
Technische Universit�at Chemnitz-Zwickau

DFG-Forschergruppe \SPC" � Fakult�at f�ur Mathematik

Matthias Pester Sergej Rjasanow

A Parallel Preconditioned

Iterative Realization

of the Panel Method in 3D

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

\Scienti�c Parallel Computing"

SPC 94 18 November 1994



A Parallel Preconditioned Iterative Realiza-

tion of the Panel Method in 3D

Matthias Pester

Technical University of Chemnitz-Zwickau, Faculty of Mathematics, D-09107 Chemnitz,

Germany

and

Sergej Rjasanow

University of Kaiserslautern, Dept. of Mathematics, P.O.B. 3049, D-67653 Kaisers-

lautern, Germany

The parallel version of precondition iterative techniques is developed for matrices arising from

the panel boundary element method for three-dimensional simple connected domains with Dirich-

let boundary conditions. Results were obtained on an nCube-2 parallel computer showing that

preconditoned iterative methods are very well suited also in three-dimensional case for implemen-

tation on a MIMD computer and that they are much more e�cient than usual direct solution

techniques.

KEYWORDS boundary value problem, boundary element method, precondition-

ing, iterative method, Fast Fourier Transform, parallel algorithm

1. Introduction

In this paper we consider a numerical solution of the three-dimensional Dirichlet

boundary value problem for the Laplace equation by the panel method.

This method leads to an algebraic system of linear equations with a full dense,

large order and, in general, nonsymmetric matrix [1], [26]. The generation of the

Boundary Element Method (BEM) matrix A 2 IR

N�N

generally can be realized

very e�ciently on a MIMD computer ([3], [16]) usingO

�

N

2

�

arithmetical operations

and therefore the major remaining problem is to construct an e�cient solution

strategy.

Usually, the Gaussian elimination algorithm is used for the numerical solution of
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such systems leading to a number O

�

N

3

�

of arithmetical operations.

Fortunately, there are some special classes of three-dimensional domains leading

to matrices with some additional properties, by using also special discretization

techniques, of course (see [10], [11], [14], [19]).

It was shown in [14] that the Galerkin BEM on a rotational domain leads to a so

called circulant-block matrix. The theory and some e�ective numerical algorithms

with circulant-block matrices are presented in [19]. The solution of a system of lin-

ear equations involving a circulant-block matrix consists of an O

�

N

2

�

amount of

preparation work independent of the right-hand side of the system, and of the solu-

tion itself leading to O

�

N

3=2

lnN

�

arithmetical operations. Since the usual matrix-

vector multiplication requires O

�

N

2

�

arithmetical operations, the circulant-block

matrices can be used as a preconditioner in some iterative solution procedure. Iter-

ative algorithms for full dense matrices, where each step of iteration requires one or

two matrix-vector multiplications, some scalar products, some vector additions and

the solution of the preconditioning system, involve a very high level of parallelism

only if the preconditioning technique �ts to the parallel realization.

In this paper we shall show that the preconditioning based on the algorithms with

circulant-block matrices full�lls all requirements to the e�cient parallel procedure

and can be used together with some iterative schemes, e. g. usual Gradient Method

(GM) or modern BiCGSTAB method [23] for the numerical solution of the BEM

systems.

The paper is organized as follows: In Section 2 we describe the panel method for

a three-dimensional boundary integral equation. Section 3 deals with the matrices

arising from the rotational domains which have a special circulant-block structure.

The iterative methods and a complete parallel solution of the problem are discussed

in Section 4. Finally, we present the numerical results and draw some conclusions.

2. Panel method for the boundary integral equation

In this paper we consider the integral equation of the �rst kind for an unknown

function v(x):

1

4�

Z

�

v(x)

jx� yj

dF

x

= f(y); x; y 2 � � IR

3

(2.1)

Here, � is the su�ciently smooth boundary of a three-dimensional bounded, simply

connected domain 
. Let � be given by the parametric representation

� =

�

x : x 2 IR

3

; x = x(t; z); 0 � t < 1; 0 � z � 1

	

; (2.2)

where the function x(t; z) is 1-periodical in t:

x(t; z) = x(t+ 1; z)

The main properties of the operator A with

(Av)(y) =

1

4�

Z

�

v(x)

jx� yj

dF

x
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Figure 1. Discretization of the parameter domain

are (see [8], [15], [26]):

