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Abstract

It is well known, that pseudodi�erential equations of negative or-

der considered in the Sobolev space with a small smoothness index are

ill{posed. On the other hand, it is known that e�cient discretization

schemes with properly chosen discretization parameter allow to obtain

a regularization e�ect for such equations. The main accomplishment

of the present paper is the principle for the adaptive choice of the dis-

cretization parameter directly from noisy discrete data. We argue that

the combination of this principle with wavelet{based matrix compres-

sion techniques leads to algorithms which are order{optimal in the sense

of complexity.

1. Introduction

Let L

2

= L

2

(
) be the space of square summable functions on a given bounded

domain or manifold 
 which admits the de�nition of Sobolev spaces H

t

; t 2 R,

equipped with the usual norms k � k

t

. Thus, in particular H

0

= L

2

and H

�t

is

the dual ofH

t

relative to the inner product h�; �i in L

2

, i.e. (H

t

)

�

= H

�t

. When


 is a bounded domain the de�nition of H

t

may incorporate (homogeneous)

boundary conditions.

The operatorA is called an elliptic pseudodi�erential operator of negative order

�r; r > 0, if for any t 2 R it is a bounded linear operator A : H

t

! H

t+r

. The

bilinear form hAu; vi; u; v 2 H

�

r

2

is symmetric and hAu; ui � kuk

2

�

r

2

. Here

and in the following a . b means that b can be bounded by some constant

times a uniformly with respect to any parameters on which a and b depend.

We will write a � b if there holds a . b and b . a.

The typical examples included in the above assumptions are given by integral

operators A arising from the reformulation of elliptic boundary value problems

as boundary integral equations, when the boundary is smooth, see e.g. [McL],

[At], [YS], [SS], [DPS], [BPV], [PP]. In most of these examples the order is

�1, i.e., r = 1.

By duality, an elliptic pseudodi�erential operator of negative order �r; r > 0,

de�nes an isomorphism from H

�

r

2

onto H

r

2

. Thus, the equation

Au = f (1.1)
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has a unique solution u = A

�1

f for any f 2 H

t

; t �

r

2

. At this point it is

convenient to note that, usually, in practice the right hand side f re
ecting

boundary conditions cannot be given exactly but only in discretized and noisy

form.

The noise may be caused e.g. by rounding errors preparing the problem to a

discretization, measurement errors and modeling errors. As it has been indi-

cated in [BPV], the rounding errors cause perturbations of order 10

�10

%, the

measurement and modeling errors may cause much larger perturbations, say

of order 0:1{1%. As a result, instead of Au = f we have at our disposal an

equation Au = f

�

with some f

�

2 H

�

, where � <

r

2

and � characterizes the level

of the noise in our data. Considered as an equation in H

�

for � <

r

2

, the last

pseudodi�erential equation is ill{posed. Small perturbations of the data may

cause dramatic changes in its solution considered as an element from H

�

r

2

. On

the other hand, it is known [Nat], [VH], [BPV], [DM], [PP], [MP] that e�ective

discretization schemes with properly chosen discretization parameter allow to

obtain a regularization e�ect for pseudodi�erential equation of a negative or-

der; no special regularization of the problem is needed. This phenomenon is

sometimes called the self{regularization of the ill{posed problem through its

discretization, or the regularization by projection.

The main accomplishment of present paper is the principle for a posteriori

adaptive choice of the discretization parameter directly from noisy discrete

data. We argue that the combination of this principle with wavelet{based

matrix compression technique proposed in [Sch] leads to the algorithm having

order{optimal complexity among all thresholding type adaptive methods.

2. Wavelets and Multiresolution analysis

Multiresolution is by now a well{studied notion. There are many excellent

accounts about it, we refer the reader to the survey paper [D1] and the ref-

erences therein. Here we focus only on those aspects which are useful for our

purpose. In general, a multiresolution analysis consists of a nested family of

�nite dimensional subspaces

V

0

� V

1

� � � � � V

j

� V

j+1

� � � � � � � � L

2

(
); (2.1)
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such that dimV

j

� 2

nj

and

[

j2N

0

V

j

= L

2

(
); N

0

= f0; 1; � � � g:

Each space V

j

is de�ned by a single scale basis �

j

= f'

j

k

g; i.e., V

j

= span f'

j

k

:

k 2 �

j

g, where �

j

denotes a suitable index set with cardinality #(�

j

) � 2

nj

.

