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1 Motivation and model problem

Singularly perturbed problems have attra
ted mu
h interest from both s
ientists and

engineers. They in
lude, for example, di�usion{
onve
tion{rea
tion problems (with a

singular parameter) or plate and shell problems (where the singular 
hara
ter is intro-

du
ed via the geometry). A 
omprehensive overview of singularly perturbed problems

as well as their theoreti
al and numeri
al treatment 
an be found in the textbooks by

[MNP01, RST96, MOS96, Mor96℄ and the 
itations 
ontained therein.

In this note we 
onsider a singularly perturbed rea
tion{di�usion problem whi
h serves

as a 
omparatively simple model problem. The most 
ommon norms to measure the

dis
retization error of some numeri
al approximation are the (dis
rete) L

1

or maximum

norm and the energy norm. Beside those, other spe
ialized norms have been proposed

as well. The a
tual 
hoi
e of the norm depends, for example, on the numeri
al method

(e.g. �nite element/�nite di�erent s
heme) and the tools to analyse it.

Here we will promote the energy norm. More pre
isely, our aim is twofold:

� O

asionally it is 
laimed that the energy norm is unsuitable. The 
orresponding

argument is investigated and disproved.

� For our se
ond and more important argument we apply an energy norm error esti-

mator within an adaptive algorithm. This algorithm produ
es optimal meshes whi
h

underlines the suitability of the energy norm.

For 
larity we may stress that we do not 
laim or suggest that other norms are inappropri-

ate; we simply examine the energy norm and 
on
lude its usefulness. In this way we hope

to stimulate the dis
ussion about several norms and their �elds of appli
ation.

In order to eliminate unwanted side e�e
ts we examine the following simple model

problem of a singularly perturbed rea
tion{di�usion equation:

�"�u + u = f in 


u = g on �

D

� �


�

(1)

with a small perturbation parameter 0 < " � 1. The 
orresponding energy norm (for

some domain !) then is

jjjvjjj

!

:=

�

"krvk

2

L

2

(!)

+ kvk

2

L

2

(!)

�

1=2

; (2)

and it is problem dependent via ". The singular 
hara
ter of problem (1) usually gives rise

to boundary layers [RST96, MOS96℄. The smaller " is the more distinguished these layers

will be. Hen
e standard te
hniques to solve (1) be
ome very vulnerable for small ".

Robust numeri
al methods for (1) and for more general di�usion{
onve
tion{rea
tion

problems have been proposed by many authors; the textbooks [RST96℄ and [MOS96℄ supply

an overview of many su
h te
hniques and may serve as a guide. It has turned out that two

main approa
hes are parti
ularly su

essful:
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2 2 THE ENERGY NORM { PRO AND CONTRA

� operator �tted methods (e.g. adapted �nite element/�nite di�eren
e methods on stan-

dard meshes),

� mesh �tted methods (e.g. standard �nite element/�nite di�eren
e methods on adapted

meshes).

For example, uniformly 
onvergent methods and stabilization te
hniques are dis
ussed in

[RST96℄. In [MOS96℄, operator �tted methods and mesh �tted methods are investigated,

mostly using the L

1

norm. In the 
on
ept of adaptive algorithms, error estimators play a


entral role. Robust estimators for (1) have been developed within the last de
ade, e.g. in

[Ang95, Ver98, AB99, Kun00, Kun01℄.

2 The energy norm { Pro and Contra

Our main fo
us is on the 
hoi
e of the norm in whi
h to measure the dis
retization error.

In parti
ular we investigate the energy norm and 
on
lude that it is both well{suited

and appropriate (despite o

asional 
laims to the 
ontrary). Additionally an important

argument is given in favour of the energy norm, and some prejudi
es are dismissed.

As already mentioned the maximum norm and the energy norm are among the most

widely used norms; thus we start with a brief re
olle
tion. The L

1

norm is applied

e.g. throughout [MOS96℄ and partly in [RST96℄. As a rough guideline, this maximum

norm is parti
ularly su

essful for analysing �nite di�eren
e methods. The energy norm

is employed e.g. in [Ver98, AB99, Kun00, Kun01℄ and also partly in [RST96℄. This energy

norm seems to be better suited to deal with �nite element te
hniques.

