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Abstract
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1 Introduction

We consider the problem

−4u = f in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R2 is a domain which can be decomposed into quadrilaterals. We
solve this problem with the p-version of the finite element method. We divide
Ω in a mesh of quadrilaterals Rs. Let R = (−1, 1)2 the reference element
and let Φs : R→ Rs the bilinear mapping to the element Rs. We define now
the space

M = {u ∈ H1
0 (Ω), u |Rs= u(Φs(ξ, η)) = ũ(ξ, η), ũ ∈ Pp},

where Pp is the space of all polynomials p(ξ, η) = p1(ξ)p2(η) of maximal
degree p in each variable. So, we can formulate the discretized problem:
Find up ∈M such that

a4(up, vp) :=

∫
Ω

∇up · ∇vp =

∫
Ω

fvp ∀vp ∈M

holds. Let (ψ1, . . . , ψnp) a basis of M. Then, this problem is equivalent to
solving

Aup = f
p
,

where

A = (a(ψi, ψj))
np
i,j=1,

f
p

= (

∫
Ω

fψp)
np
i=1.

Now, we specify the choice of the basis and divide the shape functions into
3 groups,

• the vertex functions, which are the usual piecewise bilinear functions,

• the edge bubble functions,

• the interior bubbles, which are nonzero only on one element.
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The edge bubble functions correspond to an edge e of the mesh. Their
support contains that two elements which have this edge e in common. Cor-
responding to the division of the shape functions, we split the matrix A as
follows

A =

 Av Av,e Av,i
Ae,v Ae Ae,i
Ai,v Ai,e Ai

 .

The indices v, e and i denote the blocks of the vertex, edge bubble and inte-
rior bubble function, respectively. Jensen/Korneev [13] and Ivanov/Korneev
[11],[12] developed preconditioners for the p−version of the FEM in a two-
dimensional domain using domain decomposition techniques.
They considered the matrix

C =

 Av
Ae Ae,i
Ai,e Ai


and proved that the condition number κ(C−1A) grows as 1+log p, cf. Lemma
2.3 in [11] or [4]. Therefore, the vertex unknowns can be determined sepa-
rately. Computing the other unknowns, we factorize the remaining 2 by 2
block as follows(

Ae Ae,i
Ai,e Ai

)
=

(
I Ae,iA

−1
i

0 I

)
(
S 0
0 Ai

)(
I 0

A−1
i Ai,e I

)
(1.1)

with the Schur-complement

S = Ae − Ae,iA−1
i Ai,e.

Computing the interior unknowns, Ai is a block diagonal matrix, one block
corresponds to one element. Therefore, for computing the interior unknowns,
we solve a Dirichlet problem on each quadrilateral. The edge unknowns are
computed via the Schur-complement S.
We need 3 tools for solving (1.1), a preconditioner for the interior problem,
a preconditioner for the Schur-complement and an extension operator from
the edges of a quadrilateral to its interior. Ivanov/Korneev [11],[12] derived
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3 types Ci,S, i = 1, 2, 3, of preconditioning the Schur-complement. The con-
dition number for C−1