A �nal requirement is that these bases are uniformly stable, i.e., for any vector

c = fc

k

; k 2 �

j

g

kck

l

2

(�

j

)

�
















X

k2�

j

c

k

'

j

k
















0

(2.2)

holds uniformly in j. Furthermore, the bases should satisfy a locality condition

diam supp ('

j

k

) � 2

�j

: (2.3)

The wavelets 	

j

= f 

j

k

: k 2 r

j

= �

j+1

=�

j

g are the bases of complementary

spaces W

j

of V

j

in V

j+1

, i.e.,

V

j+1

= V

j

�W

j

; V

j

\W

j

= f0g; W

j

= spanf 

j

k

: k 2 r

j

g:

It is supposed that the collections �

j

[ 	

j

are also uniformly stable bases of

V

j+1

. Furthermore, we suppose that the wavelet basis

	 =

1

[

j=�1

	

j

;

where 	

�1

= �

0

, is a Riesz{basis of L

2

(
). Then, there exists a biorthogonal,

or dual, Riesz{basis

~

	 = f

~

 

j

k

: k 2 r

j

; j = �1; 0; 1; � � � g

such that h

~

 

j

k

;  

i

l

i = �

k;l

�

ij

and every v 2 L

2

has a representation

v =

1

X

j=�1

X

k2r

j

hv;  

j

k

i

~

 

j

k

=

1

X

j=�1

X

k2r

j

hv;

~

 

j

k

i 

j

k

(2.4)

and that

kvk

2

0

�

1

X

j=�1

X

k2r

j

jhv;  

j

k

ij

2

�

1

X

j=�1

X

k2r

j

jhv;

~

 

j

k

ij

2

:
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We refer to [D1] for further details.

If one is going to use the spaces V

j

and

~

V

j

= spanf

~

 

i

k

: k 2 r

i

; i = �1; 0; 1; � � � ; j � 1g

as trial spaces for the approximate solution of (1.1) then additional properties

are required. Usually it is assumed that the following Jackson and Bernstein

type estimates hold for t � � � 


1

, t � s � 


0

and uniformly in j

inf

v2V

j

ku� vk

t

� b

0

2

�j(��t)

kuk

�

; u 2 H

�

; (2.5)

and

kvk

s

� b

1

2

j(s�t)

kvk

t

; v 2 V

j

; (2.6)

where 


0

; 


1

> 0 are �xed constants given by




0

= sup fs 2 R : V

j

� H

s

g;




1

= sup fs 2 R : inf

v2V

j

ku� vk

0

� b

0

2

�js

kuk

s

g:

Usually, 


1

is the maximal degree of polynomials which are locally contained

in V

j

and is referred to the order of exactness of the multiresolution analysis

fV

j

g. The parameter 


0

denotes the regularity or smoothness of the functions

in the spaces V

j

. We will assume that 


0

� 


1

, which is the case in all known

examples of wavelet functions. Analogous estimates are valid for the dual

multiresolution analysis f

~

V

j

g with constants ~


0

; ~


1

.

The assumptions that (2.5), (2.6) hold with some constants 


0

, ~


0

relative

to fV

j

g; f

~

V

j

g. They provide a convenient device for switching between the

norms k � k

t

and corresponding sums of weighted wavelet coe�cients from the

representation (2.4). Namely, the following celebrated norm equivalence

kvk

2

t

�

1

X

j=�1

2

2jt

X

k2r

j

jhv; �

j

k

ij

2

(2.7)

holds for �

j

k

=

~

 

j

k

; t 2 (�~


0

; 


0

) and �

j

k

=  

j

k

; t 2 (�


0

; ~


0

), see, e.g., [D] and

[Sch] for the details.

In conclusion of the section we note that at �rst glance it would be more con-

venient to deal with a single orthonormal system of wavelets, say f 

j

k

g, but

full orthonormality in this sense, in conjunction with compact support (2.3), is

hard to realize in a non{tensor product setting. Examples of compactly sup-

ported biorthogonal wavelets meeting above assumptions, however, are easier

to obtain, see e.g. [D1].
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3. Stability and convergence of wavelet{based

Galerkin schemes

Popular methods for solving (1.1) numerically are projection schemes. For the

case when the right hand side f is given without any noise these schemes have

been investigated in [DPS], [DPS1], [Sch] in the context of multiresolution

analysis. Here we con�ne ourselves to the case of the Galerkin scheme, i.e., we

seek for a solution u

j

2 V

j

of the variational problem

hAu

j

; v

j

i = hf; v

j

i

for all v

j

2 V

j

. It is convenient to reformulate the Galerkin method as a

projection method

Q

�

j

AQ

j

u = Q

�

j

f; (3.1)

where Q

�

j

is the L

2

adjoint of

Q

j

=

j�1

X

i=�1

X

k2r

i

h

~

 

i

k

; �i 

i

k

:

Under the assumptions 


0

; ~


0

> 0, Q

j

and Q

�

j

are uniformly bounded projectors

from L

2

onto V

j

and

~

V

j

respectively, which are dual to each other.