After this brief overview let us now examine the energy norm more 
losely, and in

parti
ular the arguments for and against it. To start with, the energy norm is problem

dependent, whi
h indeed 
ould be seen as a minor disadvantage. However, in our opinion

this slight drawba
k is made up for, or even outweighed, by the fa
t that the energy norm

is the natural norm asso
iated with the variational formulation of problem (1).

The main argument invoked against the energy norm is that it allegedly 
annot distin-

guish between layer fun
tions and the zero fun
tion. Consider, for example, a typi
al layer

fun
tion v(x) := e

�x=

p

"

in 
 = (0; 1), as in [MOS96, pages 12f℄. Then

jjjv � 0jjj




= O("

1=4

) and kv � 0k

L

1

= 1 :

Truly, the energy norm of the di�eren
e of this layer fun
tion v and the zero fun
tion

vanishes in the limiting 
ase " ! 0. We 
laim, however, that no further 
on
lusions 
an

be drawn. Firstly, any a
tual numeri
al simulation is performed for some �xed value of ".

Then the energy norm jjjv � 0jjj is small indeed but only on an absolute s
ale. Nevertheless

jjjv � 0jjj 
an be large in relative terms, e.g. 
ompared with the dis
retization error (
f. also

example 2 below). Hen
e any 
on
lusions at this stage seem to be premature.

Se
ondly, the layer fun
tion v and the zero fun
tion 
annot be 
ompared as they are

sin
e they obey di�erent boundary 
onditions.
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Our main argument in favour of the energy norm states that an adaptive �nite element

algorithm 
an de
rease the error (in the energy norm) with an optimal rate. Su
h an

adaptive algorithm naturally in
orporates an energy norm error estimator. This estimator

should also be robust with respe
t to the small perturbation parameter ", whi
h has been

a
hieved re
ently in [Ver98, AB99, Kun00, Kun01℄.

Surprisingly, extensive literature sear
h has revealed that apparently none of these

estimators has been applied yet in adaptive algorithms (at least no results have been

published). Only [Pap98, PV00℄ 
arried out some investigations whi
h are 
lose to our

intentions. Their examinations are for two{dimensional domains, and the problems there

are more general than (1). The numeri
al examples show that boundary and interior

layers 
an be resolved appropriately by an adaptive algorithm, even if the results are not

optimal yet. This mainly seems to be due to the more 
ompli
ated problem where several

theoreti
al questions are unsolved.

In the next se
tion we want to bridge the gap between the analyti
ally known energy

norm error estimator and numeri
al reality. Hen
e on two examples we demonstrate the

potential of the energy norm to 
ontrol an adaptive �nite element algorithm towards useful

or even optimal meshes. The 
riterion to judge an adaptive algorithm is the error de
rease

(in the 
hosen norm) with respe
t to the number of unknowns N . Applying for example

linear �nite elements and the energy norm, the asymptoti
ally optimal error de
rease is

O(N

�1=d

) for 
 � R

d

.

3 The adaptive algorithm and numeri
al experiments

In order to 
on
entrate on the role of the energy norm and to eliminate unwanted in
uen
es

we retreat to the 
omparatively simple model problem whi
h is a spe
ial 
ase of (1). Our

a
tual example enjoys several favourite properties, namely

� it is a one{dimensional problem,

� the analyti
al solution u and thus the dis
retization error u� u

h

are known,

� the 
omputational implementation is easily a

omplished, e.g. in MATLAB.

The 
lassi
al formulation of our model problem is a spe
ial 
ase of (1) and reads

�" u

00

+ u = f in 
 = (0; 1) ;

u(0) = 1; u(1) = 0 ;

with f 2 P

2

(
). The dis
retization with linear �nite elements utilizes a mesh with nodal

points fx

i

g

N

i=0

. The �nite element solution is denoted by u

h

. The adaptive algorithm


onsists of the steps Solve system of equations { Estimate error { Re�ne mesh. The last

two ingredients are des
ribed now.
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Error estimation: The energy norm error estimator is the one{dimensional 
ounterpart

of [Ver98℄. For a proper des
ription, de�ne the following data.

Mesh size h

i

:= x

i

� x

i�1

i = 1 : : :N

Finite element T

i

:= (x

i�1

; x

i

) i = 1 : : :N

Ma
ro element !

i

:= (x

i�2

; x

i+1

) i = 2 : : :N � 1

!

0

:= (x

0

; x

2

) !

