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Abstract

In this paper, we investigate the question of the spectrally equivalence of the so-
called Pseudo-Laplacian to the usual discrete Laplacian in order to use hierarchical
preconditioners for this more complicate matrix. The spectral equivalence is shown to
be equivalent to a Brezzi-type inequality, which is fulfilled for the finite element spaces
considered here.

0. Introduction

In general, numerical simulation of unsteady incompressible flows involves complex geo-
metries. The finite element method is a natural tool of discretization in such cases. The
questions of error estimates, existence and uniqueness are strong connected with the so cal-
led LBB-condition (due to LADYSHENSKAJA/ BABUSKA/BREZZI) on the pair of F.E.
- spaces V;, C H}(Q)? approximating the velocity u and X, C Ly(Q) approximating the
pressure p.

A very popular element among the conforming ones is the quadratic (biquadratic) approxi-
mation of the velocity in a 6-node triangle (9-node quadrilateral) and the linear (bilinear)
approximation of the pressure with unknowns belonging to the vertice nodes. Another vari-
ant with the same approximation of the pressure on triangles (quadrilaterals) T}, and linear
(bilinear) approximation of u in the mesh 7T},/, has near the same properties. Here the
6-node triangle (9-node quadrilateral) is used as a macro element of four smaller triangles
(resp. quadrilaterals), see [1].

For the time dependent problems, additionally to the discretization in space we need a sui-
table treatment of time stepping that guarantees a ratherly correct behaviour in time. For
the Navier-Stokes equations a total implicit time discretization would lead to a complicate
nonlinear problem in each time step. So, we prefer a semi-implicit projection method in
a variant proposed by GRESHO/CHAN [5] with two linear equations on each time step.
The iterative solution of these equations is considered here. We prove the possibility of
using hierarchical preconditioners of the YSERENTANT [9] type in 2D (or of the BRAM-
BLE/PASCIAC/XU type in 2D and 3D [2]) for the Pseudo-Laplacian matrix occuring in
the pressure correction. The reason for this, the spectral equivalence to the Laplacian —
matrix depends on a LBB-like condition, which is fulfilled for the finite elements considered
here.
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1. The Continuous Problem and its F.E. Discretization

Let © be a bounded domain in R%d = 2 or 3) with regular boundary ' = JQ. We consider
the unsteady Navier-Stokes equation in €}

u—vAu+(u-Vju+Vp = f(a,t) (1.1)
Veu = 0 in Q

with boundary conditions — u(x,t) = 0 rel
and initial conditions u(x,0) = us(z) z € N

(for in- and outflow situations the b.c. could be generalized).
The usual finite element discretization is based on the weak formulation of (1.1).

(a,v)g+rva(u,v)+cluyu,v)—b(v,p) = (f,v)4 (1.2)
b(u,q) = 0

v e HAQ), Vg€ La(Q),
we H(Q), pe L),

here

(u,v)y = /Qu-vd:zj,
a(u,v) = /Q(Vu):(VV) d,

b(u,q) = /Q(div u) ¢ dx

(for ¢ € H'(Q), equivalently b(u,q) = — [qu - Vq dz).

The non-linear term in (1.1) leads to c(u;u,v) with some variants, equal in H!(Q)? but
non-identical in the discrete case, see [3].

Let

@ = (pi(r)er. . on(r)ergi(r)es - p(r)er) (1.3)

the row vector of the finite element base functions in v, ¢ H}(Q)? (e; = (1,0), e, = (0,1)7,
analogously in 3D) and

W = (da(a)s -, () (1.4)

the row vector of the nodal finite element base functions in X, C H'(Q) C L2(f), then the
F.E. function u € V;, is uniquely mapped to the 2/N-vector u

by u=du (1.5)
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respectively for the pressure we have
p=Vp (1.6)
with p € R™. The finite element discretization of (1.2) yields the matrices
A0 : N
A= g ) with A= Gl Ly (17)

with the bilinear functional a.(-,-) belonging to the usual Laplacian operator —A :

Go(%ﬂ):/ﬁv@'vﬂ dz,

B = ( g; ) with By = (b(piex, ¥;)) Z.:q ;”:1 (1.8)

and

M,0 .
M = ( (H)MO ) Wlth MO —= (<S‘Q]7S‘QZ>) i,j]il' (19)
For later use we additionally define

Ay = (ao(tj00)) 4 1my (1.10)

2. Semiimplicit Projection Method

The semi-implicit projection method of GRESHO/CHAN performs one time step from

(u",p") ~ (u(z, 1), ple, 1)) to (™ p"h) ~ (u(e, top ), pla tegr))

in the following way written in the vector space (u” = ®u", p" = Wp" and so on):