It is clear that for �nding such u

j

one should solve a system of no more than

N � 2

nj

linear algebraic equations. The scheme (3.1) is called (t; r){stable if

kQ

�

j

AQ

j

vk

t+r

� b

2

kvk

t

(3.2)

for all v 2 V

j

uniformly in j. Clearly, (3.2) means that the �nite dimensional

operators A

j

= Q

�

j

AQ

j

have left inverses A

�1

j

: H

t+r

! H

t

which are bounded

uniformly in j. An establishment of the (t; r){stability for wavelet{based pro-

jection schemes and elliptic pseudodi�erential equations have been given in

[DPS], [DPS1], [Sch].

Combining stability (3.2) with the approximation properties (2.5), (2.6) yields

the following canonical error estimates for the unique solution u

j

of (4.1).

Theorem 3.1 [DPS], [Sch]. Suppose that for t 2 [�


1

� r; 


0

]; 0 <

r

2

< ~


0

, the

scheme (4.1) is (t; r){stable. Furthermore, assume that for some � � t such

that � � 


1

the solution u = A

�1

f belongs to H

�

. Then

ku� u

j

k

t

� c2

�j(��t)

kuk

�

;

where c depends only on the constants from (2.5), (2.6) and (3.2).
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4. Self{regularization for known smoothness

of the solution

We now turn to the case of the noisy equation

Au = f

�

; (4.1)

where f

�

can be any element from H

�

; � <

r

2

, such that kf � f

�

k

�

� �. Pro-

jection scheme (3.1) can be directly applied to (4.1) if Q

�

j

is de�ned on H

�

.

In such a case it is natural to assume that the norms of Q

�

j

: H

�

! H

�

are

bounded uniformly in j, i.e.,

kQ

�

j

k

H

�

!H

�
� b

3

: (4.2)

Then from (t; r){stability (3.2) it follows that there is always a unique solution

u

j

�

of the equation

Q

�

j

AQ

j

u = Q

�

j

f

�

: (4.3)

Moreover, keeping in mind that u

j

; u

j

�

2 V

j

, from (2.6) and (3.2) we have

ku

j

� u

j

�

k

t

� b

�1

2







Q

�

j

AQ

j

(u

j

� u

j

�

)







t+r

= b

�1

2

kQ

�

j

(f � f

�

)k

t+r

� b

1

b

�1

2

2

j(t+r��)







Q

�

j

(f � f

�

)







�

� b

1

b

�1

2

b

3

�2

j(t+r��)

:

Thus, under the conditions of Theorem 3.1 the following error bound holds

ku� u

j

�

k

t

� ku� u

j

k

t

+ ku

j

� u

j

�

k

t

= c

0

2

�j(��t)

+ c

1

�2

j(t+r��)

; (4.4)

where c

0

depends on the norm of the unknown solution kuk

�

and b

0

; b

1

; b

2

, while

c

1

= b

1

b

�1

2

b

3

. It is easy to see that the best result in (4.4) will be obtained for

j = j

opt

such that 2

�j(��t)

and �2

j(t+r��)

are of the same size, i.e., for � < � + r

2

j

opt

� �

�

1

�+r��

(4.5)

resulting to

ku� u

j

opt

�

k

t

� c�

��t

�+r��

: (4.6)
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The estimates (4.5), (4.6) characterize the self{regularization of problem (4.1)

through its discretizations (4.3). These estimates are order optimal for the

case when the Sobolev smoothness of the solution u = A

�1

f is known to

be � . To show this we should compare the scheme (4.3) with all methods

for solving (4.1) which use the same amount, say N , of discrete information

about f

�

. Each such a method must be based on some collection of elements

�

N

= (�

1

; �

2

; � � � ; �

N

) 2 H

��

describing the way we obtain noisy discrete

information �

N

; (f

�

) = (h�

1

; f

�

i; h�

2

; f

�

i; : : : ,h�

N

; f

�

i) 2 R

N

about f

�

. The

resulting approximation u

�

based on such information may be given by any

mapping Q : R

N

! H

t

, hence u

�

= Q � �

N

(f

�

). For a given method (Q;�

N

)

its uniform error over the class of solutions u 2 H

�

with the same norm bound,

say kuk

�

�M , is determined as

e

�

(A;Q;�

N

) = sup

u:

kuk

�

�M

sup

f

�

:

kAu�f

�

k

�

��

ku�Q � �

N

(f

�

)k

t

:

