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Abstra
t

We study theoreti
ally the ex
iton absorption on a ring threaded by a mag-

neti
 
ux. For the 
ase when the attra
tion between ele
tron and hole is

short-ranged we get an exa
t solution of the problem. We demonstrate that,

despite the ele
tri
al neutrality of the ex
iton, both the spe
tral position of

the ex
iton peak in the absorption, and the 
orresponding os
illator strength

os
illate with magneti
 
ux with a period �

0

|the universal 
ux quantum.

The origin of the e�e
t is the �nite probability for ele
tron and hole, 
reated

by a photon at the same point, to tunnel in the opposite dire
tions and meet

ea
h other on the opposite side of the ring.
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One of the manifestations of the Aharonov-Bohm (AB) e�e
t [1℄ in the ring geometry

[2,3℄ is the periodi
 dependen
e of the transmission 
oeÆ
ient for an ele
tron traversing the

ring on the magneti
 
ux � through the ring [4,5℄. The period of os
illations is equal to

�

0

= h
=e | the universal 
ux quantum.

For one-dimensional (1D) 
ontinuum intera
ting quantum systems with translational

invarian
e there is also a periodi
ity of many-parti
le states as a fun
tions of 
ux [6{9℄.

In 1D latti
e systems, the lifting of Galilean invarian
e allows for various periodi
ities of

the states [6,7℄. For the ground state, this behavior 
an be interpreted, a

ording to the

above de�nition of �

0

, as a signature of the existen
e of elementary ex
itations with multiple

| sometimes even fra
tional | 
harges [6,10{13℄. In the 
ase of strong ele
tron-ele
tron

intera
tion the adequate des
ription of the many-body states is based on ex
itations of the

Wigner-
rystal [14,15℄. Furthermore, the absen
e of sensitivity to the 
ux in su
h systems

is an indi
ation of the onset of the Mott transition [7,16,17℄. Similarly, the sensitivity of

single-parti
le energies to the 
ux [18℄ 
an be used as a 
riterion of the Anderson-type

metal-insulator transition in disordered systems [19℄. Combined e�e
ts of intera
tions and

disorder in 1D have re
eived mu
h attention in the last de
ade [17,20{22℄. Numeri
al studies

of pairing e�e
ts for two parti
les with repulsive intera
tion in a disordered environment were


arried out using the AB setting [23℄. Other physi
al manifestations of the AB e�e
t in the

ring geometry 
onsidered in the literature in
lude the evolution of ele
tron states for a time-

dependent 
ux [24℄, and a 
ux-dependent equilibrium distortion of the latti
e 
aused by

ele
tron-phonon intera
tions [25℄.

The physi
al origin of the 
ux sensitivity of an ele
tron on the ring is its 
harge whi
h


ouples to the ve
tor potential. Correspondingly, the 
oupling to the 
ux has the opposite

sign for an ele
tron and a hole. For this reason an ex
iton, being a bound state of ele
tron

and hole and thus a neutral entity, should not be sensitive to the 
ux. However, due to

the �nite size of the ex
iton, su
h a sensitivity will emerge. This e�e
t is demonstrated

in the present paper. Below we study the AB-os
illations both in the binding energy and

in the os
illator strength of the ex
iton absorption. We 
hoose as a model a short-range
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attra
tion potential between ele
tron and hole, whi
h allows to solve the three-body problem

(ele
tron, hole, and a ring) exa
tly. From this exa
t solution, we tra
e the behavior of the

AB os
illations when in
reasing the radius of the ring or the strength of the ele
tron-hole

attra
tion.

Denote with '

e

and '

h

the azimuthal 
oordinates of the ele
tron and hole, respe
tively.

In the absen
e of intera
tion the wave fun
tions of ele
trons and holes are given by
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orresponding energies are
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Here � is the radius of the ring, and m

e

, m

h

stand for the e�e
tive masses of ele
tron and

hole, respe
tively. In the presen
e of an intera
tion V

h

R('

e

� '

h

)

i

, where R('

e

� '

h

) =

2� sin(
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e
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h

2

) is the distan
e between ele
tron and hole, we sear
h for the wave fun
tion of

the ex
iton in the form
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The 
oeÆ
ients A

N;N

0

are to be found from the equation
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where � is the energy of the ex
iton. The formal expression for A

N;N

0

follows from Eq. (4)

after multiplying it by

h
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At this point we make use of the assumption that the potential V

h

R('

e

� '

h

)

i

is short-

ranged. This implies that the integral over '

h

is determined by a narrow interval of '

h


lose to '

e

. Then we 
an repla
e '

h

by '

e

in the rest of the integrand. As a result, Eq. (5)

simpli�es to
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where the 
onstant V
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< 0 is de�ned as
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Finally we derive a 
losed equation, whi
h determines the ex
iton energies. This equation

follows from Eqs. (3) and (6) as a self-
onsisten
y 
ondition. Indeed, by setting in Eq. (3)

