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shape is presented. The applied mesh generation strategy is based on the decomposition of
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program's capabilities and the handling with.
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1 Introduction

The state of the art in research and development more and more adresses the problem of gener-

ation a mesh of nodes and elements to discretize a solid object really in three dimensions. Such

a mesh must be of the appropriate structure and quality to form the basis of a mathematical

model the modern techniques of the numerical analysis can be applied to. A good survey of the

topic of mesh generation up to now can be found e.g. in [10, 19]. In recent time the parallel

computing of large scale �eld problems e.g. arisen in solid mechanics, electrical engineering and

computational 
uid dynamics based upon domain decomposition is very much under discus-

sion, (see e.g. [2, 7, 8, 9]). There is no doubt that the discretization of the underlying partial

di�erential equation and the applied parallel solution method still require the main e�ort of

the computational time during problem's simulation. However the numerical ingredients of

the main processing capitalize from the mesh data structure generated adaptively in parallel.

Moreover the produced mesh must re
ect the geometry of the domain with su�cient resolution

to model accurately the e�ects of geometric detail to a degree especially appropriated for the

adaptive numerical analysis, cf. [9, 13, 14, 15, 11]. In [4] a parallel mesh generator for the ef-

�cient parallel generation of coarse or �ner triangulations in arbitrary bounded plane domains

was presented. Special advantages of the advancing front technique of the underlying algorithm

(see [4, 20]) were the ability to vary the mesh density within the domain as well as to adapt

the sizes of the triangles to geometric peculiarities e.g. such as point singularities. Furthermore

the coupling of this mesh generation technique with further hierarchical mesh re�nement pro-

cedures (see [4]) using the produced edge related element-data structure was proven to be very

e�ective.

The aim of this paper is the extension of our parallel triangular mesh generator into the

third dimension conserving both its e�ectiveness, adaptivity, compatibility and versatility now

based on the edge related data structure for tetrahedral elements. For distinct opportunities

to perform load balanced triangular mesh generation the e�ciency of our 3D-mesh generator

is essentially determined by we refer back to [4, 18]. Provided that this adequate handling

with the program is guaranteed our parallel mesh generator will be much more e�cient than

every conventional one, whereas often the latter tools are capable of sequential mesh generating

in 3D-regions of near arbitrary shape, cf. e.g. [13, 14]. But the introduced mesh generation

strategy can be generalized by the description of more variable curvilinear boundary-faces to

become more robust in this sense.

In section 2 we describe the speci�c mesh generation method for producing regularly con-

nected tetrahedral layers based on its 2D-reference triangulations. In addition to we explain the

structure of the input-data �le the geometry of the class of meshable 3D-domains is re
ected

by, where the speci�cation of the corresponding boundary conditions is incorporated into. In

section 3 the background for the parallelization of the mesh generation is given, where the other

program's capabilities e.g. such as parallel grid smoothing and (inner) nodal renumbering are

overviewed. Section 4 gives the output-data structure of the tetrahedral mesh. Here we are

able to complete the edge-related data structure of triangular meshes introduced in [4] appro-

priately. Finally in section 5 several numerical examples are involved in order to demonstrate

both user's operating with the program and its e�ciency.

2 The speci�c 3D-mesh generation strategy

In [4] the problem of parallel triangular mesh generation via domain decomposition of the 2D-

domain to be meshed was solved universally. In other words, provided that the number p of

available processors and the involved memory size of the given parallel computer architecture is

large enough in every bounded plane domain
, which was decomposed into q single connected

subdomains 


i

, a su�ciently dense initial triangulation can be generated in parallel. Here

the parallelization is performed by the well de�ned mapping of the q single connected subdo-

mains onto the p processors, where each processor generates adaptively the triangulation in

the subdomain its boundary description he got. The boundary curve of every single connected

subdomain must be piecewisely consisted of straight lines and arcs of circles or parabolae.

Our applied tetrahedral mesh generation strategy consists in a parallel performed generalized

cylindric expansion of even this triangular subdomain meshes called 2D-reference triangulations

into the third (z)-dimension of space.
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2.1 On the generalized cylindric extension of an 2D-reference domain

Let the domain decomposition of the bounded plane domain 
 be given, i.e. we have

�


 =

q

[

i=1

�




i

� H :

The plane H in which the domain 
 is given divides the three dimensional space into two half

spaces. We denote the parallel generated meshes in every single connected subdomain of 


to be 2D-reference triangulations. Starting from the reference triangulations tetrahedral layers

are constructed in parallel up to di�erent heights in each case, where the layers are de�ned

orthogonally with respect to the plane H all of the corresponding subdomains are included in.

Figure 1 presents three simple cases for determining the 2D-reference domain decomposed into

several single connected subdomains. Finally the 2D-subdomains get the cylindric property by

the well speci�ed extension into only one direction of the corresponding half space (body (A))

or into the both half spaces (bodies (B) and (C)) into which the three dimensional space was

separated by the reference plane.
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body (A) body (B) body (C)

2D-ref.DD(A) 2D-ref.-DD(B) 2D-ref.-DD(C)

66

Figure 1: 2D-reference-DD describing generalized cylindric bodies

The strategy for de�ning the tetrahedral layers can be described as follows. First of all

only one pentahedral layer is built up based on its corresponding 2D-reference subdomain

triangulation, where the triangles these meshes are consisted of become the lower bases of all

of the pentahedrons. Then the pentahedrons are raised orthogonally with respect to its lower

bases having the same height given by the geometric data. Now every pentahedron can regularly

be divided up into three tetrahedrons, cf. subsection 2.2 . The regularly connected union of
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the tetrahedrons constructed by dividing the orthogonal pentahedrons as above forms the �rst

tetrahedral layer of the corresponding 3D-subdomain mesh. In the following for generating the

next tetrahedral layer the algorithm piles up this �rst tetrahedral layer, where again the height

of the new one must be speci�ed in the geometric data-input.
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Figure 2: sub-ref.-meshes of body (B) and elevations of tetrahedral layers constructed by

Doing as above the local names uniquelly determining the element connectivity must be num-

bered appropriately. So, step by step starting from the reference tetrahedral layer connected

with its 2D-subdomain triangulation the mesh generator piles up tetrahedral layers one upon
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the other until the tetrahedral mesh is fully generated in the generalized cylindric subdomain

speci�ed in the geometric data-input. The following adopted convention guarantees the mesh

regularity of the tetrahedral layers horizontally, i.e. parallel to the reference plane. As two or

more reference subdomains have some part in common (crosspoint, coupling boundary piece)

the vertical construction of the tetrahedral layers must be performed uniformly. I.e., the heights

of the auxiliary pentahedral layers are equal in the corresponding subdomains. Consequently

the �rst tetrahedral layer called the reference one will have the same height in the whole three

dimensional body. For more insight into see Figure 2, too. Obviously the piling up tetrahedral

layers also can be performed using two directions, where both are assigned to the correspond-

ing half space. Figure 2 outlines the piling up-method either applied to bodies having cylindric

shape extended into one direction only (cf. body (A)) or into both directions otherwise as it is

the case e.g. in Figure 1, bodies (B) and (C). Especially in the latter case the succession for the

two-directional piling up-method starting from the �rst layer is given in Figure 2, too, where

also non-connected layers may occur; cf. Figure 1, body (C).