Thus, we should measure the quality of any method against the lower bound

r

N;�

(A; �; t; �) = inf

�

N

:H

�

!R

N

inf

Q:R

N

!H

t

e

�

(A;Q;�

N

):

For a �xed noise level � > 0 the sequence fr

N;�

g will decrease as N !1, but

there will be a positive limit r

�

(A; �; t; �) = lim

N!1

r

N;�

(A; �; t; �) that cannot be

beaten by any approximate method. In particular, from (4.6) it follows that

under the conditions of Theorem 3.1

r

�

(A; �; t; �) � c�

��t

�+r��

: (4.7)

As in [Nat1] we have

r

�

(A; �; t; �) � sup fkuk

t

: kAuk

�

� �; kuk

�

�Mg :

To estimate the last quantity we take into account that the �nite section of

the Sobolev scale fH

t

g; jtj � � + r, can be considered as a part of some

Hilbert scale with an equivalence of corresponding norms. Moreover, for our

pseudodi�erential operator A of order �r one has kAk

H

��r

!H

� � c

�

. Then for

� � r � t � � using strict interpolation property of the Hilbert scales we can

continue

sup fkuk

t

: kAuk

�

� �; kuk

�

�Mg

� sup

�

kuk

t

: kuk

��r

� c

�1

�

�; kuk

�

�M

	

� (c

�1

�

�)

��t

�+r��

M

t+r��

�+r��

� �

��t

�+r��

:
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Keeping in mind (4.7) one can see that

r

�

(A; �; t; �) � �

��t

�+r��

: (4.8)

From (4.6) and (4.8) it becomes evident that for a given noise level � > 0 the

projection scheme (4.3) with discretization parameter j = j

opt

provides the

regularization of the ill{posed problem (4.1) with the best possible order of

accuracy.

Let us discuss now the relation (4.5). This relation allows to estimate the num-

ber #(Q

�

j

f

�

) of noisy wavelet coe�cients of f

�

used to construct a regularized

approximate solution u

j

�

. Keeping in mind that dimV

j

= dim

~

V

j

� 2

nj

, we

have

#(Q

�

j

f

�

) � �

�

n

�+r��

: (4.9)

On the other hand, the minimal amount of discrete information which allows

to reach the best possible accuracy up to some constant c is measured by the

quantity

N(A; �; t; �; �) = inf fN : r

N;�

(A; �; t; �) � cr

�

(A; �; t; �)g :

From [MP] it follows that in our case

r

N;�

(A; �; t; �) � cN

�

��t

n

; (4.10)

where the last quantity is just the order of the N{th Gelfand number of the

canonical embedding J

t;�

: H

�

! H

t

. Then as in [MP] from (4.8) we can

obtain

N(A; �; t; �; �) � inf

n

N : N

�

(��t)

n

� c�

��t

�+r��

o

� �

�

n

�+r��

:

Combining this estimate with (4.9) yields

N(A; �; t; �; �) � #(Q

�

j

opt

f

�

) � �

�

n

�+r��

: (4.11)

In summation we arrive at the following statement.

Theorem 4.1. Let the assumptions of Theorem 3.1 be ful�lled. Then pro-

jection scheme (4.3) with discretization parameter chosen as in (4.5) has the

self{regularization property and allows to reach the best possible order of accu-

racy (4.8) with order{optimal amount of noisy discrete information (4.11).

