
Te
hnis
he Universit�at Chemnitz

Sonderfors
hungsberei
h 393

Numeris
he Simulation auf massiv parallelen Re
hnern

Gerd Kunert

Robust a posteriori error

estimation for a singularly

perturbed rea
tion{di�usion

equation on anisotropi


tetrahedral meshes

Preprint SFB393/00-39

Abstra
t

We 
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rigorously analyse an a posteriori residual error estimator that 
an be applied to

anisotropi
 �nite element meshes. The quotient of the upper and lower error bounds

is the so{
alled mat
hing fun
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the solution) but not on the small perturbation parameter. This mat
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 �nite element mesh 
orresponds to the anisotropi
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iently good, the mat
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1 Introdu
tion

Adaptive �nite element algorithms have be
ome an important tool for numeri
al simula-

tions. Along with other ingredients, they usually employ a posteriori error estimators or

indi
ators, 
f. Ainsworth/Oden [2℄, Verf�urth [21℄ and the literature 
ited therein.

In this work we 
onsider a singularly perturbed rea
tion-di�usion model problem whose


lassi
al formulation reads: Find u 2 C

2

(
) \ C(
) su
h that

�"�u+ u = f in 
; u = 0 on �

D

= �
 (1)

in a bounded, polyhedral domain 
 � R

d

, d = 2; 3. The perturbation parameter " is

supposed to be very small, 0 < "� 1, and to have mu
h in
uen
e on the solution. For a


omprehensive dis
ussion of its analysis and numeri
al treatment we refer to Roos, Stynes,

Tobiska [19℄, and to Miller, O'Riordan, Shishkin [16℄, and the 
itations therein. Here it will

suÆ
e to remark that the singularly perturbed problem (1) usually gives rise to a solution

with boundary layers when a non-vanishing right-hand side f meets homogeneous Diri
hlet

boundary 
onditions. Inside the domain 
 and suÆ
iently far away from the boundary,

the solution is usually smooth provided f is smooth enough too. Thus the boundary layers

mark the domain of interest, and their resolution requires in
reased numeri
al e�ort.

The knowledge of a posteriori error estimators for the singularly perturbed problem

(1) has been unsatisfa
tory until re
ently. Most estimators yield upper and lower bounds

on the error that are not asymptoti
ally equivalent. By this we mean that the upper and

lower bound di�er by a fa
tor that in
reases, for example, as the dis
retization parameter

h ! 0, or as the perturbation parameter " ! 0 . The �rst a posteriori error estimate

with asymptoti
ally equivalent upper and lower bound on the error is, to our knowledge,

due to Angermann [3℄. He measures the error in a somewhat strange norm whi
h seems

to be mainly of theoreti
al interest. Only re
ently Verf�urth [22℄ derived the �rst robust

a posteriori error estimator for the energy norm. Ainsworth/Babu�ska [1℄ extended the

`equilibrated residual method' to the singularly perturbed problem and obtained a robust

error estimate as well.

Let us now 
onsider the �nite element method and some dis
retization aspe
ts in par-

ti
ular. Standard methods employ so{
alled isotropi
 meshes. That is, the elements are

shape regular or, equivalently, the ratio of the diameters of the 
ir
ums
ribed and ins
ribes

spheres is bounded. However, some problems (e.g. the singularly perturbed problem above)

admit a solution with strong dire
tional features su
h as boundary or interior layers. To ap-

proximate su
h an anisotropi
 solution, it 
an be advantageous to use anisotropi
 elements,

i.e. elements that are no longer shape regular.

Anisotropi
 elements are already used in pra
ti
e, see e.g. [4, 5, 7, 11, 17, 18, 23℄, but

when 
ommonly known (isotropi
) a posteriori error estimators are applied to anisotropi


meshes, they usually fail. The development of error estimators that are suitable for aniso-

tropi
 elements is just beginning. The only mathemati
ally founded anisotropi
 estimators

are, as far as we know, due to [20, 14, 13, 15, 10℄, and will be dis
ussed now brie
y.