N

:= (x

N�2

; x

N

)

Element residual R

i

:= f � (�" u

00

h

+ u

h

) i = 1 : : :N

Jump residual J

i

:= " � [u

0

h

(x

i

+ 0)� u

0

h

(x

i

� 0)℄ i = 1 : : :N � 1

J

0

= J

N

:= 0

S
aling fa
tor �

i

:= minf1 ; "

�1=2

h

i

g i = 1 : : :N

Lo
al error estimator �

2

i

:= �

2

i

kR

i

k

2

L

2

(T

i

)

+ "

�1=2

�

i

� (J

2

i�1

+ J

2

i

) i = 1 : : :N

Note that x

i

and J

i

are node related data whereas h

i

, T

i

, R

i

, �

i

, �

i

are element related

data. Verf�urth [Ver98℄ has proven that the energy norm of the error is bounded lo
ally

from below and globally from above:

�

i

� 


L

jjju� u

h

jjj

!

i

8 i = 1 : : :N

jjju� u

h

jjj




� 


U

 

N

X

i=1

�

2

i

!

1=2

:

The 
onstants 


L

; 


U

are independent of ", i.e. the error estimation is robust.

Mesh re�nement: Here it suÆ
es to 
hoose a simple strategy. Start with an equidis-

tributed mesh of 10 elements. On
e the error estimators are 
omputed, an element T

i

is

bise
ted i�

�

i

� 
 � max

k=1:::N

�

k

;

where the re�nement parameter is set to 
 := 0:1. More sophisti
ated re�nement strategies

are possible of 
ourse.
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Example 1: Single boundary layer

This experiment features a single boundary layer. Thus it is best suited to illustrate the

prin
ipal behaviour of the adaptive algorithm whilst eliminating perturbing in
uen
es at

the same time. With the 
hoi
e f � 0 of the right hand side one obtains a sharp boundary

layer of the type e

�x=

p

"

at x = 0, see Figure 1.

0

0.2
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0.8

1

0.2 0.4 0.6 0.8 1
x

Figure 1: Analyti
 solution u for example 1, " = 10

�3

In Figure 2 we present the results of our adaptive algorithm for di�erent values of ".

The �gure depi
ts the error de
rease in the energy norm with respe
t to the number of

unknowns N . It turns out that in all 
ases the 
onvergen
e rate is very 
lose to the optimal

rate of O(N

�1

) as soon as the boundary layer is resolved. As desired, the 
onvergen
e rate

is independent of ". Hen
e the 
hosen algorithm is optimal (with respe
t to the energy

error de
rease), i.e. optimal meshes are obtained.

For 
ompleteness we also present the 
orresponding error de
rease in the (nodal) L

1

norm in Figure 3. Again, as soon as the boundary layer is resolved, the maximum norm of

the error drops as well. The 
onvergen
e rate here is approximately O(N

�1:4

) whi
h is sub{

optimal. (The nodal error ku�Iuk

L

1

of the linear interpolant Iu is at most O(N

�2

ln

2

N),

see [RST96, Se
tion 2.4.2℄. Analyti
al investigations of the approximation error ku�u

h

k

L

1

on Shishkin meshes result in the bound O(N

�1

lnN), 
f. [MOS96, RST96℄. Numeri
al

experiments however give a 
onvergen
e rate of approximately O(N

�2:0

) on Shishkin like

meshes for our problem.) Note that little 
on
lusions 
an be drawn from this information

sin
e the underlying adaptive algorithm has been designed to be optimal for the energy

norm.
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Figure 2: Example 1: Error de
rease in the energy norm
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Example 2: Boundary layer + quadrati
 fun
tion

In this experiment the same boundary layer as before is superposed on a quadrati
 fun
-

tion. In the 
ontext of asymptoti
 expansions, the layer fun
tion 
an be seen as the inner

expansion whereas the quadrati
 fun
tion represents (exemplarily) the outer expansion.

Here we 
hoose f = 2"+ x(1� x) whi
h yields the analyti
 solution u = e

�x=

p

"

+ x(1� x)

for small "� 1, see Figure 4.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
x

Figure 4: Analyti
 solution u for example 2, " = 10

�3

In Figure 5 the error de
rease in the energy norm is depi
ted. Again a 
onvergen
e

rate is observed whi
h is 
lose to the optimal rate of O(N

�1

). It is remarkable that this

optimal rate is a
hieved although the energy norm of the layer fun
tion is O("

1=4

), and

thus mu
h smaller than the energy norm of the quadrati
 superposition (whi
h is O(1)).

