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Abstract

A perturbation analysis shows that if a numerically stable proce-

dure is used to compute the matrix sign function, then it is competitive

with conventional methods for computing invariant subspaces. Stabil-

ity analysis of the Newton iteration improves an earlier result of Byers

and con�rms that ill-conditioned iterates may cause numerical insta-

bility. Numerical examples demonstrate the theoretical results.

1 Introduction

If A 2 R

n�n

has no eigenvalue on the imaginary axis, then the matrix sign

function sign(A) may be de�ned as

sign(A) =

1

�i

Z




(zI � A)

�1

dz � I; (1)

where 
 is any simple closed curve in the complex plane enclosing all eigen-

values of A with positive real part. The sign function is used to compute

eigenvalues and invariant subspaces [3, 5, 7, 10, 11] and to solve Riccati and

Sylvester equations [9, 12, 13, 24]. The matrix sign function is attractive for

machine computation, because it can be e�ciently evaluated by relatively

�
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simple numerical methods. Some of these are surveyed in [24]. It is partic-

ularly attractive for large dense problems to be solved on computers with

advanced architectures [3, 13, 28].

Beavers and Denman use the following equivalent de�nition [7, 10]. Let

A = XJX

�1

be the Jordan canonical decomposition of a matrix A having

no eigenvalues on the imaginary axis. Let the diagonal part of J be given

by the matrix D = diag(d

1

; : : : ; d

n

). If S = diag(s

1

; : : : ; s

n

), where

s

i

=

(

+1 if <(d

i

) > 0;

�1 if <(d

i

) < 0;

then sign(A) is given by sign(A) = XSX

�1

.

Let V

+

= V

+

(A) be the invariant subspace of A corresponding to eigen-

values with positive real part, let V

�

= V

�

(A) be the invariant subspace of

A corresponding to eigenvalues with negative real part, let P

+

(A) = P

+

be

the skew projection onto V

+

parallel to V

�

, and let P

�

= P

�

(A) be the

skew projection onto V

�

parallel to V

+

. Using the same contour 
 as in (1),

the projection P

+

has the resolvent integral representation [19, Page 67] [2]

P

+

=

1

2�i

Z




(zI �A)

�1

dz: (2)

It follows from (1) and (3) that sign(A) = P

+

� P

�

= 2P

+

� I = I � 2P

�

.

The matrix sign function was introduced using de�nition (1) by Roberts

in a 1971 technical report [29] which was not published until 1980 [30]. Kato

[19, Page 67] reports that the resolvent integral (2) goes back to 1946 [35]

and 1949 [17, 18].

There is some concern about the numerical stability of numerical meth-

ods based upon the matrix sign function [3, 8, 16]. In this paper, we demon-

strate that evaluating the matrix sign function is a more ill-conditioned

computational problem than the problem of �nding bases of the invariant

subspaces V

+

and V

�

. (Sometimes it is tremendously more ill-conditioned.

See Example 1 in Section 3.) Never-the-less, we also give perturbation and

error analyses, which show that (at least for Newton's method for the compu-

tation of the matrix sign function [8, 9]) in most circumstances the accuracy

is competitive with conventional methods for computing invariant subspaces.

Our analysis improves some of the perturbation bounds in [4, 8, 15, 20].

In Section 2 we establish some notation and clarify the relationship be-

tween the matrix sign function and the Schur decomposition. The next

two sections give a perturbation analysis of the matrix sign function and
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its invariant subspaces. Section 5 gives a posteriori bounds on the forward

and backward error associated with a corrupted value of sign(S). Section 6

is a stability analysis of the Newton iteration. Section 7 demonstrates the

results with some numerical examples.

Throughout the paper, k � k denotes the spectral norm, k � k

1

the 1-norm

(or column sum norm), and k�k

F

the Frobenius norm k�k

F

=

q

P

ja

ij

j

2

. The

set of eigenvalues of a matrix A is denoted by �(A). The open left half plane

is denoted byC

�

and the open right half plane is denoted byC

+

. Borrowing

some terminology from engineering, we refer to the invariant subspace V

�

=

V

�

(A) of a matrix A 2 R

n�n

corresponding to eigenvalues in C

�

as the

stable invariant subspace and the subspace V

+

= V

+

(A) corresponding to

eigenvalues in C

+

as the unstable invariant subspace. We use P

+

= P

+

(A)

for the the skew projection onto V

+

parallel to V

�

and P

�

= P

�

(A) for the

skew projection onto V

�

parallel to V

+

.

