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1 Motivation and model problem

Singularly perturbed problems have attracted much interest from both scientists and
engineers. They include, for example, diffusion—convection-reaction problems (with a
singular parameter) or plate and shell problems (where the singular character is intro-
duced via the geometry). A comprehensive overview of singularly perturbed problems
as well as their theoretical and numerical treatment can be found in the textbooks by
[MNPO1, RST96, MOS96, Mor96] and the citations contained therein.

In this note we consider a singularly perturbed reaction—diffusion problem which serves
as a comparatively simple model problem. The most common norms to measure the
discretization error of some numerical approximation are the (discrete) Lo, or maximum
norm and the energy norm. Beside those, other specialized norms have been proposed
as well. The actual choice of the norm depends, for example, on the numerical method
(e.g. finite element/finite different scheme) and the tools to analyse it.

Here we will promote the energy norm. More precisely, our aim is twofold:

e QOccasionally it is claimed that the energy norm is unsuitable. The corresponding
argument is investigated and disproved.

e For our second and more important argument we apply an energy norm error esti-
mator within an adaptive algorithm. This algorithm produces optimal meshes which
underlines the suitability of the energy norm.

For clarity we may stress that we do not claim or suggest that other norms are inappropri-
ate; we simply examine the energy norm and conclude its usefulness. In this way we hope
to stimulate the discussion about several norms and their fields of application.

In order to eliminate unwanted side effects we examine the following simple model
problem of a singularly perturbed reaction—diffusion equation:

—cAu +u = f in (1)

u = g on I'p = 90N

with a small perturbation parameter 0 < ¢ < 1. The corresponding energy norm (for
some domain w) then is
)1/2 7 (2)
and it is problem dependent via ¢. The singular character of problem (1) usually gives rise
to boundary layers [RST96, MOS96]. The smaller ¢ is the more distinguished these layers
will be. Hence standard techniques to solve (1) become very vulnerable for small .
Robust numerical methods for (1) and for more general diffusion—convection-reaction
problems have been proposed by many authors; the textbooks [RST96] and [MOS96] supply
an overview of many such techniques and may serve as a guide. It has turned out that two
main approaches are particularly successful:

ol = (ENVUllL,w + [0
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e operator fitted methods (e.g. adapted finite element /finite difference methods on stan-
dard meshes),

e mesh fitted methods (e.g. standard finite element /finite difference methods on adapted
meshes).

For example, uniformly convergent methods and stabilization techniques are discussed in
[RST96]. In [MOS96], operator fitted methods and mesh fitted methods are investigated,
mostly using the L., norm. In the concept of adaptive algorithms, error estimators play a
central role. Robust estimators for (1) have been developed within the last decade, e.g. in
[Ang95, Ver98, AB99, Kun00, Kun01].

2 The energy norm — Pro and Contra

Our main focus is on the choice of the norm in which to measure the discretization error.
In particular we investigate the energy norm and conclude that it is both well-suited
and appropriate (despite occasional claims to the contrary). Additionally an important
argument is given in favour of the energy norm, and some prejudices are dismissed.

As already mentioned the maximum norm and the energy norm are among the most
widely used norms; thus we start with a brief recollection. The L., norm is applied
e.g. throughout [MOS96] and partly in [RST96]. As a rough guideline, this maximum
norm is particularly successful for analysing finite difference methods. The energy norm
is employed e.g. in [Ver98, AB99, Kun00, Kun01] and also partly in [RST96]. This energy
norm seems to be better suited to deal with finite element techniques.

After this brief overview let us now examine the energy norm more closely, and in
particular the arguments for and against it. To start with, the energy norm is problem
dependent, which indeed could be seen as a minor disadvantage. However, in our opinion
this slight drawback is made up for, or even outweighed, by the fact that the energy norm
is the natural norm associated with the variational formulation of problem (1).

