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occuring in the singularly perturbed case is accomplished using anisotropic mesh re�nement in boundary
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1 Introduction

This paper is concerned with the �nite element solution of the following elliptic boundary

value problem in a bounded polyhedral domain 
 � IR

d

, d = 2; 3, with Lipschitz boundary

@
:

L

"

u � �"�u + b � ru+ cu = f in 
; (1.1)

u = 0 on @
; (1.2)

" 2 (0; 1] is a parameter. (1.1) (1.2) is a linear(ized) di�usion-convection-reaction model.

In particular, arbitrary ratios P (x) � "

�1

kb(x);R

d

k (Peclet number) and �(x) � "

�1

jc(x)j

will be considered. Hence the whole range from (locally) di�usion-dominated (P;� � 1)

to (locally) convection- and/or reaction-dominated problems (P � 1 and/or � � 1) is of

interest. In case of P � 1 and/or �� 1, (1.1) (1.2) is of singularly perturbed type and the

solution u may generate sharp boundary or interior layers where the solution of the limit

problem with " = 0 is not smooth or cannot satisfy the boundary condition (1.2). The

resolution of such layers is often the main interest in applications and will be considered in

this paper.

Standard Galerkin �nite element solutions may su�er from numerical instabilities which

are generated by dominant convection and/or reaction terms unless the mesh is su�ciently

re�ned. As a remedy, stabilized Galerkin methods have been proposed: the streamline

di�usion method (SD) [7, 12, 17], the Galerkin/Least-squares method (GLS), see for example

[13], and shock-capturing variants of them, see for example [9, 10, 14, 15]. In contrast to

standard methods of upwind type, stabilized Galerkin methods have the advantage to be

consistent with the weak formulation of (1.1) (1.2). We will focus on the (GLS)-method.

Up to now, stabilized Galerkin methods were analyzed for isotropic meshes, that means

h

e

=%

e

= O(1) for "! 0, h! 0, where h

e

and %

e

denote the diameter of the �nite element e

and the diameter of the largest inscribed ball in e, respectively. But a resolution of boundary

and interior layers with isotropic elements leads to an overre�nement. An anisotropic mesh

re�nement in the sense lim

"!+0

h

e

=%

e

=1 is much more e�cient in such thin layers.

We remark that the permission of %

e

= o (h

e

) for h ! 0 was already discussed in [6, 16,

18, 19] but they did not derive an advantage (from the point of view of numerical analysis)

of using di�erent element diameters in di�erent directions. This remedy was removed in

[3, 4, 5] by proving sharper estimates on the reference element, and the improved estimates

were applied to establish a-priori mesh re�nement near geometrical singularities (edges)

in the case of di�usion-dominated equations (Poisson type problems) [3, 5]. In this case

anisotropy was used in a slightly di�erent sense than we do here, namely lim

h!+0

h

e

=%

e

= 1.

But this makes no di�erence for the anisotropic local estimates. | We note that anisotropic

elements were also considered from other points of view in [20, 23, 24, 25, 26, 28, 29, 30].

In this paper, we extend the numerical analysis of the Galerkin/Least-squares method

to meshes which are anisotropically re�ned at least in boundary layers. The aim is to derive

error estimates in the energy norm uniformly with respect to " 2 (0; 1]. Such an approach

is theoretically possible also in interior layers. But, unfortunately, it turns out that the

elements in the layer have to be oriented with respect to the manifold where the layer is

located; in general this cannot be done a-priori. A numerical localization procedure for

interior layers is described in [30]. | We remark that "-uniform estimates were also derived

using exponentially �tted Galerkin methods [1, 22] or �nite di�erence methods on certain

orthogonal meshes [27].

The outline of the paper is as follows: In Section 2 we consider Lagrangian interpolation

on simplicial elements and review local inequalities in the anisotropic case. In Section 3

we introduce the stabilized Galerkin method (GLS) for problem (1.1) (1.2). Under weak

conditions to the mesh (maximal angle condition instead of minimal angle condition) we

prove existence and stability of the discrete solution, as well as convergence to the weak

2
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Figure 2.1: Illustration of the de�nition of the element related mesh sizes.

solution u 2 W

1;2

(
) and to regular solutions u 2 W

r+1;2

(
), r � 1. Moreover we derive

the optimal choice of the numerical damping parameters.

Section 4 is devoted to the analysis of anisotropic mesh re�nement in boundary layers of

problem (1.1) (1.2) using the results of Section 2. However, the critical point is an assumption

on the Sobolev norms of u which are hard to prove in general cases. For this reason we apply

these quite general results to a special class of problems where such a priori knowledge on u

is available and thus an almost optimal re�nement strategy can be proposed. This is done

in Section 5 by considering domains of channel type. In particular, the actual choice of the

element diameters in the re�nement zone and the determination of the numerical damping

parameters is addressed. The �nal error estimate is almost uniform with respect to the small

parameter ".

2 Notation and local estimates for general �nite elements

We consider Lagrangian elements on simplices e � IR

3

, d = 2; 3; with spaces P

k

of poly-

nomials of maximal degree k � 1. The interpolant of a continuous function v is uniquely

determined by (I

(k)

h

v)(x

(i)

) = v(x

(i)

) (i = 1; : : : ; n, n = dim(P

k

) =

�

k+d

d

�

), where x

(i)

are

the nodal points of the element e. In this section, we summarize the local inequalities and a

density result which were proved in [4].

For exploring the di�erent sizes of the element e in di�erent directions we introduce the

following notation, compare Figure 2.1. For e � IR

2

let E

e

be the longest edge of e. Then

we denote by h

1;e

� meas

1

(E

e

) its length and by h

2;e

� 2meas

2

(e)=h

1;e

the diameter of e

perpendicularly to E

e

. In the three-dimensional case, we proceed by analogy. Let again E

e

be the longest edge of e, and let F

e

be the larger of the two faces of e with E

e

� F

e

. Then we

denote by h

1;e

� meas

1

(E

e

) the length of E

e

, by h

2;e

� 2meas

2

(F

e

)=h

1;e

the diameter of F

e

perpendicularly to E

e

, and by h

3;e

� 6meas

3

(e)=(h

1;e

h

2;e

) the diameter of e perpendicularly

to F

e

. Note that for the element sizes the relation

h

1;e

� : : : � h

d;e

; (2.1)

holds.