The technique applied in order to guarantee the (diagonally) regular �nite element connectivity

of the tetrahedrons especially those to be placed at the coupling faces between the generalized

cylindric subdomains will be presented in the following subsection.

2.2 The principle for generating the tetrahedral layers

Let the subdomain's reference triangulation consisted of NUMEL regularly connected triangles

be given. This triangulation can be considered as �nite, simple and connected graph consisted

of NUMNP nodes and NUMED edges, see e.g. Figure 3. Step by step (j=1(1)NUMEL), for

each triangle included in performing well de�ned orientation and succession of its corresponding

three edges we get the simple, directed graph which is uniquely assigned to the reference tri-

angulation. As we know (cf. [4]) the NUMNP nodes of the triangulation are numbered locally

per each processor performing the corresponding mesh generation, where the coupling nodes

on subdomain's boundary are numbered �rst of all. Provided that the global names of these

coupling nodes here are available from the partitioning of the whole boundary contour the root

processor previously made we de�ne the following direction of the edges of 2D-reference mesh.

CN

1

) CN

2

$ g(CN

1

) < g(CN

2

) ; CN

1;2

� both are coupling nodes

CN1) IN

1

$ CN

1

� coupling node ; IN

1

� interior node

IN1) IN

2

$ IN

1

< IN

2

; IN

1;2

� both are interior nodes;

where the local name of each coupling node is uniquely assigned to its corresponding global one

by the function g(�).

The results of the described orientation of triangle's edges are directed triangles having two

edges with the same starting point. In the case of no coupling node in the triangle (an interior

one) this point coincides with the minimium number of its three vertices. The direction of the

third edge is an immediate consequence of the above de�nition, where from the graph theoretical

point of view no circle occurs in the simple directed graph generated as above, see e.g. Figure

3. Concerning the above newde�nition of starting and ending points now the 2D-local mesh

data set IED(5,�) containing the description of subdomain's edges is rede�ned correspondingly.

Moreover the sucession of the three triangle's edges the vector IECE(4,�) is consisted of now is

determined as follows. Concerning the two edges that have the same starting vertex in common

the �rst edge IECE(1,�) = 1 is the one having the ending point of the third edge, too. The

second edge IECE(2,�) = 2 is de�ned by the other and the third one completes IECE(3,�) =

3 as previously de�ned, cf. Figure 5. It is easy to see that every subdomain's reference mesh

can be uniquely directed in this way.

Each of the auxiliary pentahedrons having the directed-triangular lower base are cut by two

interior triangular faces getting the three tetrahedrons (see Figure 5) which must be regularly

connected in the FEM-sense to those in the immediate neighbourhood, see e.g. Figure 4.

Even the direction of the coupling edges (edges which are located at subdomain's boundary) is

globally unique and guarantees the regular FEM-connectivity of the tetrahedrons between the

3D-cylindric subdomains as presented now.

The starting and the ending point of the three diagonal edges 10 ; 11 ; 12 (upwards in

the case of cylinder's extension into one half space only, cf. body (A) in Figure 1, or up-

wards/downwards otherwise, see bodies (B),(C), correspond to those of the pentahedron as the

direction of the underlying edges in the lower base is determined, see also Figure 5.
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the local names of the nodal points

the global names of the nodal points

m
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denotations uniquely belong

to the 2D-ref.-subdomain:

NUMED - the number of edges

NUMNP - the number of nodal points

NUMEL - the number of triangles

Figure 3: Example for showing the context between subdomain's mesh and its directed graph

magnitudes determining the memory size per one tetrahedral layer:

the number of edges in the layer := 2*NUMED + NUMED + NUMNP

the number of nodes in the layer := 2*NUMNP

the number of faces the tetraahedrons formed by := 2*NUMEL + 2*NUMEL + 2*NUMED

the number of tetrahedrons in the layer := 3*NUMEL

Figure 4: The reference tetrahedral layer constructed from the above 2D-subdomain
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Provided that the data arrays IED(5,�) and IECE(4,�) are prepared as described above in the

following we give a survey of program's activities now performed in order to generate the �rst

3D-subdomain's tetrahedral layer called the reference one. After doing so the next layers are

constructed from the above by piling up one upon the other, see section 1.
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Figure 5: Outlines for cutting pentahedrons with directed lower bases 1 2 3 and 1 3 2

IED(5,.) : 1 3 0 0 1 3 1 0 0 1

1 2 0 0 1 2 1 0 0 1

2 3 0 0 1 3 2 1 n 2

4 6 0 0 1 6 4 0 0 1

4 5 0 0 1 5 4 0 0 1

5 6 0 0 1 6 5 2 n 2

1 4 0 0 1 1 4 0 0 1

2 5 0 0 1 2 5 0 n 1

3 6 0 0 1 3 6 0 n 1

1 6 0 0 1 3 4 0 0 1

2 6 0 0 1 2 4 0 0 1

1 5 0 0 1 3 5 3 n 4

IECE(4,.) : 1 2 3 1 1 3 2 1

4 5 6 1 4 6 5 1

9 10 1 1 7 10 1 1

7 10 4 1 9 10 4 1

9 3 11 1 7 2 11 1

8 6 11 1 8 5 11 1

8 12 2 1 8 12 3 2

7 12 5 1 9 12 6 2

10 11 2 1 10 11 3 1

12 10 6 1 12 10 5 1

ITETR(5,1): 1 3 5 9 1 1 3 5 9 1

7 9 6 10 1 7 9 6 10 1

8 4 2 10 1 8 4 2 10 1

Figure 6: The data sets of the edges, faces and tetrahedrons belong to the above examples
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1. De�ning the edges of all of the upper bases of the auxiliary pentahedrons by adding the

number NUMNP of subdomain's nodes to the names of the starting and ending vertex

of each edge in the reference triangulation we get NUMED new edges of the previously

determined type (implemented in the subroutine FACEILL in Figure 8).