2 Relationship with the Schur Decomposition

Suppose that A has the Schur form

Q

H

AQ =

"

k n� k

k A

11

A

12

n� k 0 A

22

#

; (3)

where �(A

11

) � C

�

and �(A

22

) � C

+

[14]. If Y is a solution of the Sylvester

equation

Y A

22

�A

11

Y = 2A

12

; (4)

then

Q

H

sign(A)Q =

"

k n� k

k �I Y

n� k 0 I

#

; (5)

Q

H

P

�

Q =

"

k n � k

k I �

1

2

Y

n� k 0 0

#

;

and

Q

H

P

+

Q =

"

k n � k

k 0

1

2

Y

n� k 0 I

#

:
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The solution of (4) has the integral representation

Y =

1

�i

Z




(zI �A

11

)

�1

A

12

(zI � A

22

)

�1

dz; (6)

where 
 is a closed contour containing all eigenvalues of A with positive real

part [25, 31]).

The stable invariant subspace of A is the range (or column space) of

sign(A)� I = �2P

�

. If

(sign(A)� I)� = QR =

h

Q

1

Q

2

i

"

R

1

R

2

0 0

#

(7)

is a QR factorization with column pivoting [1, 14], then the columns of Q

1

form an orthonormal basis of this subspace. Here Q is orthogonal, � is a

permutation matrix, R is upper triangular, and R

1

is nonsingular.

It is not di�cult to use the singular value decomposition of Y to show

that [4]

k sign(A)k =

1

2

kY k+

r

1 +

1

4

kY k

2

: (8)

It follows from (4) that

kY k �

2kA

12

k

sep(A

11

; A

22

)

; (9)

where sep is de�ned as in [14] by sep(A

11

; A

22

) = min

Z 6=0

kA

11

Z�ZA

22

k

F

kZk

F

.

3 The E�ect of Backward Errors

In this section we discuss the sensitivity of the matrix sign function sub-

ject to perturbations. Based on Fr�echet derivatives, Kenney and Laub [20]

presented a �rst order perturbation theory for the matrix sign function via

the solution of a Sylvester equation. Mathias [26] derives an expression for

the Fr�echet derivative using the Schur decomposition. Kato's encyclopedic

monograph [19] includes an extensive study of series representations and

of perturbation bounds for eigenprojections. In this section we derive an

expression for the Fr�echet derivative using integral formulas.
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For a perturbation matrix E, we give estimates for sign(A+E) in terms

of powers of kEk. Partition E conformally with (3) as

Q

H

EQ =

"

k n� k

k E

11

E

12

n � k E

21

E

22

#

: (10)

Consider �rst the relatively simple case in which A is block diagonal.

Lemma 1 Suppose A is block diagonal,

A =

"

A

11

0

0 A

22

#

where �(A

11

) � C

�

and �(A

22

) � C

+

. Partition the perturbation E 2 R

n�n

conformally with A as

E =

"

E

11

E

12

E

21

E

22

#

: (11)

If kEk is su�ciently small, then

sign(A+ E) = sign(A) + 2

 "

0 F

12

F

21

0

#!

+O(kEk

2

)

where F

12

and F

21

satisfy the Sylvester equations

A

22

F

21

� F

21

A

11

= E

21

(12)

F

12

A

22

�A

11

F

12

= E

12

: (13)

Proof. Note that the eigenvalues of A

11

+ E

11

have negative real part

and the eigenvalues of A

22

+ E

22

have positive real part. In the de�nition

(1) choose the contour 
 to enclose �(A

22

) and �(A

22

+ E

22

) but neither

�(A

11

) nor �(A

11

+ E

11

). So,

sign(A+ E) =

1

�i

Z




(zI � (A+E))

�1

dz � I

=

1

�i

Z




((zI �A)

�1

+ (zI � A)

�1

E(zI � A)

�1

) dz � I

+O(kEk

2

)

= sign(A) + 2F +O(kEk

2

);
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where

F =

1

2�i

Z




(zI �A)

�1

E(zI �A)

�1

dz:

Partitioning F conformally with E and A, then we have

F

11

=

1

2�i

Z




(zI �A

11

)

�1

E

11

(zI �A

11

)

�1

dz

F

12

=

1

2�i

Z




(zI �A

11

)

�1

E

12

(zI �A

22

)

�1

dz

F

21

=

1

2�i

Z




(zI �A

22

)

�1

E

21

(zI �A

11

)

�1

dz

F

22

=

1

2�i

Z




(zI �A

22

)

�1

E

22

(zI �A

22

)

�1

dz:

As in (6), F

12

and F

21

are the solutions to the Sylvester equations (12)

and (13) [25, 31]. The contour 
 encloses no eigenvalues of A

11

, so (zI �

A

11

)

�1

E

11

(zI �A

11

)

�1

is analytic inside 
 and F

11

= 0.

We �rst prove that F

22

= 0 in the case that A

22

is diagonalizable, say

A

22

= X�X

�1

where � = diag(�

1

; �

2

; : : : ; �

n�k

). Then

F

22

= X

�

1

2�i

Z




(zI � �)

�1

(X

�1

E

22

X)(zI � �)

�1

dz

�

X

�1

:

Each component of the above integral is of the form

R




c(z � �

j

)

�1

(z �

�

k

)

�1

dz for some constant c. If j = k then this is the integral of a residue

free holomorphic function and hence it vanishes. If j 6= k, then

Z




c

(z � �

i

)(z � �

j

)

dz =

Z




c

�

i

� �

j

 

1

z � �

i

�

1

z � �

j

!

dz = 0:

The general case follows by taking limits of the diagonalizable case and using

the dominated convergence theorem [36].