i,SS is O(1 + log2 p) in the worst case, where p is the
polynomial degree. The solution of Ci,Sx = y can be done fast.
Jensen/Korneev [13] considered a scaled version of the integrated Legendre
polynomials as basis. They found a spectral equivalent preconditioner for
the interior problem, which has O(p2) nonzero entries. In the case of par-
allelogram elements, the element stiffness matrix has O(p2) nonzero entries,
too. But, the suggested methods compute the solution in O(p3) arithmetical
operations. Finding a fast solver for the preconditioner was an open question.
This paper is concerned to the construction of a more efficient preconditioner
for the interior problem.
We derive in [5],[6],[7] preconditioners for the interior problem resulting from
several kinds of discretizations of an elliptic problem resulting from the h-
version of the FEM or the method of finite differences. This preprint consid-
ers the case of bi-/trilinear elements in 2D and 3D.
The paper is organized as follows. In section 2, we consider the stiffness ma-
trix for the model problem and their most important properties. In section
3, we introduce and modify the preconditioner of Jensen/Korneev. Section
4 shows that the modified preconditioner can be obtained by discretizing ell-
pitic problems with variable coefficients using bilinear finite elements. These
resulting problems can be effectively solved by multi-grid algorithms, [14],
[15], [16], [9], [8], [10] or AMLI-preconditioners [2], [3], [1] in the case of lin-
ear finite elements.
Throughout this paper, R will denote the unit rectangle (−1, 1)2, Ω1 the
rectangle (0, 1)2. The integer p is the polynomial degree, L̂i the i−th in-
tegrated Legendre polynomial. The real number λmax(A) will denote the
largest eigenvalue of a matrix A and λmin(A) the smallest eigenvalue of A.
The parameter ci will describe a constant, which is independent of p or h.

2 Origin and properties of the stiffness ma-

trix

We consider the model problem

−4u = f in R = (−1, 1)2, (2.1)

u = 0 on ∂R. (2.2)

4



We solve (2.1,2.2) using the p−version of the FEM with only one element R.
Problem (2.1,2.2) is the typical model problem for solving a linear system
with the matrix Ai. As finite element space, we choose

M = {u ∈ H1
0 (R), u |R∈ P p}

where P p is the space of all polynomials of degree p in both variables. The
discretized problem is: find up ∈M∫

R
∇up · ∇vpd(x, y) =

∫
R
fvpd(x, y)

for all vp ∈M. As basis inM, we choose the integrated Legendre polynomials,
which we define below.
Let for i = 0, 1, . . .

Li(x) =
1

2ii!

di

dxi
(x2 − 1)i

the i-th Legendre polynomial,

L̂i(x) = γi

∫ x

−1

Li−1(s) ds for i ≥ 2

the i-th integrated Legendre polynomial with

γi =

√
(2i− 3)(2i− 1)(2i+ 1)

4
. (2.3)

By definition,

L̂0(x) =
1 + x

2
,

L̂1(x) =
1− x

2
.

The properties∫ 1

−1

Li(x)Lj(x) dx = δij
2

2i+ 1
, (2.4)

L̂i(x) =

√
(2i+ 1)(2i− 3)

4(2i− 1)
(Li(x)− Li−2(x)),(2.5)

L̂i(1) = 0, (2.6)

L̂i(−1) = 0, (2.7)

(i+ 1)Li+1(x) + iLi−1(x) = (2i+ 1)xLi(x). (2.8)
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are true for i ≥ 2, [18].
As basis in M, we choose

L̂ij(x, y) = L̂i(x)L̂j(y), (2.9)

with 2 ≤ i, j ≤ p. For satisfying (2.2), the polynomials L̂0 and L̂1 are not
used, compare (2.6,2.7). The stiffness matrix K = Ai for (2.2) is determined
by

K = (aij,kl)
p
i,j=2;k,l=2 =

∫
R
∇L̂ij(x, y) · ∇L̂kl(x, y) d(x, y).

We get

aij,kl = dikfjl + fikdjl (2.10)

with

(fij)
p
i,j=2 =

∫ 1

−1

L̂i(x)L̂j(x) dx, i, j = 2, . . . , p, (2.11)

(dij)
p
i,j=2 =

∫ 1

−1

d

dx
L̂i(x)

d

dx
L̂j(x) dx, i, j = 2, . . . , p. (2.12)

In the following, we need matrices F = (fij)
p
i,j=2 and D = (dij)

p
i,j=2. Using

(2.4,2.5), the entries of the one-dimensional mass matrix F are determined
by

F =


1 0 −c2 0 · · ·

1 0 −c3
. . .

1 0
. . .

SYM
.. . . . . . . .