'

e
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h

, multiplying both sides by exp(�iN
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), and integrating over '

e

, we obtain
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Substituting (6) into (8) we arrive at the desired 
ondition
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For ea
h integer N

0

the solutions of Eq. (9) form a dis
rete set, �

m

N

0

. The 
orresponding

(non-normalized) wave fun
tions have the form
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The exponential fa
tor in front of the sum insures that in the dipole approximation only

the ex
itons with N

0

= 0 
an be 
reated by light. The frequen
y dependen
e of the ex
iton

absorption, �(!), 
an be presented as

�(!) /

X

m

F

m

Æ(�h! � E

g

��

m

0

); (11)

where E

g

is the band-gap of the material of the ring; the 
oeÆ
ients F

m

stand for the

os
illator strengths of the 
orresponding transitions. A general expression for F

m

through

the eigenfun
tion, 	

m

0

, of the ex
itoni
 state reads

F
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Upon substituting Eq. (10) into Eq. (12) and making use of Eq. (9), we obtain
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The latter expression 
an be presented in a more 
ompa
t form by introdu
ing the rate

of 
hange of the ex
iton energy with the intera
tion parameter V

0

. Indeed, taking the

di�erential of Eq. (9), yields

F
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We note that the summation in Eq. (9) 
an be 
arried out in a 
losed form by using the

identity
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For the most interesting 
ase N

0

= 0 the parameters a

1
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2

are equal to
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and � = m

e

m

h

=(m

e

+m

h

) denotes the redu
ed mass of ele
tron and hole. Then the equation

(9) for the ex
iton energies takes the form
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This equation is our main result. It is seen from Eq. (18) that the stru
ture of the ex
itoni


spe
trum is determined by a dimensionless ratio jV

0

j="

0

. From the de�nition (7) it follows

that, with in
reasing the radius � of the ring, V

0

falls o� as 1=�. Thus, jV

0

j="

0

is proportional

to �. In the limit of large �, when jV

0

j � "

0

, the spe
trum 
an be found analyti
ally. The

ground state 
orresponds to negative energy and is given by

�

0

0

= �

�

2

V

2

0

"

0

"

1 + 4 
os

�

2��

�

0

�

exp

�

�

2�

2

jV

0

j

"

0

�

#

: (19)

5



We note that the prefa
tor �

2

V

2

0

="

0

is independent of �. It is equal to the binding energy of

an ex
iton on a straight line. It is easy to see that in the limit under 
onsideration we have

j�

0

0

j � jV

0

j � "

0

.

The se
ond term in the bra
kets of Eq. (19) des
ribes the AB e�e
t for the ex
iton.

In the limit of large � its magnitude is exponentially small. The physi
al meaning of the

exponential prefa
tor 
an be understood after rewriting it in the form exp(�2��
), where


 = �jV

0

j

�

2�=�h

2

"

0

�

1=2

is the inverse de
ay length of the wave fun
tion of the internal motion

of ele
tron and hole in the limit �!1. Thus, the magnitude of the AB e�e
t in the limit

of large � represents the amplitude for bound ele
tron and hole to tunnel in the opposite

dire
tions and meet ea
h other \on the opposite side of the ring" (opposite with respe
t to

the point where they were 
reated by a photon). This qualitative 
onsideration allows to

spe
ify the 
ondition that the intera
tion potential is short-ranged. Namely, for Eq. (19)

to apply, the radius of potential should be mu
h smaller than 


�1

. It is also 
lear from

the above 
onsideration that, within a prefa
tor, the magnitude of the AB e�e
t is given

by exp(�2��
) for arbitrary attra
tive potential, as long as the de
ay length 


�1

is smaller

than the perimeter of the ring. In Fig. 1 we plot the numeri
al solution of Eq. (18) for

various values of � together with the asymptoti
 solution (19) valid in the limit of large


�. We see that the maximum possible 
hange in ex
iton energy by threading the ring with

a 
ux �

0

=2 is 25% of the size-quantization energy "

0

. The asymptoti
 expression of (19)

is good down to 
� � �

�1

. In Fig. 2, we show the variation of the ex
iton energy with �

within one period. As expe
ted, the AB os
illations are 
lose to sinusoidal for large values

of 2�
�, whereas for 2�
� = 1, unharmoni
ity is already quite pronoun
ed. The in
rease

of the ex
iton energy as the 
ux is swit
hed on has a simple physi
al interpretation. If the

single-ele
tron energy (2) grows with � then the single-hole energy is redu
ed with � and vi
e

versa. This suppresses the ele
tron-hole binding. Fig. 2 illustrates how the amplitudes of the

AB os
illations de
rease with in
reasing ring perimeter 2�
� as des
ribed by Eq. (19). The

AB os
illations in the os
illator strength are plotted in Fig. 3. As expe
ted, the shift is most

pronoun
ed for � = �

0

=2, and the relative magnitude is nearly 80% for the smallest value

6



of 2�
�. For larger values of 2�
�, the os
illations in F

0

(�) be
ome in
reasingly sinusoidal

as 
an be seen by di�erentiating Eq. (19) with respe
t to V

0

.