Theorem 1 Let the Schur form of A be given as in (3) and let E be as in

(10). If kEk is su�ciently small, then

sign(A+E) = sign(A) +E

t

� sign(A)E

p

sign(A) + O(kEk

2

);
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where

E

t

= Q

"

0 2

~

E

12

+

Y

~

E

21

Y

2

~

E

21

0

#

Q

H

E

p

= Q

"

0 0

~

E

21

0

#

Q

H

;

~

E

21

satis�es the Sylvester equation

A

22

~

E

21

�

~

E

21

A

11

= E

21

; (14)

Y satis�es (4), and

~

E

12

satis�es

~

E

12

A

22

�A

11

~

E

12

= E

12

�

Y E

22

2

+

E

11

Y

2

�

Y E

21

Y

4

: (15)

Proof. If S =

"

I �

Y

2

0 I

#

; then

S

"

A

11

A

12

0 A

22

#

S

�1

=

"

A

11

0

0 A

22

#

and

S

"

E

11

E

12

E

21

E

22

#

S

�1

=

"

E

11

�

Y E

21

2

E

12

�

Y E

22

2

+

E

11

Y

2

�

Y E

21

Y

4

E

21

E

21

Y

2

+ E

22

#

:

It follows from Lemma 1 that

sign(SQ

H

(A+E)QS

�1

) =

"

�I 0

0 I

#

+ 2

"

0

~

E

12

~

E

21

0

#

+ O(kEk

2

):

Since sign(SAS

�1

) = S sign(A)S

�1

, multiplying QS

�1

on the left side and

SQ

H

on the right side of the above equation, we have

sign(A+E) = sign(A)+Q

"

Y

~

E

21

2

~

E

12

�

Y

~

E

21

Y

2

2

~

E

21

�

~

E

21

Y

#

Q

H

+O(kEk

2

): (16)

It is easy to verify that

"

Y

~

E

21

2

~

E

12

�

Y

~

E

21

Y

2

2

~

E

21

�

~

E

21

Y

#

= (17)

"

0 2

~

E

12

+

Y

~

E

21

Y

2

~

E

21

0

#

�

"

�I Y

0 I

# "

0 0

~

E

21

0

# "

�I Y

0 I

#

:
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The theorem follows from

Q

H

sign(A)Q = sign(Q

H

AQ) =

"

�I Y

0 I

#

:

Of course Theorem 1 also gives �rst order perturbations for the projec-

tions P

+

= P

+

(A) and P

�

= P

�

(A).

Corollary 1 Let the Schur form of A be given as in (3) and let E be as in

(10). If kEk is su�ciently small, then

P

�

(A+ E)

= P

�

(A) +

1

2

(E

t

� sign(A)E

p

sign(A)) + O(kEk

2

)

= P

�

(A) +

1

2

�

E

t

�

�

P

�

(A)� P

�

(A)

�

E

p

�

P

�

(A)� P

�

(A)

��

+O(kEk

2

)

= P

�

(A) +

1

2

�

E

t

�

�

2P

�

(A)� I

�

E

p

�

2P

�

(A)� I

��

+ O(kEk

2

)

where E

t

and E

p

are as in the statement of Theorem 1.

Taking norms in Theorem 1 gives �rst order perturbation bounds.

Corollary 2 Let the Schur form of A be given as in (3), E as in (10) and

let 0 < � = sep(A

11

; A

22

), then the �rst order perturbation of the matrix

sign function stated in Theorem 1 is bounded by

kE

t

� sign(A)E

p

sign(A)k �

4

�

(1 +

kA

12

k

�

)

2

kEk:

The corollary follows from the sum of the above bounds.

On �rst examination, Corollary 2 is discouraging. It shows that calculat-

ing the matrix sign function may be more ill-conditioned than �nding bases

of the stable and unstable invariant subspace. If the matrix A whose Schur

decomposition appears in (10) is perturbed to A+E, then the stable invari-

ant subspace, Im(Q

1

), is perturbed to Im(Q

1

+Q

2

E

q

) where kE

q

k � 2kEk=�

[32, 34]. Corollary 2 and the following example show that k sign(A + E)k

may di�er from sign(A) by a factor of �

�3

which may be much larger than

kEk=�.
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Example 1 Let

A =

"

�� 1

0 �

#

E =

"

0 0

� 0

#

:

The matrix A is already in Schur form, so sep(A

11

; A

22

) = 2�. If � < � < 1,

then we have

sign(A) =

"

�1 �

�1

0 1

#

sign(A+E) =

1

p

�

2

+ �

"

�� 1

� �

#

:

The di�erence is

sign(A+E)� sign(A) = �

"

�

�2

=2 ��

�3

=2

�

�1

��

�2

=2

#

+O(�

2

):

Perturbing A to A + E does indeed perturb the matrix sign function by a

factor of �

�3

.