Introduce further a Cartesian coordinate system (x

1;e

; x

2;e

; x

3;e

) such that (0; 0; 0) is a

vertex of ê, E

e

is part of the x

1;e

{axis, and F

e

is part of the x

1;e

; x

2;e

{plane. The two-

dimensional case is treated by analogy. Subsequently, this system will be called element

related coordinate system. By contrast we consider a discretization independent coordinate

system (x

1

; x

2

) or (x

1

; x

2

; x

3

) which may be global or related to the boundary or it may be

problem related in any other sense but independent of the �nite element mesh.

For anisotropic interpolation error estimates we have to assume that the elements ful�ll

a maximal angle condition.

Maximal angle condition (2D): There is a constant 


�

< � (independent of h and e 2

T

h

) such that the maximal interior angle 


e

of any element e is bounded by 


�

: 


e

� 


�

:

3



Maximal angle condition (3D): There is a constant 


�

< � (independent of h and e 2

T

h

) such that the maximal interior angle 


f;e

of the four faces as well as the maximal

angle 


E;e

between two faces of any element e is bounded by 


�

: 


f;e

� 


�

; 


E;e

� 


�

:

Moreover, we need for all anisotropic estimates the coordinate system condition.

Coordinate system condition (2D): The element related coordinate system (x

1;e

; x

2;e

)

can be transformed into the discretization independent coordinate system (x

1

; x

2

) via

a translation and a rotation by an angle  

e

, where j sin 

e

j � Ch

2;e

=h

1;e

:

Coordinate system condition (3D): The transformation of the element related coordi-

nate system (x

1;e

; x

2;e

; x

3;e

) into the discretization independent system (x

1

; x

2

; x

3

) can

be determined as a translation and three rotations around the x

j;e

-axes by angles

 

j;e

(j = 1; 2; 3), where

j sin 

1;e

j � Ch

3

=h

2

; j sin 

2;e

j � Ch

3

=h

1

; j sin 

3;e

j � Ch

2

=h

1

: (2.2)

Note that we use the symbol C for a generic positive constant, that means, C may be

of di�erent value at each occurrence. But C is always independent of the function under

consideration, of the �nite element mesh, and particularly of ". On the contrary, some

constants are indexed with a letter for later reference to them.

Let W

m;2

(e), m 2 IN; be the usual Sobolev spaces with the norm and the special semi-

norm

kv;W

m;2

(e)k �

8

<

:

X

j�j�m

Z

e

jD

�

vj

2

dx

9

=

;

1=2

; jv;W

m;2

(e)j �

8

<

:

X

j�j=m

Z

e

jD

�

vj

2

dx

9

=

;

1=2

:

We use a multi-index notation with

� = (�

1

; : : : ; �

d

); j�j = �

1

+ : : :+ �

d

; D

�

=

@

�

1

@x

�

1

1

� � �

@

�

d

@x

�

d

d

; h

�

e

= h

�

1

1;e

� � �h

�

d

d;e

;

the numbers �

i

(i = 1; : : : ; d) are non-negative integers.

Lemma 2.1 (Inverse inequality) Assume that for the element e the coordinate system

condition holds. Then for v 2 P

k

, k 2 IN arbitrary, the estimate

k�v;L

2

(e)k � C

 

d

X

i=1

h

�2

i;e













@v

@x

i

;L

2

(e)













2

!

1=2

(2.3)

holds. The particular result

k�v;L

2

(e)k � C

s

h

�1

d;e

jv;W

1;2

(e)j (2.4)

is valid without the coordinate system condition. Moreover, there is C

s

= 0 for k = 1.

Lemma 2.2 (Anisotropic interpolation error estimates) Assume that for an element

e the maximal angle condition as well as the coordinate system condition hold. Then for

v 2 W

k+1;2

(e) and m = 0; : : : ; k the estimate

jv � I

(k)

h

v;W

m;2

(e)j

2

� C

X

j�j=k+1�m

h

2�

e

jD

�

v;W

m;2

(e)j

2

(2.5)

holds, if d = 2 or m < k. If v 2 W

k+2;2

(e), there holds

jv � I

(k)

h

v;W

m;2

(e)j

2

� C

X

k+1�m�j�j�k+2�m

h

2�

e

jD

�

v;W

m;2

(e)j

2

(2.6)

for d = 2; 3, m = 0; : : : ; k.
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Remark 2.3 The size of the constants C in the coordinate system condition in
uences the

size of the constants in (2.5) and (2.6). Without the coordinate system condition we can

only prove estimates without deriving advantage of the di�erent element diameters, see the

following lemma.

Lemma 2.4 Assume that the element e ful�lls the maximal angle condition. Then for v 2

W

k+1;2

(e) and m = 0; : : : ; k the estimate

jv � I

(k)

h

v;W

m;2

(e)j � Ch

k+1�m

1;e

jv;W

k+1;2

(e)j (2.7)

holds, if d = 2 or m < k. If v 2 W

k+2;2

(e) there holds

jv � I

(k)

h

v;W

m;2

(e)j � C

k+2

X

`=k+1

h

`�m

1;e

jv;W

`;2

(e)j (2.8)

for d = 2; 3, m = 0; : : : ; k.

Note that the coordinate system condition is not necessary for Lemma 2.4.

Let T

h

= feg be an admissible triangulation of 
 =

S

e

e, that means, let properties (T

h

1)

� � � (T

h

5) of [8, Chapter 2] be ful�lled. Assume that T

h

satis�es the maximal angle condition.

Moreover, introduce the spaces V and V

h

by

V � W

1;2

0

(
) � fv 2 W

1;2

(
) : vj

@


= 0g; (2.9)

V

h

� fv 2 V : vj

e

2 P

k

(e) 8e 2 T

h

g: (2.10)

The index h indicates that we are considering a family of spaces for h ! +0, h itself char-

acterizes the mesh size; we can for example think of h = max

e2T

h

h

1;e

.

Lemma 2.5 (Density of V

h

in V ) Let u 2 V be an arbitrary function, then

lim

h!+0

inf

v

h

2V

h

ku� v

h

;W

1;2

(
)k = 0:

Remark 2.6 If v has the property v 2 W

r+1;2

(e) with r > k (or r > k + 1) then the

estimates (2.5) and (2.7) (or (2.6) and (2.8), respectively) hold true. If r < k (or r < k + 1)

we should use I

(r)

h

for interpolation. Note that I

(r)

h

u 2 V

h

, too.