8



5. Adaptation to unknown smoothness

The order{optimal choice of the discretization parameter (4.5) requires a priori

information on the Sobolev smoothness index � of the unknown solution. But

usually in practice one can indicate only some interval (�

0

; �

1

] containing this

index. For example, within the framework of Theorem 3.1 such an interval

can be chosen as (t; 
 � r]. Thus, the problem naturally arises how to adapt

the discretization parameter j to unknown smoothness in such a way that the

optimal order of accuracy (4.8) would be reached automatically. To the best of

our knowledge this problem was studied only in [VH] and [K] where the residual

principle was discussed. In accordance with this principle the discretization

parameter j = j(�) is chosen as the minimal one for which kAu

j

�

� f

�

k

�

� c�,

where c is some constant. It is clear that such a choice is possible under

accessing in�nitely many data. Moreover, in [VH] only convergence u

j(�)

�

!

u = A

�1

f , as � ! 0, has been proved, and in a recent paper [K] it has

been shown that using a residual principle one can also reach the accuracy of

order �

1

2

. This order is still far from (4.8) with � = 1, t = �

1

2

, � = 0, for

example. One of the goals of the present paper is to develop a new principle

for the adaptive choice of j based on the �nite amount of noisy discrete data

that is minimal in a certain sense. It will solve the problem mentioned in the

beginning of the section.

The idea of this principle has its origin in the paper [L], devoted to statistical

estimation from direct white noise observations that corresponds to (4.1) with

identity operator A, but with random noisy data. In the context of ill{posed

problems of the form (4.1) with compact operators A acting along some Hilbert

scale, but still with random noise, this idea has been realized in [GP] for

adaptive estimating the value of a linear functional on the solution of (4.1). If,

as it is usual for statisticians, we will treat the terms in the right hand side of

(4.4) as bias and variance, respectively, then the idea is to choose the minimal

j for which the bias is still dominated by the variance.

If �

0

is the minimal expected Sobolev smoothness of the solution u = A

�1

f

then in view of (4.5) it is natural to choose the discretization parameter j for

the scheme (4.3) from the �nite set

N(�; �

0

) =

n

j : 2

j

� b

4

�

�

1

�

0

+r��

o

;

where b

4

is some design parameter and we assume that � is small enough such

9



that N(�; �

0

) is not empty. Let us consider one more �nite set

�

�

=

�

j 2 N(�; �

0

) : ku

j

�

� u

i

�

k

t

� 4c

1

�2

i(t+r��)

8i � j; i 2 N(�; �

0

)

	

;

where c

1

is the constant from (4.4). We would like to stress that the exact

Sobolev smoothness � of the unknown solution u = A

�1

f and kuk

�

are not

involved in the construction of �

�

. As to the constant c

1

it can be calculated

as c

1

= b

1

b

�1

2

b

3

or can be estimated e�ectively. Now our adaptive choice of the

discretization parameter j for the scheme (4.3) is j

�

= minfj : j 2 �

�

g.

Theorem 5.1 Assume that the conditions of Theorem 3.1 hold with � > �

0

�

t � � � r. Then for u = A

�1

f 2 H

�

there holds

ku� u

j

�

�

k

t

� c�

��t

�+r��

;

where the constant c does not depend on �.

Proof. Let us consider

^

j = min

�

j 2 N(�; �

0

) : c

0

2

�j(��t)

< c

1

�2

j(t+r��)

	

;

where c

0

is the constant from (4.4). It follows immediately from de�nition that

c

0

2

�(

^

j�1)(��t)

� c

1

�2

(

^

j�1)(t+r��)

=) 2

^

j

�

�

2�

�1

�

c

0

c

1

��

1

�+r��

= c

2

�

�

1

�+r��

: (5.1)

Let us show that

^

j 2 �

�

. Indeed, for any i 2 N(�; �

0

) such that i >

^

j

c

0

2

�i(��t)

< c

0

2

�

^

j(��t)

< c

1

�2

^

j(t+r��)

:

Then from (4.4) is follows that

ku

^

j

�

� u

i

�

k

t

� ku� u

^

j

�

k

t

+ ku� u

i

�

k

t

� c

0

2

�

^

j(��t)

+ c

1

�2

^

j(t+r��)

+ c

0

2

�i(��t)

+ c

1

�2

i(t+r��)

� 3c

1

�2

^

j(t+r��)

+ c

1

�2

i(t+r��)

� 4c

1

�2

i(t+r��)

:
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It means that

^

j belongs to �

�

by de�nition. Then j

�

�

^

j, and taking into

account (5.1) we obtain

ku� u

j

�

�

k

t

� ku� u

^

j

�

k

t

+ ku

^

j

�

� u

j

�

�

k

t

� c

0

2

�

^

j(��t)

+ c

1

�2

^

j(t+r��)

+ 4c

1

�2

^

j(t+r��)

� 6c

1

�2

^

j(t+r��)

� 6c

1

c

(t+r��)

2

�

��t

�+r��

= c�

��t

�+r��

;

as claimed.