Of course there is no rounding error in Example 1, so the stable invariant

subspace of A + E is also the stable invariant subspace of sign(A + E)

and, in particular, evaluating the matrix sign function exactly has done no

more damage than perturbing A. The stable invariant subspace of A is

V

�

(A) = Im(

"

1

0

#

); the stable invariant subspace of A+E and sign(A+E)

is

V

�

(A+ E) = Im(

"

1

��

�+

p

�

2

+�

#

) = Im(

"

1

��

2�

#

) +O(�

2

):

For a general small perturbation matrix E, the angle between V

�

(A)

and V

+

(A + E) is of order no larger than O(1=�) [14, 32, 34]. The matrix

sign function (and the projections P

�

and P

+

) may be signi�cantly more

ill-conditioned than the stable and unstable invariant subspaces. Never-the-

less, we argue in the next section that despite the possible poor conditioning

of the matrix sign function, the invariant subspaces are usually preserved

about as accurately as their native conditioning permits.
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4 Perturbation Theory for Invariant Subspaces

of the Matrix Sign Function

In this section we discuss the accuracy of the computation of the stable

invariant subspace of A via the matrix sign function.

An easy �rst observation is that if a backward stable method was used

to compute the matrix sign function, then the computed value of sign(A) is

the exact value of sign(A+E) for some perturbation matrix E proportional

to the precision of the arithmetic. The exact stable invariant subspace of

sign(A+E) is also an invariant subspace of A +E.

However, in general, we can not guarantee that the computed value of

sign(A) is exactly the value of sign(A + E) for a small perturbation E.

We probably can not even represent such sign(A + E) within the limits of

�nite precision arithmetic. The best that can be hoped for is to compute

sign(A+ E) + F for some small perturbation matrices E and F . Consider

now the e�ect of the hypothetical forward error F .

Let A have Schur form (3) and let E be a perturbation matrix partitioned

conformally as in (10). Let Q

1

be the �rst k columns of Q and Q

2

be the

remaining n � k columns. If

kE

21

k (kA

12

k+ kE

12

k)

sep(A

11

; A

22

)� kE

11

k � kE

22

k

<

1

4

;

then A has stable invariant subspace V

�

(A) = Im(Q

1

) and A + E has an

invariant subspace Im(Q

1

+Q

2

W ) where W satis�es

kWk �

2kE

21

k

sep(A

11

; A

22

)� kE

11

k � kE

22

k

(18)

[14, 32, 34]. The singular values ofW are the tangents of the canonical angles

between V

�

= Im(Q

1

) and Im(Q

1

+ Q

2

W ). In particular, the canonical

angles are at most of order 1= sep(A

11

; A

22

).

For simplicity of notation, ignore for the moment the backward error

matrix E and consider only the forward error. Let B = sign(A) + F where

F represents the forward error in evaluating the matrix sign function and A

has Schur form (3). Let sign(A) and F have the forms

Q

H

sign(A)Q =

"

k n� k

k �I Y

n � k 0 I

#

10



and

Q

H

FQ =

"

k n � k

k F

11

F

12

n � k F

21

F

22

#

;

where Q is the unitary factor from the Schur decomposition of A (4). Now

consider the stable invariant subspace V

�

(A) = V

�

(sign(A)) = Im(Q

1

).

If kF

21

k(kY k + kF

12

k) < (sep(I;�I)� kF

11

k � kF

22

k)=4, then perturbing

sign(A) to sign(A) + F perturbs the invariant subspace Im(Q

1

) to Im(Q

1

+

Q

2

W

s

) where kW

s

k � 2kF

21

k=(2� kF

11

k � kF

22

k) [14, 32, 34]. If kF

21

k �

�k sign(A)k, then by (8) and (9)

kF

21

k � �k sign(A)k

� �

0

@

1

2

kY k+

s

1 +

kY k

2

4

1

A

� �

�

2

kA

12

k

sep(A

11

; A

22

)

+ 1

�

:

Since sep(A

11

; A

22

) � 2kAk

F

, W

s

obeys the bounds

kW

s

k � 2�

2

kA

12

k

sep(A

11

;A

22

)

+ 1

2� kF

11

k � kF

22

k

(19)

� 4�

�

kAk

F

sep(A

11

; A

22

)

�

+ O(�

2

): (20)

Comparing (18) with (20) we see that perturbing the computed value of

sign(A) by a relative error � to a nearby sign matrix, disturbs the stable

invariant subspace no more than twice as much as perturbing the original

data A by a relative error of size � might.

