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1 Introduction

Anisotropic meshes have gained attention in practical dsaseheoretical problems over the
past twenty years (See among many others [Ape99], [ANSRE¢c97], [KV00]) because they
are very efficient in many practical situations such as noisl presenting boundary or internal
layers.

In contrast to several other velocity-pressure pairs ((R#n the Crouzeix-Raviar#, is known
(JANSal], [AD99]) to be unconditionally stable on any anismpic mesh. Unfortunately, this
flexibility of the Crouzeix-Raviar®, pair cannot yet be fully exploited in adaptive FEM for the
Stokes problem due to the lack of a-posteriori error estm@PEE later) which functions in
anisotropic grids. APEE’s permit to evaluate the FE-ermithout knowing the exact solution.
That feature makes it possible to dynamically identify osgiin the domain where one should
have further refinement if the error there is too large andefioee adaptive refinements are
mainly based on the quality of APEE'’s.

For isotropic grids, many different APEE’s have been alygaiposed for the Stokes problem,
see [Ver89], [Ver91], [Ain97],[JLO0] and many others.

In the context of anisotropic meshes, there are already iatyasf APEE’s for Poisson and
reaction-diffusion problems ([Kun97],[KV0O0],[DGP99K{n00], [Kun01]). But for the Stokes
equation, APEE’s have not yet been inspected in anisotropghes.

In section 2, we recall the definition of an anisotropic mesth&e introduce various definitions
and notations. Section 3 treats exclusively the strengith€auchy-Schwarz inequality for the
Crouzeix-Raviart element in stretched grids. We detailAREE in section 4 and our theory is
supported by numerical examples in the last section.

2 The model problem and notations

2.1 The Stokes problem

The Stokes problem consists of searching for the velacity (uy, us) € V := H}(Q)? and the
pressure € Q := L2(Q) such that:

{ (Vu,Vv) — (divv,p) = (f,v), VveV (1)

(divu,q) = 0 VYq € @ ,where
Hi(Q) = {v cH(Q): v= OOnGQ} : (2)
I2(Q) = {qeLz(Q): /Qq:O} . 3)



2.2 Anisotropic mesh

Definition 1 An anisotropic mesl;, is a set of disjoint triangles such that:

Q= |J T, and (4)

T€ETh

every edge of any elemefit € 7, is eithera part of the boundary(2 or an edge of another
elementl; of 7.

Remark 1 For a triangleT’, we denote

h(T) := diamT) = sup{||x — y||r2, x,y € T}
p(T) := supremum of the diameters of all balls containe@'in
o(T) = h(T)/p(T) = aspect ratio ofT,

We require neither uniformity condition t@, nor shape regularity for each triangl&€ € 7.
That means that all elemeritsof 7, are allowed to have an arbitrary aspect raid7’). We do

not require that the aspect ratieo(7) is bounded. Since we do not put any angle requirement,
very thin triangles are allowed to belong %. We will denote by)7, the set of all edges of
elements in the mesh and

op = jmeaT)}fa(T).

2.3 Crouzeix-Raviart/P, pair

We approximate the velocity and the pressure in the follgwdiscrete spaces:
T {vh € I2(Q): vplr € (P)’VT €T;, and/F[vh] _OVF e afrh} ,
Q= o€} alreP YTET],

where[v}] stands for the jump of, across the edgF if F'is an internal edge, and it is equal to
vy, itself if F'is a boundary edge. For all v € V}, andq € Q},, we define

2
ar(u,v) = Z/ gradu; - gradv;, br(v,q):= / gdivv, and
ol T

an(w,v) == > ar(u,v), by(v,q):= > br(v,q).

TETy TeTh
The discrete problem deals with findimg € V}, andp,, € @Q; such that:

{ an(Wp, Vi) = b (Vi pn) = (£, vn), Vv, V) (5)

bp(up,qn) = 0 Van € Qn,



Let us introduce the broken Sobolev space:
Ho={ue Q) : ulrc H\(T) VT € Tp} .
The exact velocity and the pressure errors are respectively

Uy = u—uy € H? (6)
Perr = p_pheQ- (7)

Later we will need the following scalar product and its cepending energy norm:
(w,v) = an(w,v),  [ull] = (u,u)'? (8)

The goal of APEE is to be able to evaluatg, andp,,. without knowingu andp.

2.4 Simplification of the errors

Our idea is to avoid the evaluation af,. andp.,, directly. Rather, we will first reduce these
errors into a single error with a Poisson problem.