(M 4+ Atv A)a"t = Mu™ + At(Fryy — c(u”™) + MMEIBQ”) (2.1)
BTML_IB}N_?TH—I — —BTQTH—I (22)
Hn—l—l . Qn-l-l + MEIB]EH-I-I
prt o= pt (/AP 1<y <2)

Here, c(u™) € ®*N results from the nonlinear term c(u;u, v), containing the values
c(u™;u, pjer), (k=1,2and j = 1,---,N), F, is the right hand side ({f(¢,), p;ex)2) and
M7, denotes the lumped mass matrix M.

So, we have to solve two linear equations per time step. The first one is ratherly easy due
to the small condition number of the matrix (M + At vA) at least for small time steps and
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small v (large Re). (Note that in practice A contains the balancing tensor diffusivity term
for stabilizing). A simple Jacobi preconditioner diag (M + AtvA) is recommended for the
case of large changes of the size of the elements over the domain 2.

The other matrix BT M;'B, the so called Pseudo-Laplacian causes some difficulties due
to a very large condition number O(h~?). The construction of preconditioners (such as
incomplete factorizations) which depend on the matrix elements is for large m (fine dis-
cretization) nearly impossible, because we never will form this matrix explicitly, we have
only a matrix-vector multiply routine using B and M;"'. This is especially important for
parallel calculations which are based on the domain decomposition as basic idea for data
distribution. Here, the matrices A, B, M --- are splitted over the processors (compare [6,

7).

3. Preconditioning the Pseudo Laplacian

From the similarity

B ~ grad and
BT ~ div

we should think about BTM;'B as a discretization of a second order partial differential
operator such as (—A) and should use YSERENTANT’s hierachical preconditioner for a
quick solution of the linear systems with that matrix.

To be more precise, let C' be the (m x m)-matrix belonging to a hierarchical preconditioning.
We have C~! = QQ7 in the simplest YSERENTANT case, here () is the matrix of basis
transformation of the usual nodal basis ¥ in X, into a hierarchical basis of the same space
(see [6, 9]). There are some important advantages in using such C':

1. The preconditioner depends mainly on the mesh but not on the elements of the matrix.
2. The action of the preconditioner is very cheep (2 m operations).

3. The preconditioner is very easily used in parallel in connection with the domain de-
composition [6,7].

4. The resulting condition number (for the discrete Laplacian A, in the space X;) grows
very slowly with & — 0. We have (in the sence of positive definiteness)

&
mCSAp<CC (31)

with a constant ¢ and J the number of levels of subdividing a given course mesh into

finer elements of half mesh size.

If a spectral equivalence estimation

BA, < BTM;'B < BA, (3.2)

with constants 3, 3 independent of A is valid, the hierarchical preconditioner C' used in
the preconditioned conjugate gradient iteration for the linear system (2.2) leads to a nearly
optimal solver for this step. The estimation (3.2) is proven in the next chapter for our F.E.
spaces.



6 Preconditioning the Pseudo...

4. The spectral equivalence

The inequality (3.2) is intuitively valid from the fact that both matrices approximate 2nd
order partial differential operators. But the explicit proof of the following theorem indicates
the dependence on the finite element pair of the spaces V; and X,

Theorem: For the matrices A,, B and M as defined in (1.7) to (1.10) we have

B*A, <BTM™'B < A, (4.1)

with the constant 3 from the L B B-like condition

sup [ o p) | > Bas(p,p)'/? Vp € x,

ullz, @)
uev, (4.2)

u#0

Proof: We start with the inner product in R™:

(BTM~'Bp,p) = | M~'/2Bp|?
(UTM—I/QBP)Z
= max — 5
[N
T 2
B
= max (iTZWBQ) (with  w = M~"%p).

From the definition (1.5), (1.6) and (1.7) to (1.10) we have

u'Mu = (u,u),
u"Bp = b(u,p)
p"Ap = ao(p.p)
In our case (¥, C H' () C L3(Q) and u = 0 |r Yu € V) we have

b(u,p):/Q divu-pd:z;:—/gu-Vpdx, (4.3)
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so
| b(u,p) [* < (u,u)y - (Vp,Vp)2
= <u7 u>2 ) ao(p,p)
which proves the upper inequality in (4.1). The lower inequality is exactly the LBB-like
condition, (4.2).