6. Adaptive projection scheme with matrix com-

pression

The adaptive principle for choosing the discretization parameter proposed in

the previous section can be applied not only for wavelet{based projection

schemes. The advantage of wavelets consists mainly in two issues. First,

the norm equivalence (2.7) makes the norms which are required to achieve the

solution given by Theorem 5.1 directly computable, even if t 6= 0. A second

advantage is the possibility to use special matrix compression technique de-

veloped in [DPS], [DPS1], [Sch] which improves the e�ciency drastically. The

basic strategy for compressing is to decompose �rst

A

j

= Q

�

j

AQ

j

=

j�1

X

k;l=�1

(Q

�

k+1

�Q

�

k

)A(Q

l+1

�Q

l

);

Q

�

�1

= Q

�1

= 0, into di�erent components A

k;l

= (Q

�

k+1

� Q

�

k

)A(Q

l+1

� Q

l

)

each of which is then to be compressed appropriately. The key idea is that the

matrices corresponding to the operators A

k;l

exhibit fast decay away from the

diagonals. Namely, in the case that 2

min(i;k)

. dist(supp( 

i

�

); supp( 

k

�

)), for a

large class of elliptic operators A one has that the coe�cients in the Galerkin

matrix can be estimated by

�

�

hA 

i

�

;  

k

�

i

�

�

.

2

�ji+kj(

n

2

+~


1

)

[dist(supp( 

i

�

);supp( 

k

�

))]

n�r+~


1

:
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In general one has a slightly weaker estimate

�

�

hA 

i

�

;  

k

�

i

�

�

. 2

�ji�kj�

2

�ji+kj

r

2

[1+2

min(i;k)

dist(supp( 

i

�

);supp( 

k

�

))]

n�r+~


1

;

where

n

2

< � <

n+r

2

+ 


0

and r > 0 is the negative order of the operator as

before. Estimates of such a type are known to hold for a wide range of cases (see

e.g. [D1],[Sch]). In particular, pseudodi�erential operators of negative order

fall into this category. This suggests discarding the vast majority of entries of

the sti�ness matrix, i.e., to approximate the operators A

j

by the operators A

�

j

j

:

V

j

!

~

V

j

corresponding to the matrices with only O(2

nj

) nonvanishing entries,

where �

j

are some small parameters governing the bandwidth of non{zero

entries around the main diagonals of the blocks corresponding to A

k;l

; k; l =

�1; 0; � � � ; j�1. However, the convergence rate of the Galerkin scheme given by

Theorem 3.1 will not be violated. This can be done on the basis of the second

estimate if � < 


0

. For 


0

� � � 


1

the �rst estimate yields a compression

strategy with O(j

2

2

nj

) nonvanishing matrix entries. The latter logarithmic

terms can also be removed, for 


0

� � < 


1

using a second compression, see

[Sch]. We refer to [DPS], [DPS1], [Sch] for the details. As a result, one obtains

the sequence of operators A

�

j

j

; j 2 N(�; �

0

), with the sti�ness matrices being

the parts of the matrix corresponding to A

�

j

0

j

0

; j

0

= maxfj 2 N(�; �

0

)g; 2

j

0

�

�

�

1

�

0

+r��

.

In e.g. [Sch] it has been shown that under the conditions of Theorem 3.1 the

compressed scheme A

�

j

j

u = Q

�

j

f is (t; r){stable and has a unique solution u

j

�

j

satisfying

ku� u

j

�

j

k

t

� ckuk

�

2

�j(��t)

uniformly in j. Then using an argument like that in the proof of Theorem 5.1

we get the estimate

ku� u

j

�

�

j

�

;�

k

t

� c�

��t

�+r��

;

where u

j

�

�

j

�

;�

is the solution of the equation

A

�

j

j

u = Q

�

j

f

�

(6.1)

for j = j

�

and j

�

is chosen in accordance with principle presented in Section 5,

where one should put u

j

�

j

;�

instead of u

j

�

and slightly change the constant c

1

be-

cause of changing the constant b

2

in the stability condition (3.2) for compressed

scheme.