Siebert [20℄ 
onsiders a residual error estimator for the Poisson problem on 
uboidal

or prismati
 grids. He has to impose two 
onditions to obtain upper and lower error
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bounds. Kunert [14, 13℄ investigates the Poisson equation on tetrahedral meshes, and

a residual error estimator and a lo
al problem based error estimator are derived. The

lower error bounds there hold un
onditionally, whereas the upper bounds are formulated

su
h that the in
uen
e of the anisotropy be
omes apparent. In Kunert/Verf�urth [15℄ it

is shown that anisotropi
 residual error estimators 
an be modi�ed su
h that they only


ontain the fa
e residuals, but they still bound the error reliably. This has been proven

for the Poisson equation (H

1

and L

2

error estimators). The investigation has already been

extended there to a rea
tion di�usion problem by using 
ertain results that are presented

in our paper here. Finally, Dobrowolski/Gr�af/P
aum [10℄ propose an error estimator that

requires the solution of a global problem (and slightly more restri
tive mesh assumptions,

e.g. a maximum angle 
ondition). The sharpness of the error bounds relies on a saturation

assumption whose dependen
e on the anisotropy is not fully dis
ussed.

Almost all of the aforementioned anisotropi
 error estimators deal with the Poisson

equation. In 
ontrast to this, we 
onsider the singularly perturbed problem (1) and derive

a robust a posteriori error estimator that 
an be applied to anisotropi
 meshes. The

upper and lower error bounds involve the same terms and are asymptoti
ally equivalent,

provided that the anisotropi
 mesh 
orresponds suÆ
iently to the anisotropi
 problem. Our

estimator is partially in
uen
ed by Verf�urth's isotropi
 version [22℄. The results 
oin
ide

when our estimator is applied to isotropi
 meshes.

As a side e�e
t and a 
orollary of this paper here we prove some results that have

already been utilized (without proof) in [15℄ to investigate fa
e residual error estimators

not only for the Poisson equation but also for a rea
tion di�usion equation. In parti
ular

we prove now the fundamental interpolation estimates of se
tion 3.3 and the lower error

bound (22) of se
tion 4. Note further that our error estimator here is improved by a

di�erent s
aling of the gradient jump.

The paper is organized as follows. In se
tion 2 we des
ribe the model problem. Se
tion

3 is devoted to some basi
 ingredients of the error estimation analysis. More pre
isely, we

start by presenting the transformation te
hnique and related lemmas, pro
eed with spe
ial

bubble fun
tions that will be essential for deriving lower error bounds, and 
on
lude with

spe
i�
 interpolation estimates whi
h eventually give the upper error bound. In se
tion 4

the error estimator is de�ned and the main result, the error estimation, is presented and

proved. A numeri
al experiment and the summary 
on
lude this paper.

2 The singularly perturbed model problem

The 
lassi
al formulation (1) is often too restri
tive to des
ribe real-world problems prop-

erly. So assume f 2 L

2

(
), and let H

1

o

(
) be the usual Sobolev spa
e of fun
tions that

vanish on �

D

. The variational formulation is now more appropriate:

Find u 2 H

1

o

(
) : a(u; v) = hf; vi 8 v 2 H

1

o

(
)

with a(u; v) :=

Z




" � r

T

urv + u v hf; vi :=

Z




f v :

9

=

;

(2)
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The 
ontinuous problem (2) is dis
retized by the �nite element method whi
h employs a

family F of triangulations T

h

of 
. Then let V

o;h

� H

1

o

(
) be the spa
e of 
ontinuous,

pie
ewise linear fun
tions over T

h

that vanish on �

D

. The �nite element solution u

h

2 V

o;h

is uniquely de�ned by

a(u

h

; v

h

) = hf; v

h

i 8 v

h

2 V

o;h

: (3)

Both problems (2) and (3) admit unique solutions due to the Lax{Milgram Lemma.

Our main obje
tive is to bound the error u � u

h

. Here we 
on
entrate on the energy

norm

jjjvjjj

2

:= a(v; v) = "krvk

2

+ kvk

2

:

This energy norm is the most natural norm when 
onsidering a singularly perturbed rea
-

tion di�usion problem (in weak formulation). When applied in adaptive algorithms, this

energy norm is able to produ
e appropriately re�ned meshes. This 
an be seen easily on

some 1D model problem, e.g. for �"u

00

+u = 0 in 
 = (0; 1) with u(0) = 1; u(1) = 0. Even

the optimal order of 
onvergen
e 
an be re
overed uniformly in ".

