) =

0 or equivalently det(� +

^

b

^

f

T

� �

i

I) = 0. Using the Sherman-Morrison-

Woodbury formula, e.g. [10], this is equivalent to

^

f

T

(���

i

I)

�1

^

b = �1. We

immediately obtain that

^

f

T

diag(

^

b

1

; : : : ;

^

b

n

)

2

6

4

(�

1

� �

1

)

�1

: : : (�

1

� �

n

)

�1

.

.

.

.

.

.

.

.

.

(�

n

� �

1

)

�1

: : : (�

n

� �

n

)

�1

3

7

5

= �e

T
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Figure 4: cond(X) and kFk

2

in Example 2, logarithmic scale.

and the result follows by transposition.

Now it is a well-known result [11] that the solution of linear systems

with Cauchy matrices is very ill conditioned if one considers general per-

turbations. The classical example of a Cauchy matrix is the well-known

Hilbert matrix, which has a condition number that grows dramatically with

the dimension of the problem; see [11]. We should also note that the con-

dition number may be lower if one uses structured perturbation theory, i.e.,

the perturbations are considered only in the set of Cauchy matrices. For

the solution of linear systems with Cauchy coe�cient matrices, algorithms

that are based completely on numerical computations in the set of Cauchy

matrices have been discussed in, for example, [8, 9]. Thus, if we were to

design a method in this way to solve the linear system (11), then we could

guarantee that the feedback vector f is computed accurately. But to do so,

we would need to compute the Jordan canonical form of the matrix A �rst,

i.e., all eigenvalues and eigenvectors, which would then be used to construct

the linear system (11). To get an accurate f we would need to solve the

eigenvalue problem for A very accurately, which by itself may not be pos-

sible. Another problem would occur if we were to require that some of the

11



cond(C) kfk

2

cond(X)

n = 5 1:2e+ 08 2:7e+ 05 7:7e+ 07

n = 10 2:3e+ 18 1:6e+ 12 1:2e+ 09

n = 15 6:3e+ 17 2:0e+ 10 1:0e+ 09

Table 2: Numerical results in Example 3

eigenvalues of A remain �xed or are close to the eigenvalues to be placed.

In that case we could not apply this approach.

If we use another method that does not respect the Cauchy structure,

and none of the well-known pole placement methods is constructed in such

a way, we can expect large errors in f .

Thus, we can expect that the solution vector f is very inaccurate. Fur-

thermore, additional inaccuracies arise if the eigenvector matrix X of the

closed-loop system is ill conditioned or if kfk

2

is large.

Example 3 In this example we took A; b and the assigned eigenvalues as

in Example 2. The results are displayed in Table 2. Here cond(C) is the

spectral condition number of the Cauchy matrix, kfk

2

is the Euclidean norm

of the feedback vector, and cond(X) is the spectral condition number of the

eigenvector matrix of A+ bf

T

.

As a consequence of the previous discussion we draw the following con-

clusion:

The single-input pole placement problem is an intrinsi-

cally ill-conditioned problem, and the condition number

increases drastically with the system dimension! There-

fore, placing plenty of poles in a single-input problem is

pretty preposterous!

3 The Multi-Input Pole Placement Problem

In a multi-input system, the situation becomes a little better. We study the

linear control system

_x = Ax +Bu; x(0) = x

0

(12)
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where A 2 IR

n�n

and B 2 IR

n�m

with m > 1 and B of full column rank.

We discuss the problem of choosing a feedback matrix F 2 IR

m�n

such that

the closed-loop system

_x = (A+BF )x; x(0) = x

0

(13)

has a prescribed set of pairwise distinct poles P := f�

1

; : : : ; �

n

g, i.e., the

spectrum of A +BF is P . Note that there is in general no unique solution

to this problem.

As can be demonstrated, the ill conditioning decreases with m, the num-

ber of inputs, if the freedom in the solution is used to improve the sensitivity

of the closed-loop system. But this decrease is still not signi�cant compared

with the increase in conditioning that accompanies increasing n. Similar to

the single-input problem, several condition numbers have been derived in

the literature. The most recent results are given in [16] and [24]. We cite

the latter result for completeness; for a discussion of the di�erences see [24].