1


and of the one-dimensional stiffness matrix D by

D = diag(di)
p
i=2 =

 d2 0 · · ·
0 d3

. . .

0 0
. . .


6



with the coefficients

ci =

√
(2i− 3)(2i+ 5)

(2i− 1)(2i+ 3)
,

di =
(2i− 3)(2i+ 1)

2

[13]. The stiffness matrix for the two-dimensional Laplace can be written
using the matrices F and D by

K = F ⊗D +D ⊗ F, (2.13)

compare (2.10). Applying a permutation P of rows and columns, we get

PKP−1 =


K1

K2

K3

K4

 . (2.14)

The first block results from the discretization using the polynomials L̂2i,2j,

the second L̂2i+1,2j, the third L̂2i,2j+1 and the fourth L̂2i+1,2j+1. If p is odd,
all four blocks have the same size. We wish to find a fast solver for a system
of linear equations with the matrix K or equivalently, Ki. This solver should
perform the solution in not more than O(p2 log p) arithmetical operations.

3 Deriving a preconditioner for K

3.1 Preconditioner of Jensen/Korneev

Jensen/Korneev [11] defined the following preconditioner for K. Let

D1 = diag(i2)pi=2, (3.1)

T1 = D−1
1 +

1

2



2 0 −1 0 0 · · ·
2 0 −1 0 · · ·

SYM 2 0 −1
. . .

2
. . . . . .
. . .

2


(3.2)
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and

C1 = D1 ⊗ T1 + T1 ⊗D1. (3.3)

LEMMA 3.1 The statements

c1(D1v, v) ≤ (Dv, v) ≤ c2(D1v, v), (3.4)

c3(T1v, v) ≤ (Fv, v) ≤ c4(T1v, v), (3.5)

c1c3(C1v, v) ≤ (Kv, v) ≤ c2c4(C1v, v) (3.6)

are valid for all v.

Proof: (3.4) is trivial, (3.5) is proved in [11]. (3.6) follows immediately from
(3.4,3.5). 2

C1 is simpler than K, but we still need a fast solver for C1.

3.2 Modification of the preconditioner

Our aim is to modify the preconditioners in such a way that they can be
interpreted as a system matrix resulting from other kinds of discretization.
So, we change in several steps the preconditioner (3.1–3.3). Let

D2 = diag(4 [
i

2
]2)pi=2 = diag(4, 4, 16, 16, 36, 36, . . . ),

T2 = T1 −D−1
1 =

1

2



2 0 −1 0 0 · · ·
2 0 −1 0 · · ·

SYM 2 0 −1
. . .

2
. . . . . .

...
−1 0 2


,

and

C2 = D2 ⊗ T2 + T2 ⊗D2.
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LEMMA 3.2 The inequalities

(D2v, v) ≤ (D1v, v) ≤ 9

4
(D2v, v), (3.7)

(T2v, v) ≤ (T1v, v) ≤ c0(1 + log p)(T2v, v), (3.8)

(C2v, v) ≤ (C1v, v) ≤ 9

4
c0(1 + log p)(C2v, v) (3.9)

are true for all v.

Proof: (3.7) and the left inequality of (3.8) are trivial, (3.9) is a corollary of
(3.7,3.8). The right inequality of (3.8) is proved in [5], [6]. 2

In the following, we assume p is odd. We introduce n = [p−1
2

] + 1. Applying
a basis-transformation using the permutation P from (2.14), C2 is a block
diagonal matrix of 4 identical blocks C3, where

C3 = D3 ⊗ T3 + T3 ⊗D3, (3.10)

with

D3 = diag(4i2)n−1
i=1 , (3.11)

T3 =
1

2
tridiag(−1, 2,−1). (3.12)

The next modification is helpful for bilinear elements. Let

M2 = tridiag(a,b, a) =


b1 a1 0 . . . 0
a1 b2 a2 0 . . .
0 a2 b3 a3
...

. . .