The main argument invoked against the energy norm is that it allegedly cannot distin-
guish between layer functions and the zero function. Consider, for example, a typical layer
function v(z) := e */V= in Q = (0,1), as in [MOS96, pages 12f]. Then

o= 0llg = O(*)  and v —0||,, =1

Truly, the energy norm of the difference of this layer function v and the zero function
vanishes in the limiting case ¢ — 0. We claim, however, that no further conclusions can
be drawn. Firstly, any actual numerical simulation is performed for some fixed value of ¢.
Then the energy norm |||v — 0||| is small indeed but only on an absolute scale. Nevertheless
llv — 0]|| can be large in relative terms, e.g. compared with the discretization error (cf. also
example 2 below). Hence any conclusions at this stage seem to be premature.

Secondly, the layer function v and the zero function cannot be compared as they are
since they obey different boundary conditions.



Our main argument in favour of the energy norm states that an adaptive finite element
algorithm can decrease the error (in the energy norm) with an optimal rate. Such an
adaptive algorithm naturally incorporates an energy norm error estimator. This estimator
should also be robust with respect to the small perturbation parameter ¢, which has been
achieved recently in [Ver98, AB99, Kun00, Kun01].

Surprisingly, extensive literature search has revealed that apparently none of these
estimators has been applied yet in adaptive algorithms (at least no results have been
published). Only [Pap98, PV00] carried out some investigations which are close to our
intentions. Their examinations are for two—dimensional domains, and the problems there
are more general than (1). The numerical examples show that boundary and interior
layers can be resolved appropriately by an adaptive algorithm, even if the results are not
optimal yet. This mainly seems to be due to the more complicated problem where several
theoretical questions are unsolved.

In the next section we want to bridge the gap between the analytically known energy
norm error estimator and numerical reality. Hence on two examples we demonstrate the
potential of the energy norm to control an adaptive finite element algorithm towards useful
or even optimal meshes. The criterion to judge an adaptive algorithm is the error decrease
(in the chosen norm) with respect to the number of unknowns N. Applying for example

linear finite elements and the energy norm, the asymptotically optimal error decrease is
O(N~Y4) for Q C RY.

3 The adaptive algorithm and numerical experiments

In order to concentrate on the role of the energy norm and to eliminate unwanted influences
we retreat to the comparatively simple model problem which is a special case of (1). Our
actual example enjoys several favourite properties, namely

e it is a one—dimensional problem,
e the analytical solution u and thus the discretization error v — u; are known,

e the computational implementation is easily accomplished, e.g. in MATLAB.

The classical formulation of our model problem is a special case of (1) and reads

—eu" +u = f inQ=(0,1) ,
w(0) = 1, u(l)=0 ,

with f € P?(Q). The discretization with linear finite elements utilizes a mesh with nodal
points {z;}~,. The finite element solution is denoted by u;. The adaptive algorithm
consists of the steps Solve system of equations — Fstimate error — Refine mesh. The last
two ingredients are described now.



4 3 THE ADAPTIVE ALGORITHM AND NUMERICAL EXPERIMENTS

Error estimation: The energy norm error estimator is the one—dimensional counterpart
of [Ver98]. For a proper description, define the following data.

Mesh size hi =x; —x;_1 1=1...N

Finite element T; = (i1, ;) i=1...N

Macro element w;i = (Ti_2, Tiz1) i=2...N—1
wo := (g, 2) wy = (Tn_2,ZN)

Element residual R, = f — (—eu) + up) i=1...N

Jump residual Ji =€ - [up(z; + 0) — uj(z; — 0)] i= N-1
Jg = JN =0

Scaling factor a; == min{1, e */2h;} i=1...N

Local error estimator 77 := of |Ril|7 iy + ¢ Y2+ (JE, +JF)  i=1...N

Note that x; and J; are node related data whereas h;, T;, R;, «a;, n; are element related
data. Verfiirth [Ver98] has proven that the energy norm of the error is bounded locally
from below and globally from above:

i < e llu—wll,  Vi=1...N
N 1/2

o ()
=1

The constants ¢y, ¢y are independent of €, i.e. the error estimation is robust.