2. Determining all of the faces forming the upper bases of the auxiliary pentahedrons by its

three edges built up in 1., i.e., adding the number NUMED to each of the three names

of the edges the lower base of the pentahedron is given by we get NUMEL new faces

(implemented in the subroutine EDGFILL in Figure 8).

3. De�ning all of the orthogonal edges between the vertex in the lower base and the cor-

responding one in the upper base of the pentahedrons we get NUMNP new edges of

straight-line type and now we have 2*NUMED + NUMNP edges totally before the fol-

lowing procedure for constructing the reference tetrahedral layer starts.

subroutine's outline for constructing the reference tetrahedral layer :

c*****************************************************************************

c construction of the reference tetrahedral layer from the underlying

c auxiliary pentahedrons having triangular lower and upper base.

c

c parameter description :

c

c nenk=5,ndf,nen11=2+ndf,nen21=4,nen31=5,ntr=10,nh=3,iproc,list,

c izg : distinct (horizontal) array's dimensioning ;

c izeig : array containing scalar magnitudes describing mesh data sets

c ied : array containing the description of the edges

c iece : array containing the description of the faces (triangles)

c ibc : array containing the description of boundary elements

c itetr : array containing the element description

c (the 4 faces of the tetrahedron and a material code belong to)

c ih : auxiliary memory for coding already generated edges and faces

c****************************************************************************

subroutine tetraer(nenk,ndf,nen11,nen21,nen31,ntr,nh,iproc,list,izg,

* izeig,ied,iece,ibc,itetr,ih)

c

integer*4 ied(nenk,1),ibc(nen11,1),iece(nen21,1),

* ih(nh,1),izeig(list,ntr,1),itetr(nen31,1)

c setting scalar magnitudes describing the 2D-mesh data sets :

numed = izeig(5,1,izg); numel = izeig(8,1,izg); numnp = izeig(1,1,izg)

numbed = izeig(6,1,izg); nummp = izeig(9,1,izg); nummph = 2*nummp; icr = 1

nvkante = 2*numed; nskante = nvkante + numnp; nrel = 0; nsface = 2*numel

call vicopy(nh*numed,ih,1,0,0)

c

do 100 i = 1,numel

ifacetyp1 = 1; ifacetyp2 = 1; ifacetyp3 = 1

k1 = iece(1,i); k2 = iece(2,i); k3 = iece(3,i); imb = iece(4,i)

n1a = ied(1,k1); n2a = ied(1,k2); n3a = ied(1,k3)

n1e = ied(2,k1); n2e = ied(2,k2); n3e = ied(2,k3)

nvkh1 = nvkante + n1e; nvkh2 = nvkante + n1a; nvkh3 = nvkante + n2e

c the first tetrahedron lying below :

if (ih(1,k1) .eq. 0) then

nskante = nskante + 1; nskh1 = nskante; ih(1,k1) = nskh1

nsface = nsface + 1; nsf1 = nsface; nsface = nsface + 1; nsf3 = nsface

ih(2,k1) = nsf1; ih(3,k1) = nsf3; ied(1,nskh1) = n1a

ied(2,nskh1) = n1e + numnp; ied(3,nskh1) = 0

if (ied(3,k1) .ne. 0) then

c defining the number of the midpoint if a curvilinearly diagonal edge occurs :

ied(3,nskh1) = ied(3,k1) + nummph + icr; icr = icr + 1

endif

ied(4,nskh1) = ied(4,k1); ied(5,nskh1) = ied(5,k1)

if (ied(5,nskh1).gt.1) then

ifacetyp1 = ied(5,nskh1); ied(5,nskh1) = ied(5,nskh1) + 2

endif

if (ied(4,k1) .gt. 0) then

c defining the 2 boundary-faces belong to this edge in the array ibc :

endif

iece(1,nsf1) = nvkh1; iece(2,nsf1) = nskh1; iece(3,nsf1) = k1

iece(4,nsf1) = ifacetyp1; iece(1,nsf3) = nvkh2; iece(2,nsf3) = nskh1

iece(3,nsf3) = k1 + numed; iece(4,nsf3) = ifacetyp1

else

nskh1 = ih(1,k1); nsf1 = ih(2,k1); nsf3 = ih(3,k1)

endif
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if (ih(1,k3) .eq. 0) then

nskante = nskante + 1; nskh3 = nskante; ih(1,k3) = nskh3

nsface = nsface + 1; nsf2 = nsface; nsface = nsface + 1; nsf4 = nsface

ih(2,k3) = nsf2; ih(3,k3) = nsf4; ied(1,nskh3) = n3a

ied(2,nskh3) = n3e + numnp; ied(3,nskh3) = 0

if (ied(3,k3) .ne. 0) then

c defining the number of the midpoint if a curvilinearly diagonal edge occurs :

ied(3,nskh3) = ied(3,k3) + nummph + icr; icr = icr + 1

endif

ied(4,nskh3) = ied(4,k3); ied(5,nskh3) = ied(5,k3)

if (ied(5,nskh3).gt.1) then

ifacetyp3 = ied(5,nskh3); ied(5,nskh3)=ied(5,nskh3) + 2

endif

if (ied(4,k3) .gt. 0) then

c defining the 2 boundary-faces belong to this edge in the array ibc :

endif

iece(1,nsf2) = nvkh1; iece(2,nsf2) = k3; iece(3,nsf2) = nskh3

iece(4,nsf2) = imb; iece(1,nsf4) = nvkh3; iece(2,nsf4) = k3 + numed

iece(3,nsf4) = nskh3; iece(4,nsf4) = imb

else

nskh3 = ih(1,k3); nsf2 = ih(2,k3); nsf4 = ih(3,k3);

endif

c

if (ih(1,k2) .ne. 0) then

nsf5 = ih(2,k2); nsf6 = ih(3,k2); nskh2 = ih(1,k2);

else

nskante = nskante + 1; nskh2 = nskante; ih(1,k2) = nskh2

nsface = nsface + 1; nsf5 = nsface; nsface = nsface + 1

nsf6 = nsface; ih(2,k2) = nsf5; ih(3,k2) = nsf6

ied(1,nskh2) = n2a; ied(2,nskh2) = n2e + numnp; ied(3,nskh2) = 0

if (ied(3,k2) .ne. 0) then

c defining the number of the midpoint if a curvilinearly diagonal edge occurs :

