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Abstract

Finding a fast solver for the inner problem in a DD preconditioner
for the p-version of the FEM is a difficult question. We discovered, that
the system matrix for the inner problem in any dimension has a similar
structure to matrices resulting from discretizations of —y?ug, — xzuyy
in the unit square using h-version of the FEM and bilinear elements.
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1 Introduction
We consider the problem

—Au = finQ,
u = 0on 0,

where 2 C R? is a domain which can be decomposed into quadrilaterals. We
solve this problem with the p-version of the finite element method. We divide
Q) in a mesh of quadrilaterals R,. Let R = (—1,1)? the reference element
and let &, : R — R; the bilinear mapping to the element R,. We define now
the space

M= {U c H&(Q),u |RS: U(CI)S(§77])) = 17“(5777)7& S PP}7

where P, is the space of all polynomials p(§,n) = p1(§)p2(n) of maximal
degree p in each variable. So, we can formulate the discretized problem:
Find u, € M such that

an(uy, vp) = /QVup -V, = /vap Vv, € M

holds. Let (¢1,...,%y,) a basis of M. Then, this problem is equivalent to
solving

Agp - ip7
where

A = w“wj))ZJ 1

5, = ([ roe

Now, we specify the choice of the basis and divide the shape functions into
3 groups,

e the vertex functions, which are the usual piecewise bilinear functions,
e the edge bubble functions,

e the interior bubbles, which are nonzero only on one element.
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The edge bubble functions correspond to an edge e of the mesh. Their
support contains that two elements which have this edge e in common. Cor-
responding to the division of the shape functions, we split the matrix A as
follows

Av Av,e A’U,i
A = Ae,v Ae Ae,i
Ai,v Ai,e Az

The indices v, e and 7 denote the blocks of the vertex, edge bubble and inte-
rior bubble function, respectively. Jensen/Korneev [13] and Ivanov/Korneev
[11],[12] developed preconditioners for the p—version of the FEM in a two-
dimensional domain using domain decomposition techniques.

They considered the matrix

Ay
C= Ae Ae,i
A

i€ Az
and proved that the condition number x(C~'A) grows as 1+log p, cf. Lemma
2.3 in [11] or [4]. Therefore, the vertex unknowns can be determined sepa-

rately. Computing the other unknowns, we factorize the remaining 2 by 2
block as follows

A Ag\ (1 AuAT
Aie A N 0 I
S 0 I 0
(0 &)(A?&ef) (1.1)

S=A, — A AT A,

with the Schur-complement

Computing the interior unknowns, A; is a block diagonal matrix, one block
corresponds to one element. Therefore, for computing the interior unknowns,
we solve a Dirichlet problem on each quadrilateral. The edge unknowns are
computed via the Schur-complement S.

We need 3 tools for solving (1.1), a preconditioner for the interior problem,
a preconditioner for the Schur-complement and an extension operator from
the edges of a quadrilateral to its interior. Ivanov/Korneev [11],[12] derived
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3 types C g, 1 = 1,2, 3, of preconditioning the Schur-complement. The con-
dition number for C’;%S is O(1 + log®p) in the worst case, where p is the
polynomial degree. The solution of C; sz = y can be done fast.
Jensen/Korneev [13] considered a scaled version of the integrated Legendre
polynomials as basis. They found a spectral equivalent preconditioner for
the interior problem, which has O(p?) nonzero entries. In the case of par-
allelogram elements, the element stiffness matrix has O(p?) nonzero entries,
too. But, the suggested methods compute the solution in O(p?) arithmetical
operations. Finding a fast solver for the preconditioner was an open question.
This paper is concerned to the construction of a more efficient preconditioner
for the interior problem.

We derive in [5],[6],7] preconditioners for the interior problem resulting from
several kinds of discretizations of an elliptic problem resulting from the h-
version of the FEM or the method of finite differences. This preprint consid-
ers the case of bi-/trilinear elements in 2D and 3D.

The paper is organized as follows. In section 2, we consider the stiffness ma-
trix for the model problem and their most important properties. In section
3, we introduce and modify the preconditioner of Jensen/Korneev. Section
4 shows that the modified preconditioner can be obtained by discretizing ell-
pitic problems with variable coefficients using bilinear finite elements. These
resulting problems can be effectively solved by multi-grid algorithms, [14],
[15], [16], [9], [8], [10] or AMLI-preconditioners [2], [3], [1] in the case of lin-
ear finite elements.

Throughout this paper, R will denote the unit rectangle (—1,1)%, €; the
rectangle (0,1)2. The integer p is the polynomial degree, L; the i—th in-
tegrated Legendre polynomial. The real number \,..(A) will denote the
largest eigenvalue of a matrix A and A.,;,(A) the smallest eigenvalue of A.
The parameter ¢; will describe a constant, which is independent of p or h.