IN

e = wunlll

Mesh refinement: Here it suffices to choose a simple strategy. Start with an equidis-
tributed mesh of 10 elements. Once the error estimators are computed, an element 7; is
bisected iff
>
i =7 kr:nla}%v Tk )
where the refinement parameter is set to v := 0.1. More sophisticated refinement strategies
are possible of course.



Example 1: Single boundary layer

This experiment features a single boundary layer. Thus it is best suited to illustrate the
principal behaviour of the adaptive algorithm whilst eliminating perturbing influences at
the same time. With the choice f = 0 of the right hand side one obtains a sharp boundary
layer of the type e */V® at z = 0, see Figure 1.
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Figure 1: Analytic solution u for example 1, ¢ = 1073

In Figure 2 we present the results of our adaptive algorithm for different values of .
The figure depicts the error decrease in the energy norm with respect to the number of
unknowns N. It turns out that in all cases the convergence rate is very close to the optimal
rate of O(N~') as soon as the boundary layer is resolved. As desired, the convergence rate
is independent of . Hence the chosen algorithm is optimal (with respect to the energy
error decrease), i.e. optimal meshes are obtained.

For completeness we also present the corresponding error decrease in the (nodal) L,
norm in Figure 3. Again, as soon as the boundary layer is resolved, the maximum norm of
the error drops as well. The convergence rate here is approximately O(N~!4) which is sub—
optimal. (The nodal error ||u—Iul|r_, of the linear interpolant Iu is at most O(N~21n*> N),
see [RST96, Section 2.4.2]. Analytical investigations of the approximation error ||u—up||L.,
on Shishkin meshes result in the bound O(N!InN), cf. [MOS96, RST96]. Numerical
experiments however give a convergence rate of approximately O(N~2?) on Shishkin like
meshes for our problem.) Note that little conclusions can be drawn from this information
since the underlying adaptive algorithm has been designed to be optimal for the energy
norm.
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Figure 2: Example 1: Error decrease in the energy norm
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Figure 3: Example 1: Error decrease in the nodal maximum norm



Example 2: Boundary layer 4+ quadratic function

In this experiment the same boundary layer as before is superposed on a quadratic func-
tion. In the context of asymptotic expansions, the layer function can be seen as the inner
expansion whereas the quadratic function represents (exemplarily) the outer expansion.
Here we choose f = 2¢ 4 2(1 — 2) which yields the analytic solution v = e */V® 4 2(1 — )
for small ¢ < 1, see Figure 4.
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Figure 4: Analytic solution u for example 2, ¢ = 1073

In Figure 5 the error decrease in the energy norm is depicted. Again a convergence
rate is observed which is close to the optimal rate of O(N~!). Tt is remarkable that this
optimal rate is achieved although the energy norm of the layer function is O(¢/*), and
thus much smaller than the energy norm of the quadratic superposition (which is O(1)).

For completeness the results for the discrete maximum norm are given as well, cf. Fig-
ure 6. Similar conclusions can be drawn as for example 1.



3 THE ADAPTIVE ALGORITHM AND NUMERICAL EXPERIMENTS

1 - T T
- eps=1E-2 —+—
eps=1E-4 —x—
0.17% eps=1E-6 —x— -
T eps=1E-8 ——
- eps=1E-10 —&—
£ 0.01 ¢ eps=1E-12 —&—
2 ﬁ '
& 0001}
b L
c
LIJ L
£ 0.0001 ¢
5 ﬁ
W 1e05 ¢t
1606 |
1607 | ' '
10 100 1000 10000
Number of elements
Figure 5: Example 2: Error decrease in the energy norm
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Figure 6: Example 2: Error decrease in the nodal maximum norm



4 Conclusions

We have seen that the choice of an appropriate norm for a singularly perturbed reaction—
diffusion problem is, to some extend, a philosophical question. The answer depends on
several aspects, for example the approximation method and the choice of the tools to
analyse it.