In order to illustrate the results, we give a comparison of our perturbation

bounds and the bounds given by Bai and Demmel [4] for both the matrix

sign function and the invariant subspaces in the case of Example 1. The

distance to the ill-posed problem

d

A

= min

�

�

min

(A� �iI);

where �

min

(A� �iI) is the smallest singular value of (A� �iI), in which �

is real and i =

p

�1, leads to overestimating bounds in [4]. Since d

A

� �

�2

,

the bounds given in [4] are, respectively, O(�

�4

) for the matrix sign function

and O(�

�2

) for the invariant subspaces.

11



5 A Posteriori Backward and Forward Error

Bounds

A priori backward and forward error bounds for evaluation of the matrix

sign function remain elusive even for the simplest algorithms. However, it

isn't di�cult to derive a posteriori error bounds for both backward and

forward error.

We will need the following lemma to estimate the distance between a

matrix S and sign(S).

Lemma 2 If S 2 R

n�n

has no eigenvalue with zero real part and

k sign(S)S

�1

� Ik < 1, then k sign(S)� Sk � kS

�1

� Sk:

Proof. Let F = sign(S)� S. The matrices F , S, and sign(S) commute,

so

I = sign(S)

2

= (S + F )

2

= S

2

+ 2SF + F

2

:

This implies that

S

�1

� S

2

�

S

�1

F

2

2

= F:

Taking norms and using kFS

�1

k = k sign(S)S

�1

� Ik < 1 we get

1

2

kS

�1

� Sk+

1

2

kFk � kFk

and the lemma follows.

It is clear from the proof of the Lemma 2 that (sign(S)�S) � (S

�1

�S)=2

is asymptotically correct as k sign(S)� Sk tends to zero. The bound in the

lemma tends to over estimate smaller values of k sign(S)�Sk by a factor of

two.

Suppose that a numerical procedure for evaluating sign(A) applied to a

matrix A 2 R

n�n

produces an approximation S 2 R

n�n

. Consider �nding

small norm solutions E 2 R

n�n

and F 2 R

n�n

to

sign(A+E) = S + F: (21)

Of course, E and F are not uniquely determined by (21). Common algo-

rithms for evaluating sign(A) like Newton's method for the square root of I

guarantee that S is very nearly a square root of I [16], i.e., S is a close ap-

proximation of sign(S). In the following theorem, we have arbitrarily taken

F = sign(S)� S.

12



Theorem 2 If k sign(S)S

�1

� Ik < 1, then (21) admits a solution with

kFk � kS

�1

� Sk and

kEk

kAk

�

kSA�ASk

kAk

+ 2kS

�1

� Sk: (22)

(The right-hand-side of (22) is easily computed or estimated from the known

values of A and S, but it is subject to subtractive cancellation of signi�cant

digits.)

Proof. The matrices S+F and A+E commute, so an underdetermined,

consistent system of equations for E in terms of S, A, and F = sign(S)� S

is

E(S+F )�(S+F )E = sign(S)A�A sign(S) = (SA�AS)+(FA�AF ): (23)

Let

U

H

sign(S)U =

"

�I Y

0 I

#

(24)

be a Schur decomposition of sign(S) whose unitary factor is U and whose

triangular factor is on the left-hand-side of (24). Partition U

H

EU and

U

H

AU conformally with the right-hand-side of (24) as

U

H

EU =

"

E

11

E

12

E

21

E

22

#

and

U

H

AU =

"

A

11

A

12

A

21

A

22

#

:

Multiplying (23) on the left by U

H

and on the right by U and partitioning

gives

"

Y E

21

E

11

Y � Y E

22

+ 2E

12

�2E

21

E

21

Y

#

=

"

Y A

21

A

11

Y � Y A

22

+ 2A

12

�2A

21

A

21

Y

#

:

A (hopefully) small norm solution for E is

U

H

EU =

"

E

11

E

12

E

21

E

22

#

=

"

0

1

2

(A

11

Y � Y A

22

+ 2A

12

)

A

21

0

#

:

13



For this choice of E, we have

kEk � k sign(S)A�A sign(S)k

� kSA� ASk+ kFA� AFk

� kSA� ASk+ 2kS

�1

� Sk kAk

from which the lemma follows.

Lemma 2 and Theorem 2 agree well with intuition. In order to assure

small forward error, S must be a good approximate square root of I and, in

addition, to assure small backward error, S must nearly commute with the

original data matrix A. Newton's method for a root of X

2

� I tends to do

a good job of both [16]. (Note that in general, Newton's method makes a

poor algorithm to �nd a square root of a matrix. The square root of I is a

special case. See [16] for details.)

6 The Newton Iteration for the Computation of

the Matrix Sign Function

There are several numerical methods for computing the matrix sign func-

tion [21, 5]. Among the simplest and most commonly used is the Newton-

Raphson method for a root of X

2

� I starting with initial guess X

0

= A

[29, 30]. It is easily implemented using matrix inversion subroutines from

widely available, high quality linear algebra packages like LAPACK [1, 3, 5].