Lemma 1 Let £ € H? be the solution of
ah(E,V) = ah(uerrav) - bh(vaperr) VV € %25 (9)
then
CillE[1? < [aextl[]* + [Ipeccll < CollIENI,
where the constants; andC; are independent df and the aspect rati@, of the meshy,,.

andC, depend exclusively ofd.

Proof

This is a particular case of Theorem 1.1. of [Ain97] to the Waeix-RaviartP, pair. Note that
Ci =3 andC, = g% + 1 where( = ((Q2) is the continuous infsup constant ((GR86]).

3 Enrichment of the Crouzeix-Raviart element

We propose here a way to enrich the Crouzeix-Raviart elemeatisotropic meshes. We em-
phasize the fact that the strengthened Cauchy-Schwartardisiould be always strictly smaller
thanl.



as Q by

Figure 1: Graphical illustration of the notations.

Theorem 1 (Strengthened Cauchy-Schwarz inequality)_etT” be an arbitrary triangle and=
2, 3. Denote by, as, a3 the midpoints of its edges and by, ¢ = 1, 2, 3 the linear polynomials
in T for which:
(ﬁi(a]) :51']' i, j: 1,2,3.

We refineT into k2 similar triangles and denote the new noded{gee Fig. 1). Introduce the
piecewise linear nodal basis functionsbatoy +; (j = 1,2,3 fork = 2 andj = 1,...,7 for
k = 3).

V(T) := sparié;)

Z(T) = spany;).
There exists therefore a constant [0, 1) which is independent of (T"), meas(’), h(T') and
p(T) such that

ar(u,v) < ylulyr.|vlir Yu e V(T), Vo e Z(T).

Proof

The casé: = 2 is already implicitly proved in [MM81] where? = 3/4, we only need to show
it for £ = 3. We should show that

aT(U,’U)
v:= sup Ssup —————
wev(T) vez(T) || |v]1r

<1. (10)

By introducing the stiffness matrix corresponding(t@, ¢2, ¢3, ¢1, ..., ¥7), which has a block
structure:

A B
M - [ BT C ] )
one obtains:
ul By

= — . 11
! ;eurgs yseufg vaul Auy/vTCo 1D
~ is therefore given by the square root of the largest eigeleval generalized eigenvalue prob-
lem:
(BC'BT)v = Av . (12)



Our aim is to express this largest eigenvalue in terms of tliges and F(we can get rid of
0 =m —a—[). We have:

c+a —a —c 1 (I R w
A=2| —a a+b —-b |, B= g[A|A|0], C=|RY (I u
—c —b b+c uf w2

wherea := cota, b := cotf, ¢ := cotf , ( := a + b+ ¢, I is the identity matrix of ordes, and

-b/2 —a 0 —c —a
R= 0 —¢/2 —=b |, wy=|-al|, u=1|-b]|.
—c 0 —a/2 —b —c
1
| Ku K| | ¢I R
K._[Km KQQ]._[RT CI] 13)

is given by:

(14)

o
|

ThereforeC'~! has the form:

o1 _ [ K+uKUUTK  —uKU
B —nUTK 1 ’

where:
U Uy . 1
'_[uzl’ W= —UTKU

BecauseX can be expressed in block structure (see relations (1312}l K+ KUUT K can
also be written block-wise:

e _. | P @
K+ uKUU K_.[S w1

so that matrix in the left hand side of (12) becomes:

w5 7] 15)

The eigenproblem (12) is therefore equivalent to:



%A(P+Q+S+T)w = \w (15)

Because we deal with x 3 matrices in (15), simple (but long) computations yield tthet three
eigenvalues of (15) are:

2
)\1 = )\1(6%, 6) = 5(—35 + 17642 - \/&C44 - \/&C55S + 346338 +

Videgg — 52¢115 + 17¢24 + 35¢0y — 34c44) (16)
2
Ay — /\2(04, ﬁ) = 5(—35 + 17c4o + \/g044 + \/80558 + 34c33s —
\/C_l666 — 520118 + 17024 + 35022 — 34044) (17)
)\3 = 0 ) (18)

In all these relations, we used:

cij = cos'acos’ 3
s = sinasinf
D = —13042 + 138 + 40558 — 95C338 + 70353 + 70538 — 2C518+

20cp2 — 20cos — 2¢158 — 38315 — 38c138 + 238c115 — 20¢49+

20020 - 13024 + 6626 — 4066 - 5064 + 6062 - 211622 + 101044 - 5646
d = (]_2]_ - 185642 - 326558 + 1820338 - 560358 - 560538 + 160518—