1. A de�nes a continuous bijective mapping

A : IH

�1=2

(�)! IH

1=2

(�)

2. the equation (2.1) has a unique solution v(x) 2 IH

�1=2

(�) for all f(y) 2 IH

1=2

,

where IH

s

(�) is the Sobolev space on the boundary �. One of the most simple

methods for the numerical solution of the equation (2.1) bases on the following two

discretization ideas:

1. The boundary � will be replaced by the union �

h

of the plane triangles (panels)

�

j

:

� � �

h

=

N

[

j=1

�

j

(2.3)

2. The unknown function v(x) will be approximated by a piecewise constant func-

tion v

h

(x):

v

h

(x) = v

j

8x 2 �

j

(2.4)

In order to de�ne the discretization (2.3) of the boundary � we divide the parameter

domain [0; 1)� [0; 1) into triangles using the nodes:

f(t

k

; z

l

) = (h

t

(k � 1); h

z

(l � 1)) ; k = 1; : : : ; n; l = 1; : : : ;m+ 1g (2.5)

where h

t

= 1=n and h

z

= 1=m (see Figure 1). The total number of triangles used

by this discretization is:

N = n+ 2(m � 2)n+ n = 2n(m � 1):
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The panel method for the equation (2.1) leads to:

Find v

h

of the form (2.4) such that the collocation equations

N

X

j=1

v

j

Z

�

j

dF

x

jx� y

i

j

= f (y

i

) (2.6)

are satis�ed for all i = 1; : : : ; N .

The points y

i

are the collocation points and can be chosen (e. g.) as:

y

i

=

1

3

�

x

(1)

i

+ x

(2)

i

+ x

(3)

i

�

; i = 1; : : : ; N;

where x

(1)

i

, x

(2)

i

and x

(3)

i

are images on the boundary � of the corresponding points

in the parameter domain by the discretization (2.5). The equations (2.6) can be

replaced by the algebraic system

Av = b; A 2 IR

N�N

; v; b 2 IR

N

(2.7)

with

a

ij

=

Z

�

j

dF

x

jx� y

i

j

; b

i

= f (y

i

) ; i; j = 1; : : : ; N: (2.8)

Generally, the Matrix A of the system (2.7) is a non-symmetric, full dense matrix

without any additional properties which can be used for some e�ective solution

techniques. All elements a

ij

in (2.8) can be computed analytically.

3. Panel method on a rotational domain

Now, we shall prove that the matrix A arising from a rotational domain has a

circulant-block structure. Let � be given by the parametric representation

� =

8

<

:

x : x 2 IR

3

; x =

0

@

R(z) cos 2�t

R(z) sin 2�t

z

1

A

; 0 � t < 1; 0 � z � 1

9

=

;

(3.9)

where R(0) = R(1) = 0; R(z) > 0; z 2 (0; 1). The numbering of the panels has an

evident in
uence on the structure of the matrix. In order to get a circulant-block

structure of the system matrix we start numbering at the panels of the strip

S

1

= f(t; z); 0 � t < 1; 0 � z � h

z

g

where we can �nd only one kind of triangles.

In the strips

S

l

= f(t; z); 0 � t < 1; z

l

� z � z

l+1

g ; l = 2; : : : ;m� 1
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there are two kinds of triangles (see Figure 1). Finally, we number the panels in the

last strip

S

m

= f(t; z); 0 � t < 1; 1� h

z

� z � 1g :

Therefore the numbering of the panels �

j

is the following:

1 � j � n { panels in the strip S

1

for t

k

; k = 1; : : : ; n;

(2l � 3)n+ 1 � j � (2l � 2)n { panels of the "�rst kind" in the strips

S

l

; l = 2; : : : ;m� 1;

(2l � 2)n+ 1 � j � (2l � 1)n { panels of the "second kind" in the strips

S

l

; l = 2; : : : ;m� 1;

(2m � 3)n+ 1 � j � (2m � 2)n { panels in the strip S

m

.

The number of panels and hence the number of unknowns becomes

N = 2(m� 1)n:

Lemma 3.1. The matrix of the system (2.7) for the rotational domain (3.9) using

the above numbering of unknowns has the circulant-block structure:

A =

0

B

@

A

11

� � � A

1;2(m�1)

.

.

.

.

.

.