For a speci�c solution to the pole placement problem associated with

(12), let the eigendecomposition of the closed-loop system be given by

A +BF = X�X

�1

(14)

where � = diag(�

1

; : : : ; �

n

). As before, let X =: [x

1

; : : : ; x

n

] and X

�1

=:

Y =: [y

1

; : : : ; y

n

] and let F := [f

1

; : : : ; f

m

]

T

with f

i

2 IR

n

. Let a and � be

as de�ned in the single-input case and let b = vec(B). Then the Jacobians

of the mapping from the data (a; b; �) to the solution of the pole placement

problem (see [24]) are given by

(�W

+

f

W

a

;�W

+

f

W

b

;�W

+

f

W

�

)

respectively, where

W

f

: = diag(S

1

X

T

; : : : ; S

m

X

T

)

W

a

: = (D

1

(X)X

�1

; : : : ; D

n

(X)X

�1

)

W

b

: = diag(T

1

X

�1

; : : : ; T

n

X

�1

)

W

�

: = �I

n

with S

j

:= diag(y

T

1

b

j

; : : : ; y

T

n

b

j

) and T

i

:= diag(f

T

i

x

1

; : : : ; f

T

i

x

n

), and D

i

(X)

is de�ned in (6).
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Theorem 3 (Corollary 4.5 in [24]) Given a controllable system (12) and

a set P = f�

1

; : : : ; �

n

g (closed under complex conjugation), where �

i

6= �

j

for i 6= j, suppose that A and B are slightly perturbed to

~

A and

~

B. Suppose

further that P is slightly perturbed to

~

P = f

~

�

1

; : : : ;

~

�

n

g (also closed under

complex conjugation). Let F be a solution to the pole placement problem for

(12) with the data A;B;P. Then there exists a solution

~

F to the problem

with the perturbed data

~

A;

~

B;

~

P (and obvious analogous de�nitions of ~a,

~

b,

and

~

�) such that for any consistent norm k�k and vector norm k�k consistent

with it, we have

k

~

F � Fk � �

F

+O

0

B

@






















2

6

4

~a

~

b

~

�

3

7

5

�

2

6

4

a

b

�

3

7

5






















2

1

C

A

� �

F

+O

0

B

@






















2

6

4

~a

~

b

~

�

3

7

5

�

2

6

4

a

b

�

3

7

5






















2

1

C

A

:

Here

�

F

= k�(~a� a) + 	(

~

b� b) + �(

~

�� �)k

�

F

= k�kk~a� ak+ k	kk

~

b� bk+ k�kk

~

�� �k

with

� = +W

+

f

= diag(S

1

X

T

; : : : ; S

m

X

T

)

+

� = �W

+

f

W

a

= ��(D

1

(X)X

�1

; : : : ; D

n

(X)X

�1

)

	 = �W

+

f

W

b

= ��diag(T

1

X

�1

; : : : ; T

m

X

�1

)

where

+

denotes the Moore-Penrose pseudoinverse.

The corresponding group of condition numbers is

�

A

(F ) := k�k

2

(15)

�

B

(F ) := k	k

2

(16)

�

�

(F ) := k�k

2

: (17)

We see that the results are similar to the single-input case. The major

di�erence is that, in general, it is not clear whether the solution to the

problem that one obtains via a speci�c method is the one for which this

14



perturbation result holds. In general, one can be much further away from

the desired solution.

This is a di�culty with the multi-input problem that we discuss further

in the sequel. In general, one uses the freedom of choice to minimize a

robustness measure as is done, for example, in [14] or implicitly and locally

in the implementation of [27]. To our knowledge an explicit perturbation

theory for this modi�ed problem has not been given. We re-examine this

issue in Section 4. Let us now consider some numerical examples.

Example 4 In the fourth test we again used random examples. The el-

ements of the system matrices A;B were random numbers uniformly dis-

tributed in (�100; 100). The system matrix A was of increasing dimension

up to 35. The matrix B always had 5 columns. The real parts of the de-

sired poles were random numbers uniformly distributed in (�100; 0) while

the imaginary parts were uniformly distributed in (�100; 100). The set of

poles to be assigned for each system consisted of the maximal number of

complex conjugate pairs. The Matlab code of [19] was used to perform

the pole placement. For each speci�ed system size varying from 1 to 35,

one hundred pole placement tests were performed. The computed condition

numbers in (15){(17), as well as kFk

2

and cond(X), are shown in Table 3

for system sizes 5, 15, 25, and 35. The average of magnitudes (ave) is the

sum of magnitudes divided by 100.

The average of the group of condition numbers, kFk

2

and cond(X) for

varying system size are depicted in Figures 5 and 6.