0 . . . 0 an−1 bn

 (3.13)

where

a = (ai)
n−1
i=1 = i2 + i+

3

10
,

b = (bi)
n
i=1 = 4i2 +

2

5
.

LEMMA 3.3 We have

c13(D3v, v) ≤ (M2v, v) ≤ c14(D3v, v).

.
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Proof: An easy calculation shows

T4 = (t
(4)
ij )ni,j=1 = D

− 1
2

3 M2D
− 1

2
3 = tridiag(c,d, c)

where

c = (ci)
n−1
i=1 = 1 +

3

10(i2 + i)
,

d = (di)
n
i=1 = 4 +

2

5i2
.

We take now Gerschgorins-disks. We have

min
i

(
t
(4)
ii −

∑
j 6=i

| t(4)
ij |

)
≤ λmin(T4) ≤ λmax(T4) ≤ max

i

(
t
(4)
ii +

∑
j 6=i

| t(4)
ij |

)
.

Using the structure of the ci and di, this leads to

min
i

(
t
(4)
ii −

∑
j 6=i

| t(4)
ij |

)
≥ 2,

max
i

(
t
(4)
ii +

∑
j 6=i

| t(4)
ij |

)
≤ 63

10
.

Hence, the assertion follows.2
Now, we introduce the matrix

C7 = T3 ⊗M2 +M2 ⊗ T3. (3.14)

Using Lemma 3.3, we have

THEOREM 3.4 . Let Ki, i = 1, . . . , 4 are the 4 blocks of K. The following
statement is valid ∀v and i = 1, . . . , 4:

c15(C7v, v) ≤ (Kiv, v) ≤ c16(1 + log p)(C7v, v).

4 h-Version of the FEM, bilinear elements

4.1 The one-dimensional case

We consider the following problem. Find u ∈ H1
0 (0, 1), such that

a1(u, v) = as(u, v) + am(u, v) = 〈g, v〉 (4.1)

10



holds for all v ∈ H1
0 (0, 1). The bilinear forms as(·, ·) and am(·, ·) are defined

as follows

as(u, v) =

∫ 1

0

u′v′ dx,

am(u, v) =

∫ 1

0

x2uv dx.

We discretize this one-dimensional problem (4.1) by using linear elements on
the simple mesh

Tk =
n−1⋃
i=0

τ ki ,

where

τ ki =

(
i

n
,
i+ 1

n

)
.

The parameter k = 2n induces the level number. On this mesh we introduce
the one-dimensional hat-functions

φ
(1)
i =


nx− (i− 1) on τ ki
(i+ 1)− nx on τ ki+1

0 else
.

Then, we obtain

(as(φ
(1,k)
i , φ

(1,k)
j ))n−1

i,j=1 =
n

2
T3 = n tridiag(−1, 2,−1). (4.2)

An easy calculation shows

(as(φ
(1,k)
i , φ

(1,k)
j ))n−1

i,j=1 = cM2 (4.3)

with some constant c depending on n. So, we see the reason for introducing
the matrices T3 (3.12) and M2 (3.13).

4.2 The two-dimensional case

We consider the following problem: Find u ∈ H1
0 (Ω) such that

a(u, v) :=

∫
Ω

y2uxvx + x2uyvy dxdy =

∫
Ω

gv dxdy =: 〈g, v〉 (4.4)
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∀v ∈ H1
0 (Ω) holds. The domain Ω is the unit square (0, 1)2.

We want to find a numerical solution of (4.4) using finite elements. For this
purpose, we introduce some notation. Let k be the level of approximation
and n = 2k. Let us introduce xkij = ( i

n
, j
n
), where i, j = 0, . . . , n. We divide

Ω into congruent quadrilaterals Ekij. Let Ekij = τ 1,k
ij ∪ τ

2,k
ij be the square[

i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

On the mesh

Ek =
{
Ekij
}n−1

i,j=0

we introduce the shape functions φb,ij as tensor products of the one-dimensional

shape functions φ
(1,k)
i

φkb,ij = φ
(1,k)
i φ

(1,k)
j for i, j = 1, . . . , n− 1.