3 A stabilized Galerkin method on general meshes

3.1 Statement of the problem

We consider the second order elliptic boundary value problem

L

"

u � �"�u + b � ru+ cu = f in 
 � IR

d

; d = 2; 3; (3.1)

u = 0 on @
; (3.2)

with the basic assumptions

(H.1) 0 < " � 1, b 2 [W

1;1

(
)]

d

, c 2 L

1

(
), f 2 L

2

(
),

(H.2) r � b = 0, c � 0 almost everywhere in 
.

The variational formulation of (3.1) (3.2) reads

Find u 2 V; such that B

G

(u; v) = L

G

(v) 8v 2 V: (3.3)

5



where

B

G

(u; v) � "(ru;rv)




+

1

2

f(b � ru; v)




� (b � rv; u)




g+ (cu; v)




; (3.4)

L

G

(v) � (f; v)




; (3.5)

and (: ; :)

G

denotes the inner product in L

2

(G), G � 
. Moreover, the standard Galerkin

method (G) of (3.3) is introduced by

Find u

h

2 V

h

; such that B

G

(u

h

; v

h

) = L

G

(v

h

) 8v

h

2 V

h

: (G)

V and V

h

are introduced in Section 2.

We remind the well-known fact that the solution u

h

of (G) on isotropic meshes may su�er

from non-physical oscillations unless the elementwise numbers

P

e

� "

�1

h

1;e

kb; [L

1

(e)]

d

k; �

e

� "

�1

h

2

1;e

kc;L

1

(e)k (3.6)

are su�ciently small. As a remedy, we consider the following stabilized method of Galerkin/

Least-squares type:

Find U

h

2 V

h

; such that B

SG

(U

h

; v

h

) = L

SG

(v

h

) 8v

h

2 V

h

: (GLS)

with

B

SG

(u; v) � B

G

(u; v) +

X

e

�

e

(L

"

u; L

"

v)

e

; (3.7)

L

SG

(v) � L

G

(v) +

X

e

�

e

(f; L

"

v)

e

; (3.8)

and a set f�

e

g of non-negative numerical di�usion parameters to be determined below.

3.2 Existence and stability of discrete solutions

First of all, we state lower and upper bounds of the bilinear form B

SG

(: ; :).

Lemma 3.1 Under the assumptions (H.1), (H.2), there holds for v 2 V with �vj

e

2 L

2

(e)

8e 2 T

h

that

B

SG

(v; v) = jjj v jjj

2

";�

with

jjj v jjj

2

";�

� "krv;L

2

(
)k

2

+ k

p

cv;L

2

(
)k

2

+

X

e

�

e

kL

"

v;L

2

(e)k

2

: (3.9)

Proof Set u = v in (3.7). 2

Lemma 3.2 For v

h

2 V

h

and u 2 V with �uj

e

2 L

2

(e) 8e 2 T

h

there holds

jB

SG

(u; v

h

)j � jjj v

h

jjj

";�

8

<

:

jjj u jjj

";�

+

 

X

e

Z

2

e

ku;L

2

(e)k

2

!

1=2

9

=

;

(3.10)

with

Z

2

e

� minfB

2

e

"

�1

; �

�1

e

+ "C

2

s

h

�2

d;e

+ C

e

g; (3.11)

B

e

� kb; [L

1

(e)]

d

k; C

e

� kc;L

1

(e)k: (3.12)

C

s

is the constant from (2.4).

Proof Integration by parts of the non-symmetric part of B

SG

(: ; :) together with (H.2)

yields for all u; v 2 V

1

2

f(b � ru; v)




� (b � rv; u)




g = �(b � rv; u)




;

hence with (3.4), (3.7), and (3.9)

6



jB

SG

(u; v)j � "kru; [L

2

(
)]

d

k krv; [L

2

(
)]

d

k+ k

p

c u;L

2

(
)k k

p

c v;L

2

(
)k+

+

 

X

e

�

e

kL

"

u;L

2

(e)k

2

!

1=2

 

X

e

�

e

kL

"

v;L

2

(e)k

2

!

1=2

+ j(b � rv; u)




j

� jjj u jjj

";�

jjj v jjj

";�

+

X

e

j(b � rv; u)

e

j: (3.13)

Consider the last term at the right hand side. We get for v

h

2 V

h

via inverse inequality (2.3)

j(b � rv

h

; u)

e

j � ku;L

2

(e)kminfkb � rv

h

;L

2

(e)k;

k � "�v

h

+ b � rv

h

+ cv

h

;L

2

(e)k+ k"�v

h

;L

2

(e)k+ kcv

h

;L

2

(e)kg

� ku;L

2

(e)kminfB

e

krv

h

; [L

2

(e)]

d

k;

kL

"

v

h

;L

2

(e)k+ "C

s

h

�1

d;e

krv

h

;L

2

(e)k+

p

C

e

k

p

c v

h

;L

2

(e)kg

� minfB

e

"

�1=2

; maxf�

�1=2

e

; "

1=2

C

s

h

�1

d;e

; C

1=2

e

g g jjj v

h

jjj

e

ku;L

2

(e)k (3.14)

where jjj v

h

jjj

e

is de�ned in analogy to (3.9) by

jjj v

h

jjj

2

e

� "krv

h

;L

2

(e)k

2

+ k

p

cv

h

;L

2

(e)k

2

+ �

e

kL

"

v

h

;L

2

(e)k

2

: (3.15)

Using (3.13) { (3.15) we get the assertion by standard inequalities. 2

Furthermore, we �nd the following a-priori stability estimate.

Lemma 3.3 For the solution U

h

2 V

h

and the residual L

"

U

h

� f of scheme (GLS) there

holds

jjjU

h

jjj

2

";�

+

X

e

�

e

kL

"

U

h

� f ;L

2

(e)k

2

� D

2

� C(minfC

2

F

"

�1

; 


�1

g+ �)kf ;L

2

(
)k

2

(3.16)

with � � max

e

�

e

, 
 � inf




c(x) and Friedrichs' constant C

F

.

Proof Set v = U

h

in (GLS). Lemma 3.1, together with H�older's and Friedrichs' inequalities,

implies

jjjU

h

jjj

2

";�

� B

SG

(U

h

; U

h

) = L

SG

(U

h

)

� kf ;L

2

(
)k kU

h

;L

2

(
)k+

 

X

e

�

e

kf ;L

2

(e)k

2

!

1=2

 

X

e

�

e

kL

"

U

h

;L

2

(e)k

2

!

1=2

� kf ;L

2

(
)k minf


�1=2

k

p

cU

h

;L

2

(
)k; C

F

krU

h

; [L

2

(
)]

d

kg+

+

p

�kf ;L

2

(
)k

 

X

e

�

e

kL

"

U

h

;L

2

(e)k

2

!