It has been extensively studied and many variations have been suggested

[3, 6, 9, 15, 21, 23, 22, 24].

Algorithm 1 Newton Iteration (without scaling)

X

0

= A

FOR k = 0; 1; 2; : : :

X

k+1

= (X

k

+X

�1

k

)=2

If A has no eigenvalues on the imaginary axis, then Algorithm 1 converges

globally and locally quadratically in a neighborhood of sign(A) [24]. Al-

though the iteration ultimately converges rapidly, initially convergence may

be slow. However, the initial convergence rate may be improved by scaling

[3, 6, 9, 15, 21, 23, 22, 24].

14



Theorem 1 shows that the �rst order perturbation of sign(A) may be as

large as k sign(A)k

2

� where � is the relative uncertainty in A. (If there is no

other uncertainty, then � is at least as large as the unit round of the �nite

precision arithmetic.) Thus, it is reasonable to stop the Newton iteration

when

kX

k+1

�X

k

k

1

� c�kX

k+1

k

2

1

: (25)

The ad hoc constant c is chosen in order to avoid extreme situations, e.g.,

c = 1000n. Experience shows furthermore that it is often advantageous to

take an extra step of the iteration after the stopping criterion is satis�ed.

In exact arithmetic, the stable and unstable invariant subspaces of the

iterates X

k

are the same as those of A. However, in �nite precision arith-

metic, rounding errors perturb these subspaces. The numerical stability of

the Newton iteration for computing the stable invariant subspace has been

analyzed in [8], we give an improved error bound here.

LetX and X

+

be, respectively, the computed k-th and (k+1)�st iterate

of the Newton iteration starting from

X

0

= A = Q

"

A

11

A

12

0 A

22

#

Q

H

:

Suppose that X and X

+

have the form

X = Q

"

X

11

X

12

E

21

X

22

#

Q

H

; X

+

= Q

"

X

+

11

X

+

12

E

+

21

X

+

22

#

Q

H

: (26)

A successful rounding error analysis must establish the relationship between

E

+

21

and E

21

. In order to do so we assume that some stable algorithm is

applied to compute the inverse X

�1

in the Newton iteration. More precisely

we assume that X

+

satis�es

X

+

=

(X +E

X

) + (X +E

X

)

�1

2

+ E

Z

(27)

where

kE

X

k � c�kXk (28)

kE

Z

k � c�(kXk+ kX

�1

k); (29)

for some constant c. (Note that this is a nontrivial assumption. Ordinarily,

if Gaussian elimination with partial pivoting is used to compute the inverse,

15



the above error bound can be shown to hold only for each column separately

[8, 33].) Write E

X

and E

Z

as

E

X

= Q

"

E

0

11

E

0

12

E

0

21

E

0

22

#

Q

H

(30)

E

Z

= Q

"

E

00

11

E

00

12

E

00

21

E

00

22

#

Q

H

: (31)

The following theorem bounds kE

21

k and indirectly the perturbation in the

stable invariant subspace.

Theorem 3 Let X, X

+

, E

X

, and E

Z

be as in (26), (27), and (30). If

1

2

< 1� c�kXkkX

�1

11

k,

1

2

< 1� c�kXkkX

�1

22

k, and

0 < � = 1� 4(kE

21

k+ c�kXk)kX

�1

22

kkX

�1

11

k(kX

12

k+ c�kXk);

where c is as in (28), then

kE

+

21

k �

1

2

(kE

21

k+ c�kXk)(1+

4kX

�1

22

kkX

�1

11

k

�

) + c�(kXk+ kX

�1

k):

Proof. We start with (27). In fact the relationship between E

21

and E

+

21

follows from applying the explicit formula for the inverse of (X + E

X

) in

[27].

Q

H

(X +E

X

)

�1

Q =

"

~

X

�1

11

+

~

X

�1

11

~

X

12

~

X

�1

c

(E

21

+ E

0

21

)

~

X

�1

11

�

~

X

�1

11

~

X

12

~

X

�1

c

�

~

X

�1

c

(E

21

+ E

0

21

)

~

X

�1

11

~

X

�1

c

#

:

Here,

~

X

11

= X

11

+E

0

11

~

X

12

= X

12

+E

0

12

~

X

22

= X

22

+E

0

22

~

X

c

=

~

X

22

� (E

21

+E

0

21

)

~

X

�1

11

~

X

12

:
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Then

X

+

11

=

1

2

(

~

X

11

+

~

X

�1

11

+

~

X

�1

11

~

X

12

~

X

�1

c

(E

21

+ E

0

21

)

~

X

�1

11

) +E

00

11

X

+

12

=

1

2

(

~

X

12

�

~

X

�1

11

~

X

12

~

X

�1

c

) +E

00

12

E

+

21

=

1

2

((E

21

+ E

0

21

)�

~

X

�1

c

(E

21

+E

0

21

)

~

X

�1

11

) +E

00

21

(32)