Remark: For our finite elements the condition (4.2) is proven in [1,4], where the constant
(3 is near 0.4 sin © with the smallest angle © of all triangles of the mesh. In [8] the "right”
LBB-condition for these elements

sup | b(u, p) |

Z 1P .0 Vp € Xy,
wevy  Tulme = 1P l=@

was deduced from the condition (4.2).

The dependence on the smallest angle coincides with numerical tests on hierarchical pre-
conditioning the Pseudo-Laplacian.

The inequality (3.2) with constant j3, /3 follows from the well-known spectral equivalence of

M and M;j,.

5. Problems in Introducing the Coarse Mesh Solver

The behaviour of the preconditioner is much improved, if some additional coarse mesh solver
is introduced on the coarsest level. Let the first ng nodes belong to the coarse mesh of Level
0, then the preconditioner used in practice is described by

c1=Q ( o ﬂj’) Q" (5.1)

where C is an (n x n)-symmetric matrix approximating the linear system on the coarsest
mesh. For defining Cy we have two possibillities:

Either Cj is the true F.E. matrix of the problem under consideration belonging to
the starting Level-0-triangulation or Cj is a spectrally equivalent approximation
of the true coarse grid matrix.

From the complicate structure of BT M;' B even on coarsest level we consider an approxi-
mation due to Bramble/Pasciak/Schatz [10]:
Due to the spectral equivalence of BTM;'B and A, we will use the F.E. assembly of the

“element” matrix
I -1
=(4)
over all pairs of nodes of the coarse grid having a common edge. This matrix results from
the bilinear form
ac(p.p) = 3_ (plx:) = pla;))*
27]
where the sum is taken over all pairs (¢,7) defining an edge of the coarse mesh (cf. [10]).

After removing rows and columns of nodes with Dirichlet type boundary conditions, we
usually obtain a nonsingular matrix Cy. These are at least 2 nodes: the both ends of the
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boundary part I'p with 1st type boundary conditions.

In application to our pseudo-Laplacian problem the situation is more complicate due to the
fact that the pressure may not be prescribed all along the boundary.

A more thorough study of the boundary conditions leads to 3 special situations:

Situation 1:

We consider the boundary conditions as (1.1), i.e. we have a closed domain 2
without instream and outstream or both instream and outstream are prescribed
on parts of 9. Here, the pressure is free overall on JQ and BTM;'B is a
singular matrix due to the following calculation:

(BkQ)Z = ib(@iek,;bj), k:1,2 (52)

With (4.3) we have
b(pier, 1) = —/c,oiek -y1ldx =0, so Be=0.

Often we write

/de:zj =0 (5.3)

for uniqueness of the pressure in this case. This has to be used in C.
Situation 2:

More general situations with one outstream boundary part I'p , can be simulated

(or prescribed inflow) on € I'p,
on z¢€lp,

and 6(2 == FD,u U FDJ).

Then BT M;'B is a regular matrix and we will arrive at a regular preconditioner
Co by "removing” rows and columns belonging to the nodes of I'p ,,.
Note that formula (4.3) is true because the boundary term vanishes

(either z€lp, = u=0 Yuev,
or z€lp, = p=0 Vpex,).

Situation 3:

The most complicate situation considers one or more outstream boundaries wi-
thout prescribing the pressure.

Here we have u(x,t) = 0 (or prescribed) for « € I'p,, and 'y = 9Q\ I'p,, has
to be considered especially. The transformation of (1.1) into (1.2) produces a
"natural” boundary condition on I',,; :  pn = l/aa—ln1
with n the unit outer normal at @ € I',,;. So the formula (4.3) is no longer true

and the matrix BTM; ' B is regular.
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For the construction of the resulting preconditioner Cy these 3 situations have to be distin-

guished:

Situation 1:

The starting matrix Cy is singular, but we have to work in the subspace
ple= (1,---, )T € =™ (the same in R"™)

due to (5.3). The conjugate gradient solver for the matrix BT M;' B works im-
mediately in this subspace, because the right hand side BT belongs to it and the
start vector is zero, so only the problem of constructing a regular preconditioner
via regular Cjy remains:

The singular matrix Cy (assembly of Gi’s over all pairs of nodes having a common
edge in the coarse mesh) is build up and we calculate the Cholesky decomposition
Co = ROROT. Here Ry is upper triangular and the elements of Ry have to be
calculated from last to first row backwards. So, this decomposition detects the
singularity at the last calculated element (Ro)11 & 0. If we set (Ro)y} = 0 (the
inverse values of (Rg)gr are usually stored on the main diagonal), we are able to
presolve a linear coarse mesh system

T
RoRo Wy = Ty,

with the first entry (wg); = 0. Then the vector w, obtained is orthogonalized

QTMO
Wy = Wy — €.
g

This trick defines w, fulfilling both equations:

with respect to ¢ € R™0:

Cowo = Iy

e'wy, = 0

and the resulting operator r, — w, is regular within the subspace orthogonal
to e, so the whole preconditioner C' is.