1=2

�

1

2

jjjU

h

jjj

2

";0

+

1

2

minf


�1

; "

�1

C

2

F

gkf ;L

2

(
)k

2

+

+

1

2

X

e

�

e

kL

"

U

h

;L

2

(e)k

2

+

�

2

kf ;L

2

(
)k

2

;

hence

jjjU

h

jjj

2

";�

� (minf


�1

; "

�1

C

2

F

g+ �)kf ;L

2

(
)k

2

A slight modi�cation of the proof yields the weighted control of the discrete residual. 2

Lemma 3.3 implies uniqueness and stability of the (GLS)-solution on an general admis-

sible mesh (including anisotropic mesh re�nement).

Theorem 3.4 Under assumptions (H.1), (H.2) there exists one and only one solution U

h

2

V

h

of scheme (GLS) which additionally satis�es (3.16).
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3.3 Convergence towards the weak solution

Let us consider now the strong convergence of the family fU

h

g of solutions of (GLS) to the

weak solution u 2 V of (3.3). Note that we use only data under the assumptions (H.1), (H.2)

and a technical condition (H.3) on the parameter set f�

e

g:

(H.3) lim

h!+0

max

e

f�

e

("C

2

s

h

�2

d;e

+B

2

e

"

�1

+ C

e

)g = 0

Theorem 3.5 Assume that (H.1) { (H.3) are valid. Then the solution U

h

2 V

h

of (GLS)

converges strongly in V to the solution u 2 V of (3.3) according to

lim

h!+0

jjj u� U

h

jjj

";0

= 0: (3.17)

Proof We split the error u� U

h

as follows:

u� U

h

= (u� u

h

) + (u

h

� U

h

) � w

1

+ w

2

(3.18)

with the Galerkin solution u

h

2 V

h

of (G), that means of (GLS) with �

e

= 0 8e. Let �

h

v be

the best approximate of v in V

h

:

jjj v ��

h

v jjj

";0

= min

v

h

2V

h

jjj v � v

h

jjj

";0

:

Denoting by ~� � u � �

h

u the approximation error, there holds via (3.3) { (3.5) and (3.10)

with �

e

= 0 8e:

jjj u

h

� �

h

u jjj

2

";0

� B

G

(u

h

� �

h

u; u

h

��

h

u) = B

G

(u� �

h

u; u

h

��

h

u)

� jjj u

h

��

h

u jjj

";0

2

4

jjj ~� jjj

";0

+

 

X

e

B

2

e

"

�1

k~�;L

2

(e)k

2

!

1=2

3

5

;

hence

jjj u

h

��

h

u jjj

";0

� jjj ~� jjj

";0

+

 

X

e

B

2

e

"

�1

k~�;L

2

(e)k

2

!

1=2

� F (~�):

Lemma 2.5 yields that for u 2 V lim

h!+0

F (~�) = 0 and

lim

h!+0

jjjw

1

jjj

";0

� lim

h!+0

(jjj u��

h

u jjj

";0

+ jjj�

h

u � u

h

jjj

";0

) = 0: (3.19)

For w

2

= u

h

� U

h

2 V

h

we have by (3.4), (3.7), (3.8), (3.9), (3.18), (G), (GLS), and (3.16)

jjjw

2

jjj

2

";0

= B

G

(w

2

; w

2

) =

X

e

�

e

(L

"

U

h

� f; L

"

w

2

)

e

�

 

X

e

�

e

kL

"

U

h

� f ;L

2

(e)k

2

!

1=2

 

X

e

�

e

kL

"

w

2

;L

2

(e)k

2

!

1=2

� D

 

X

e

�

e

k � "�w

2

+ b � rw

2

+ cw

2

;L

2

(e)k

2

!

1=2

� DT: (3.20)

The inverse inequality (2.3) yields

T

2

�

X

e

�

e

�

"

2

C

2

s

h

�2

d;e

krw

2

; [L

2

(e)]

d

k

2

+ B

2

e

krw

2

; [L

2

(e)]

d

k

2

+ C

e

k

p

cw

2

;L

2

(e)k

2

�

� max

e

f�

e

("C

2

s

h

�2

d;e

+ B

2

e

"

�1

+ C

e

)g jjjw

2

jjj

";0

: (3.21)

A su�cient condition for lim

h!+0

jjjw

2

jjj

";0

= 0 is then (H.3), hence via (3.18), (3.19) we arrive

at (3.17). 2
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Remark 3.6 We conjecture that the asymptotic error estimate (3.17) remains valid under

the weaker condition

(H.3') j�

e

"C

2

s

h

�2

d;e

j � 1 8e 2 T

h

and lim

h!+0

max

e

f�

e

(B

2

e

"

�1

+ C

e

)g = 0.

This assertion is clear in the case of piecewise linear, simplicial elements (k = 1) because

there holds C

s

= 0. In the general case k � 1 we were not able to prove this, even if

we assumed the weak regularity assumption L

"

u = f in L

2

(e) 8e 2 T

h

. We found only a

simpli�cation of the proof of (3.17) but we were not able to avoid (H.3).

3.4 Convergence towards regular solutions

We consider now the case of smooth solutions of (3.3) according to

(H.4) u 2 V \W

r+1;2

(
) for some r 2 IN , r � 1.

Consequently, we have

B

SG

(u� U

h

; v) = 0 8v 2 V

h

: (3.22)

Note that (H.4) is valid with r = 1 if 
 is convex. | In order to simplify the forthcoming

analysis we assume that the following modi�cation of (H.3') holds:

(H.3") �

�1

e

� "C

2

s

h

�2

d;e

+ C

e

, which is with �

e

� h

�1

1;e

h

d;e

and �

e

� "

�1

h

2

1;e

C

e

equivalent to

�

e

�

h

2

1;e

"(�

2

e

C

2

s

+ �

e

)

:

Hence we replace Z

2

e

in (3.11) by

~

Z

2

e

� minfB

2

e

"

�1

; 2�

�1

e

g: (3.23)