160002 + 160004 + 160158 + 3040318 + 3046138 - 7140118 + 160640—

160020 — 185024 — 48C26 + 32066 + 40C64 — 48062 + 787022 — 230044"‘

40046)/088

Since); and), are functions of o, 3), it is very easy to compute the maximum taken value. For
(e, B) € (0,7) x (0, ), it can be shown (see Fig. 2 and 3) that

8
The theorem is then proved with= 2+/2.

Remark 2 The proof was simple but lengthy, a computation supporteblagle was helpful in
performing all the elementary calculus. The maximum valu@ ) is approached when one of
the angle is tending to(see Fig. 2 and 3). The result seems to be true forkanry?2 with

’Y_ kz )

as the following numerical results shows. Readers areresfeio [BG73], [Ban96], [EV91]
for some ways to determine numerically the strengthenedi@a8chwarz constant. The test
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consists of varying the value of the parametei(see Fig. 4) and compute the corresponding
strengthened Cauchy-Schwarz constant.

The results of the tests are presented in Figure 5. One carlyckee that when the triangle
becomes anisotropid{ tends to0) then the strengthened Cauchy-Schwarz Constant is tending
to:

0.75 for k=2
0.888... for =3
09375 for k=14

72
72
72

The smallest value of the Cauchy-Schwarz constant is hall fer(.8660254 where the triangle
is equilateral. It is however worth noting thiat> 4 is not of any interest because that leads to
overly many nodes for each element and that results in toy wasts for the APEE.

4 APEE for ||| E|||

Since the a-posteriori erroffu.,.||| and ||p..||o are equivalent tg||E||| (See Lemma 1), the
work is left to the evaluation off| ||| without any a-priori knowledge of the exact solutian
andp.

For each elemert € 7, we define

V(T) := {vlr:veVy}, ur:=uwlr, pr:=plr. (20)
R(T) = {ve HYT)*: divv =0}, (21)

We introduce also the spaces:

R = {veELy(N)?: vlp € R(T)VT € Tp} (22)
Zn = {veLlyQ)?:vire Z(T)* VT € T} (23)

(See Theorem 1 for the definition af{(T')).

Now, we enlarge the spadg N R hierarchically intolV,:
Wh = (Vh N R) @b Zh (24)

Let us introduce the following problems (we do not need teealny of them in practice):

Find £ € H? : (25)
ap(E,v) = (f,v) —ay(uy,v) YveVNR
Finth eV, : (26)
ap(vp,v) = (£,v) —ap(up,v) ¥YveV,NR

8



(27)

Findwh € Wh :
ap(wp,v) = (f,v) —ap(up,v) VveWw,

Note that the solution of (25) is nothing else than that ofs{@reb, (v, p,) = 0 for all v € R.
Besides, (26) has an evident solution whickrjs= 0.

We suppose the following two assumptions:

(A1) Strengthened Cauchy-Schwarz inequality:
Ay e 0,1):  (v,z) <Al||vlllllz]|]| Vv € Vh, Vz € Z,,. (28)
(A2) Saturation assumption:

Ap<1: |[E—wul|| < BIIE — vl (29)

Remark 3 The saturation assumption (29) quantifies that the solutidhe larger spacév}, is
more accurate than that in the smaller spdége(lt is a very natural assumption because each
triangle " € 7, is divided into4 or 9 sub-triangles). In [Noc93], the author has shown in
isotropic meshes that the saturation assumption is onlydthti@nal assumption which can be
completely removed. In our anisotropic case, removingdabgimption is still an open problem.

Definition 2 For each elemer € Ty, leter € Z(T)? be the solution of:
ar(er,v) = (f,v)r —ar(ur,v) Vve Z(T)?, (30)

and our APEE will be:
nr = |eT|1,T .

Theorem 2 There exist two constants andC which are independent &f and the aspect ratio
o, of the meshy;, such that

Y i <|IE[IP<C ) 7 (31)

TeTh TeTy

Remark 4 A theorem similar to this has been discussed in [JLOO] whieeegtuthors have used
extensively the shape regularity of the mesh as well as bpeasi-uniformity to prove the theo-
rem. Here, we present another proof which does not use arfigramty at all for the mesh. Our
mesh7, is allowed to have an arbitrary aspect ratio. We do not requshape regularity for

elements. Our elements can be as thin as desired. Our predd gsnilar idea as [AABM98].



Proof
Part 1 (Efficiency):

Let us defineF, € 7, by
Eh|T =er VT e 7;L (32)

We note immediately that’;, is the solution of:
ah(Eh,v) = (f, V) — ah(uh, V) Vv e Z, (33)
because equation (30) implies:

Z aT(eT,v) = Z [(f7 V)T —CLT(UT,V)] .