In the 
onsideration above we assumed the width of the ring to be zero. In fa
t, if

the width is �nite but smaller than the radius of the ex
iton, 


�1

, it 
an be taken into

a

ount in a similar fashion as in [26℄ by adding �h

2

�

2

=2m

e

W

2

and �h

2

�

2

=2m

h

W

2

to the

single-ele
tron and single-hole energies (2), respe
tively. Here, W stands for the width of

the ring and a hard-wall 
on�nement in the radial dire
tion is assumed. This would leave the

AB os
illations un
hanged. In the opposite 
ase W � 


�1

the os
illations are suppressed.

The pre
ise form of the suppression fa
tor as a fun
tion of (W
)

�1

is unknown and depends

on the details of the 
on�nement.

Let us brie
y address the ex
ited states of the ex
iton 
orresponding m > 0. In the limit

jV

0

j � "

0

for the energies with numbers m < jV

0

j="

0

we get from Eq. (18)

�
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h
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2
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m
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1

2

)

"

0

�
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V
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os

�

2��

�

0

�i
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In 
ontrast to the ground state as in (19) the AB 
ontribution to the energy �

m

0

is not

exponentially small. Still the AB term is small (in parameter "

0

=jV

0

j � 1) 
ompared to the

level spa
ing at � = 0.

An alternative way to derive Eq. (18) is to follow the Bethe ansatz approa
h [27℄. The

intimate relation between Eq. (18) and a Bethe ansatz equation be
omes most apparent in

the absen
e of magneti
 
ux, � = 0, when (18) 
an be rewritten as

2��k

m

= 2�m+ 2 ar
tan

�

�k

m




�

; (21)

where k

m

= (2�

m

0

�)

1=2

=�h is the wave ve
tor and 
 = 2��V

0

�

2

=�h

2

parameterizes the strength

of the attra
tion analogously to the well-known Æ-fun
tion gas [28{30℄. At �nite 
ux, the

stru
ture of the Bethe ansatz equations will be very similar to the equations for a 1D

Hubbard model [31℄ in the presen
e of a spin 
ux 
oupling to the spin-up and spin-down

degrees of freedom of the ele
trons [10,17℄.

First experimental studies of the AB e�e
t were 
arried out on metalli
 rings [32℄. The

next generation of rings were based on GaAs/AlGaAs hetereostru
tures as in Refs. [33℄ and
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[34℄ and had a 
ir
umferen
e of � 6000nm and 3000nm, respe
tively. For su
h rings the

magnitude of the ex
itoni
 AB os
illations will be very small. However, quite re
ently mu
h

more 
ompa
t ring-shaped dots of InAs in GaAs with a 
ir
umferen
e of � 250nm were

demonstrated to exist [35℄. This was a
hieved by modi�
ation of a standard growth pro
e-

dure [36℄ used for the fabri
ation of arrays of self-assembled InAs quantum dots in GaAs.

Re
ent light absorption experiments on nano-rings reveal an ex
itoni
 stru
ture [37℄. How-

ever, it is mu
h more advantageous to sear
h for the AB os
illations proposed in the present

paper not in absorption, but in lumines
en
e studies. This is be
ause near-�eld te
hniques

developed in the last de
ade allow to "see" a single quantum dot and thus avoid the inhomo-

geneous broadening. This te
hnique was applied to many stru
tures 
ontaining ensembles

of quantum dots (e.g., GaAs/AlGaAs [38℄, ZnSe [39℄). In parti
ular, extremely narrow and

temperature insensitive (up to 50K) lumines
en
e lines from a single InAs quantum dot in

GaAs were re
orded in [40℄.

In 
on
lusion, we have demonstrated the AB os
illations for a neutral obje
t. This


onstitutes the main qualitative di�eren
e between our paper and previous 
onsiderations

[41℄ for two intera
ting ele
trons on a ring. Lastly, we note that the possibility of the related

e�e
t of Aharonov-Casher os
illations for an ex
iton was 
onsidered previously in [42℄. The

underlying physi
s in [42℄ is that even a zero-size ex
iton having zero 
harge 
an still have

a �nite magneti
 moment.
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FIG. 1. The ex
iton energy �="

0

at 
ux � = 0 (solid lines), �

0

=4 (dashed line), and �

0

=2

(dot-dashed line) through the ring are plotted versus the dimensionless perimeter of the ring 2�
�.

The thi
k and thin lines represent the exa
t solution of Eq. (18) and the asymptoti
 result of Eq.

(19), respe
tively.
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FIG. 2. The Aharonov-Bohm os
illations of the ex
iton energy is shown for three values of the

dimensionless ring perimeter 2�
� = 1 (solid lines), 2 (dashed lines) and 3 (dot-dashed lines). As

in Fig. 1, the thi
k and thin lines are drawn from Eq. (18) and Eq. (19), respe
tively.
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dimensionless ring perimeter 2�
� = 1 (solid line), 2 (dashed line) and 3 (dot-dashed line).

14