Theorem 3.7 Let (H.1), (H.2), (H.3"), (H.4), as well as the maximal angle condition be

satis�ed. Then there hold for the error u� U

h

jjj u� U

h

jjj

2

";�

� C

A

X

e

E

2

e

h

2minfk;rg

1;e

ju;W

1+minfk;rg;2

(e)j

2

(3.24)

if minfk; rg � 3 or d = 2, and

jjj u� U

h

jjj

2

";�

� C

A

X

e

E

2

e

minfk;r�1g

X

`=minfk;r�1g�1

h

2`

1;e

ju;W

`+2;2

(e)j

2

; (3.25)

without these conditions. E

2

e

is de�ned by

E

2

e

� " + C

e

h

2

1;e

+ �

e

("

2

h

�2

1;e

+ B

2

e

+ C

2

e

h

2

1;e

) + h

2

1;e

minf"

�1

B

2

e

; �

�1

e

g: (3.26)

Proof Using the error splitting

u� U

h

= (u� I

(minfk;rg)

h

u) + (I

(minfk;rg)

h

u� U

h

) � � + �;

we conclude from Lemmata 3.1, 3.2 and (3.22), (3.23) that

jjj� jjj

2

";�

� B

SG

(�; �) = B

SG

(e� �; �) = �B

SG

(�; �)

� jjj� jjj

";�

8

<

:

jjj � jjj

";�

+

 

X

e

~

Z

2

e

k�;L

2

(e)k

2

!

1=2

9

=

;

; (3.27)

jjj u� U

h

jjj

2

";�

� 2jjj � jjj

";�

+

 

X

e

~

Z

2

e

k�;L

2

(e)k

2

!

1=2

: (3.28)
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The local interpolation error estimate (2.7) yields (3.24). Note that in the two-dimen-

sional case m = k is allowed. Furthermore, for k = 1 there is �v

h

j

e

= 0 8v

h

2 V

h

, that

means, (2.7) is used only for m = 0; 1.

For (3.25) we use I

(minfk;r�1g)

h

instead of I

(minfk;rg)

h

and (2.8) instead of (2.7) in order to

be able to treat also linear and quadratic elements in the three-dimensional case. 2

3.5 Choice of the numerical damping parameters

A suitable strategy is to choose the numerical damping parameters �

e

in such a way, that

the terms E

2

e

in (3.24) and (3.25) are minimized with respect to �

e

.

Lemma 3.8 The term E

2

e

de�ned in (3.26) is minimal for

�

e

=

h

2

1;e

"

p

1 + P

2

e

+ �

2

e

if P

2

e

�

~

P

2

e

�

q

1 + P

2

e

+ �

2

e

(3.29)

(convection-reaction dominated case), and

�

e

= min

(

"

B

2

e

;

h

2

1;e

"

�

1 + P

2

e

+ �

e

1 + P

2

e

+ �

2

e

)

if 0 � P

e

�

~

P

e

(3.30)

(di�usion dominated case). Hence there holds

E

2

e

� C"(1 + P

e

+ �

e

) = C("+ h

1;e

B

e

+ h

2

1;e

C

e

); (3.31)

d = 2; 3, 1 � r � k. For the de�nition of P

e

and �

e

see (3.6).

Proof Let �rst be P

2

e

� "

�1

�

�1

e

h

2

1;e

such that minf"

�1

B

2

e

; �

�1

e

g = �

�1

e

. Then E

2

e

is

minimized for

�

e

=

h

2

1;e

"

p

1 + P

2

e

+ �

2

e

: (3.32)

Then the condition P

2

e

� "

�1

�

�1

e

h

2

1;e

is equivalent by (3.32) to P

2

e

�

p

1 + P

2

e

+ �

2

e

, that

means P

2

e

� (1 +

p

5 + 4�

2

e

)=2, and we have E

2

e

= "(1 + �

e

+ 2

p

1 + P

2

e

+ �

2

e

) and thus

(3.31).

Consider now the case that h

2

1;e

minf"

�1

B

2

e

; �

�1

e

g = "P

2

e

. If we demand that the term

�

e

("

2

h

�2

1;e

+B

2

e

+ C

2

e

h

2

1;e

) in (3.26) is not greater than the other term "+C

e

h

2

1;e

+ h

2

1;e

"

�1

B

2

e

then we �nd for �

e

the inequality

�

e

�

"+ C

e

h

2

1;e

+ h

2

1;e

B

2

e

"

�1

"h

�2

1;e

+ B

2

e

+ C

2

e

h

�2

1;e

=

h

2

1;e

"

�

1 + P

2

e

+ �

e

1 + P

2

e

+ �

2

e

: (3.33)

A simple calculation gives via (3.26) that E

2

e

� C"(1+P

2

e

+�

e

) � C"(1+

p

1 + P

2

e

+ �

2

e

+�

e

),

hence (3.31). 2

Remark 3.9 Note that assumption (H.3) in Subsection 3.3 is not guaranteed by (3.29)

(3.30) if k � 2, see also Remark 3.6.

Remark 3.10 The analysis of Lemma 3.8 is valid only modulo multiplicative constants in

(3.24) (3.25) which are independent of ", h

1;e

, and �

e

. Therefore it is possible to improve

formulae (3.29) (3.30). Let us consider piecewise linear elements (k = 1) and the case c = 0.

In case of d = 1 with constant coe�cients " and b, we have the well-known superconvergence

result of nodally exact solutions for

�

e

=

h

1;e

2

�

coth

P

e

2

�

2

P

e

�

: (3.34)
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The proposed tuning approach results in

�

e

=

h

1;e

2B

e

�

P

e

p

P

2

e

+ 36

�

8

<

:

h

1;e

2B

e

if P

e

� 1

P

e

h

1;e

12B

e

if P

e

� 1

(3.35)

which re
ects the asymptotic behaviour of (3.34) for both P

e

! +1 and P

e

! +0.

4 Anisotropic re�nement

4.1 Necessity of boundary and interior layer re�nement

A critical inspection shows that error estimates (3.24){(3.26) may be useless in boundary or

interior layer regions R

"

unless the mesh is su�ciently �ne:

ju;W

r+1;2

(e)j

2

= O(1) for "! +0 if e 62 R

"

;

ju;W

r+1;2

(e)j

2

! +1 for "! +0 if e 2 R

"

:

Practical calculations underline this and show the occurrence of so-called wiggles in the case

of large numbers P

e

� 1 and/or �

e

� 1, for their de�nition see (3.6). Typically, they occur

globally in 
 for the standard Galerkin method, but they are restricted to a numerical layer

region R

h

of width O(h

�

2

j ln hj) for the (GLS)-scheme. It turns out that the layers R

h

are in

general larger than the boundary and interior layers R

"

of width O("

�

1

j ln "j). The sizes of

�

1

and �

2

depend on the problem and characterize the layer, for �

1

see the example below,

�

2

depends on the discretization and is not known in general. Nevertheless, a resolution of

sharp layer gradients is often the main interest in applications, and improved methods are

necessary. Usually this is accomplished by using exponentially �tted methods [1] or isotropic

mesh re�nement. We try to resolve R

"

by means of anisotropic mesh re�nement in order to

decrease the complexity of the discrete problem.

