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Abstract

Finding a fast solver for the inner problem infaD preconditioner for
the p-version of the FEM is a difficult question. We discovered, that the
system matrix for the inner problem in any dimension has a similar structure
to matrices resulting from discretizations of/%u,, — 2?uy, in the unit
square usingh-version of the FEM. Numerical experiments show that the
MTS-BPX-preconditioner with a tridiagonal scaling brings good results.
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1 Introduction

1.1 Origin of the problem from the p-version

Jensen/Korneev [15] and Ivanov/Korneev [13],[14] developed preconditioniers for
thep—version of the FEM in a two-dimensional domain. They usdd-methods.

The unknowns are splitted into 3 groups, the interior, the edge and vertex un-
knowns

Avert Avert,edg Avert,imt
A = Aedg,vert Aedg Aedg,int
Aint,vert Aint,edg Aint

The vertex unknowns can be solved separately, cf. Lemma 2.3 [13], or [3], using
_ Avert
C= Aedg Aedg,int
Aint,edg Aint

Computing the other unknowns, we factorize the remaining stiffness matrix as

follows
( Aedg Aedg,int ) _ ( I Aedg,intAi_Té )
Aint,edg Aint I

S 1
Amt Ai_nltAmt,edg I

— _ ) -1 4.
- ) 7 ) N
S Aedg Aedg mtA ‘ntAznt edg

with the Schur-komplement

Computing the interior unknowns, we solve a Dirichlet problem on each quadran-
gle. The vertex unknowns are computed via the Schur-complefmedt,,; is a

block diagonal matrix, one block corresponds to one element.

Jensen/Korneev [15] considered as basis a scaled version of the integrated Leg-
endre polynomials. They found a spectral equivalent preconditionir each

block of A;,;, which hasO(p*) nonzero entries, whengis the polynomial de-

gree. In the case of parallelogram elements, the element stiffness mattXpras
nonzero entries, too. But, the suggested methods compute the solu@itip®in
arithmetical operations. Finding a fast solver for the preconditioner was an open
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Figure 1. Mesh forh-Version.

question. This paper is concerned to the constructionnobee efficient precon-
ditioner for the interior problem. The matri&' is a block diagonal matrix of 4
blocksC®. In [5], we derived a new preconditionéy, for each block of”. This
matrix is defined via the matricd3; and73,

1
Dy = diag(4(i® + 6))?:_11’ (1.1)
1
5 = itridiag(—l, 2,—1), (1.2)
04 - D4 ® T3 + T3 ® D4. (13)

We have proved in [5], that the condition number of matfix'C® grows as
(1 +log p). But, the matrixCy has an another origin, which we will see now.

1.2 Formulation of the elliptic problem
We consider the following problem: Finde H} () such that

a(u,v) = /Qy?uggvgC + 2?uyv, drdy = /ng dzdy =: (g, v) (1.4)
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Figure 2: Notation.

Vv € Hj(2) holds. The domaif is the unit squar€0, 1),

We want to find a numerical solution of (1.4) using finite elements. For this
purpose, we introduce some notation. Lkebe the level of approximation and
n = 2% Letus introducert; = (£, 1), wherei, j = 0,... ,n. We divideQ into
congruent, isosceles, orthogonal triannggé, where0 < i,j < nands = 1,2,
compare Figure 1. The triangt¢” has the three vertices;, ¥, ;,, anda¥,,,

7. has the three vertices;, =¥, ;, andz¥,, ;, see Figure 2. We use linear finite
elements on the mesh

kyn—1n—12
Ty = {Tisj }Zj:(fs:l

and denote by, the subspace of piecewise linear functid:ﬁ]swith

e Hi(Q), ¢

ij

grlrie Pl(TISk),

Tl m

whereP! is the space of polynomials of degreel. A basis ofV,, is the system

of functions{qbfj Zj;ll uniquely defined by

5 (@) = Ouljm,
where);; is the Kronecker delta.
Now, we can formulate the discretized problem. Firids V;, such that

a(uf, o) = (g, ") Yo € V,, (1.5)
holds. Problem (1.5) is equivalent to solving

Khykgh = gh’ (16)
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where

ko ik \n—1
Kk = a5} )i itm=1s

Qh = <g7¢fm>27_nl:1’

n—1
E k

1,j=1

We obtain by an easy calculation [6], [7] and (1.3)

1
Ky = WCZ’ (1.7)

if we insert the boundary condition and choose a proper permutation of the un-
knowns. For differential equations as,, —u,, = f efficient solution techniques

are found, the BPX-preconditioner [9], the HB-preconditioner [19], or multi-grid
methods [11], [12]. But, we consider problems with variable coefficients which
tend to O, ifx — 0 ory — 0. The paper of Bramble and Zhang [10] considers
multi-grid methods in a more general case as for Laplace.