As demonstrated by this example, when the system size is increased, the

pole placement problem and the closed-loop system A + BF become more

ill conditioned. The ill conditioning increases less drastically as in the single-

input case but for large enough system size the ill conditioning is equally

bad. This happens even if the number of inputs m is equal to the number

of outputs. Consider the following example.

Example 5 Let A = diag(0:1; 0:2; : : : ; 0:1 � n) and

B =

2

6

6

6

6

6

4

1 2 3 4 5 : : : n

2 3 4 5 : : : n n� 1

3 4 5 : : : n n� 1 n� 2

4 5 : : : n n� 1 n� 2 n� 3

5 : : : n n � 1 n� 2 n� 3 n� 4

3

7

7

7

7

7

5

T

:

15



K

�

K

A

K

b

kFk

2

cond(X)

n = 5

min 6:0e� 03 8:0e� 03 1:2e� 02 1:7e+ 00 1:9e+ 00

ave 1:0e� 02 2:1e� 02 1:3e� 01 1:7e+ 01 6:5e+ 00

max 2:2e� 02 2:8e� 01 1:2e+ 00 1:4e+ 02 6:8e+ 01

n = 15

min 2:3e� 05 1:2e+ 00 2:6e� 01 2:6e+ 00 7:9e+ 03

ave 3:3e� 04 4:0e+ 04 2:7e+ 04 1:5e+ 02 2:1e+ 11

max 1:4e� 03 2:4e+ 06 2:3e+ 06 1:0e+ 04 1:8e+ 13

n = 25

min 5:1e� 08 2:2e+ 02 1:0e+ 02 3:7e+ 00 1:5e+ 09

ave 3:6e� 06 1:1e+ 05 5:6e+ 04 1:1e+ 02 4:7e+ 14

max 5:9e� 05 3:3e+ 06 1:1e+ 06 4:6e+ 03 2:1e+ 16

n = 35

min 7:4e� 10 2:7e+ 04 7:7e+ 03 3:7e+ 00 3:7e+ 13

ave 4:0e� 06 3:4e+ 05 1:3e+ 05 9:3e+ 01 3:2e+ 15

max 3:3e� 04 2:0e+ 06 9:8e+ 05 3:0e+ 03 2:6e+ 16

Table 3: Computed condition numbers in Example 4.
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0 5 10 15 20 25 30 35
-8

-6

-4

-2

0

2

4

6

8
log10(K_A),log10(K_b) and log10(K_lam)

log10(K_A) ---

log10(K_b) -.-.-

log10(K_lam) +++

Figure 5: Condition numbers in Example 4, logarithmic scale.

Suppose we wish to assign the eigenvalues �n;�(n� 1), : : :, �1, which are

obviously far away from the eigenvalues of A. Using the same procedures as

before we obtained the following results for the group of condition numbers,

kFk

2

, and cond(X) with n varying from 5 to 20, in Figure 7 and Figure 8.

In the case n = 20, only 10 eigenvalues were assigned by the pole place-

ment code of [19]. The code detected that the system (A;B) was almost

uncontrollable.

It is clear that a system that is close to an uncontrollable system induces

an ill-conditioned pole placement problem.

Often it is believed that one can improve the conditioning of the closed-

loop system by choosing the poles. We carried out another experiment to

show that for several groups of chosen poles, the conditioning of the closed-

loop system was equally bad.

Example 6 Let A = diag(1; 2; : : : ; n) and let B be a random n � 5 matrix

and assign the eigenvalues ��n;��(n � 1); : : : ;��1. for � = 10; 1; 0:1. In

Tables 4{6, we give the results for this experiment.
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0 5 10 15 20 25 30 35
-2

0

2

4

6

8

10

12

14

16
log10(cond(X)) and log10(||F||)

log10(cond(X)) ---

log10(norm(F)) +++

Figure 6: cond(X) and kFk

2

in Example 4, logarithmic scale.

We see from this experiment that the e�ect of these groups of poles has

essentially no in
uence on the condition number of the closed-loop system.