The anisotropic mesh in the boundary layer should give uniform bounds for jjj u�U

h

jjj

";�

with respect to " and contain a minimal number of �nite elements. In order to exploit the

anisotropic interpolation results, see Section 2, we need sharp local Sobolev norm estimates

of u. Such estimates depend strongly on the asymptotic structure of u for 0 < " � 1, for

example on the type of the boundary and interior layers, on the existence of turning points

with kbk = 0, or on periodic characteristics. In the case of su�ciently smooth data we can

take advantage of asymptotic expansions, see [27]. Unfortunately, such estimates are rare

in the literature for the case of Lipschitzian domains 
 � IR

d

, d � 2, and less regular data,

see [2] for the problems appearing. Future research should extend the knowledge about the

solutions.

The �rst task is to detect the location of the manifolds where boundary and interior

layers emanate. This could be accomplished in an adaptive method, see [30]. Nevertheless,

we focus here on incompressible 
ow �elds b. In contrast to compressible 
ow problems,

interior layers (as shocks) are rare, and the location of boundary layers is well-known.

To get an example we consider a simple but typical boundary layer problem for the

di�usion-convection-reaction model (3.1) (3.2) in a square or cube 
 = (0; 1)

d

:

L

"

u � �"�u�

d

X

i=1

cos(�

i

)

@u

@x

i

+ cu = f in 
; (4.1)

u = g on @
; (4.2)

with �

i

2 [0;

�

2

]. In case of �

i

2 (0;

�

2

) there occur only ordinary (or out
ow) boundary

layers of thickness O(" ln

1

"

) at x

i

= 0, i = 1; : : : ; d. In the case of �

i

=

�

2

, i = 1; : : : ; d,

(no convection) and c > 0 there exists a boundary layer of thickness O(

p

" ln

1

"

) along the

boundary @
. For �

1

= 0 and �

2

(= �

3

) =

�

2

parabolic (or characteristic) layers of thickness

11



U(@

T


)

@

T







anisotropic element K

h

�;K

h

�;K

K

� = dist(x; @

T


)

�

Figure 4.1: Anisotropic mesh in the boundary layer region

O(

p

" ln

1

"

) are located at @
 with the exception of the in
ow boundary part at x

1

= 1 (no

layer) and the out
ow boundary part at x

1

= 0 where again ordinary boundary layers of

thickness O(" ln

1

"

) occur [21].

In Section 5 we consider a more general type of domain, but only in the two-dimensional

case.

4.2 Mesh generation with anisotropic boundary layer re�nement

The idea is now

� to construct a �xed mesh in the boundary layer region with anisotropic re�nement and

� to use an isotropic mesh away from the boundary layers, possibly constructed by an

advancing front technique and (isotropically) re�ned via standard adaptive methods

(including interior layer re�nement).

Without loss of generality we assume that a boundary layer of thickness O("

�

ln

1

"

) is located

at some line or plane @

T


 � @
. We have � =

1

2

or � = 1 in example above but it can be

more general.

We introduce local coordinates (�; �) or (�; �; �) with � = 0 at @

T


. As a starting

point, we generate an orthogonal mesh via lines (planes) � = �

i

, � = �

j

, (� = �

k

) with

real numbers �

i

, �

j

, �

k

(i = 0; : : : ;M , j = 0; : : : ; j

0

, k = 0; : : : ; k

0

) and particularly �

0

= 0,

�

M

= d(") � "

�

ln

1

"

. We assume that for a boundary layer rectangle (rectangular cube)

K = [�

i

; �

i+1

]� [�

i

; �

i+1

] or K = [�

i

; �

i+1

]� [�

i

; �

i+1

] � [�

i

; �

i+1

] the following relation holds

close to the boundary:

h

�;K

� �

i+1

� �

i

� h

K

� maxfh

�;K

; h

�;K

g � maxf�

j+1

� �

j

; �

k+1

� �

k

g: (4.3)

The exceptions are geometric singularities (corners, edges) of the boundary @
 where possibly

di�erent boundary layer parts intersect. Note that our approach guarantees an stronger

re�nement there.

The elements K are split into simplicial elements e (2 triangles or 6 tetrahedra) which

satisfy the maximal angle condition and the coordinate system condition with respect to the

boundary �tted coordinate system, see Figure 4.1. The mesh outside the (�xed) boundary

layer regions should be of isotropic type. The results of Section 2 on inverse and interpolation

error estimates are then applicable.

Note that an isotropic mesh re�nement is possible via standard error estimators in the

region away from the boundary layers. This is even desirable in the case of interior layers.

Because of the di�culty with the coordinate system condition, no attempt will be made here

to resolve interior layers (which are in general located at characteristic lines or surfaces) with

anisotropic elements. However, this problem was attacked experimentally in [30]. We refer

also to the test in [4] where a numerical example is given for the sensibility of the solution

with respect to the coordinate system condition.
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4.3 Modi�ed error estimate on anisotropic elements

We try to re�ne the error analysis of Theorem 3.7 on anisotropic boundary elements e 2 R

h

.

In order to apply the anisotropic interpolation results of Section 2, it is essential that each

element e 2 R

h

satis�es the maximum angle condition and the coordinate system condition

with respect to the boundary �tted system, see �gure 4.1.