We have shown that there are good reasons to opt for the energy norm. Firstly certain
prejudices against this norm have analysed and disproved. Secondly, a convincing adaptive
algorithm for a simple model problem encourages to employ the energy norm. Simultane-
ously we hope to stimulate the discussion about the different choices of the norm.

A Program listing

The following MATLAB program implements the aforementioned adaptive algorithm for ex-
ample 1 and displays several interesting pieces of information as well as figures. The code
is also available at

http://archiv.tu-chemnitz.de/pub/2001/0006/data/reacdiff.m

When you run the program in MATLAB, you are first prompted for the value of £ (the
default value is 107%). After that only the Return key has to be hit repeatedly.



10 A PROGRAM LISTING

% Solve a singularly perturbed reaction diffusion model problem in 1D.
%» An adaptive program with the residual error estimator of Verfuerth.
b

% - eps*u’’ + u =0 in Omega = (0,1)

b u(0)=1 u(1)=0

T

% Analytical solution: Set eps2 := sqrt(eps)

% u= ( exp(-x/eps2) - exp((x-2)/eps2) ) / (1-exp(-2/eps2))

To oot Tt ToTo oo ottt To oo To o o ot ToTo To To o To o To o to Fo To To 1o To o To o o fo o Fo Foto 1o ToTo To o To To fo o Fo o To To 1o To o To To fo o o Fo Fo to o
% Initialize.

To1o oo 1o s 1o s 1o o oo oo o o o o oo o o o o o Jo o T o To T To o oo oo oo o oo o o o o o Jo o T o To o T T o o oo oo oo oo o oo oo o

n0 = 10; % number of initial intervals (equidistant mesh)
n = n0; % present number of intervals
x =0:1/n:1; % the initial mesh
gamma = 0.1; /» Refinement occurs if eta_T > gammaxeta_max
% eta_T := error estimator, eta_max := max_T {eta_T}

eps=input (’Please enter epsilon: )
if isempty(eps) ==

eps = le-6;

fprintf (°Use default value for epsilon: %4.le\n’,eps);
end
eps2 = sqrt(eps);
eps32 = eps273;

fprintf (’Number of initial intervals: %2d\n’ ,n0) ;

fprintf (’Refinement parameter gamma:  %5.2f\n\n’,gamma);

fprintf (’ Upper Bd Lower Bd\n’);

fprintf (’Elemente: |||Err||| Err/Est Est/Err C-Err  Konv-rate\n’);
fprintf (- \n’);

fid = fopen(’result-Enorm’,’w’);

fprintf(fid,’# Energienorm, Epsilon = %4.1le\n\n’,eps);
fclose(fid);

fid = fopen(’result-Cnorm’,’w’);

fprintf(fid,’# Maximum Norm, Epsilon = %»4.1e\n\n’,eps);
fclose(fid);

while 1 %» Adaptive infinite loop



Yot ToTo o 1o o ToTo 1o o oo To o To o o To o To o o To 1o 1o o o To o 1o o o To 1o o o To T Jo o o To 1o o o ToTo 1o o o ToTo 1o o o To o o o o To 1o o o To To 1o o o
% Compute the Finite Element Solution.
Yoo To o o To o 1o o ToTo o o ToTo o ToTo To o To o o o To Jo o To o o To o o ToTo 1o o To 1o o Jo 1o o Jo To 1o o To o o ToTo o Jo T o o To 1o o To o o To o o Jo T 1o o o

=
1]

x(2:n+1) - x(1:n); % mesh sizes

D=1[1, epsx( 1./h(1:n-1) + 1./h(2:n) ) , 11> + ( [h 0] + [0 h])’/3;
NDu = [-eps*1./h + h/6 , 0]’;

NDo = [0 , -eps*1./h + h/6 1°;

A = spdiags([NDu D NDo] , -1:1 , n+l,n+1); % stiffness matrix
A(1,1) = 1;

A(1,2) =

A(n+1,n)

A(n+1,n+1) = 1;
b = [1; zeros(n,1) 1; % right hand side
uh = A\b; % FEM solution

/» Exact solution: Numerically stable for small eps
u = ( exp(-x’/eps2) - exp((x’-2)/eps2) ) / (l-exp(-2/eps2));

ToTo o 1o 1o To 7o ToTo ToTo Jo o o To o To o To o To o To o o T o T o T Jo T o T o o Jo o oo o o o o oo o o o o o o o o o o o o o o o oo To o o o o o o o
%» Compute the error estimator.