X

+

22

=

1

2

(

~

X

22

+

~

X

�1

c

) + E

00

22

:

Using the Neumann lemma that if kBk < 1, then k(I�B)

�1

k < (1�kBk)

�1

,

[14], we have

k

~

X

�1

11

k �

kX

�1

11

k

1� kX

�1

11

kkE

0

11

k

�

kX

�1

11

k

1� c�kX

�1

11

kkXk

� 2kX

�1

11

k:

The following inequalities are established similarly.

k

~

X

�1

22

k � 2kX

�1

22

k

k

~

X

12

k � kX

12

k+ c�kXk

k

~

X

�1

c

k �

k

~

X

�1

22

k

1� k

~

X

�1

22

k(kE

21

k+ kE

0

21

k)k

~

X

�1

11

kk

~

X

12

k

�

2kX

�1

22

k

�

:

Inserting these inequalities in (32) we obtain

kE

+

21

k �

1

2

(kE

21

k+ c�kXk)(1+

4kX

�1

22

kkX

�1

11

k

�

) + kE

00

21

k:

The bound in Theorem 3 is stronger than the bound of Byers in [8]. A

step of Newton iteration is backward stable if and only if

kE

+

21

k

sep(X

+

11

; X

+

22

)

�

kE

21

k

sep(X

11

; X

22

)

:

The term sep(X

+

11

; X

+

22

) is dominated by

sep(

X

11

+X

�1

11

2

;

X

22

+X

�1

22

2

):

17



In order to guarantee numerical stability, the factors in the bound of Theo-

rem 3, kX

�1

11

kkX

�1

22

k and (kXk+kX

�1

k), should be not so large as to violate

the inequality

kE

+

12

k �

sep(

X

11

+X

�1

11

2

;

X

22

+X

�1

22

2

)

sep(X

11

; X

22

)

kE

21

k: (33)

Roughly speaking, to have numerical stability throughout the algorithm,

neither kX

�1

11

kkX

�1

22

k nor (kXk + kX

�1

k) should be much larger than

1= sep(A

11

; A

22

).

The following example from [5] shows violation of inequality (33), which

explains the numerical instability.

Example 2 Let

A

11

=

2

6

6

6

6

4

1� � �

� 1� �

.

.

.

.

.

.

� 1� �

3

7

7

7

7

5

;

be a 10 � 10 real matrix, and let A

22

= �A

T

11

. Form R =

"

A

11

A

12

E

21

A

22

#

and A = QRQ

T

; where the orthogonal matrix Q is chosen to be the unitary

factor of the QR factorization of a matrix with entries chosen randomly

uniformly distributed in the interval [0; 1]. The parameter � is taken as

� = (1�10

�5

)=2 so that there are two eigenvalues ofA close to the imaginary

axis from the left and right side. The entries of A

12

are chosen randomly

uniformly distributed in the interval [0; 1], too. The entries of E

21

are chosen

randomly uniformly distributed in the interval [0; eps], where eps = 2:22�

10

�16

is the machine precision.

In this example, sep(A

11

; A

22

) = 2:0000� 10

�5

and �

min

(A) = 3:3796�

10

�10

. The following table shows the evolution of kE

21

k

1

= sep(X

11

; X

22

)

during the Newton iteration starting with X

0

= A and X

0

= R, respectively,

where E

21

is as in (26). The norm is taken to be the 1-norm.
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k kE

21

k

1

= sep(X

11

; X

22

) sep(X

11

; X

22

)

A R

0 8.7451e-11 7.0512e-11 2.0000e-05

1 7.7083e-07 1.5779e-07 1.0955e+00

2 5.0378e-07 1.0905e-07 7.9263e-01

3 1.2093e-07 2.5501e-08 1.6948e+00

4 8.3733e-08 1.2150e-08 1.7786e+00

5 7.3034e-08 5.4025e-09 2.0000

6 7.3164e-08 2.7012e-09 2.0000

7 7.2020e-08 1.3506e-09 2.0000

8 7.1731e-08 6.7532e-10 2.0000

9 7.1866e-08 3.3766e-10 2.0000

10 7.1888e-08 1.6883e-10 2.0000

11 7.1909e-08 8.4426e-11 2.0000

12 7.1926e-08 4.2231e-11 2.0000

13 7.1934e-08 2.1151e-11 2.0000

14 7.1938e-08 1.0646e-11 2.0000

15 7.1938e-08 5.4637e-12 2.0000

16 7.1937e-08 3.0055e-12 2.0000

17 7.1938e-08 2.0001e-12 2.0000

18 7.1937e-08 1.7474e-12 2.0000

19 7.1937e-08 1.7291e-12 2.0000

20 7.1937e-08 1.7290e-12 2.0000

21 7.1937e-08 1.7290e-12 2.0000

Because kA

�1

11

k

1

kA

�1

22

k

1

= 1:0000� 10

10

, kA

�1

k

1

= 2:2516� 10

9

, inequality

(33) is violated in the �rst step of the Newton iteration for starting matrix

A, which is shown in the �rst column of the table. Newton's method never

recovers from this.