ied(3,nskh2) = ied(3,k2) + nummph + icr; icr = icr + 1

endif

ied(4,nskh2) = ied(4,k2); ied(5,nskh2) = ied(5,k2)

if (ied(5,nskh2).gt.1) then

ifacetyp2 = ied(5,nskh2); ied(5,nskh2)=ied(5,nskh2) + 2

endif

if (ied(4,k2) .gt. 0) then

c defining the 2 boundary-faces belong to this edge in the array ibc :

endif

iece(1,nsf5) = nvkh3; iece(2,nsf5) = nskh2; iece(3,nsf5) = k2

iece(4,nsf5) = imb; iece(1,nsf6) = nvkh2; iece(2,nsf6) = nskh2

iece(3,nsf6) = k2 + numed; iece(4,nsf6) = imb

endif

c

c the first interior triangular face :

c

nsface = nsface + 1; nsfi = nsface; iece(1,nsfi) = nskh1

iece(2,nsfi) = nskh3; iece(3,nsfi) = k2; iece(4,nsfi) = 1

nrel = nrel + 1; itetr(1,nrel) = i; itetr(2,nrel) = nsf1

itetr(3,nrel) = nsf2; itetr(4,nrel) = nsfi; itetr(5,nrel) = imb

c

c the second tetrahedron in the middle, the second inner triangular face :

c

nsface = nsface + 1; nsfii = nsface; iece(1,nsfii) = nskh2

iece(2,nsfii) = nskh1; iece(3,nsfii) = k3 + numed

iece(4,nsfii) = 1; nrel = nrel + 1; itetr(1,nrel) = nsf5

itetr(2,nrel) = nsfi; itetr(3,nrel) = nsf4

itetr(4,nrel) = nsfii; itetr(5,nrel) = imb

c

c the third tetrahedron lying above :

c

nrel = nrel + 1; itetr(1,nrel) = nsf6; itetr(2,nrel) = nsf3

itetr(3,nrel) = numel + i; itetr(4,nrel) = nsfii; itetr(5,nrel) = imb

100 continue

c

c setting scalar magnitudes describing the 3D-mesh data sets :

c

numte = 3*numel; izeig(5,1,izg) = nskante; izeig(8,1,izg) = nsface;

izeig(12,1,izg) = numte; izeig(6,1,izg) = 2*(numbed+numel)

izeig(9,1,izg) = nummph + icr - 1

return

end
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2.3 The geometric description of the 3D-domain via ASCII-codes

The point of departure for the generation of tetrahedral meshes in the generalized cylindric

domain was the 2D-reference domain decomposition. Hence the structure of the 3D-geometric

data �le will coincide with the 2D-one with exception of the data block the information for the

extension of 2D-subdomains into the space is included in. The input-data �le is consisted of �ve

data blocks concerning the global names of domain's geometric data. The detailed explanation

of the blocks describing 2D-geometric data was given in [4, 16, 17], whereas in this paper

the fourth data block gets slightly modi�cation in its sense and the �fth block is extended

with respect to the 3D-cylindric expansion of the 2D-reference domain decomposition. The

description of both blocks is fully presented after the following table 1 gave a short summery

of the �le structure.

Block 1 : The �rst block (2D-reference scalar data) contains the numbers of :

basic nodes, basic lines, subdomains, basic lines with respect to some boundary conditions that

are de�ned upwards and downwards, respectively, and :

3 values the maximum of the range of the above numbers is restricted by;

Block 2 : The cartesian coordinate block pointwisely consisted of the x- and y-coordinates of the 2D-

reference basic nodes;

Block 3 : The block of the description of the basic lines, where its names (NUM), types (LT), the names

of its basic nodes and the method (IT) for specifying its uniform or adaptive partitioning with

(NR) new nodes to be placed on it are given, see Figure 7 and cf. [4];

Block 4 : The 4-th block describing basic lines with respect to boundary conditions;

Block 5 : The 5-th block of the description of the subdomains at �rst consisted of

two rows for each 2D-reference subdomain, where the �rst row contains :

NUM the name of the 2D-reference subdomain

NPA the number of basic lines that are bounding it

NMB the corresponding material code of the 2D-cross section

PI2A the �rst criterion-angle (L) de�ning the reference triangles (default - 0.)

PI24A the second criterion-angle (L) de�ning the reference triangles (default - 0.)

PI6A the third criterion-angle (L) de�ning the reference triangles (default - 0.)

the second row contains the following :

LB(I), I=1,...,NPA the names of the corresponding basic lines from block 3

and now per each subdomain a third row containing the number

IL

of further rows here, the 3D-extension is described main-level (LI) by main-level, (I=1(1)IL), in

terms of 10+3*NDF real values in each case, where the value NDF is equal to the number of

the degrees of freedom given by the underlying p.d.e. to solve on the domain. The IL rows now

included in this data block have the following structure :

RNUML1,RLTL1,ZL1L,ZL1M,ZL1U,RITL1,RNRL1,A1L1,A2L1,RMBL1,NDF*BCL1fl,u,sg

RNUML2,RLTL2,ZL2L,ZL2M,ZL2U,RITL2,RNRL2,A1L2,A2L2,RMBL2,NDF*BCL2fl,u,sg

..............................................................................................................................................;

The denotations used at last in the �fth data block are declared as follows, where they belong to

the I-th main-level in each case, I=1(1)IL.

RNUMLI the name of the I-th main level

RLTLI the type(=1) of the I-th main level (up to now constructed orthogonally)

ZLIL the z-coordinate of the lower base of the main-level

ZLIM the z-coordinate of some point in the middle possibly given

ZLIU the z-coordinate of the upper base of the main-level

RITLI the type for partitioning the main-level into levels, cf. Figure 7 and [4]

RNRLI the number of such levels included in the I-th main-level minus one

A1LI the �rst ratio the adaptive main-level partitioning is determined by

A2LI the second ratio the adaptive main-level partitioning is determined by

RMBLI the material code of the I-th main-level; RMBL1 = NMB holds

BCLIfl; u; sg for NDF degrees of freedom in each case the type of the boundary conditions(BC)

imposed on the lower (l), upper (u) base of the main-level and on some parts of

its lateral surface (s). This is done in the cartesian product-connection with the

function pointer speci�ed for basic lines in data block 4. If no BC the value is 0.

Table 1: The general structure of the PARMESH-3D-input-ASCII-data �le
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As in the 2D-case the geometric input-data �le can be quickly created by the graphical editor

GRAFED, see e.g. [4, 17].