A

2(m�1);1

� � � A

2(m�1);2(m�1)

1

C

A

; A

ij

2 IR

n�n

;

A

ij

{ circulant, i; j = 1; : : : ; 2(m� 1):

Proof Let a

(i

1

;i

2

)(j

1

;j

2

)

be an element (i

1

; j

1

) of the matrix A

i

2

;j

2

,

1 � i

2

; j

2

� 2(m � 1); 1 � i

1

; j

1

� n.

We have to prove that

a

(i

1

+1;i

2

)(j

1

+1;j

2

)

= a

(i

1

;i

2

)(j

1

;j

2

)

; i

1

; j

1

= 1; : : : ; n� 1; (3.10)

a

(i

1

+1;i

2

)(1;j

2

)

= a

(i

1

;i

2

)(n;j

2

)

; i

1

= 1; : : : ; n� 1; (3.11)

for all i

2

; j

2

= 1; : : : ; 2(m� 1).

An element a

(i

1

;j

1

)(i

2

;j

2

)

is de�ned by (2.8):

a

ij

=

Z

�

j

dF

x

jx� y

i

j

; b

i

= f (y

i

) ; where j = (j

2

� 1)n+ j

1

; i = (i

2

� 1)n+ i

1

:

Now we consider the orthogonal matrix Q(')

Q(') =

0

@

cos' � sin' 0

sin' cos' 0

0 0 1

1

A

; Q(')Q(')

>

= I

for ' = 2�=n. Since

�

y : y = Q

�

2�

n

�

x; x 2 �

j

�

=

�

�

j+1

; j

1

< n;

�

j+1�n

; j

1

= n;
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Q

�

2�

n

�

y

i

=

�

y

i+1

; i

1

< n;

y

i+1�n;

i

1

= n;

jx� y

i

j =

�

�

�

�

Q

�

2�

n

�

(x� y

i

)

�

�

�

�

we obtain (3.10) and (3.11) for the corresponding i

1

and j

1

. Therefore, each matrix

A

(i

1

;i

2

)(j

1

;j

2

)

is a circulant.

The most important property of the circulant-block matrices is that a system

of linear equations with such a kind of matrix can be solved by an amount of

arithmetical operations of O

�

n �m

3

�

= O

�

N

2

�

(if m � n), and therefore such

matrices can be used as a preconditioner for more general systems.

We will now give a short description of the properties of circulant-block matrices

and formulate the algorithm for the solution of the linear systems. For more detail

we refer to [14], [19].

Each circulant matrix C can be written as a polynomial of the simplest nontrivial

circulant J :

C = C(J) =

n

X

l=1

c

1l

J

l�1

; J =

0

B

B

B

B

B

@

0 1 0 � � � 0

0 0 1 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 1

1 0 � � � 0 0

1

C

C

C

C

C

A

: (3.12)

The circulant matrices are diagonalizable by the Fourier matrix F :

C = n

�1

F�F

�

; f

kl

= !

l�1

k

; !

k

= e

i

2�

n

(k�1)

; i

2

= �1 (3.13)

� = diag (�

1

; : : : ; �

n

) = diag(Fc)

where �

i

; i = 1; : : : ; n; are the eigenvalues of the matrix C and c denotes its �rst

row (c

11

; : : : ; c

1n

)

>

. Hence, each circulant-block matrix A = A(J) may be written

in the form (see (3.12)):

A = A(J) =

0

B

@

a

11

(J) � � � a

1m

(J)

.

.

.

.

.

.

.

.

.

a

m1

(J) � � � a

mm

(J)

1

C

A

(3.14)

where a

kl

(J) are the polynomials of degree n � 1. This property (3.14) gives the

following (see [19])

Lemma 3.2. If all matrices

A (!

k

) =

0

B

@

a

11

(!

k

) � � � a

1m

(!

k

)

.

.

.

.

.

.

.

.

.

a

m1

(!

k

) � � � a

mm

(!

k

)

1

C

A

2
I
C

m�m
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are diagonalizable and

A (!

k

)x

l

(!

k

) = �

l

(!

k

) x

l

(!

k

) ;

A

�

(!

k

) y

l

(!

k

) = �

l

(!

k

)y

l

(!

k

) ; (3.15)

y

l

(!

k

)

�

x

j

(!

k

) = n�

lj

; (�

lj

- Kronecker symbol)

l = 1; : : : ;m; k = 1; : : : ; n;

then the matrix A(J) is also diagonalizable and

A (J) (x

l

(!

k

)
 f

k

) = �

l

(!

k

)x

l

(!

k

)
 f

k

;

A (J)

>

(y

l

(!

k

)
 f

k

) = �

l

(!

k

)y

l

(!

k

)
 f

k

; (3.16)

l = 1; : : : ;m; k = 1; : : : ; n;

where 
 denotes the Kronecker product.