For 
ompleteness the results for the dis
rete maximum norm are given as well, 
f. Fig-

ure 6. Similar 
on
lusions 
an be drawn as for example 1.
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Figure 5: Example 2: Error de
rease in the energy norm
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4 Con
lusions

We have seen that the 
hoi
e of an appropriate norm for a singularly perturbed rea
tion{

di�usion problem is, to some extend, a philosophi
al question. The answer depends on

several aspe
ts, for example the approximation method and the 
hoi
e of the tools to

analyse it.

We have shown that there are good reasons to opt for the energy norm. Firstly 
ertain

prejudi
es against this norm have analysed and disproved. Se
ondly, a 
onvin
ing adaptive

algorithm for a simple model problem en
ourages to employ the energy norm. Simultane-

ously we hope to stimulate the dis
ussion about the di�erent 
hoi
es of the norm.

A Program listing

The following MATLAB program implements the aforementioned adaptive algorithm for ex-

ample 1 and displays several interesting pie
es of information as well as �gures. The 
ode

is also available at

http://ar
hiv.tu-
hemnitz.de/pub/2001/0006/data/rea
diff.m

When you run the program in MATLAB, you are �rst prompted for the value of " (the

default value is 10

�6

). After that only the Return key has to be hit repeatedly.
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% Solve a singularly perturbed rea
tion diffusion model problem in 1D.

% An adaptive program with the residual error estimator of Verfuerth.

%

% - eps*u'' + u = 0 in Omega = (0,1)

% u(0)=1 u(1)=0

%

% Analyti
al solution: Set eps2 := sqrt(eps)

% u = ( exp(-x/eps2) - exp((x-2)/eps2) ) / (1-exp(-2/eps2))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n0 = 10; % number of initial intervals (equidistant mesh)

n = n0; % present number of intervals

x = 0:1/n:1; % the initial mesh

gamma = 0.1; % Refinement o

urs if eta_T > gamma*eta_max

% eta_T := error estimator, eta_max := max_T {eta_T}

eps=input('Please enter epsilon: ');

if isempty(eps) == 1

eps = 1e-6;

fprintf('Use default value for epsilon: %4.1e\n',eps);

end

eps2 = sqrt(eps);

eps32 = eps2^3;

fprintf('Number of initial intervals: %2d\n',n0);

fprintf('Refinement parameter gamma: %5.2f\n\n',gamma);

fprintf(' Upper Bd Lower Bd\n');

fprintf('Elemente: |||Err||| Err/Est Est/Err C-Err Konv-rate\n');

fprintf('------------------------------------------------------------\n');

fid = fopen('result-Enorm','w');

fprintf(fid,'# Energienorm, Epsilon = %4.1e\n\n',eps);

f
lose(fid);

fid = fopen('result-Cnorm','w');

fprintf(fid,'# Maximum Norm, Epsilon = %4.1e\n\n',eps);

f
lose(fid);

while 1 % Adaptive infinite loop
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the Finite Element Solution.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

h = x(2:n+1) - x(1:n); % mesh sizes

D = [1 , eps*( 1./h(1:n-1) + 1./h(2:n) ) , 1℄' + ( [h 0℄ + [0 h℄)'/3;

NDu = [-eps*1./h + h/6 , 0℄';

NDo = [0 , -eps*1./h + h/6 ℄';

A = spdiags([NDu D NDo℄ , -1:1 , n+1,n+1); % stiffness matrix

A(1,1) = 1;

A(1,2) = 0;

A(n+1,n) = 0;

A(n+1,n+1) = 1;

b = [1; zeros(n,1) ℄; % right hand side

uh = A\b; % FEM solution

% Exa
t solution: Numeri
ally stable for small eps

u = ( exp(-x'/eps2) - exp((x'-2)/eps2) ) / (1-exp(-2/eps2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the error estimator.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The lo
al error estimator eta_T is for an interval T with two

% nodes E_i.

% The fa
e residual r_E is the 
anoni
al 
hoi
e, i.e. eps*Gradient jump.