In data block 4 all of the basic lines are described by means of its orthogonal projection

performed upwards or/and downwards edges of faces will produced later that possess some

kind of boundary conditions. The description of these basic lines includes its name (NUM), its

type (LT, straight line, circular or parabolic arc), the name of its starting, middle and ending

basic node, the corresponding material code determined by the reference cross-section and the

pointer to some function-program that de�nes the values of the boundary condition imposed

as explained above.

In connection with data block 5 the type of the corresponding boundary conditions is coded.

For simplicity here we adopt the convention that this type may change only vertically, i.e., main-

level by main-level its lower and upper triangulations are parallel to the reference one included

in the plane H, cf. section 1. Therefore the decomposition of the 2D-reference domain into

the q single connected subdomains must be appropriately given by corresponding basic lines

supporting boundary conditions in the sense of data block 4. As �rst of all the the geometric

shape of the 3D-domain determines the 2D-reference domain decompostion this additional

requirement could cause an increased number q of subdomains. The meshes in the subdomains

will generate by p processors in parallel after the mapping "subdomain(s) $ processor" is

performed as de�ned in the following section 3. Provided that the number p of available

processors is large enough the above assumption can be guaranteed there.
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Figure 7: The context of the parameters (R)IT(LI), (R)NR(LI), A1(LI), A2(LI) in the data

blocks 3 and (5), respectively
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By the example shown in the next Figure we gain insight into its given speci�c 3D-geometric

data �le structure.
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Figure 8: Example of the 2D-reference DD belonging to body (B) in Figure 1

8 6 3 4 0 0 0

0.0 2.0

-2.0 0.0

0.0 -2.0

2.0 0.0

0.0 1.0

0.0 -1.0

-1.0 0.0

1.0 0.0

1 2 1 2 3 1 8 0 0

2 2 3 4 1 1 8 0 0

3 1 1 0 5 1 2 0 0

4 1 3 0 6 1 2 0 0

5 2 5 7 6 1 4 0 0

6 2 6 8 5 1 _4___ 0 0

1 2 1 2 3 1 | 1 |

2 2 3 4 1 1 | 1 | pointers to some functions

5 2 5 7 6 1 | 2 | describing boundary conditions

6 2 6 8 5 1 | 2 |

1 4 1 0 0 0 -----

1 4 5 3

2 ______________

1. 1. 0. 0. 0.5 1. 2. 0. 0. | 1. 2. 0. 1. |

2. 1. 0.5 0. 1.5 1. 3. 0. 0. | 1. 0. 2. 2. |

2 4 1 0 0 0 ---------------

2 4 6 3

2 _______________

1. 1. 0. 0. 0.5 1. 2. 0. 0. | 1. 2. 0. 1. | material and

2. 1. 0.5 0. 1.5 1. 3. 0. 0. | 1. 0. 2. 2. | boundary codes

3 2 1 0 0 0 --------------- for the main-

5 6 levels

3 _______________

1. 1. 0. 0. 0.5 1. 2. 0. 0. | 1. 0. 0. 0. |

2. 1. 0.5 0. 1.5 1. 3. 0. 0. | 1. 0. 0. 0. |

3. 1. 1.5 0. 5.5 1. 4. 0. 0. | 1. 0. 2. 2. |

4. 1. 0. 0. -4.0 1. 4. 0. 0. | 1. 0. 2. 2. |

---------------

Table 2: The geometric input-data �le belonging to body (B)
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3 On program's parallelization and capabilities

The parallelization of the mesh generator PARMESH3D consists in the following steps. Let the

reference domain decomposition (DD) of the domain 
 � H into q 2D-subdomains be given.

Reading the input-data �le by the root processor, there the basic line partitioning (P) concerning

the whole boundary contour will be performed and stored according to its speci�cation given

in data block 3, cf. Figure 7. The assigned number of necessary arithmetical operations is

of order O(h

0

), where the parameter h

0

denotes the average size of the distances in the basic

line partitioning. Moreover, here the partitioning of the main-levels must be computed as it is

required by its de�nition given in the corresponding extension of subdomain's data block 5.

Ending the basic line partitioning, well speci�ed subsets D

i

; i = 1; : : : ; q, in each case

containing the data of the i�th subdomain (the coordinates of all of the points at its 2D-

reference boundary contour, its global names de�ned by the whole 2D-contour and the 2D,3D-

subdomain's description concerning e.g. the 2D-reference meshing control parameters (L) and

the coordinates of the lower and upper bases of the tetrahedral layers, the material and BC-

information given in data block 5 are included in) will send from the root processor to well

determined others, where the implemented static-loadbalanced data division is de�ned by the

following bijection of the data sets D

i

onto the k�th processor, k = 0; : : : ; p� 1:

Let q be the number of subdomains and p be the number of available processors.

� case 1, (p � q) : We de�ne the mapping i $ k, i.e., one and only one data set D

k+1

per

processor k = 0; 1; : : :; q � 1 ; and p� q processors will do nothing;

� case 2, (q > p) : We have n := q=p and r = mod(q; p) and the data set D = fD

1

; : : : ;D

q

g

is sequentially subdivided into p subsets as follows :

S

0

= fD

1

;D

2

; : : : ;D

n

g ;S

1

= fD

n+1

;D

n+2

; : : : ;D

2n

g ; : : : ;S

p�1

= fD

n(p�1)+1

; : : : ;D

np

g,

where card(S

i

) = n 8i = 0; 1; : : : ; p� 1.

If r 6= 0 then de�ning the remainder-set R = fD

np+1

;D

np+2

; : : : ;D

q

g and the sets

S

0

;S

1

;S

r�1

must be sequentielly extended by one and only one data set from R.

Then, we de�ne the mapping : S

k

$ k ; k = 0; 1; : : : ; p� 1.

We emphasize that the number of subdomains its meshes are generated by one and only one

processor may not exceed the constant IPROC determined by the program, cf. section 4.

Therefore n+ 1 � IPROC must be ful�lled.

In [4] we proposed two opportunities for performing scienti�c load balancing such that the

amounts of numerical operations for the 2D-mesh generation performed in each processor agree

reasonably well. This 2D-loadbalance determines the balance of the corresponding 3D-mesh

generation essentially, whereas the amount for constructing the tetrahedral layers is neglectible

with exception of that concerning the reference one.