The property (3.17) implies:

A(J) =

1

n

X

k;l

�

l

(!

k

) (x

l

(!

k

)
 f

k

) (y

l

(!

k

)
 f

k

)

�

: (3.17)

The solution of the system of linear equations

Ay = b; A 2 IR

N�N

; y; b 2 IR

N

(3.18)

involving a circulant-block matrix can be obtained now as

y = A

�1

(J)b =

1

n

X

k;l

1

�

l

(!

k

)

(x

l

(!

k

) 
 f

k

) (y

l

(!

k

) 
 f

k

)

�

b (3.19)

and computed with the help of

Algorithm 1

1. C := (F

�

B)

>

2
I
C

n�m

2. Y := 0

3. for l = 1; : : : ;m

3.1. D

l

:= diag (d

1

; : : : ; d

n

) ; d

k

:=

y

�

l

(!

k

)Ce

k

n�

l

(!

k

)

3.2. Y := Y +Re

�

FD

l

X

>

l

�

;

where B =

�

b

1

.

.

. � � �

.

.

.b

m

�

2 IR

n�m

is the right-hand side of (3.18),

Y =

�

y

1

.

.

. � � �

.

.

.y

m

�

2 IR

n�m

is the solution of (3.18),

X

l

= (x

l

(!

1

) ; : : : ; x

l

(!

n

)) 2
I
C

m�n

; l = 1; : : : ;m

and e

k

is the k-th column of the identity matrix I 2 IR

m�m

.
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We need only O

�

m

2

n lnn

�

arithmetic operations for the entire alorithm if we

use the Fast Fourier Transform (see [2]) twice at steps 1 and 3.2.

The preparation step is the numerical solution of n complete eigenvalue problems

(3.15) and requires O

�

n �m

3

�

arithmetic operations. To solve these problems we

transform the matrices A (!

k

) to Hessenberg form using orthogonal Householder

matrices and apply the QR method afterwards (see [20], [5], [12]).

It is necessary to remark at this place that we have to solve the problems (3.15)

only once before starting the iterations, if we use a circulant-block matrix as a

preconditioner.

4. Parallel iterative solution of the problem

Since in general the matrix of the system (2.7) is non-symmetric we cannot use the

Conjugate Gradient Method for the iterative solution. For our numerical tests we

use the classical Gradient Method

Algorithm 2

1. y

0

2 IR

n

;

r

0

= Ay

0

� b; w

0

= B

�1

r

0

2. for k = 0; 1; 2; : : :

y

k+1

= y

k

� �

k+1

w

k

; �

k+1

=

(Aw

k

; r

k

)

(Aw

k

; Aw

k

)

r

k+1

= r

k

� �

k+1

Aw

k

; w

k+1

= B

�1

r

k+1

and the modern BiCGSTAB (see [23], [24])

Algorithm 3

1. y

0

2 IR

n

;

r

0

= Ay

0

� b; w

0

= B

�1

r

0

s

0

= w

0

2. for k = 0; 1; 2; : : :

u = r

k

� �

k+1

As

k

v =w

k

� �

k+1

B

�1

As

k

; �

k+1

=

(r

0

; w

k

)

(r

0

; B

�1

As

k

)

y

k+1

= y

k

� �

k+1

s

k

� 


k+1

v; 


k+1

=

(u;Av)

(Av;Av)

r

k+1

=u� 


k+1

Av; w

k+1

=B

�1

r

k

+ 1

s

k+1

=w

k+1

+ �

k+1

�

s

k

� 


k+1

B

�1

As

k

�

; �

k+1

=

�

k+1




k+1

(r

0

; w

k+1

)

(r

0

; w

k

)

The parallel realization of the problem, once the rotational domain for the pre-

conditioning is chosen, consists of the following steps:

1. computing the matrix A according to (2.8);

2. solution of the eigenvalue problems (3.15) for the preconditioning;
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3. iterative solution using the Algorithm 2 or 3 and the Algorithm 1 for the pre-

conditioning step Bw

k+1

= r

k+1

.

The generating of the matrix A can be done fully parallel if the geometrical infor-

mation is available for all processors p = 0; : : : ; P � 1, where each of the processors

computes a number N=P of rows of the matrix A (Fig. 2).