TET, TET,
Therefore, we obtain:
|- -|]./2
[Z H%J = [||Ex]|] < sup an(Ep, z) = Sup an(Wh, z) (34)
TETn 2l 21 /)21
< sup ||[w|[[-[|lz[| = [[|walll (35)
ZEZh

M=z[l1=1

(we have the second equality in (34) because the right haled sif (27) and (33) coincide for
allz € Z, ¢ Wy).

On the other hand, we have:

Iwalll < HE = walll + [IIEI] < BIEN] + [IIE]I] = (1 + BIIE] - (36)

This last inequality with (35) yield:

1/2
[Z mr| < @+ IE 37)

TETs

Part 2 (Reliability):
Letv € V, N R andz € Z, be such thaf||v + z||| = 1.

L= Allv+al|* = [IIV]II* +llz|]* + 2 (v,2) (38)
> I+ (122 = 29[ 1v][]-|]]z]] (39)
= ([IVIII* = lllzlID* + (1 = y*)l]2]|[* (40)
Consequently,
1> (1=?)[|=]|]*. (41)

10



We have on the other hand:

which implies:

(T =BINEN < [llwalll- (42)
Now, we use (41) to obtain
wall] < sup  ap(Wp, Vv +2) (43)
v+z|||=1
v e
= sup (f,v+2z)—ap(up, v+ 2) (44)
[lv+zl|=1

(v,2)€(V,NR)X Z,

= s () — (V) + (F7) — an(w, )
v+z|||=1
(v,zl)‘|€($h£"1|R)><Zh =0 ah(E;“z)

1/2

1 1
—|||E||| = — n> . (45)
=Bl = [Tzeﬁ ]

IN

According to (42) and this last inequality,

1/2
1 1 )
MBIl < T=5lwilll < =g7or=> [Z nT] .

TeT,

Finally, the theorem is proved and:

1
agp o < IR < gy X (46)

5 Numerical Results

Our numerical results are not done in order to replace thieatgroofs but rather to support
them. They consist of two tests: the first one are performeatdimary isotropic meshes and the
second on anisotropic meshes. In both cases, the ddmairthe unit square. The right hand
side of (1) is chosen in such a way that the exact solutions are

ur(w,y) = (2/10)*(z — 1)*(y/10)(y — 1)(2y — 1) € Hy(Q) (47)
us(w,y) = —(y/10)*(y — 1)*(x/10)(x — 1)(2z — 1) € Hy() (48)
plr.y) = (z—05)(y—05) € Ly(Q) (49)

Let M denote the number of subintervals alongthaxis andN along they-axis. In the case of
Fig. 6, we havel = 4 and N = 3. The performance of our APEE is demonstrated numerically

11



in Table 1 and Table 2. In both tables, the last column is the ketween the error computed

with APEE and the exact error. In the second table
M N
AR. = — .

rax { N’ M}

Y
1

1 xr

Figure 6:M =4 andN =3

M N |||uerr|||2 + ||perrH3 ETGTh 7’]% ratio

5 5 0.001105 0.001542 1.3954
10 10 0.000293 0.000409 1.3959
20 20 6.6910° 10.310° 1.5396
40 40 1.5610°° 2.56107° 1.6410
80 80 3.7510°° 6.3810°°% 1.7013

Table 1: Results for isotropic grids

M N AR ([P o]} Srer, 3 _ratio

128 2 64.0 0.002624 0.003259 1.2420
128 4 320 9.890 ¢ 11.610°* 1.1729
128 8 16.0 3.180 3.7710* 1.1855
128 16 8.00 8.020~° 10.1107° 1.2593
128 32 4.00 1.590°° 2.42107> 1.5220
128 64 2.00 4.130° 7.0410°% 1.7046
128 128 1.00 1.460 6 2.4910°% 1.7054

Table 2: Results for anisotropic grids

The linear systems are solved by means of the Bramble-Rasmigugate gradient(see [BP88])
which has been improved in [MSO01].

12



6 Conclusion and future work

We have shown an APEE having the following features:

e It can be computed element-wise,

e Efficient and reliable on any meshes (isotropic and anipatjp

e Solve a local Poisson problem for each element,

e The linear system to solve for each element is small.

Making a rigorous analysis about which to choése 2 or £ = 3 is difficult because the value
of 3 in the saturation assumption is not known exactly. Dependmthe particular mesh that is
used and the solution of the problem, we may find a bétter practice than in any theoretical
estimation. Since our APEE works for both= 2 andk = 3, we can think of using acceleration
techniques such as Richardson extrapolation to obtain a atmurate APEE.
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