Apart from these reasons for using the energy norm, we will here repudiate the 
ommon

argument that the energy norm 
an not distinguish between a boundary layer and the zero

fun
tion (
f. [16, pages 12f℄). Su
h an argument 
an not be applied here sin
e it would

erroneously negle
t boundary 
onditions. Furthermore, even if the error in the energy

norm is small in absolute terms, this error 
an be large in relative terms and thus suÆ
e

to devise adaptive algorithms.

3 Notation, basi
 tools and Lemmas

In the following, let P

k

(!) be the spa
e of polynomials of order k or less over some domain

! � R

3

or ! � R

2

. Furthermore, instead of x � 
 � y or 


1

x � y � 


2

x (with 
onstants

independent of x, y, ", and T

h

) we use the shorthand notation x . y and x � y, respe
tively.

The L

2

norm of a fun
tion over a domain ! is denoted by k�k

!

, and (�; �)

!

means the L

2

(!)

s
alar produ
t. For ! = 
 the subs
ript is omitted.

The next se
tions introdu
e the notation and important tools. Some basi
 relations and

lemmas are given as well. All 
onsiderations are made for the 3D 
ase. The appli
ation to

the simpler 2D 
ase is readily possible.

3.1 Tetrahedron { Subdomains { Mesh requirements { Transfor-

mations

Tetrahedron: The four verti
es of an arbitrary tetrahedron T 2 T

h

are denoted by

P

0

; : : : ; P

3

su
h that P

0

P

1

is the longest edge of T , meas

2

(4P

0

P

1

P

2

) � meas

2

(4P

0

P

1

P

3

),

and meas

1

(P

1

P

2

) � meas

1

(P

0

P

2

).

Additionally de�ne three pairwise orthogonal ve
tors p

i

with lengths h

i;T

:= jp

i

j, see

�gure 1. Observe h

1;T

> h

2;T

� h

3;T

and set h

min;T

:= h

3;T

.
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Figure 1: Notation of tetrahedron T

Tetrahedra are denoted by T; T

0

or T

i

. Fa
es of a tetrahedron are denoted by E. Set

jT j = meas

3

(T ), jEj = meas

2

(E), and let

h

E;T

:= 3jT j=jEj

be the length of the height over a fa
e E. Note that h

E;T

is not the diameter of E, as in

the usual 
onvention. Be
ause of the geometri
al properties of the tetrahedron one has

h

E;T

>

1

2

h

min;T

8E � �T :

Auxiliary subdomains: Let T 2 T

h

be an arbitrary tetrahedron. Let !

T

be that domain

that is formed by T and all tetrahedra that have a 
ommon fa
e with T . Note that !

T


onsists of less than �ve tetrahedra if T has a boundary fa
e.

Let E be an inner fa
e (triangle) of T

h

, i.e. there are two tetrahedra T

1

and T

2

having

the 
ommon fa
e E. Set the domain !

E

:= T

1

[ T

2

. If E is a boundary fa
e set !

E

:= T

with T � E.

Mesh requirements: In addition to the usual 
onformity 
onditions of the mesh (see

Ciarlet [8℄, Chapter 2) we demand the following two assumptions.

1. The number of tetrahedra 
ontaining a node x

j

is bounded uniformly.

2. The dimensions of adja
ent tetrahedra must not 
hange rapidly, i.e.

h

i;T

0

� h

i;T

8T; T

0

with T \ T

0

6= ; ; i = 1 : : : d :

The last 
ondition also implies that terms su
h as h

min;T

or h

E;T

do not 
hange rapidly

a
ross adja
ent tetrahedra.

Note that the analysis of the error estimator does not require a maximum angle 
ondi-

tion.

Transformations and auxiliary tetrahedra: The usual transformation te
hnique be-

tween a tetrahedron T 2 T

h

and a standard tetrahedron plays a vital role in many
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proofs (
f. [8℄). However, our re�ned analysis even shows that two di�erent transfor-

mations fa
ilitate matters 
onsiderably, see also below. Hen
e de�ne the matri
es H

T

:=

diag(h

1;T

; h

2;T

; h

3;T

) and A

T

; C

T

2 R

3�3

by

A

T

:= (

�!

P

0

P

1

;

�!

P

0

P

2

;

�!

P

0

P

3

) and C

T

:= (p

1

;p

2

;p

3

) ;

and introdu
e aÆne linear mappings

F

A

(�) := A

T

� �+

!