A =

Proc. 0

Proc. 1

: : :

Proc. P � 1

o

N

P

Figure 2. Matrix computation on P processors

Proc. 0

Proc. 1

: : :

Proc. P � 1

o

m

P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X(w

1

) X(w

2

)
� � �

X(w

n

)

Figure 3. Distribution of the eigenvector matrices

The numerical solution of the eigenvalue problems (3.15) can also be done in

parallel. Here each processor has either to solve a number n=P of problems or just

to \wait" if n < P (where only the \�rst" n processors have to solve one problem

each). For the parallel realization of the Algorithm 1 it is necessary that each of

the processors has a certain part of the matrices of the eigenvectors which are

distributed as shown in Figure 3.

For convenience the eigenvalues �

l

(w

k

) should be stored on each processor. There-

fore, the corresponding transfer of the data is necessary in this step.

Within the iterative solution of the system (2.7) one step of the iteration requires

one (Algorithm 2) or two (Algorithm 3) matrix-vector multiplications, some vec-

tor additions, scalar products and one solution of an appropriate preconditioning
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system

Bw

k+1

= r

k+1

:

Since the parallel realization of all those operations except the preconditioning is

the same as in the case of two-dimensional problems, we refer to [16] and will discuss

only the Algorithm 1 here.

Proc.

0

Proc.

1

Proc.

P � 1

� � �

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

n

| {z }

m

P

r

k+1

=

Figure 4. Distribution of the right-hand side

The Algorithm starts with the right-hand side r

k+1

distributed on the P proces-

sors as shown in Figure 4. Each processor computes the corresponding part of the

matrix C using the FFT.

In step 3.1. each processor can only compute a part of each scalar product

y

�

l

(w

k

) �Ce

k

; k = 1; : : : ; n;

corresponding to the locally stored m=P components per vector, and therefore a

global exchange of data is necessary in this step to form the global sums over the

local partial sums. The step 3.2. again can be done completely parallel where each

processor has to execute m=P FFT's for the corresponding columns of the matrices

D

l

X

>

l

; l = 1; : : : ;m. Our numerical tests show that the above parallel realization

of the Algorithm 1 is very well suited for a MIMD-Computer.

5. Numerical tests

For our numerical tests we use the domain given by the parametric representation

� =

8

<

:

x : x =

0

@

R(z) cos 2�t

R(z) sin 2�t(2� 1:5 sin2�t)

z

1

A

; 0 � z � 1; 0 � t < 1

9

=

;

R(z) =

p

z(1� z)

as shown in Figure 5.
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Figure 5. Test boundary �

Figure 6. Preconditioning by the spherical surface
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For the preconditioning we used the circulant-block matrix arising from the spher-

ical surface

8

<

:

x : x =

0

@

R(z) cos 2�t

R(z) sin 2�t

z

1

A

; 0 � z � 1; 0 � t < 1

9

=

;

; R(z) =

p

z(1 � z)

The tests were performed on a \nCube-2S" parallel computer with up to 64 pro-

cessors and 8 MByte of local memory. For a di�erent number of processors we get a

corresponding maximum size of the problem. So we have a lack of �ll-in in the Ta-

bles 1, 2, 3, caused by the computer capacity for large problems or by the algorithm

itself for small problems and a large number of processors where no parallelization

e�ect can be obtained.

Table 1. Time (in seconds) for generating the matrices

problem size number of processors

n m N 1 2 4 8 16 32 64

8 5 64 2.8 1.4 0.7 0.35

16 5 128 11.1 5.6 2.8 1.4

32 5 256 44.5 22.3 11.1 5.6

32 9 512 178.1 89.4 44.7 22.4 11.2

64 9 1024 357.2 178.8 89.5 44.8

64 17 2048 357.7 178.9 89.6 44.7

128 17 4096 355.5 179.1

Table 2. Number of iterations for Algorithms 2 and 3: (a) preconditioned, (b) simple

problem size Alg. 2 Alg. 3

n m N (a) (b) (a) (b)