%

% eta_T^2 := alpha_T^2 * || r_T ||_T^2 +

% + eps^{-1/2}*alpha_T * Summe_E_i | r_E |^2

% with alpha_T := min(1,h_T/sqrt(eps))

al = min( 1 , h / sqrt(eps))';

% Element residual:

norm_rT2 = h'/3 .* ( uh(1:n).^2 + uh(2:n+1).^2 + uh(1:n).*uh(2:n+1) );

% "Fa
e" residual = gradient jump * eps. Zero at x=0 and x=1.

rE = eps*[ 0 ;( uh(3:n+1) -uh(2:n)) ./h(2:n)' - ( uh(2:n) -uh(1:n-1))...

./h(1:n-1)' ; 0℄ ;
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% Error estimator (squared)

Est = al.^2 .* norm_rT2 + eps^(-1/2) * al .* (rE(1:n).^2 + rE(2:n+1).^2);

Est_glob = sqrt(sum(Est)); % global error estimator

max_err = max(abs(uh - u)); % L_{infinity} error

Est_max = max(Est); % Maximum lo
al error estimator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the (analyti
al) error in the energy norm.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x1 = x(2:n+1)'; % Auxiliary (
olumn) ve
tor x_{i+1}

x0 = x(1:n)';

% Error f
t = [ e^{-x/eps2} - e^((x-2)/eps2) ℄ / (1-e^{-2/eps2}) - 
*x-d

% ||| error |||_T gives a formula of about one page length (obtained via

% MAPLE).

% For small eps this formula in unstable (gives NaN). Then one has

% approximately u ~ e^{-x/eps2}, and the error is (approximately and

% very a

urately) as below.


 = ( uh(2:n+1) - uh(1:n) ) ./ h';

d = uh(1:n) - 
.*x0;

if eps >= 0.001 % analyti
al formula by MAPLE

H0 = -1/6*(-12.*
.*x0.^2.*d.*exp(2/eps2)-6.*
.*x1.^2.*d.*exp(4/eps2)+6.*


.*x0.^2.*d.*exp(4/eps2)+4.*
.^2.*x1.^3.*exp(2/eps2)+2.*
.^2.*x0.^3.*exp

(4/eps2)-4.*
.^2.*x0.^3.*exp(2/eps2)+12*
*eps.*exp(-(x0-4)/eps2)-12.*
*e

ps.*exp(-(x0-2)/eps2)+6.*d.^2.*x0.*exp(4/eps2)-12.*d.^2.*x0.*exp(2/eps2)

-12.*
*eps.*exp((x0+2)/eps2)+12.*
*eps2.*x0.*exp((x0+2)/eps2)+2.*
.^2.*x

0.^3+6.*d.^2.*x0+3*eps2.*exp(-2*(x1-2)/eps2)+12.*x1.*exp(2/eps2)+3*eps2.

*exp(2.*x0/eps2)-12.*x0.*exp(2/eps2)-3*eps2.*exp(2.*x1/eps2)+12.*d*eps2.

*exp((x0+2)/eps2)-2.*
.^2.*x1.^3.*exp(4/eps2)-12.*d*eps2.*exp(-(x0-2)/ep

s2)+12.*
*eps.*exp(x0/eps2)+12.*d*eps2.*exp(-(x0-4)/eps2)-3*eps2.*exp(-2

*(x0-2)/eps2)+6.*
.*x0.^2.*d-6.*
.*x1.^2.*d+12.*
.*x1.^2.*d.*exp(2/eps2)

-2.*
.^2.*x1.^3-6.*d.^2.*x1-12.*
*eps2.*x1.*exp(-(x1-4)/eps2)+12.*
*eps2

.*x1.*exp(-(x1-2)/eps2)+12.*
*eps2.*x0.*exp(-(x0-4)/eps2)-12.*
*eps2.*x0

.*exp(-(x0-2)/eps2)-12.*
*eps2.*x0.*exp(x0/eps2)+12.*
*eps2.*x1.*exp(x1/

eps2)-12.*
*eps2.*x1.*exp((x1+2)/eps2)-12.*d*eps2.*exp(x0/eps2)+12.*
*ep

s.*exp(-(x1-2)/eps2)+12.*
*eps.*exp((x1+2)/eps2)-12.*d*eps2.*exp((x1+2)/
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eps2)-12.*d*eps2.*exp(-(x1-4)/eps2)-6.*d.^2.*x1.*exp(4/eps2)+12.*d.^2.*x

1.*exp(2/eps2)+12.*d*eps2.*exp(-(x1-2)/eps2)+12.*d*eps2.*exp(x1/eps2)-12

.*
*eps.*exp(-(x1-4)/eps2)-12.*
*eps.*exp(x1/eps2))/(exp(2/eps2)-1).^2;