After the above one-to-one mapping was performed by means of only rare communication

the program PARMESH3D runs totally parallel such that the 2D-reference triangulations (T

i

) in

the corresponding subdomains will be generated very e�ciently. The internally performed mesh

generation frontier-algorithm (F) is based on the leveling and removing process of triangles. Its

idea was founded in [20]. The amount of necessary arithmetical operations can be estimated by

Q(F ) = C

F

(


i

; P

i

; L

i

) � h

0;i

. Here the magnitude h

0;i

denotes the average-size of the distances

between points at i-th subdomain's boundary. The constant C

F

depends on subdomain's size

and shape, on the kind of the partitioniong (P

i

) and on the mesh generation control parameters

(L

i

) the leveling of triangles is speci�ed by. In some worse cases of the demanded initial mesh

density the amount Q(F ) is of order O(h

�2

0;i

). The types of the arithmetical operations are

substantially those needed for the computation of angles, distances, etc., such that the calls of

standard functions like "arctan" and "sqrt" are hidden here.

To improve the shape of the triangles generated in subdomain's reference mesh it-times the

grid smoothing process (S) (see e.g. [1, 16, 17]) can be applied, where its parallelization is based

on the made mapping, too. The corresponding amount of numerical operations is equivalent to

Q(S) = C(T

i

) � it � h

�2

0;i

. The reference triangulations can be re�ned by the hierarchical mesh

generator GIGEHI very fast, see e.g. [4], before the construction of the tetrahedral layers starts.

After the 2D-reference mesh generation is completed the constructions of the corresponding

tetrahedral layers are performed in parallel as described in section 1. The amount for generating

the layers can be estimated by O(h

�2

0;i

), where the main part is determined by the reference

one, whereas the data of the others are built up by doubling the previous one and adding well

de�ned integers to.
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When the mesh in the 3D-subdomainwas generated the renumbering (R

3

) of the names of its

interior nodal points is continued immediately if it was globally demanded by the user. This pro-

cess is performed totally parallel, too. The underlying algorithm is essentially based on minimal

nodal degree ordering, see [3, 4] and the references therein. Its amount of arithmetical operations

can be estimated by Q(R

3

) = C(graph(Tetr:(T

i

)))� NUMINP> O(h

�4:5

), where the variable

NUMINP represents the number of interior nodal points of the 3D-subdomain. For comparison

the amount for nodal renumbering in the 2D-case (R

2

) was estimated in [3] to be Q(R

2

) =

C(graph(T

i

))� NUMINP � C�NUMINP

3=2

= O(h

�3

). The constant C(graph(Tetr:(T

i

))) the

amount Q(R

3

) of the algorithm is estimated by depends on properties characterizing the tetra-

hedral graph constructed from the reference triangulation T

i

and exceeds O(h

�1:5

). The impres-

sive results given in [3] have been proven that the renumbering of the nodal points in the coarsest

mesh is very e�cient in the case of the exact solution of systems of equations discretized there

and included in the multilevel method. This method can be used as e�cient subdomain solver

for the parallel solution of the partial di�erential equation given on the domain 
 discretized

by the additive Schwarz-DD-method, cf. also [7, 8, 9].

The following Figure 9 presents the scheme for controlling and operating with the program

package PARMESH3D.

calling the program (run ...)

questioning of the 3D-/ 2D-input-data �le ! (y/n)

input of the input �le name

de�ning the name of an output-data �le

2D-mesh generation 3D-mesh generation

questioning as follows :

� grid smoothing demanded ? ! (y/n)

� renumbering of the cross points ? ! (y/n)

� renumbering of subdomain's inner nodes ? ! (y/n)

� input the number of hierarchical prere�nements ! ! (I � 4� value � 0)

some questions concerning the

2D-FEM-output-�le, see [16, 17]

output of the whole mesh demanded ? !

(y / n)

�le-output output of subdomain's mesh ?

END (y ! selecting subdomains name, �le-output, END)

(n ! END, or further main-processing in parallel)

Figure 9: The plan for handling with the mesh generator

Ending the 3D-mesh generation the user may require the output of the whole tetrahedral

mesh to be �t in the root processor or select the output of one of the subdomain meshes.

Otherwise some kind of further parallel main-processing (see e.g. [2, 4, 7, 8, 9] and the references

therein) runs locally, where the mesh data structure given in section 4 can be used.

In each case the corresponding output is implemented by writing out mesh data sets into

the output �le. The structure of the output �le is de�ned analogously to the case of 2D-FEM

mesh data, e.g. described in [16, 17]. The coordinates of the vertices of the tetrahedrons, the
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corresponding standard-FEM connectivity as well as the boundary-face description equipped

with the coded boundary conditions are involved in. By means of the output �le the tetrahedral

meshes can be visualized distinctly using the program GRAPE, see e.g. [5].

On the root processor also the renumbering of all of the nodes in the whole tetrahedral mesh

can be performed by the mentioned algorithm before the �le-output begins, but it costs the

above substantial time e�ort. Nevertheless this can be useful in order to prepare the e�cient

solution of the system of equations discretized later on these (cross)points in the case of further

sequential or parallel 3D-FEM processing, see e.g. [2, 7, 8, 9].

The following Figure 3 presents the hierarchical tree of the subroutines called by the main

program PARMESH3D.

PARMESH3D
PARMESH

3
..........

BLAS

1

DATINP

9

INGEB

VORGEB

INTLZD

KOORXYZ

Z3DINPUT

LEVDINP

ZLOCAL3

PREREN

PRMVBT

3

POSTREN

7
s

DAT3FIT

NULLFIT

DENS03D

DOM3DFIT

BASKON

NTETDEF

GGCONSET

OUT3DMESH

OUTSTA

GGDEF

BALADAP

BALIKO

UTES

DENS3D

6

BASKON

TRIAOR

PRETRI SPEZIELL

GRDEDEF

DATSET3D

DNUMINP

EDGFILL EDGSET

FACSETFACEILL

TETRAER

PREDEFR

DUPLIK

8

PRMVBT

4

GIMIBT IXTTDEF

IXTKDEF

IXTKDEF

ASSMLC

NEWSET

VICINI

RENUMP

5

RENINT

RENUMT4

RENUMT8

RENINTA

IBCCORR

NTETDEF

KONSTSET

KANZDEF

RENMARK

KANDEF

KANREN

KANFGL

FLADEF

TETDEF

IRFDEF

Figure 8 : The subroutines called by PARMESH3D

1

basic linear algebraic subroutines for vector operation and communication, see e.g. [6]

2

The other ingredients of the 2D-mesh generator are given in [4]

3

Controlling of the nodal renumbering of the whole 3D-mesh

4

Controlling of the inner nodal renumbering in the 3D-subdomains having the same subroutines

5

The continued nodal renumbering algorithm is described in [3]

6

Local controlling of the construction of the tetrahedral layers

7

Preparing and performing the output of the whole tetrahedral mesh and some selected 3D-subdomain part,

respectively, by the continued subroutines

8

Piling up the tetrahedral levels one upon the other

9

Setting the data of the z-extension of the 2D-subdomains by the root processor
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Concluding remarks :

Here we give a short summary that contains several opportunities for developing the program

PARMESH3D to become more robust.