8 5 64 25 97 8 13

16 5 128 22 145 10 16

32 5 256 30 127 10 17

16 9 256 23 96 10 20

32 9 512 25 202 10 25

64 9 1024 32 395 9 26

32 17 1024 30 233 11 27

64 17 2048 28 617 12 31

32 33 2048 29 340 10 32

128 17 4096 29 747 9 36

64 33 4096 28 871 11 35
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Table 3. Time for the solution by Algorithms 2 and 3 on di�erent numbers of

processors

problem size Algorithm 2 { simple iteration

n m N 1 2 4 8 16 32 64

32 5 256 25.7 13.6 7.6 5.0

16 9 256 19.5 10.4 5.6 3.8 3.3

32 9 512 160.1 82.9 43.2 24.1 15.5

64 9 1024 625.2 329.7 172.5 93.3

32 17 1024 373.8 190.4 99.1 54.9 35.0

64 17 2048 1001.1 520.6 287.4

32 33 2048 553.5 287.6 156.9 101.8

128 17 4096 1243.3 690.7

64 33 4096 1449.2 805.7

problem size Algorithm 2 { preconditioned iteration

n m N 1 2 4 8 16 32 64

32 5 256 10.1 5.7 3.6 2.7

16 9 256 10.3 5.7 3.5 2.7 2.5

32 9 512 32.9 17.5 9.8 6.4 4.9

64 9 1024 70.7 37.8 21.8 14.4

32 17 1024 79.2 42.1 24.3 16.0 12.7

64 17 2048 67.7 39.8 26.8

32 33 2048 83.5 48.42 32.5 26.1

128 17 4096 76.4

64 33 4096 81.9 56.2

problem size Algorithm 3 { simple iteration

n m N 1 2 4 8 16 32 64

32 5 256 7.1 3.8 2.2 1.4

16 9 256 8.2 4.4 2.5 1.6 1.3

32 9 512 40.1 16.6 10.0 5.1 3.3 2.8

64 9 1024 83.7 42.8 20.7 12.5 7.7 6.7

32 17 1024 86.8 49.2 24.9 12.9 8.3 6.9

64 17 2048 101.3 53.0 29.4 18.7

32 33 2048 104.5 47.9 30.3 16.9

128 17 4096 122.5 71.5

64 33 4096 119.1 67.8

problem size Algorithm 3 { preconditioned iteration

n m N 1 2 4 8 16 32 64

32 5 256 6.7 3.8 2.4 1.8

16 9 256 8.9 4.9 3.1 2.3 2.1

32 9 512 26.1 13.8 7.8 5.1 3.9

64 9 1024 39.6 21.2 12.3 8.2

32 17 1024 57.4 30.7 17.8 11.8 9.3

64 17 2048 56.8 33.6 22.3

32 33 2048 57.1 35.6 22.7 18.2

128 17 4096 47.7

64 33 4096 64.1 44.2
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Remark 1: It is necessary to remark that the iterative solution method pre-

sented here is not of optimal (in usual sense) order. The number of arithmetical

operations required is of the capital order O

�

h

�4

�

(h � 1=n � 1=m). The main

work remains in the multiplication of the system matrix with a vector, which should

be done once for the Algorithm 2 and twice for the Algorithm 3 per iteration step.

The solution of the eigenvalue problems (3.15) requires also O

�

h

�4

�

arithmetical

operations. This work should be done only in the preparation phase. The precondi-

tioning system is solved via Algorithm 1 (O(h

�3

lnh

�1

) operations). The decrease

of the arithmetical work for the matrix-vector multiplication, investigated in [7] can

also be used for our algorithms.

Remark 2: Here we consider only a model problem, the domain decomposi-

tion techniques ([9], [13], [21], [22]) seem to be unavoidable for more realistic and

therefore more complicated geometries of the problem.

Remark 3: The numerical tests show clearly the superiority of the BiCGSTAB

iterative procedure to the classical Gradient method. It can also be seen that the

number of iterations for BiCGSTAB without preconditioning redoubles if the di-

mension of the problem increases 16 times. If we assume that the condition number

of the system is of the capital order { = O(h

�1

), then the number of iterations is

proportional to O(

p

{) which is usual for CG-like methods.

Remark 4: As Table 1 shows, the parallel generation of the system matrix

scales up with the problem size and the number of processors in a nearly optimal

way. The behaviour of the parallel iterative solution depends on the discretization

parameters n and m (Table 3) and the di�erent way of distributing the data among

the processors (see Figures 2,3,4). It is clear that there is in general no optimal

balance between the processors. Especially the solution of the n full complex eigen-

value problems for the preconditioner leads to a potential disbalance because of the

variety of the convergence speed. Hence, the speed-up is not optimal, but su�cient.
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