12



Note that to construct u

j

�

�

j

�

;�

we should realize a �nite iteration procedure,

within the framework of which we begin with j = j

0

and go from j + 1 to j

until j = j

�

. On each step we solve the equation (6.1) and check the condition

ku

j+1

�

j+1;�

� u

j

�

j;�

k

t

� 4c

1

�2

(j+1)(t+r��)

: (6.2)

Keeping in mind that both approximate solutions in (6.2) belong to V

j+1

, one

can switch the norm k � k

t

of their di�erence to the corresponding �nite sum

of O(2

nj

) weighted wavelet coe�cients with respect to the elements

~

 

�

k

, i.e.

ku

j+1

�

j+1;�

� u

j

�

j;�

k

t

�

 

j

X

�=�1

2

2�t

X

k2r

�

jhu

j+1

�

j+1;�

� u

j

�

j;�

;

~

 

�

k

ij

2

!

1

2

;

because of the norm equivalence (2.7).

Note that the numbers hu

j

�

j;�

;

~

 

�

k

i, j = j

0

, j

0

� 1; :::; j

�

, are exactly the wavelet

coe�cients of the solutions of the system of linear algebraic equations corre-

sponding to (6.1). Using the fact that the sti�ness matrix of A

�

j

j

has only

O(2

nj

) nonzero entries, these solutions can be found for O(2

nj

) arithmetic

operations. Here we refer to [Sch] for the details. Thus, j{th iteration step

can be done for O(2

nj

) operations. Then the computational cost of the whole

iteration procedure has the order of

j

0

X

j=j

�

2

nj

� 2

nj

0

� �

�

n

�

0

+r��

(6.3)

Using the estimates from Section 4. we argue now that in the sense of asymp-

totical order the cost (6.3) cannot be reduced for any so{called thresholding

type adaptive algorithms.

It should be noted that the Information{Based Complexity theory [TWW] is

dominated now by two models of adaptive algorithms. One of them is con-

nected with the notion of \oracle" and suppose that in the process of adapta-

tion one has the possibility to put the questions to oracle concerning the values

of some information functionals that can be chosen depending on previous an-

swers [Nov]. Typical example of such an adaptive algorithm is well{known

bisection method for solving nonlinear scalar equations. In our opinion such

oracle model does not �t well to the case of noisy data, because the oracle

providing noisy information looks slightly arti�cially.

13



Another model covers the adaptive algorithms like thresholding, see e.g. [DeV],

or adaptive wavelet methods for elliptic equations, proposed in [CDD]. Within

the framework of this model it is assumed that there is some surplus of discrete

information and it is possible to select the most important part of it using some

criterion applied to each unit of information (value of informational functional)

from above mentioned surplus. The application of the selection criterion is

connected with a �xed number of arithmetic operations, like subtraction and

comparison with zero, determining the computational cost of the adaptive

procedure.

The adaptive algorithms covered by this second model are called here as thresh-

olding type adaptive algorithms. In the class of such algorithms the method

determined by (6.1), (6.2) is order{optimal in the sense of complexity mea-

sured by the number of executed operations. Indeed, if we know only that the

Sobolev smoothness of the solution u = A

�1

f belongs to the interval (�

0

; �

1

]

then the minimal amount of above mentioned surplus of discrete information

required to reach the best possible order of accuracy (4.8) is

N (A; �; t; (�

0

; �

1

]; �)

= inf fN : 8� 2 (�

0

; �

1

] r

N;�

(A; �; t; �) � cr

�

(A; �; t; �)g :

On the other hand, form (4.10) it follows that

N (A; �; t; (�

0

; �

1

]; �)

� inf

n

N : 8� 2 (�

0

; �

1

] N

�

(��t)

n

� c�

��t

�+r��

o

= inf

n

N : 8� 2 (�

0

; �

1

] N � c

�

n

��t

�

�

n

�+r��

o

� �

�

n

�

0

+r��

It means that within the framework of any thresholding type adaptive al-

gorithm dealing with such an amount of discrete information at least N �

�

�

n

�

0

+r��

operations should be executed, because each unit of this information

should be involved in the adaptive procedure at least once. Then the compar-

ison with (6.3) gives us.

Theorem 6.1. Assume that the conditions of Theorem 3.1 and Theorem 5.1

hold. Then for unknown Sobolev smoothness index � 2 (�

0

; �

1

] of the solution

u = A

�1

f the algorithm (6.1), (6.2) automatically provides the best possi-

ble order of accuracy (4.8) and has the order{optimal complexity among all

thresholding type adaptive algorithms giving the accuracy of the same order.
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7. Numerical Results

To give an numerical example in order to demonstrate the performance of our

method, we consider the operator A as the single layer operator de�ned on the

analytical boundary � = @
 of a domain 
 2 R

2

(Au)(x) = �

1

2�

Z

�

log jx� yju(y)dy

�

; x 2 �:

This operator de�nes an operator of the order �r = �1, i.e., A : H

t

(�) !