We set V
(b)
k = span(φkb,ij)

n−1
i,j=1. Now, we can formulate the discrete problem.

Find uk ∈ V(b)
k , such that

a(uk, vk) = 〈g, vk〉 ∀v ∈ V(b)
k (4.5)

holds. Problem (4.5) is equivalent to solving

Kb,kub = g
b
, (4.6)

where

Kb,k = a(φkb,ij, φ
k
b,lm)n−1

i,j,l,m=1,

g
b

= 〈g, φkb,lm〉n−1
l,m=1,

ub =
n−1∑
i,j=1

ub,ijφ
k
b,ij.

From (4.2), (4.3) we can conclude

Kb,k = c(n)
n

2
(T3 ⊗M2 +M2 ⊗ T3),

= c(n)C7. (4.7)

Hence, we have found an interpretation of C7 (3.14).
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5 Concluding Remarks

This approach can be extended as the finite-difference case to the three-
dimensional case. For details, see [7].
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tioning for the p-version finite element method in two dimensions. SIAM
J.Numer.Anal., 28(3):624–661, 1991.

[5] S. Beuchler. Lösungsmethoden bei der p-version der f.e.m. Diplomarbeit,
TU Chemnitz, December 1999.

[6] S. Beuchler. A preconditioner for solving the inner problem of the p-
version of the f.e.m. Technical Report SFB393 00-25, Technische Uni-
versität Chemnitz, May 2000.

[7] S. Beuchler. A preconditioner for solving the inner problem of the p-
version of the f.e.m, part ii- algebraic multi-grid proof. Technical Report
SFB393 01-07, Technische Universität Chemnitz, March 2001.

[8] D. Braess. The contraction number of a multigrid method for solving
the poisson equation. Numer. Math, 37:387–404, 1981.

[9] J. Bramble and X. Zhang. Uniform convergence of the multigrid v-cycle
for an anisotropic problem. Math. Comp., 70(234):453–470, 2001.

[10] W. Hackbusch. Multigrid Methods and Applications. Springer-Verlag.
Heidelberg, 1985.

13



[11] S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain
decomposition technique for the p-version finite element method. part i.
Technical Report SPC 95-35, Technische Universität Chemnitz-Zwickau,
December 1995.

[12] S.A. Ivanov and V.G. Korneev. On the preconditioning in the domain
decomposition technique for the p-version finite element method. part ii.
Technical Report SPC 95-36, Technische Universität Chemnitz-Zwickau,
December 1995.

[13] S. Jensen and V.G. Korneev. On domain decomposition preconditioning
in the hierarchical p−version of the finite element method. Comput.
Methods. Appl. Mech. Eng., 150(1–4):215–238, 1997.

[14] Ch. Pflaum. Fast and robust multilevel algorithms. Habilitationsschrift,
Universität Würzburg, 1998.

[15] Ch. Pflaum. Robust convergence of multilevel algorithms for convection-
diffusion equations. Num. Lin. Alg. Appl., 6:701–728, 1999.

[16] N. Schieweck. A multigrid convergence proof by a strengthened
cauchy-inequality for symmetric elliptic boundary value problems. In
G. Telschow, editor, Second multigrid seminar, Garzau 1985, number
08-86 in Report R-Math, pages 49–62, Berlin, 1986. Karl-Weierstraß-
Insitut für Mathematik.

[17] G. Telschow, editor. Second multigrid seminar, Garzau 1985, number
08-86 in Report R-Math, Berlin, 1986. Karl-Weierstraß-Insitut für Math-
ematik.

[18] F.G. Tricomi. Vorlesungen über Orthogonalreihen. Springer. Berlin-
Göttingen-Heidelberg, 1955.

14