As a consequence of the previous discussion we draw the following con-

clusion:

The multi-input pole placement problem is an intrinsi-

cally ill-conditioned problem, and the condition number

K

�

K

A

K

b

kFk

2

cond(X)

n = 5 3:8e+ 00 3.8e+00 2.4e+02 1.1e+02 1.0e+00

n = 10 2:1e+ 01 5.8e+02 3.0e+03 2.5e+03 7.7e+08

n = 15 5:8e� 01 6.6e+08 3.0e+03 3.3e+07 7.0e+11

n = 20 9:2e+ 00 2.8e+10 8.7e+11 2.1e+06 1.7e+13

Table 4: Computed condition numbers for � = 10 in Example 6
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0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

8

10

12

14

16
log10(K_A),log10(K_b) and log10(K_lam)

log10(K_A) ---

log10(K_A) -.-.-

log10(K_lam) +++

Figure 7: Condition numbers in Example 5, logarithmic scale.

K

�

K

A

K

b

kFk

2

cond(X)

n = 5 1:9e+ 00 1.9e+00 1.1e+02 8.7e+02 1.0e+00

n = 10 6:3e+ 00 6.7e+01 3.4e+02 9.9e+01 2.6e+08

n = 15 7:8e� 02 7.3e+07 1.1e+09 1.4e+04 2.7e+13

n = 20 1:5e� 03 2.3e+09 4.7e+10 8.2e+03 1.7e+14

Table 5: Computed condition numbers for � = 1 in Example 6

K

�

K

A

K

b

kFk

2

cond(X)

n = 5 1:3e+ 01 1.3e+01 7.7e+02 6.4e+01 1.0e+00

n = 10 3:2e� 03 4.0e+06 2.7e+07 7.1e+01 5.8e+14

n = 15 2:1e� 03 9.3e+07 3.3e+08 4.0e+03 2.8e+13

n = 20 6:7e� 04 4.0e+09 4.8e+10 9.4e+03 9.6e+13

Table 6: Computed condition numbers for � = 0:1 in Example 6
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8
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12

14

16
log10(cond(X)) and log10(||F||)

log10(cond(X)) ---

log10(norm(F)) +++

Figure 8: cond(X) and kFk

2

in Example 5, logarithmic scale.

increases drastically with the system dimension! There-

fore, placing plenty of poles in a multi-input problem is

pretty preposterous!

4 Robustness Measures and Stabilization

We have seen in Section 3 that the closed-loop system obtained via pole

placement is sensitive to perturbation but that there is freedom in the choice

of the feedback. So it is natural to use this freedom to minimize the sensitiv-

ity of the solution. Several approaches in this direction have been taken. In

[14] the condition number of the closed-loop eigenvector matrix is minimized

via an iterative procedure that minimizes one column at a time. A global

minimization procedure for the same measure using general optimization

methods was proposed in [4]. In the Schur-method-based pole placement

algorithm of [27] the norm of the feedback matrix is minimized at each ex-

change step of the procedure. In view of the condition numbers shown in the

last section, minimizing these measures is certainly a reasonable approach,

20



although it seems more sensible to minimize a functional involving both

kFk

2

and kX

�1

k. So far, we do not know whether such an approach has

been taken.

But as we have seen before, solving the pole placement problem may be

only a substitute problem and if this is the case, then one should rather make

the solution of the substitute problem robust against perturbations. We

demonstrate this in the sequel with the problem of stabilization. A similar

approach can be taken for the problem of moving the poles into a damped

region of the complex plane. This topic is currently under investigation [13].

Still another approach is to assign only a few poles [21], which may be both

more e�cient as well as better conditioned.

In many cases pole placement is used simply to stabilize a system, i.e.,

it is used as a substitute for the problem of �nding a feedback matrix F so

that the closed-loop system

_x = (A+BF )x (18)

is stable. Clearly, if we could successfully solve the pole placement problem

then we would have a way to solve the stabilization problem. But as we

have indicated before we cannot expect to solve the pole placement prob-

lem satisfactorily in �nite precision arithmetic, since it is potentially so ill

conditioned.

The best robustness measure for the stabilization problem is obviously

the distance to instability, i.e., the smallest perturbation that makes the

system unstable again. If this measure is large, then the system is robust

against perturbations. In [25], for a given stable matrix A, this distance is

de�ned as

�(A) := min

�2IR

�

n

(A� �iI) (19)

where �

n

denotes the smallest singular value. If A + BF is diagonalizable

and A+BF = X�X

�1

is an eigendecomposition of the closed-loop matrix,

then a lower bound for the distance to instability for the closed-loop system

is given by

1

cond

2

(X)

�(�) � �(A+BF ): (20)

Thus, minimizing cond

2

(X) maximizes a lower bound for the distance to

instability. In view of this result, a pole placement method that minimizes

cond(X) among all possible choices of feedback that assign the correct poles,

which was introduced in [14], is a good approach. This method, however,
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is very costly and infeasible for large control problems. Furthermore, it

happens quite often that the bound given by

1

cond(X)

is quite small even

though the distance to instability is large.