Vot ToTo o 1o oo ToTo 1o o o ToTo o 1o o Jo ToTo To o o To T o o o ToJo o o o To 1o o o ToTo o o o To T o o o To T o o ToTo o o o To o o o o To 1o o o To T Fo o o

% The local error estimator eta_T is for an interval T with two
% nodes E_i.

%» The face residual r_E is the canonical choice, i.e. eps*Gradient jump.

b

% eta_T"2 := alpha T"2 * || r_T ||_T"2 +

yA + eps”{-1/2}*alpha_T * Summe E_i | r_E |~2
% with alpha_T := min(1,h_T/sqrt(eps))

al = min( 1 , h / sqrt(eps))’;

% Element residual:
norm_rT2 = h’/3 .* ( uh(1:n).”2 + uh(2:n+1).72 + uh(1:n).*uh(2:n+1) );

% "Face" residual = gradient jump * eps. Zero at x=0 and x=1.

rE = eps*[ 0 ;( uh(3:n+1) -uh(2:n)) ./h(2:n)’ - ( uh(2:n) -uh(1:n-1))...

./h(1:n-1)’ ; 0] ;

11
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% Error estimator (squared)
Est = al.”2 .x norm_rT2 + eps”~(-1/2) * al .x (rE(1:n)."2 + rE(2:n+1).72);

Est_glob = sqrt(sum(Est)); % global error estimator
max_err = max(abs(uh - u)); % L_{infinity} error
Est_max = max(Est); % Maximum local error estimator

Yoo To o o ToTo 1o o ToTo o o To 1o o ToTo To o To o o o To Jo o To o o To o o ToTo 1o o To T o Jo 1o o Jo To 1o o To 1o o ToTo o Jo To o o To 1o o To o o To 1o o To T 1o o o
/» Compute the (analytical) error in the energy norm.

To1o1o161o7s 1o s 1o o oo o o o o o o oo o o T o o Jo T o o To T To o 1o o oo oo o oo o o oo o Jo o o o To T T T oo oo oo oo oo o oo oo o

x1
x0

x(2:n+1)’; % Auxiliary (column) vector x_{i+1}
x(1:n)’;

% Error fct = [ e”{-x/eps2} - e~ ((x-2)/eps2) ] / (1-e~{-2/eps2}) - c*x-d
% 11l error |||_T gives a formula of about one page length (obtained via
% MAPLE) .

% For small eps this formula in unstable (gives NaN). Then one has

% approximately u ~ e“{-x/eps2}, and the error is (approximately and

% very accurately) as below.

¢ = (uh(2:n+1) - uh(1:n) ) ./ h’;
d = uh(1:n) - c.*x0;
if eps >= 0.001 % analytical formula by MAPLE