P

0

and F

C

(�) := C

T

� �+

!

P

0

; � 2 R

3

:

These mappings impli
itly de�ne the standard tetrahedron

�

T := F

�1

A

(T ) and the referen
e

tetrahedron

^

T := F

�1

C

(T ). Then

�

T has verti
es

�

P

0

= (0; 0; 0)

T

and

�

P

i

= e

T

i

; i = 1 : : : 3,

whereas

^

T has verti
es at

^

P

0

= (0; 0; 0)

T

,

^

P

1

= (1; 0; 0)

T

,

^

P

2

= (x̂

2

; 1; 0)

T

and

^

P

3

=

(x̂

3

; ŷ

3

; 1)

T

. The 
onditions on the P

i

yield immediately 0 < x̂

2

� 1=2, 0 < x̂

3

< 1 and

�1 < ŷ

3

< 1. Figures 1 and 2 may illustrate this de�nition.

^

P

1

^

P

0

^

P

2

^

P

3

�

2

�

1

�

3

�

P

0

�

P

1

�

P

2

�

P

3

Figure 2: Standard tetrahedron

�

T and referen
e tetrahedron

^

T

Variables that are related to the standard tetrahedron

�

T and the referen
e tetrahedron

^

T are referred to with a bar and a hat, respe
tively (e.g.

�

r, v̂). The determinants of

both mappings are j det(A

T

)j = j det(C

T

)j = 6jT j, and the transformed derivatives satisfy

�

r�v = A

T

T

rv and

^

rv̂ = C

T

T

rv.

Although C

T

is naturally asso
iated with our analysis, it transforms

^

T into T . In-

equality 
onstants would thus depend on

^

T . This drawba
k is remedied by using the

transformation via A

T

in 
onjun
tion with C

T

. To illustrate this prin
iple, 
onsider the

mapping C

�1

T

A

T

whi
h maps the standard tetrahedron

�

T onto the referen
e tetrahedron

^

T .

Sin
e the radii of the ins
ribed and 
ir
ums
ribed spheres of

�

T and

^

T are bounded from

above and below, respe
tively, one immediately derives







A

T

T

C

�T

T







R

3�3

=







C

�1

T

A

T







R

3�3

� 1 : (4)
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This equivalen
e fa
ilitates the intera
tion of A

T

and C

T

, see e.g. the proof of the tra
e

inequality below.

Be
ause of the singular perturbation 
hara
ter of the di�erential equation we 
an

favourably employ a sub{tetrahedron T

E;Æ

� T whi
h depends on a fa
e E of T and a real

number Æ 2 (0; 1℄. For a pre
ise de�nition of T

E;Æ

, let T be an arbitrary but �xed tetrahe-

dron, and enumerate temporarily its verti
es su
h that E = Q

1

Q

2

Q

3

and T = OQ

1

Q

2

Q

3

,


f. Figure 3. Introdu
e bary
entri
 
oordinates su
h that �

0

is related to O, and �

1

, �

2

, �

3


orrespond to Q

1

; Q

2

; Q

3

, respe
tively.

Let P be that point with bary
entri
 
oordinates

�

0

(P ) = Æ and �

1

(P ) = �

2

(P ) = �

3

(P ) =

1� Æ

3

:

Then T

E;Æ

is that tetrahedron that has verti
es P and Q

1

; Q

2

; Q

3

, i.e. T

E;Æ

has the same

fa
e E as T but the fourth vertex is moved towards E with the rate Æ.

An alternative des
ription is as follows. With S

E

being the midpoint (i.e. 
enter of

gravity) of fa
e E, point P lies on the line S

E

O su
h that j

~

S

E

P j = Æ � j

~

S

E

Oj. Note that for

Æ = 1 one gets T

E;Æ

� T whereas in the limiting 
ase Æ ! 0 the tetrahedron T

E;Æ


ollapses

to the fa
e E.

Q

3

Q

2

P

S

E

Q

1

O

Figure 3: Tetrahedra T = OQ

1

Q

2

Q

3

and T

E;Æ

= PQ

1

Q

2

Q

3

In order to utilize T

E;Æ

eÆ
iently, we also require an aÆne linear transformation F

T;E;Æ

that maps the standard tetrahedron

�

T onto T

E;Æ

. This aÆne linear mapping is unique (up

to permutations of the enumeration of the verti
es of

�

T and T

E;Æ

).