� By the automatical balancing of problem's underlying domain decomposition up to now

static-heuristically performed we want to improve the e�ciency of the 3D-mesh generator

to become well balanced; ideas are given e.g. in [4, 18]. Here the dynamic prediction of

the memory size necessary for the 3D-subdomain meshes is involved.

� Determining adaptively the type RITLI and the number RNRLI of partitions included

in the main-level speci�cation we re
ect geometric properties and peculiarities that were

already taken into account for de�ning the 2D-reference boundary contour appropriately

(cf. [4]). Here, e.g. the computation of the partitioning of the main-levels into equidistant

levels was possible as well as anisotripic elements could occur. During the mesh genera-

tion the corresponding size of the level distances could be derived from the sizes of the

triangular edges the 2D-reference mesh is given by.

� Our initial mesh generator must be appropriately connected to an hierarchical 3D-mesh

generator that is capable of canonical and adaptive re�ning, too; see e.g. [4, 12, 15] for

the adaptive mesh re�nement in the 2D-FEM-case and [11] for the canonical re�nement

of tetrahedrons.

� The implementation of the 3D-grid smoothing in terms of the appropriate transition of

the inner nodal points, see e.g. [1, 16, 17], can easily be performed.

� The opportunity for de�ning the boundary-faces of the subdomains curvilinearly is already

included in the main-level description of the data block 5 (RLTLI,ZLIM) but the extension

is still performed orthogonally as explained in section 1.

4 The Output Data-Structure of the tetrahedral mesh

In each subdomain the corresponding triangulation generated in parallel is described by the

program PARMESH3D in terms of an edge-related data structure. I.e., for the generalized

cylindric 3D-subdomain the corresponding processor makes available distinct data blocks its

structure is claimed to be very suitable for further parallel computations. The names of all of

the data and the size of the sets they belong to are de�ned to be locally and uniquely there,

too. For simplicity the data are summarized and described in the following survey.

1. scalar data :

NUMNP : the total number of nodal points generated in the subdomain (the corre-

sponding number of points on its boundary is included in)

NUMINP: the number of nodal points in the interior of the subdomain

NUMMP : the number of midpoints given on the curvilinear edges of the boundary

of the corresponding subdomain

NUMCP : the number of nodal points on the boundary of the subdomain (so called

coupling points that are no cross points)

NUMCRP: the number of crosspoints (i.e. the number of basic nodal points that

(2D only) have at least the degree graeter than two). Its size corresponds to the

number of 2D-coupling boundary pieces given between two cross points

NUMED : the number of all of the edges generated in the subdomain

NUMEL : the number of all of the faces forming the tetrahedrons in the subdomain

NUMTE : the number of all of the tetrahedrons generated in the subdomain

NUMBED: the number of the edges on the boundary of the subdomain if some corre-

sponding part of the actual boundary of the domain 
 is described by

NDF : the number of degrees of freedom the boundary conditions of the whole

domain 
 are de�ned by

NTR : the number of re�nement steps are to be carried out by the hierarchical

mesh generator.
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Remarks

� Each of the above �rst eight data item belonging to one and only one subdomain-mesh

is uniquely assigned to some i-th element of the pointer-vector IZEIG(i,NTR,IPROC),

where the variable IPROC (� 1) denotes the maximum number of subdomains one and

only one processor can have for the corresponding mesh generation in it. Hence the

assignment of the q subdomains to the p available processors as described in section 2.2.

is restricted by the size of IPROC. Because PARMESH generates the initial triangulation

(NTR = 1) the entries are made in IZEIG(i,1,l), where the index l; (1 � l � IPROC) is

the local name of one of the subdomains mapped to the k-th processor (k = 1; : : : ; p).

Remembering the adopted convention n = q=p and provided that the case q > p holds at

most l = n+ 1 can be ful�lled.

� De�ning further entries in the pointer-vector IZEIG the starting pointers for each of the

following array-data are marked by because all of the vectorial data stand on some large

array B(.) in our FORTRAN-program package. If we put more than one subdomain into

the k-th processsor consequently we get the corresponding entries in IZEIG(�,1,l); l > 1,

the starting pointer of the l-th vectorial data set of the same type (a) { (h) is given.

2. vectorial data :

(a) IED(5,j) : the vector all of the edges of the subdomain, where

j = 1; : : : ;NUMED, and the following holds :

IED(1,j) : the name of the starting point of the j-th edge

IED(2,j) : the name of the ending point of the j-th edge

IED(3,j) : the name of the midpoint of the j-th edge, if the edge is of

curvilinear type otherwise zero stands here

IED(4,j) : is set to be zero if the j-th edge is in an interior one and otherwise

it is the name of the corresponding coupling boundary piece the

j-th edge belong to

IED(5,j) : = 1 if the type of the edge is a straight line

= 2 if the type of the edge is a piece of some circle

= 3 if the type of the edge is a piece of some parabola

= 4 if the edge is an elliptic piece cut out of a circular cylinder

= 5 if the edge is an parabolic piece cut out of a parabolic cylinder

(b) IECE(4,j) : the vector describing the faces the tetrahedrons are bounded by, where

j = 1; : : : ;NUMEL, and the following holds :

IECE(1,j):

IECE(2,j): are called the names of the 3 edges belong to the j-th triangle

IECE(3,j):

IECE(4,j): the j-th face-type (plane(=1), circularly(=2) or parabolicly(=3) cylindrical)

(c) ITETR(5,j) : the element connectivity vector containing tetrahedron's faces in each

case, where

j = 1; : : : ;NUMTE, and the following holds :

ITETR(1,j):

ITETR(2,j): are called the names of the four faces uniquely describing

ITETR(3,j): the j-th tetrahedron

ITETR(4,j):

ITETR(5,j): the material code name belonging to the j-th tetrahedron

Remarks :

� These vectors can be used in order to generate the �nite element sti�ness matrix

quickly. The element connectivity vector that contains the names of the nodal

points belonging to the j-th element is typical for �nite element computations.