HO = -1/6%(-12.%c.*x0.72.*d.*exp(2/eps2)-6.*%c.*x1.72.*%d.*exp(4/eps2)+6.*
c.*x0.72.*%d.*xexp(4/eps2)+4.*xc. 2.xx1.73.xexp(2/eps2)+2.*c. 2.*x0. 3. *exp
(4/eps2)-4.%c."2.%x0.73.*exp(2/eps2) +12*c*xeps. *xexp (- (x0-4) /eps2)-12. *c*e
ps.*exp(-(x0-2) /eps2)+6.*d."2.*x0.*exp(4/eps2)-12.*d."2.*x0.*exp(2/eps2)
-12.*xcxeps.*exp((x0+2) /eps2) +12. *cxeps2. *x0. xexp ((x0+2) /eps2) +2.*c. 2. *x
0.73+6.%d."2.*x0+3*eps2.xexp(-2*(x1-2) /eps2) +12.*x1.*exp(2/eps2) +3*eps2.
*xexp(2.%x0/eps2)-12.*x0.*exp(2/eps2) -3*eps2. xexp(2.*x1/eps2)+12. *xd*eps2.
*xexp ((x0+2) /eps2)-2.%c. 2.xx1.73.*%exp(4/eps2)-12.*d*eps2.*xexp(-(x0-2)/ep
82)+12.*c*eps.*xexp(x0/eps2)+12.*dxeps2.*exp(-(x0-4) /eps2) -3xeps2. xexp (-2
*(x0-2) /eps2)+6.*c.*x0.72.%d-6.*%c.*x1."2.%d+12.*c.*x1."2.*d.*exp(2/eps2)
-2.%Cc.72.%x1.73-6.%d. 2.*xx1-12 *c*eps2.*xl.*exp(-(x1-4) /eps2)+12.*c*eps2
.xx1.%exp(-(x1-2)/eps2) +12. *c*xeps2.*x0.*exp (- (x0-4) /eps2)-12.*c*eps2.*x0
.xexp (- (x0-2) /eps2)-12.*c*eps2. *x0. xexp(x0/eps2) +12. xc*eps2. *x1.*exp(x1/
eps2)-12.xc*eps2.*x1.*exp((x1+2) /eps2)-12.*d*eps2.*exp(x0/eps2) +12.xc*ep
s.xexp(-(x1-2) /eps2)+12.xcxeps.*exp((x1+2) /eps2)-12.*d*eps2.xexp((x1+2)/
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eps2)-12.xd*eps2.*exp(-(x1-4) /eps2)-6.*d. 2.xx1.*xexp(4/eps2)+12.xd. 2. %*x
1.xexp(2/eps2)+12.*d*eps2.*exp(-(x1-2) /eps2)+12.*d*eps2.*exp(xl/eps2)-12
.xcxeps.*exp(-(x1-4)/eps2)-12.*cxeps.*exp(x1/eps2))/(exp(2/eps2)-1).72;

H1 = 1/2x(-eps.*exp(-2%(x1-2) /eps2)+4.xx1.*xexp(2/eps2) xeps2-4xc*eps32. *
exp(-(x1-4) /eps2) +4*c*xeps32.xexp (- (x1-2) /eps2) +exp(2.*x1/eps2) xeps+d*cke
ps32.xexp((x1+2) /eps2) -4*cxeps32.xexp(xl/eps2)+2%c. 2. *x1*eps32.*exp(4/e
ps2)-4*c. 2. *x1*eps32. xexp(2/eps2) +2xc. 2. xx1*eps32+eps. *xexp (-2*%(x0-2) /e
ps2)-4.%xx0.*xexp(2/eps2) xeps2+4xc*eps32.xexp (- (x0-4) /eps2) -4*c*xeps32. *exp
(-(x0-2) /eps2) -exp(2.*x0/eps2) xeps—4xc*eps32. xexp ((x0+2) /eps2) +4*cxeps32
.xexp(x0/eps2)-2xc. 2. xx0%eps32. xexp (4/eps2) +4*c. 2. xx0*eps32. xexp(2/eps
2)-2%c."2.*x0%eps32) /eps32/ (exp(2/eps2)-1).72;

else % approximate formula for small epsilon

% First 1Int (err’)"2

H1 = ( exp(-xl1/eps2)-exp(-x0/eps2) ) .x*
( ( exp(-x1/eps2)+exp(-x0/eps2) )/(-2)/eps2 - 2xc)
+ c.72.%h’;

% Now Int (err)~2

HO_a = - eps2/2 * ( exp(-2*x1/eps2)-exp(-2xx0/eps2) );