Starting again from (3.28) and using Lemma 2.2, we �nd

jjj u� U

h

jjj

2

";�

�

X

e

I

e

(u)

with

I

e

(u) � 2"kr�;L

2

(e)k

2

+ 2C

e

k�;L

2

(e)k

2

+

+2�

e

�

"

2

k��;L

2

(e)k

2

+ B

2

e

kr�;L

2

(e)k

2

+ C

2

e

k�;L

2

(e)k

2

�

+

+minfB

2

e

"

�1

; 2�

�1

e

gk�;L

2

(e)k

2

(4.4)

� C

�

"

2

�

e

X

j�j=r�1

h

2�

e

jD

�

u;W

2;2

(e)j

2

+ ("+ �

e

B

2

e

)

X

j�j=r

h

2�

e

jD

�

u;W

1;2

(e)j

2

+

+

h

C

e

+ �

e

C

2

e

+min

n

B

2

e

"

�1

; �

�1

e

oi

X

j
j=r+1

h

2


e

jD




u;L

2

(e)j

2

�

;

� C

X

j�j=r�1

X

j�j=1

X

j
j=1

E

an

e;�;


h

2(�+�)

e

kD

�+�+


u;L

2

(e)k

2

(4.5)

E

an

e;�;


� "+ C

e

h

2


e

+ �

e

("

2

h

�2�

e

+ B

2

e

+ C

2

e

h

2


e

) + h

2


e

minf"

�1

B

2

e

; �

�1

e

g (4.6)

provided that u 2 W

r+1;2

(
) and d = 2, 1 � r � k, or d = 3, 3 � r � k. In the other case

d = 3, k = 1; 2, we conclude from (4.4) and (2.6)

I

e

(u) � C

X

j�j=r�1

X

j�j=1

X

j
j=1

E

an

e;�;


h

2(�+�)

e

�

kD

�+�+


u;L

2

(e)k

2

+

+

X

s=1

h

s

e

kD

�+�+
+s

u;L

2

(e)k

2

�

(4.7)

A suitable strategy is now to generate the anisotropic mesh (via choice of h

�;e

= h

d;e

)

and to choose the numerical damping parameters �

e

in such a way, that the error term

I

e

(u) is minimized. That means, that the task is to minimize the di�erent terms E

an

e;�;


,

but the problem is that there is only one free parameter �

e

. On account of the presumably

largest derivative

@

r+1

u

@�

r+1

=

@

r+1

u

@x

r+1

d

, we propose as a �rst attempt to minimize E

an

e;�;


in the case

� = 
 = (0; 1) for d = 2 and � = 
 = (0; 0; 1) for d = 3, respectively. Considering

E

an

e

� " + C

e

h

2

d;e

+ �

e

("

2

h

�2

d;e

+B

2

e

+ C

2

e

h

2

d;e

) + h

2

d;e

min

n

B

2

e

"

�1

; �

�1

e

o

; (4.8)

we proceed as in the proof of Lemma 3.8 and choose �

e

according to (3.29), (3.30) with h

e

,

P

e

and �

e

replaced by h

d;e

, P

an

e

and �

an

e

,

P

an

e

�

h

d;e

kb; [L

1

(e)]

d

k

"

; �

an

e

�

h

2

d;e

kc;L

1

(e)k

"

; (4.9)

respectively. But for a conclusive error estimate we must also consider the terms

h

2(�+�)

e

kD

�+�+


u;L

2

(e)k

2

:

That is why we give a more re�ned analysis for a special case in the next section.
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Figure 5.1: Problems of channel type.

5 Application to problems of channel type

5.1 De�nition and properties of the solution

In view of the di�culties to get a priori information on the solution u we restrict our con-

sideration in this section to a certain class of problems which should be introduced in the

following. The main point is a correspondence of the domain 
 and the 
ow �eld b consid-

ered.

Given a subdomain G � 
 and a 
ow �eld b we denote by (@G)

�

, (@G)

+

, and (@G)

0

the in
ow, out
ow and characteristic parts of @G; the index denotes the sign of (b � �

G

)(x)

where �

G

is the outward unit normal on @G. Let �

x

(�) be the solution of

_

�(�) = b(�(�)); �(0) = x 2 
;

the streamline of b passing through x 2 
. Denoting for any point x 2 G [ (@G)

�

by

�

G

+

(x) � inff� > 0 : �

x

(�) 62 Gg

the �rst exit time of �

x

(�) from G, we de�ne the domain of in
uence of any �

0

� @G by

E(�

0

) � f�

x

(�) 2 G : x 2 �

0

; 0 � � � �

G

+

(x)g:

We say now that a domain G is of channel type with respect to a 
ow �eld b if the following

three conditions are satis�ed:

(i) G = E((@G)

�

),

(ii) E((@G)

0

) � (@G)

0

, E((@G)

�

\ (@G)

+

) \G = ;,

(iii) j(b � �

G

)(x)j � � > 0 on (@G)

�

[ (@G)

+

.

In particular, this implies that all streamlines �

x

(�), x 2 G, leave G in �nite time. Hence

turning points with kb; IR

d

k = 0 and periodic characteristics are excluded. For an illustration

of channel type problems see Figure 5.1, whereas Figure 5.2 shows some situations not

allowed.

On the other hand, boundary layers will appear in the case G = 
 at (@
)

+

and (@
)

0

.

We have the following result of [21, Theorem 2.3] which gives a localization of the boundary

layers R

"

.

Lemma 5.1 Let 
 and 


i

, i = 1; 2, be simply connected domains of channel type, and

assume that 


1

� 


2

� 
, (@


1

)

�

� (@


2

)

�

� (@
)

�

and that (@


2

)

�

is su�ciently

smooth. For given numbers s > 0 and r 2 IN

0

there exist C

i

(r; s;


i

), i = 1; 2, and C(


2

;
)

such that if

dist(


1

; (@


2

)

+

) � C

1

"j ln "j; dist(


1

; (@


2

)

0

) � C

2

p

"j ln "j;
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Figure 5.2: Not allowed situations.

then

ku;W

r+1;2

(


1

)k � C

n

kf ;W

r+1;2

(


2

)k+ "

s

kf ;L

2

(
)k

o

:

So we denote by

R

"

� fx 2 
 : dist(x; (@
)

+

) � C

1

"j ln "j; dist(x; (@
)

0

) � C

2

p

"j ln "jg (5.1)

the boundary layer region of a domain 
 of channel type. Furthermore we de�ne

R

+

"

� fx 2 R

"

: dist(x; (@
)

+

) � C

1

"j ln "jg

R

0

"

� fx 2 R

"

: dist(x; (@
)

0

) � C

2

p

"j ln "jg

R

c

"

� R

+

"

\ R

0

"

(5.2)

5.2 Generation of the anisotropic mesh in the boundary layer

The meshes are constructed as introduced in Subsection 4.2. We choose

h

1;e

= h

�;e

= g

1

(")h; and h

2;e

= h

�;e

= g

2

(")h; (5.3)

with

g

1

(") = O(1); g

2

(") = " if e � R

+

"

n R

c

"

;

g

1

(") = O(1); g

2

(") =

p

" if e � R

0

"

nR

c

"

;

g

1

(") =

p

"; g

2

(") = " if e � R

c

"

;

(5.4)
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+

"

R

c

"

R

0

"

b

Figure 5.3: Generation of the anisotropic mesh, see example (4.1) (4.2) with �

1

= 0, �

2

=

�

2

.

and observe that

g

2

(") = o(g

1

(")) and g

1

(") � O(1): (5.5)

Note that by construction a condensed mesh occurs around the corners of (@
)

+

[ (@
)

0

where the layers intersect, compare Figure 5.3. Outside R

"

we double h

�;e

in �-direction

(perpendicularly to (@
)

+

and (@
)

0

, respectively) until h

�;e

� h. We see easily that the

number of elements is of the order h

�2

j ln "j

�1

.