2 Origin and properties of the stiffness ma-
trix

We consider the model problem

~Au = finR=(-1,1)% (2.1)
u = 0ondR.



We solve (2.1,2.2) using the p—version of the FEM with only one element R.
Problem (2.1,2.2) is the typical model problem for solving a linear system

with the matrix A;. As finite element space, we choose

M= {ue H&(R),u |lr€ PP}

where PP is the space of all polynomials of degree p in both variables. The

discretized problem is: find u, € M

/ Vup . vad(x,y) :/ fvpd(x7y)
R R

for all v, € M. As basis in M, we choose the integrated Legendre polynomials,

which we define below.
Let for i =0,1,...

the i-th Legendre polynomial,
Li(z) = %/ L;_1(s) ds fori>2
-1
the i-th integrated Legendre polynomial with

(2 —3)(2i - D(2i+ 1)
e \/ 1 '

By definition,

A 1+
L0($) - 9 )
A 11—z

The properties

1
2

L) = \/ R DE8) 7 -

4(2i —1)
0,

(1 4+ 1)Lix1(x) +iL;i1(x) = (2i+ 1)xLi(x).

5
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are true for ¢ > 2, [18].
As basis in M, we choose

~

with 2 < 7,5 < p. For satisfying (2.2), the polynomials Lo and L, are not
used, compare (2.6,2.7). The stiffness matrix K = A; for (2.2) is determined
by
K = (aijm); jmgp o = / VLii(x,y) - Vik(r,y) d(z,y).
R
We get
aijr = difi + fedj (2.10)
with
1 A A
(f,-j)f’j:Q = / Li(z)L;(z) dz, 4,5 =2,...,p, (2.11)
p P ds -
(dij)i7j:2 = —Li(z)—L;(z)dz, i, =2,...,p. (2.12)
In the following, we need matrices F' = (fi;); j—o and D = (di;)} j—,- Using

(2.4,2.5), the entries of the one-dimensional mass matrix F' are determined
by

SYM

and of the one-dimensional stiffness matrix D by

dy 0
D =diag(d))!_s = 0 ds
0 0



with the coefficients

C;

(2i — 3)(2i 4 5)
(20 —1)(21 + 3)’
(2i — 3)(2i + 1)
2

[13]. The stiffness matrix for the two-dimensional Laplace can be written
using the matrices F' and D by

K=F®D+D®F, (2.13)

d;

compare (2.10). Applying a permutation P of rows and columns, we get

K

Ky

PKP' = (2.14)

K
Ky

The first block results from the discretization using the polynomials z2i72j,
the second ZALQHLQJ', the third [:21'72]'4,_]_ and the fourth ZALQHL%H. If p is odd,
all four blocks have the same size. We wish to find a fast solver for a system
of linear equations with the matrix K or equivalently, K;. This solver should
perform the solution in not more than O(p?logp) arithmetical operations.

3 Deriving a preconditioner for K

3.1 Preconditioner of Jensen/Korneev

Jensen/Korneev [11] defined the following preconditioner for K. Let

Dy = diag(i*)_,, (3.1)
2 0 -1 0 0
2 0 -1 0
. 1| SYM 2 0 -1
T, = D' + ) (3:2)




and

01:D1®T1+T1®D1.

LEMMA 3.1 The statements

ci(Dw,v) < (Du
c3(Thw,v) < (Fu
acz(Crv,v) < (Kv

are valid for all v.

v)
v)

y U S CQ(Dlyay)a
72) S C4(lea 2)7
) <

C2C4(C127 Q)

Proof: (3.4) is trivial, (3.5) is proved in [11]. (3.6) follows immediately from

(3.4,3.5). O

(' is simpler than K, but we still need a fast solver for C}.

3.2 Modification of the preconditioner

Our aim is to modify the preconditioners in such a way that they can be
interpreted as a system matrix resulting from other kinds of discretization.

So, we change in several steps the preconditioner (3.1-3.3). Let

i

Dy = diag(4 [2

and

Co=DyT5+ T, ® Ds.

|*)r_, = diag(4,4,16,16,36,36,...),




LEMMA 3.2 The inequalities

(D) < (D)< (D) (37)
(Tow,v) < (Thw,v) < co(l +logp)(Tov, v), (3.8)
(Cwv) < (Cuw)< ol +logp)(Cau,v) (39)

are true for all v.