In general, for the stabilization problem, we have the following open

questions:

1. What is the stabilizing feedback of minimum norm?

2. What is the stabilizing feedback for which the condition number of the

closed-loop eigenvector matrix is minimal?

3. What is the stabilizing feedback that maximizes the distance to insta-

bility?

We give partial answers to the �rst question; the other questions are

essentially open problems. The basis for answering the �rst question is

the well-known idea that one can stabilize a system via the solution of an

appropriately chosen linear-quadratic optimal control problem of the form

J = min

u

Z

1

0

(x

T

Qx+ u

T

Ru) dt (21)

subject to (1) with appropriately chosen nonnegative de�nite matrix Q and

positive de�nite matrix R.

The standard theory for such optimal control problems shows that if

(A;B) is stabilizable, (a pair of matrices (A;B) is said to be stabilizable

if Rank (�I � A;B) = n for all � 2 C with nonnegative real part), then

the linear-quadratic optimal problem (21), subject to (1), has the unique

solution

u = Fx = �R

�1

B

T

Xx (22)

where X is the unique nonnegative de�nite solution of the algebraic Riccati

equation

A

T

X +XA�XBR

�1

B

T

X + Q = 0 (23)

for which the corresponding closed-loop system

_x = (A+BF )x = (A�BR

�1

B

T

X)x (24)

is asymptotically stable.

The usual trick to do stabilization is to �nd the spectral decomposition

of A and therefore stabilize only its unstable eigenvalues. This strategy,

which is called partial stabilization, is helpful in reducing the norm of the

22



feedback matrix [12, 26]. Thus in the following, A is restricted to having

eigenvalues all of whose real parts are positive.

By �nding the nonnegative de�nite stabilizing solution of the Riccati

equation, the stabilization problem can be solved. But one still has the

choice of the cost matrices R and Q = C

T

C and clearly these should be

chosen so that the closed-loop system is insensitive to perturbations. At

least it should be guaranteed that small perturbations do not make the

system unstable again. Typically for this approach the cost matrix Q = 0 is

chosen in which case the Riccati equation reduces to a Lyapunov equation

for the inverse of X [1, 22, 26, 27] (assuming it exists). We now show that

this choice of Q can be motivated from the fact, that it leads to a minimum

norm feedback.

The following theorem is probably well known to some, but we do not

know a reference.

Theorem 4 If we consider the cost functional (21) as a function of Q then

min

Q�0

J(Q) = J(0):

Furthermore, suppose that Re(�) > 0 for all eigenvalues � of A, and suppose

that

A

T

X +XA�XBR

�1

B

T

X = 0 (25)

has a nonsingular solution X. If F = �R

�1

B

T

X is the corresponding

feedback, then the eigenvalues of A+BF are the negatives of the eigenvalues

A.

Proof. The �rst part of the theorem follows trivially from a lemma of

Willems [30]; see also [12]. For the second part observe that we can rewrite

the Riccati equation (25) as

X(A+BF ) = �A

T

X:

Since X is nonsingular and all eigenvalues of A have positive real part, it

follows that the eigenvalues of A+BF are those of �A

T

and hence A+BF

is stable.

Since we are looking for a nonsingular solution of the degenerate Riccati

equation we can equivalently solve the Lyapunov equation

AY + Y A

T

= BR

�1

B

T

(26)
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where X = Y

�1

[1].

Although the value of the cost functional J(Q) partially re
ects the size

of kFk

2

, we are merely interested in minimal values for kFk

2

or kFk

F

, where

k k

F

denotes the Frobenius norm. This is, in general, still an open problem

and we present results only for the case that B is a nonsingular matrix or

(A+A

T

) is positive de�nite. We begin with another lemma from [30].

Lemma 5 Let X

i

; i = 1; 2, be real symmetric solutions of the algebraic

Riccati equations

A

T

X

i

+X

i

A�X

i

BR

�1

B

T

X

i

+ Q

i

= 0; i = 1; 2

respectively, and assume that all eigenvalues of A�BR

�1

B

T

X

1

have nega-

tive real part. Then 0 � Q

2

� Q

1

implies X

2

� X

1

.