In regard of lacking Sobolev norm estimates of u in R

"

, we assume the following hypoth-

esis to be satis�ed:

(H.6) kD

�

�;�

u;L

2

(e)k �

p

meas(e) [(g

1

("))

��

1

+ (g

2

("))

��

2

+ (g

1

("))

��

1

(g

2

("))

��

2

]K(f)

with g

1

, g

2

as in (5.4). The manifold with � = 0 corresponds to (@
)

+

for e � R

+

"

n R

c

"

and

to (@
)

0

elsewhere in R

"

.

Remark 5.2 As in Shishkin meshes [11, 27] we could omit the transition layer where we

double the previous mesh sizes; our forthcoming analysis is not a�ected. However, we expect

a more regular behaviour of the discrete solution and better algebraic properties of the related

system of equations with our approach.

5.3 Error estimates

With I

e

(u) as in (4.4), we split the error as follows:

jjj u� U

h

jjj

2

";�

�

X

e

I

e

(u) =

X

e�
nR

"

I

e

(u) +

X

e�R

"

I

e

(u): (5.6)

In view of Lemma 5.1 we can consider the elements in the �rst sum as in Section 3 and it

remains to treat the anisotropic elements e � R

"

.

Lemma 5.3 The error term I

e

(u) for e � R

"

is minimal (up to multiplicative constants)

for the following choice of �

e

:

�

e

=

h

2

2;e

"

p

1 + (P

an

e

)

2

+ (�

an

e

)

2

if (P

an

e

)

2

� (

~

P

an

e

)

2

�

q

1 + (P

an

e

)

2

+ (�

an

e

)

2

; (5.7)

�

e

= min

(

"

B

2

e

;

h

2

2;e

"

�

1 + (P

an

e

)

2

+ �

an

e

1 + (P

an

e

)

2

+ (�

an

e

)

2

)

if 0 � P

an

e

�

~

P

an

e

; (5.8)

with P

an

e

and �

an

e

de�ned in (4.9). Hence there holds

I

e

(u) � Ch

2r+2

K

2

(f)h

1;e

h

�1

2;e

"(1 + P

an

e

+ �

an

e

)

� Ch

2r+2

K

2

(f)("h

1;e

h

�1

2;e

+ C

e

h

1;e

h

2;e

+B

e

h

1;e

)

(5.9)
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Proof The relations (4.5), (5.3), (5.5) as well as assumption (H.6) imply

I

e

(u) = C

X

j�j=r�1

X

j�j=1

X

j
j=1

E

an

e;�;


h

2(�+�)

e

kD

�+�+


u;L

2

(e)k

2

� C

X

j�j=r�1

X

j�j=1

X

j
j=1

E

an

e;�;


(g

1

(") h)

2(�

1

+�

1

)+1

(g

2

(") h)

2(�

2

+�

2

)+1

�

�

h

g

�2(�

1

+�

1

+


1

)

1

+ g

�2(�

2

+�

2

+


2

)

2

+ g

�2(�

1

+�

1

+


1

)

1

g

�2(�

2

+�

2

+


2

)

2

i

K

2

(f)

� Ch

2r+2

K

2

(f)

X

j�j=1

X

j
j=1

E

an

e;�;


g

e;�;


; (5.10)

g

e;�;


� g

�2


1

+1

1

g

2�

2

+1

2

+ g

2�

1

+1

1

g

�2


2

+1

2

+ g

�2


1

+1

1

g

�2


2

+1

2

: (5.11)

Expressing g

e;�;


via (5.3) in terms of h, h

1;e

, and h

2;e

, and using h

2;e

= o(h

1;e

), h

1;e

� O(1),

we �nd

X

j�j=1

X

j
j=1

g

e;�;


� h

1;e

h

�1

2;e

;

X

j�j=1

X

j
j=1

h

2


e

g

e;�;


� h

1;e

h

2;e

;

X

j�j=1

X

j
j=1

h

�2�

e

g

e;�;


� h

1;e

h

�3

2;e

;

that means with (4.6) that

I

e

(u) � Ch

2r+2

K

2

(f)h

1;e

h

�1

2;e

E

an

e

with E

an

e

from (4.8), and thus we get with the same arguments as in Subsection 4.3 the

expressions (5.7) (5.8) for �

e

and (5.9) for I

e

(u). 2

Note that this result does not hold for general anisotropic meshes or general convection-

di�usion-reaction problems because the assertion is mainly based on assumption (H.6) and

a mesh satisfying (5.3).

As a result of the analysis in Lemmata 3.8 and 5.3 we propose the design of the numerical

damping parameters �

e

as in (5.7) (5.8) in all cases. That means, �

e

as well as the local

numbers P

e

and �

e

are dependent only on h

2;e

, which is equivalent to the radius of the inner

circle.

Using (5.6) we can summarize the error estimates as follows.

Corollary 5.4 Under the assumptions (H.1) : : : (H.6), u 2 H

r+1;2

(
), 1 � r � k, and using

the anisotropically re�ned boundary layer mesh (5.3) (5.4) and the parameter design (5.7)

(5.8) we get the almost uniform (with respect to ") error estimate

jjj u� U

h

jjj

";�

� Ch

2r

j ln "jK

2

(f)(1 + C

e

h

1;e

h

2;e

+B

e

h

1;e

): (5.12)

Remark 5.5 The parameters �

e

are very small in the boundary layer, but �

e

= 0 does not

give the optimal result: In parabolic boundary layers we would get instead

jjj u� U

h

jjj

";�

� Ch

2r

j ln "jK

2

(f)

p

"(1 + h

2

(C

e

+ "

�1

B

e

):

Remark 5.6 We conjecture that the analysis of this section can be re�ned in order to avoid

the factor j ln "j in (5.12) if we used a sharper estimate on the exponential decay of the

solution than in Lemma 5.1 and Assumption (H.6).
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