H

t+1

(�) for all t 2 R. We consider two cases, t = �

1

2

, this is the energy norm

for the corresponding operator and useful for certain applications, and, t = 0

which denotes the L

2

-norm. The right hand side f is chosen analytically. We

generate a random vector r such that for f

�

:= f + r holds kf � f

�

k

�

= �

with � = 10

�3

and � = �

1

2

. The integral equation of �rst kind Au = f is

discretized by piecewise constant wavelets. In this case the highest smoothness

is �

1

= �

max

= 


1

= 1. To demonstrate our algorithm we do not use the

precise information about the smoothness of f and get an upper limit �

1

= 1.

We assume a minimal smoothness �

0

= �

1

2

. To be on safe ground and for

demonstration we choose j

0

= 15. The present computations made heavy use

of the wavelet matrix compression as an e�cient method for solving integral

equations. Otherwise, we have not been able to solve such large linear equation

systems with dense matrices on a single workstation. We compute the solution

of the original system A

�

j

j

u

j

�

j

= Q

�

j

f , the solution with respect to the noisy data

A

�

j

j

u

j

�

j

;�

= Q

�

j

f

�

, and their di�erence v

j

�

j

:= u

j

�

j

� u

j

�

j

;�

. Since we do not know

the exact solution u, we take u

16

�

16

as a reference solution instead of u.

First, we consider the case t = �1=2. In Table 1 we list the norms ku

j+1

�

j+1

;�

�

u

j

�

j

;�

k

�1=2

which we need for our algorithm together with the (approximated)

error of the solution ku

16

�

16

� u

j

�

j

;�

k

�1=2

for comparison reasons. These resluts

are depicted in Figure 1. The computation of these norms is performed by

exploiting the norm equivalences of the wavelet basis.

The case t = 0 is listed in Table 2. In Figure 2 we depict the quantity

ku

j+1

�

j+1

;�

� u

j

�

j

;�

k

0

which enters our algorithm and compare it with the error

of the numerical solution ku

16

�

16

;�

� u

j

�

j

;�

k

0

.

From this comparisons we see that the present algorithm detects the optimal

solutions quite well. We observe also a small shift of the optimal level j

�
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j n ku

j+1

�

j+1;�

� u

j

�

j;�

k

�1=2

ku

16

�

16

� u

j

�

j;�

k

�1=2

6 64 27.746 28.547

7 128 7.4226 7.9766

8 256 2.7359 2.9264

9 512 9.7128e-01 1.0352

10 1024 3.4666e-01 3.6792e-01

11 2048 1.7615e-01 1.4989e-01

12 4096 2.5878e-01 1.5267e-01

13 8192 5.0581e-01 2.9549e-01

14 16384 1.0080 5.8781e-01

15 32768 2.0359 1.1718

Table 1: Numerical results with respect to t = �1=2.
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Figure 1: ku

j+1

�

j+1

;�

� u

j

�

j

;�

k

�1=2

(left) and ku

16

�

16

� u

j

�

j

;�

k

�1=2

(right).

according to the theory. Since j

�

is an integer number this behaviour does

not a�ect the actual choice in the present example. The numerical example

exhibits the correlation between the computational quantity ku

j+1

�

j+1

;�

� u

j

�

j

;�

k

t

and the true error ku�u

j

�

j

;�

k

t

which is in fact less than the worst case estimation

in the proof of Theorem 5.1.

Let us remark that the left plots in Figure 1 and Figure 2 have also been used

in practice as a rule of thumb taking the optimal level at the minimum of the

curve. Due to the shape of the curve this rule of thumb is sometimes called

the L-method. Whereas in the present paper we present a concrete algorithm

together with the rigorous proof of order optimal accuracy.
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j n ku

j+1

�

j+1;�

� u

j

�

j;�

k

0

ku

16

�

16

� u

j

�

j;�

k

0

6 64 156.58 169.52

7 128 59.339 69.264

8 256 30.954 35.758

9 512 15.541 17.888

10 1024 7.7617 8.9602

11 2048 5.5642 4.7181

12 4096 11.547 4.9334

13 8192 32.209 12.310

14 16384 92.292 34.535

15 32768 259.47 98.721

Table 2: Numerical results with respect to t = 0.
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Figure 2: ku

j+1

�

j+1

;�

� u

j

�

j

;�

k

0

(left) and ku

16

�

16

� u

j

�

j

;�

k

0

(right).
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