Using this lemma we can prove the following theorem; see also [12].

Theorem 6 Suppose that all eigenvalues of A have positive real part. Let

B be square and nonsingular and let R = (B

T

B)

1=2

be the positive square

root of B

T

B (cf. [10]). Let X be the nonnegative de�nite stabilizing solution

of the algebraic Riccati equation

A

T

X +XA�XBR

�1

B

T

X + Q = 0

i.e., all eigenvalues of A � BR

�1

B

T

X have negative real part. Then the

minimum norm feedback matrix F taken over all positive semide�nite ma-

trices Q occurs for Q = 0. It is given by F = �R

�1

B

T

X, where X is the

positive de�nite stabilizing solution of the degenerate Riccati equation (25).

Furthermore, the eigenvalues of A+BF are the negatives of those of A.

Proof. Let X

1

and X

2

be the nonnegative de�nite stabilizing solutions

of the Riccati equations

A

T

X +XA�XBR

�1

B

T

X +Q

i

= 0; i = 1; 2

for 0 � Q

2

� Q

1

. Let F

i

= �R

�1

B

T

X

i

, i = 1; 2. Then Lemma 5 implies

X

2

� X

1

. Thus kX

2

k

2

� kX

1

k

2

. Observe that R

�1

B

T

is an orthogonal

matrix and therefore kF

1

k

2

= kX

1

k

2

and kF

2

k

2

= kX

2

k

2

. Thus kF

2

k

2

�

kF

1

k

2

and the minimum of kFk

2

occurs at Q = 0.
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Theorem 7 Suppose that all eigenvalues of A have positive real part and,

moreover, (A+ A

T

) is positive de�nite. Let X be the nonnegative de�nite,

stabilizing solution of the algebraic Riccati equation

A

T

X +XA�XBB

T

X + Q = 0

i.e., all eigenvalues of A � BB

T

X have negative real part. Then the mini-

mum norm feedback F in Frobenius norm taken over all positive semide�nite

matrices Q occurs for Q = 0.

Proof. Let X

1

and X

2

be the nonnegative de�nite stabilizing solutions

of the Riccati equations

A

T

X +XA�XBB

T

X +Q

i

= 0; i = 1; 2

for 0 � Q

2

� Q

1

. Let F

i

= �B

T

X

i

, i = 1; 2. Then Lemma 5 implies

X

2

� X

1

. Subtracting the equations A

T

X + XA � XBB

T

X + Q

i

= 0,

i = 1; 2 for the solutions X

1

and X

2

, we obtain

A

T

(X

1

�X

2

) + (X

1

�X

2

)A+ (Q

1

�Q

2

) = X

1

BB

T

X

1

�X

2

BB

T

X

2

: (27)

Note that in the case thatR = I , we have kF

1

k

2

F

�kF

2

k

2

F

= Trace(X

1

BB

T

X

1

)�

Trace(X

2

BB

T

X

2

) [10]. It follows from (27) that

kF

1

k

2

F

� kF

2

k

2

F

= Trace(A

T

(X

1

�X

2

) + (X

1

�X

2

)A+ (Q

1

�Q

2

))

= Trace(A

T

(X

1

�X

2

) + (X

1

�X

2

)A) + Trace(Q

1

� Q

2

)

= Trace((A

T

+A)(X

1

�X

2

)) + Trace(Q

1

� Q

2

):

Here the equality Trace(AB) = Trace(BA) is used. Since Q

1

� Q

2

, we have

Trace(Q

1

�Q

2

) � 0. On the other hand, since (X

1

�X

2

) is positive de�nite,

Trace(((A

T

+A)(X

1

�X

2

)) = Trace((X

1

�X

2

)

1

2

(A

T

+ A)(X

1

�X

2

)

1

2

);

where (X

1

� X

2

)

1

2

denotes the positive square root of (X

1

� X

2

). Since

(A

T

+A) is positive de�nite, it follows that Trace((X

1

�X

2

)

1

2

(A

T

+A)(X

1

�

X

2

)