Using the pointer-context "element-faces-edges-nodal points" described in [4]

this data set is implicitly given.
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(d) IBC(2+NDF,j) : the vector for coding the boundary properties, where

j = 1; : : : ;NUMBED, and the following holds :

IBC(1,j) : the name of the face de�ning the j-th boundary-face

IBC(2,j) : the material code name of the j-th boundary-face

IBC(3,j) : is set 1,2 or 3 if Dirichlet, Neumann or boundary conditions

: : : : : : : : : of third type are imposed on the j-th boundary-face, where the

IBC(2+NDF,j): variable NDF (� 1) is the number of the degrees of freedom

(e) ICBN(4,j) : the vector de�ning the coupling boundary pieces of the 2D-ref. subdo-

mains, where

j = 1; : : : ;NUMCRP, and the following holds :

ICBN(1,j): the name of the �rst coupling point given on the j-th coupling

boundary piece of the subdomain

ICBN(2,j): the number of coupling points on the j-th coupling boundary piece

ICBN(3,j): are the names of the two cross points that are starting or ending

ICBN(4,j): points of the j-th coupling boundary piece of the subdomain

Remarks :

� The coupling points that lie on the j-th coupling boundary piece are uniquely

numbered in the natural sequence starting with the �rst name ICBN(1,j) that

followed the cross point ICBN(3,j) immediately.

� The �nite sequence of the cross points ICBN(3,1),ICBN(4,1),ICBN(3,2),: : :: : :

: : : ,ICBN(3,NUMCRP),ICBN(4,NUMCRP) is closed and given in mathemati-

cally positive relation, where the condition ICBN(3,1)= ICBN(4,NUMCRP) is

ful�lled.

(f) X(3,j) : the (x; y; z)- coordinate vector of all of the nodal points of the 3D-subdo-

main, where

j = 1; : : : ;NUMNP, and the following holds :

X(1,j) : the x- coordinate of the j-th nodal point

X(2,j) : the y- coordinate of the j-th nodal point

X(3,j) : the z- coordinate of the j-th nodal point

Remark :

� Increasing the index j monotonically the nodal point coordinates are given as

follows : At �rst the coordinates of the crosspoints stand according to its local-

sequentially natural numbering, secondly the coordinates of the coupling points

stand according to the sequentially natural numbering of the coupling boundary

pieces they belong to and now the coordinates of all of the interior nodal points

complete the vector.

(g) XM(3,j) : the (x; y; z)- coordinate vector of the midpoints belonging to curvilinear

edges possibly participated in de�ning the boundary of the subdomain,

where

j = 1; : : : ;NUMMP, and the following holds :

XM(1,j) : the x- coordinate of the j-th midpoint

XM(2,j) : the y- coordinate of the j-th midpoint

XM(3,j) : the z- coordinate of the j-th midpoint

Remark :

� The numbering of these coordinate triples is sequentially natural, too, and math-

ematically positive related with respect to the z-height in addition to.

(h) IEDM(j) : the vector that includes speci�c re�nement information coded for each

edge of subdomain's tetrahedrons, where j = 1; : : : ;NUMED.
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5 Numerical examples

The computation of the following two examples are performed on the Multicluster II equipped

with 32 T 805 processors (30Mhz, 8Mbyte). The computational times given in the following

Table 3 for example 1 and separately depicted in the case of the two others contains neither the

time necessary for the rare communication and the cross point renumbering at the beginning of

the program nor the time for the possible output of the mesh at its end. Hence, the measured

time really indicates the e�ect of the performed parallelization, where in each case both the

time needed for parallel grid smoothing of the 2D-reference meshes and for parallel interior

nodal renumbering in all of the 3D-subdomains is involved.

5.1 Example 1 { An academic test problem

The �rst example is an academic one. The 2D-reference domain 
 is the (0; 4)� (0; 4) square

divided up into 16 congruent subsquares, see Figure 10. The corresponding basic lines are the

edges of the smaller squares. For all basic lines its division into pieces is of equidistant type

speci�ed by the corresponding number NR given in the �rst column of Table 3.
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The reference square decomposed

into the given 16 subsquares

One initial subdomain reference mesh

with 5 divisions per each basic line

Figure 10:
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Table 3 presents the computational results belonging to the above square. As it was expected

because of the totally uniform loadbalance between the 16 2D-subdomains given here and its

uniform z-expansion, the performed 3D-mesh generation is very fast.

the number

NR of basic number of number of equidistant level

line parts triangles (total number of generated tetrahedrons)

in the 2D- in the 2D measured CPU-time (in min:sec)

ref.-mesh ref.-mesh 1 2 6 11 21 31

0
32 (96) (192) (576) (1056) (2016) (2976)

0:00,5 0:00,73 0:00,86 0:00,9 0:01,24 0:01,5

0 64 (192) (576) (1152) (2112) (4032) (5952)

0:00,56 0:00,7 0:00,72 0:00,78 0:01,17 0:01,6

1 256 (768) (1536) (4608) (8448) (16128) (23808)

0:00,96 0:01,0 0:01,1 0:01,2 0:01,3 0:01,5

3 640 (1920) (3840) (11520) (21120) (40320) (59520)

0:01,0 0:01,1 0:01,2 0:01,4 0:01,6 0:02,0

5 1881 (3762) (7524) (22572) (41382) (79002) (116622)

0:01,13 0:01,27 0:01,4 0:01,9 0:02,29 0:02,69

10 4604 (13812) (27624) (82872) (151932) (290052) (428172)

0:02,04 0:02,47 0:03,1 0:04,41 0:05,78 0:07,69

Table 3: The CPU-time concerning distinct basic line-partitionings and main-levels
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Figure 11: The (un)shrinked 3D-mesh in one of the 16 cubes having the above reference

triangulation and 6 tetrahedral levels

5.2 Example 2 { A mechanical cylinder with partially opened sheet
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Figure 12: 2D-ref. DD and the corresponding mesh for the mechanical cylinder with cut sheet
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CPU-times for mesh generation per

3 processors : 0:01,10 sec

1 processor : 0:02,92 sec

speed up : 2.65

Figure 13: hzyls 3d.dat; 978 nodes, 2961 tetrahedrons; (1080, 1020, 861 per processor 0, 1, 2)
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5.3 Example 3 { A technical shaft having one sided pivot

CPU-times for mesh generation per

3 processors : 0:00,52 sec

1 processor : 0:01,44 sec

speed up : 2.76

Figure 14: welle 3dn.dat; 560 nodes, 2400 tetrahedrons; (840, 840, 720 per processor 0, 1, 2)
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