The paper [8] deals with the solution of (1.6) by multi-grid using special line-
smoothers inD(n?) arithmetical operations. This proof is a multi-grid proof of
the projection type, [18], [16] or [17].

An another method is the AMLI-method derived by Axelsson and Vassilevski [1],
[2], where the idea of the smoother is used. Both methods analyze a strengthened
Cauchy-inequality.

In this preprint, we give numerical examples for an improved BPX-preconditioner,
a MTS-BPX-preconditioner.

2 The definition of the preconditioner

We are interested in a fast preconditioner£gy;. This preconditioner is an BPX-

like [9] preconditioner with a multiple tridiagonal scaling (MTS). In [4], numeri-
cal experiments show an increasing of the number of iterations of the PCG-method
by increasing the number of unknowns using the multiple diagonal scaling-BPX
(MDS) preconditioner. But this preconditioner can be improved by the following
modification. Let

k
Cok =Y QT'QI,
(=0
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Level | MDS-BPX MTS-BPX
e=10"7 |e=10"]e=10"|e=10"1
2 9 8 9 9
3 16 11 18 27
4 24 14 23 37
5 33 15 26 44
6 44 16 28 49
7 58 17 30 52
8 76 17 31 56
9 97 18 32 58

Table 1: Number of iterations of the PCG-method for solvifjg., = ip with the
preconditioneC}, .

where@,;, [ =0, ... , k is the basis transformation matrix from the basis

{ol;}i5—y € Vi to {¢f;}i5_, € V,, wheren; = 2/ — 1. The matrixT; is a

tridiagonal matrix in which the absolute smaller entries of the off-diagonals of the
matrix K = (a;;);%—, are omitted. More precisely, all off-diagonalg with

4 | Qjj |< l’IlaX{CL“', ajj}

are omitted. For more details, see [6], subsection 5.4. In this preprint, this matrix
is denoted by<,.

3 Numerical results

3.1 Results for—y*u,, — 2%u,, = f

We give now results for solving

Knpup = [,

We solve this linear system of equations with PCG-method and the preconditioner
Ch,,- Theright-hand sid¢, = (1,..., 1)*is chosen. Table 1 displays the number

of iterations for several relative accuracies the preconditioned energy norm.
We see in all cases constant number of iterations.
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p| £=107° e=107" e=1071°
It | time It | time It | time
[sec] [sec] [sec]
7112 0.002| 17 0.002| 22 0.004
15| 15 0.013| 24 0.023]| 38 0.031
31|18 0.071| 28 0.102| 47 0.176
63| 20 0.327| 32 0.523| 54 0.889
127| 22 1.672| 37 2.773| 62 4.987
255| 25 8.324| 42| 13.688| 70| 22.916
511| 27| 37.956| 46| 63.922| 78 | 108.561
1023 | 29 | 163.822| 50 | 281.523| 85 | 478.944

Table 2: Number of iterations of the PCG-method for solvifig, = ip with the
preconditionelCy, .

3.2 Results for thep-version

Atypical reference example as preconditioner for the matyjx is the matrixx’,,
which is the element stiffness matrix on the unit squaré, 1)%. Each element
stiffness matrix is spectral equivalent&g, with respect to the polynomial degree
p, [13].
Now, we can apply this preconditioner as preconditioner for each of the 4 blocks
of the matrixX,. Results for solving

Kpu, = ip
are given. This linear system of equations is solved with PCG-method and the
preconditioneiC}, . We choose]_”p = (1,...,1)". Table 2 displays the number
of iterations for several relative accuraciem the preconditioned energy norm.
We see in all 3 cases a growing ast logp. This preconditioner is nearly as
fast as the precondition@d’”, which is a multi-grid preconditioner involving the
tridiagonal matriceq; in the smoothef; = I — le‘lKhJ on levell.
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