1

2

) � 0 and Trace(((A

T

+ A)(X

1

�X

2

)) � 0. Thus kF

2

k

2

� kF

1

k

2

and

the minimum of kFk

2

occurs at Q = 0.
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It is natural to ask what happens when the minimization problem in-

cludes R. The answer is that minimizing the norm of feedback matrices

among all 0 � Q is usually su�cient, since we can always scale the problem

so that kRk

2

= 1 (see [3]). In fact, let � = kRk

2

. Then

~

X = X=� satis�es

the Riccati equation

A

T

~

X +

~

XA�

~

XB

~

R

�1

B

T

~

X +

~

Q = 0

where

~

R = R=� and

~

Q = Q=�. Observe that the feedback matrices pro-

duced by both Riccati equations are same, i.e.,

~

F = �

~

R

�1

B

T

~

X = �R

�1

B

T

X = F:

Example 7 Consider the system given by

A =

2

6

6

6

6

6

4

0:1 1 10 0 0

�1 0:1 0 10 0

0 0 2 1 10

0 0 �1 2 0

0 0 0 0 5

3

7

7

7

7

7

5

; B =

2

6

6

6

6

6

4

5 4 3

4 5 4

3 4 5

1 3 4

1 1 3

3

7

7

7

7

7

5

;

and let R = �I and Q = �I . Table 7 shows the optimal stabilizing feedback

kFk

2

as a function of � and �.

� n � 10

�4

10

�2

1 10

2

10

4

10

�4

9.80 6.41 6.01 5.98 5.98

10

�2

23.7 9.80 6.41 6.01 5.98

1 147 23.7 9.80 6.41 6.01

10

2

1397 147 23.7 9.80 6.41

10

4

10

4

1397 147 23.7 9.80

Table 7: kFk

2

for di�erent values of � and �.

The Toeplitz structure of Table 7 is in accordance with our theoretical

analysis: only one parameter plays a role. The minimum norm feedback

matrix F with kFk

2

= 5:9833 occurs at � = 0; � = 1 and �(A + BF ) =

f�5:0000;�0:1000� 1:0000i;�2:0000� 1:0000ig.

In this section we have discussed the minimization of the feedback F

with respect to two di�erent measures, the value of the cost functional J(Q)
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and kFk

2

. In the �rst case, and in special situations also in the second case,

the optimal F is obtained for the choice Q = 0 in the cost functional.

The approach of applying the stabilization method based on linear-

quadratic control can also be used for large control problems up to sizes

of several thousands, provided that the number of unstable poles is small

compared to the system size; see [12]. It is clear that this approach is

superior to the pole placement approach for the problem of stabilization,

since as we have seen, the pole placement problem becomes increasingly ill

conditioned when the system size increases.

To demonstrate the superiority of this approach consider the stabilization

algorithm proposed in [12] applied to one of the previous examples.

Example 8 For Example 6 in the case of � = 1, the result obtained from

the stabilization algorithm proposed in [12] is given in Table 8. Observe that

the stabilization method and the pole placement method are comparable in

this case, since the eigenvalues of the closed-loop systems are both �n;�(n�

1); : : : ;�1.

kFk

2

cond(X)

n = 5 3:5e+ 01 1:9e+ 02

n = 10 5:3e+ 02 2:2e+ 04

n = 15 2:6e+ 03 4:2e+ 05

n = 20 1:5e+ 04 7:0e+ 06

Table 8: kFk

2

and cond(X) for the stabilization method.

A comparison of Table 8 and Table 5 shows that the conditioning of the

closed-loop system via the stabilization method is much better. It should

be pointed out that in the case n = 20, the resulting closed-loop eigenvalues

via the pole placement algorithm had no correct digits but those via the

stabilization method had 7 valid digits. For further results in this direction,

in particular for large sytems of several hundred states, see [12].

In this section we have demonstrated that for the problem of stabiliza-

tion, the pole placement problem should not be considered as a substitute

problem. A much better substitute (though not perfect) is the stabilization

via the solution of a linear-quadratic control problem. In a similar way, one
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can avoid pole placement in other situations. For example, the construc-

tion of damped feedbacks via the solution of periodic Riccati equations is

discussed in [13].

5 Conclusion

We have discussed the pole placement problem and given considerable ev-

idence that this problem is intrinsically ill conditioned, i.e., even the best

(numerically stable) algorithms for this problem may produce bad results.

Furthermore, the ill conditioning increases with the dimension of the sys-

tem. Hence, if it can be avoided, and to our knowledge this is usually the

case, then one should replace the pole placement problem with alternative

problems, such as stabilization or moving the poles only to certain regions

of the complex plane. Conditioning of the latter problems is much better

and hence better numerical results can be expected.
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