It is remarkable, however, that Newton's method applied to R directly

seems to recover from the loss in accuracy in the �rst step. The second

column shows that although kE

21

k

1

= sep(X

11

; X

22

) = 1:5779� 10

�7

at the

�rst step, it is reduced by the factor 1=2 every step until it reaches 1:7290�

10

�12

which is approximately kE

21

k

1

= sep(A

11

; A

22

). Observing that in this

case the perturbation E

00

21

in E

Z

as in (27) is zero and kE

+

21

k

1

is dominated by

1

2

(kE

21

k

1

+kX

�1

22

E

21

X

�1

11

k

1

). It is surprising to see that from the second step

on kX

�1

11

E

21

X

�1

22

k

1

is as small as eps, since A

�1

11

and A

�1

22

do not explicitly

appear in the term X

�1

11

E

21

X

�1

22

after the �rst step.

19



By our analysis, the Newton iteration may be unstable when X

k

is ill-

conditioned. To overcome this di�culty the Newton iteration may be carried

out with a shift along the imaginary line. In this case we have to use complex

arithmetic.

Algorithm 2 Newton Iteration With Shift

X

0

= A� �iI

FOR k = 0; 1; 2; : : :

X

k+1

= (X

k

+X

�1

k

)=2

END

The real parameter � is chosen such that �

min

(A � �iI) is not small.

For Example 2, when � is taken to be 0:8, we have kE

21

k

1

= sep(X

11

; X

22

) =

7:3134 � 10

�12

for k = 21. Then by our analysis the computed invariant

subspace is guaranteed to be accurate.

We can combine Algorithm 1 and Algorithm 2 in the following way.

Algorithm 3 Computing the Stable Invariant Subspace

1. Call Algorithm 1 with the stopping criterion (25) and get X

k+1

.

2. Perform a QR factorization of X

k+1

� I and partition Q = (Q

1

; Q

2

).

3. (Stability test) If k(Q

H

2

AQ

1

)k

1

=kAk

1

� n� ��kX

k+1

k

1

, where � is the

machine precision, then use Q

1

as the orthonormal basis of the computed

stable invariant subspace. Otherwise call Algorithm 2 and start the step 1

again.

7 Numerical Experiments

In this section we demonstrate the theoretical results of this paper with

some numerical experiments: The numerical algorithms were implemented

in MATLAB 4.1 on a HP 715/33 workstation with eps = 2:2204 � 10

�16

.

The stopping criterion for the Newton iteration is as in (25) with c = 1000

and an extra step of the Newton iteration is performed after the stopping

criterion is satis�ed.

Example 3 This example is devoted to demonstrate the validity of our

stopping criterion. We constructed a 10� 10 matrix

A = QRQ

H

;
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where Q is a random unitary matrix and R an upper triangular matrix

with diagonal elements �1� 0:2i;�2:0;�2:5;�3:0;�4:0;�4:5; 2� 0:2i; 6:0,

a parameter � in the (k; k + 2) position and zero everywhere else. We

chose � such that the norm k sign(A)k

1

varies from small to large. The

typical numerical behavior of log

10

(kX

k+1

� X

k

k

1

) is that it goes down

and then becomes staionary. This behavior is shown in the following graph

for the cases � = 0; � = 20 and � = 50 in which k sign(A)k

1

is 2:9132,

1:7418 � 10

3

and 6:2279 � 10

4

respectively. The Newton iteration with our

stopping criterion stops at the 9-th step for � = 0 and at the 8-th step for

� = 20 and � = 50.

0 5 10 15 20 25 30 35 40 45 50
-20

-15

-10

-5

0

5

10

the number of iterations

lo
g1

0(
||X

_{
k+

1}
-X

_k
||_

1)

alpha=0

alpha=20

alpha=50

Example 4 In this test 100 random matrices of size 100�100 were consid-

ered. In all cases, the condition kQ

H

2

�A �Q

1

k

1

=kAk

1

� n � eps � kX

k+1

k

1

is

satis�ed which indicates by the perturbation analysis in Section 4 that the

computed stable invariant subspace is acceptable.

In Example 2, however, we have kQ

H

2

�A�Q

1

k

1

=kAk

1

= 4:1616�10

�9

; n�

eps � kX

k+1

k

1

= 6:3351� 10

�11

and hence the computed stable invariant

subspace is not acceptable. However, when the Newton iteration is started

with X

0

= A� 0:8iI , the stability condition is satis�ed.
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8 Conclusions

We have given a �rst order perturbation theory for the matrix sign function

and an error analysis for Netwon's method to compute it. This analysis

suggests that computing the stable (or unstable) invariant subspace of a

matrix with the Newton iteration in most circumstances yields results as

good as those obtained from the Schur form.
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