HO_b = 2%eps2* exp(-xl/eps2) .* (c.*xl + cxeps2 + d) - ...
(2%eps2* exp(-x0/eps2) .*x (c.*x0 + c*eps2 + d) );

HO_c = ¢.72/3.%(x1.73-x0.73) + c.*d.*x(x1.72-x0.72) + d."2 .*h’;

HO = HO_a + HO_b + HO_c;

end % end if

/» The element error (squared) in the energy norm. Verified with MAPLE.
Err = epsxH1 + HO;

Err_glob = sqrt(sum(Err)); % global error
Err_max = max(Err); % Maximum local error, squared

% The ratio of the lower error bound. Has to be bounded from above.
low_bd = Est ./ ( Err + [0 ;Err(1:n-1)] + [Err(2:n) ;0] );
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Yoo oo ToToToTo 1o o 1o o oo To o ToTo 1o o o o o o o To oo o o o o ToTo oo o o o o To To oo o o o o To To o oo o o o ToTo o oo o o o To o oo oo o
/» The convergence rate (energy norm) between two successive steps.

Voo ToTo o 1o oo ToTo 1o o o ToTo o 1o o o ToTo o o o To T o o o To o o o ToTo o o o To T o o o To T o o o To 1o o o ToTo o o o To o o o o To 1o o o To T Fo o o
err_new = Err_glob;

n_new = n;

if n > n0

konv = -log(err_new/err_old) / log(n_new/n_old);
else

konv = 0;
end;

n_old=n_new;
err_old=err_new;

Voo ToTo oo oo ToToTo o o ToTo o 1o o Jo ToTo o o o To T o o o To o o o ToToTo o o To T o o o To T o o ToTo T o o ToTo o o o To o o o o To 1o o o To T Fo o o
%» The result and some nice plots:

To1o o6 1os 1o s 1o o o o o o o o o o o o o o o o o Jo o T o To T To o o 1o oo oo o oo o o o o o Jo o T o To o T T oo oo oo oo oo o o o oo o

subplot(2,2,1); plot(x,[uh ul);
title(’u and u_h’)

subplot(2,2,2); plot(x,uh - u);
title(’u - u_h’);

subplot(2,2,3); plot(x,logl0([h 0.10011));
axis([0 1 log10(h(1))-1 01)
title(’logarithmic mesh density’);

subplot(2,2,4); plot(x,[sqrt(low_bd); sqrt(low_bd(n))]);
title(’local Ratio Lower Bound: Est/Err’);

fprintf(° %5d %7.2e hT.4f %7 .4f %8.3e %6.2f\n’, ...
n, Err_glob,Err_glob/Est_glob,max(sqrt(low_bd)) ,max_err,konv) ;

% Write to some file "result-...".

fid = fopen(’result-Enorm’,’a’);

fprintf(fid,’ %5d %10.4e \n’,n, Err_glob);
fclose(fid);

fid = fopen(’result-Cnorm’,’a’);

fprintf(fid,’ 7%5d %10.4e \n’,n, max_err);
fclose(fid);

pause



ToaTo o Toto Toto To o To o To o To foTo o To o To o To o o o o Fo o Fo o o T To o To To Fo o To Fo o o o fo o To fo o To o o o o o To o foa To fo o To To o o To o to o o
% Refinement:

Vot To 1o o 1o o ToTo 1o o o To To o 1o o Jo ToTo o o o ToTo o o o ToTo 1o o JoTo 1o o o To T o o o To T o o o To 1o o o ToTo o o o To oo o o To 1o o o To T Fo o o

% Loop over all elements:
/» When Eta_T > gamma * Eta_max then insert new node.

m=1;
clear y
for i=1:n
y(m) = x(i);
if Est(i) > gamma”2*Est_max /» mesh control via Estimator
yA if Err(i) > gamma”2*Err_max /» mesh control via true error
y(m+1) = (x(i)+x(i+1))/2;
m = m+2;
else
m = m+l;
end;
end;
y(m) = 1;
X =Y;
n =nm-1;

end % End while
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