Proof: (3.7) and the left inequality of (3.8) are trivial, (3.9) is a corollary of
(3.7,3.8). The right inequality of (3.8) is proved in [5], [6]. O

In the following, we assume p is odd. We introduce n = [E] + 1. Applying
a basis-transformation using the permutation P from (2. 4) C5 is a block
diagonal matrix of 4 identical blocks C'3, where

Cs = D3®T3+T5® Ds, (3.10)
with

D3 = diag(4i®)}, (3.11)

T, - %tridiag(—l,z,—m. (3.12)

The next modification is helpful for bilinear elements. Let

bl aq 0 e 0
ay bg Q9 0 Ce
M, = tridiag(a,b,a) = | 0 a2 b3 a3 (3.13)
0 0 ap,_1 b,
where

3
n—1 __ -~
a = (a) =i*+i+ 0

LEMMA 3.3 We have
C13(D3U U) (MQU U) < 014(D3’U U)



Proof: An easy calculation shows

1 1
T, = (t(4)>2j:1 = D3 2 My D, * = tridiag(c, d, c)

ij

where
3
— (1
2
( )z—l + 52

We take now Gerschgorins-disks. We have

min (tgf) - Z | tgl) |> < )\mzn(TZL) < )\max(TZL) < max (tl(;l) + Z | tgl) |) .

J#i J#i
Using the structure of the ¢; and d;, this leads to

win (é? S 1) -

J#i
(4 (4) 63
te e < —.
e (124 2 1471) <
JF
Hence, the assertion follows.O
Now, we introduce the matrix
C7ZT3®M2+M2®T3. (314)

Using Lemma 3.3, we have

THEOREM 3.4 . Let K;,i =1,... .4 are the 4 blocks of K. The following

statement is valid Vv and 1 =1,...

c15(Cru,v) < (Ku,v) < c16(1 + log p)(Cru, v).

4 h-Version of the FEM, bilinear elements

4.1 The one-dimensional case
We consider the following problem. Find u € H}(0, 1), such that
a1 (1,0) = a,(1,0) + a(u,0) = (g,0) (4.1)
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holds for all v € H}(0,1). The bilinear forms a(-, ) and a,,(-,-) are defined
as follows

1
as(u,v) = /u’v’ dz,
0

1
am(u,v) = /xzuv dz.
0

We discretize this one-dimensional problem (4.1) by using linear elements on
the simple mesh

n—1

k

Te= U
=0

1 1+ 1
Tf:(_, )
n n

The parameter k = 2" induces the level number. On this mesh we introduce
the one-dimensional hat-functions

where

nr—(i—1) on 7F
¢§1) =< (i+1)—nz on 7/,
0 else
Then, we obtain
(as(p™), o))t = ng = n tridiag(—1,2, —1). (4.2)

An easy calculation shows
(as(@f"™, "))t = e My (4.3)

with some constant ¢ depending on n. So, we see the reason for introducing
the matrices T3 (3.12) and M (3.13).

4.2 The two-dimensional case

We consider the following problem: Find u € Hj () such that

a(u,v) = /Qyzuxvx + 2?u,v, drdy = /ng dzdy =: (g,v) (4.4)
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Vo € H}(Q2) holds. The domain € is the unit square (0,1)2.

We want to find a numerical solution of (4.4) using finite elements. For this
purpose, we introduce some notation. Let k& be the level of approximation
and n = 2F. Let us introduce xfj = (%, %), where 7,7 = 0,... ,n. We divide

(2 into congruent quadrilaterals SZ Let SZ = Tlljk U TZk be the square
1+ 1 " J J+1
n’ n n n |

n—1
£ ={¢&5}

i.j=0

On the mesh

we introduce the shape functions ¢y ;; as tensor products of the one-dimensional
shape functions ¢§1”“)

(bllf,ij = ¢§1’k)¢§1’k) fori,j=1,... ,n—1

We set Wl(f) = span(qﬁ’g,ij)zj_:ll. Now, we can formulate the discrete problem.

Find u; € \/,(Cb), such that
a(uf k) = (g, %) Vo € \/l(f) (4.5)

holds. Problem (4.5) is equivalent to solving

Kypuy, = g, (4.6)
where
k k -1
Ky = a(qsb,ijﬂqsb,lm);tj,l,m:l’
k —1
Qb = <g7¢b,lm>2m:17
n—1
Uup = Zub,ij¢lzf,ij~
i,j=1

From (4.2), (4.3) we can conclude

Ky = c(n)g(Tg, @ My + My @ Ty),
= ¢(n)Cy. (4.7)

Hence, we have found an interpretation of C; (3.14).
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5

Concluding Remarks

This approach can be extended as the finite-difference case to the three-
dimensional case. For details, see [7].
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