Situation 2:

Cy is nonsingular when rows and columns belonging to nodes on I'p, are "re-
moved” and will be Cholesky decomposed as above without problems.

Situation 3:

Due to the nonsingularity of the matrix BT M;' B a singular Cy as obtained in
the first step makes no sence, so the simple assembly of matrices (¢ as indicated
above is not enough in this case.

It we consider the proof of the Theorem in Chapter 4, we obtain a more compli-

b 2
(BTM_IB}_?,}_?) — max | (u7p)|

ueln uflg,

cate term for



10 Preconditioning the Pseudo...

now we have

b(u,p):—/va-ual:z;—l—/F n-upds.

The function n-u is an arbitrary piecewise linear function (along a smooth I',,:),
so the extra term looks like a 3rd type boundary condition, which usually adds
a positive entry to the main diagonal of the stiffness matrix. From this analongy
we enlarge the main diagonal entries in Cy belonging to nodes of ', by a > 0
leading to a nonsingular preconditioner again. In our tests some positive numbers
from a = 0.1 to @ = 100 had no large influence to the resulting number of CG
iterations, so we use o = 1.

6. Numerical Example

We present some numerical tests on a simple back ward facing step. The domain € consists
of 32 rectangular triangles with edges of length 1 (y-direction) and 2.4 (2-direction). In
enlarging @seqe = 1,2,4,8 we obtain more and more worse examples (smaller angles ©).

Figure 1: Level-1-Mesh, x4 = 1

We have subdivided a triangle of Level L into 4 equal subtriangles of the Level L 4+ 1. On
the fine level we used the linear T},/ linear T}/, combination of the elements as proposed in
Chapter 0. We used Yserentant’s hierarchical preconditioner for solving

BT"M;'Bp = b,

with a coarse grid solver depending on the boundary conditions as proposed in Chapter
5. The test run on a 32 processor MIMD parallel computer (each processor worked on a
subdomain, which coincides with one coars mesh triangle).

As boundary conditions we have used:

e non slip condition on the walls and

e prescribed instream at x = 0:

u(0.y) = ( 4y(10— y) ) ‘

Additionally we consider at the outstream boundary (s = 9 - Zseale):

Situation 1:

1 _
e prescribed outstream  w(,u,y) = ( 2y(20 ) ), so I'p, = 0.
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Situation 2:

e prescribed pressure

Situation 3:

e "1no” condition on I'y,; = x4 X [0,2]

(from the weak formulation we have pn = v+

2
o)

P(out,y) =080 I'p,y = a0 x [0,2].

The tests run with v = 0.01, and solution to relative accuracy of 107*.

The following table illustrates the theoretic results. We have typically a growth of the

numbers of C'G-iterations as |In hl:

Situation 1:

11

with coarse grid solver without coarse grid solver

Level m |/ N | # CG-iterations for zs.q.= | # CG-iterations for x.q.=

1. 2. 4. 8. 1. 2. 4. 8.

2 300 /1113 | 30 36 48 92| 34 46 74 145

3 113/ 4372 39 44 59 103 | 42 57 89 173

4 4372/ 16737 | 43 51 71 115 | 50 71 114 222

5 16737 /66241 48 58 80 128 | 61 92 156 299

Situation 2:

with coarse grid solver without coarse grid solver

Level m |/ N | # CG-iterations for zs.q.= | # CG-iterations for x.q.=

1. 2. 4. 8. 1. 2. 4. 8.

2 300/ 1113 | 29 35 47 91 39 52 84 163

3 113/ 4372 39 45 60 102 | 48 65 103 199

4 4372/ 16737 | 43 48 69 114 | 60 80 131 248

5 16737 /66241 47 54 79 123 73 104 173 326

Situation 3:

with coarse grid solver without coarse grid solver

Level m |/ N | # CG-iterations for zs.q.= | # CG-iterations for x.q.=

1. 2. 4. 8. 1. 2. 4. 8.

2 300 /1113 | 40 40 49 92| 46 54 84 163

3 1113/ 4372 | 58 55 65 103 | 64 72 103 200

4 4372/ 16737 | 80 69 81 1151 93 99 134 249

5 16737 / 66241 | 107 90 99 136 | 139 140 189 326
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