H1 = 1/2*(-eps.*exp(-2*(x1-2)/eps2)+4.*x1.*exp(2/eps2)*eps2-4*
*eps32.*

exp(-(x1-4)/eps2)+4*
*eps32.*exp(-(x1-2)/eps2)+exp(2.*x1/eps2)*eps+4*
*e

ps32.*exp((x1+2)/eps2)-4*
*eps32.*exp(x1/eps2)+2*
.^2.*x1*eps32.*exp(4/e

ps2)-4*
.^2.*x1*eps32.*exp(2/eps2)+2*
.^2.*x1*eps32+eps.*exp(-2*(x0-2)/e

ps2)-4.*x0.*exp(2/eps2)*eps2+4*
*eps32.*exp(-(x0-4)/eps2)-4*
*eps32.*exp

(-(x0-2)/eps2)-exp(2.*x0/eps2)*eps-4*
*eps32.*exp((x0+2)/eps2)+4*
*eps32

.*exp(x0/eps2)-2*
.^2.*x0*eps32.*exp(4/eps2)+4*
.^2.*x0*eps32.*exp(2/eps

2)-2*
.^2.*x0*eps32)/eps32/(exp(2/eps2)-1).^2;

else % approximate formula for small epsilon

% First Int (err')^2

H1 = ( exp(-x1/eps2)-exp(-x0/eps2) ) .* ...

( ( exp(-x1/eps2)+exp(-x0/eps2) )/(-2)/eps2 - 2*
) ...

+ 
.^2.*h';

% Now Int (err)^2

H0_a = - eps2/2 * ( exp(-2*x1/eps2)-exp(-2*x0/eps2) );

H0_b = 2*eps2* exp(-x1/eps2) .* (
.*x1 + 
*eps2 + d) - ...

(2*eps2* exp(-x0/eps2) .* (
.*x0 + 
*eps2 + d) );

H0_
 = 
.^2/3.*(x1.^3-x0.^3) + 
.*d.*(x1.^2-x0.^2) + d.^2 .*h';

H0 = H0_a + H0_b + H0_
;

end % end if

% The element error (squared) in the energy norm. Verified with MAPLE.

Err = eps*H1 + H0;

Err_glob = sqrt(sum(Err)); % global error

Err_max = max(Err); % Maximum lo
al error, squared

% The ratio of the lower error bound. Has to be bounded from above.

low_bd = Est ./ ( Err + [0 ;Err(1:n-1)℄ + [Err(2:n) ;0℄ );
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The 
onvergen
e rate (energy norm) between two su

essive steps.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

err_new = Err_glob;

n_new = n;

if n > n0

konv = -log(err_new/err_old) / log(n_new/n_old);

else

konv = 0;

end;

n_old=n_new;

err_old=err_new;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The result and some ni
e plots:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,1); plot(x,[uh u℄);

title('u and u_h')

subplot(2,2,2); plot(x,uh - u);

title('u - u_h');

subplot(2,2,3); plot(x,log10([h 0.1001℄));

axis([0 1 log10(h(1))-1 0℄)

title('logarithmi
 mesh density');

subplot(2,2,4); plot(x,[sqrt(low_bd); sqrt(low_bd(n))℄);

title('lo
al Ratio Lower Bound: Est/Err');

fprintf(' %5d %7.2e %7.4f %7.4f %8.3e %6.2f\n',...

n, Err_glob,Err_glob/Est_glob,max(sqrt(low_bd)),max_err,konv);

% Write to some file "result-...".

fid = fopen('result-Enorm','a');

fprintf(fid,' %5d %10.4e \n',n, Err_glob);

f
lose(fid);

fid = fopen('result-Cnorm','a');

fprintf(fid,' %5d %10.4e \n',n, max_err);

f
lose(fid);

pause
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Refinement:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Loop over all elements:

% When Eta_T > gamma * Eta_max then insert new node.

m = 1;


lear y

for i=1:n

y(m) = x(i);

if Est(i) > gamma^2*Est_max % mesh 
ontrol via Estimator

% if Err(i) > gamma^2*Err_max % mesh 
ontrol via true error

y(m+1) = (x(i)+x(i+1))/2;

m = m+2;

else

m = m+1;

end;

end;

y(m) = 1;

x = y;

n = m-1;

end % End while
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