Next we bound the transformation matrix of the aÆne linear mapping F

�1

T;E;Æ

(in a slight

abuse of the notation this matrix is denoted by F

�1

T;E;Æ

too). Sin
e F

�1

T;E;Æ

maps T

E;Æ

onto

�

T , su
h a bound is obtained via

kF

�1

T;E;Æ

k

R

3�3

� d(

�

T )=%(T

E;Æ

) ;

with d(

�

T ) =

p

2 being the diameter of

�

T , and %(T

E;Æ

) being the diameter of the largest

ins
ribed sphere of T

E;Æ

. Thus the goal of the next lemmas will be to bound that diameter.
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Lemma 3.1 Let T be an arbitrary tetrahedron with fa
es E

i

, i = 1 : : : 4. The length of the

height over E

i

is again denoted by h

E

i

;T

. Then

%(T ) � min

i=1:::4

h

E

i

;T

�

jT j

max

i=1:::4

jE

i

j

� h

min;T

:

Proof: The inequality %(T ) < h

E

i

;T

for i = 1 : : : 4 is obvious.

To bound %(T ) from below, 
onsider the midpoint S

T

of T (i.e. the 
entre of gravity).

Let l

i

:= dist(S

T

; E

i

) be the distan
e between S

T

and the plane that 
ontains the fa
e E

i

.

Then the sphere with 
entre at S

T

and radius min

i=1:::4

l

i

lies inside T ; therefore

%(T )=2 � min

i=1:::4

l

i

:

On the other hand l

i

= h

E

i

;T

=4 sin
e S

T

is the midpoint of T . This gives

%(T ) �

1

2

min

i=1:::4

h

E

i

;T

:

Re
alling 3jT j = h

E

i

;T

� jE

i

j 
ompletes the proof.

Let us now investigate the sub{tetrahedron T

E;Æ

, i.e. 
onsider an arbitrary tetrahedron

T and some �xed fa
e E thereof. Enumerate both tetrahedra again as in Figure 3, and

denote the three remaining fa
es of T (apart from E) by E

i

:= OQ

i

Q

i+1

. Indi
es are to be


onsidered modulo 3 if ne
essary.

Lemma 3.2 The measure of the fa
e PQ

i

Q

i+1

of T

E;Æ

is bounded by

jPQ

i

Q

i+1

j �

1

3

�

h

jEj + Æ � (2jE

i

j+ jE

i�1

j+ jE

i+1

j)

i

:

Proof: Simple ve
tor algebra yields

~

OS

E

= (

~

OQ

1

+

~

OQ

2

+

~

OQ

3

)=3 and

~

OP = (1� Æ) �

~

OS

E

:

The measure of some fa
es is 
omputed via the ve
tor produ
t. This implies

~

S

E

Q

i

�

~

OS

E

=

1

3

~

OQ

i

�

~

OQ

i�1

+

1

3

~

OQ

i

�

~

OQ

i+1

j

~

S

E

Q

i

�

~

OS

E

j �

1

3

j

~

OQ

i

�

~

OQ

i�1

j +

1

3

j

~

OQ

i

�

~

OQ

i+1

j =

2

3

�

jE

i�1

j+ jE

i

j

�

sin
e 2jE

i

j = j

~

OQ

i

�

~

OQ

i+1

j. Using this result, one obtains

~

PQ

i

=

~

S

E

Q

i

+ Æ �

~

OS

E

j

~

PQ

i

�

~

PQ

i+1

j � j

~

S

E

Q

i

�

~

S

E

Q

i+1

j + Æ � (j

~

S

E

Q

i

�

~

OS

E

j+ j

~

S

E

Q

i+1

�

~

OS

E

j)

� 2jS

E

Q

i

Q

i+1

j+

2

3

Æ � (jE

i�1

j+ jE

i

j + jE

i

j+ jE

i+1

j)

=

2

3

�

h

jEj + Æ � (2jE

i

j+ jE

i�1

j+ jE

i+1

j)

i

:

Together with 2jPQ

i

Q

i+1

j = j

~

PQ

i

�

~

PQ

i+1

j this proves the assertion.
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Lemma 3.3 The diameter of the ins
ribed sphere of T

E;Æ

satis�es

%(T

E;Æ

) � minfÆ � h

E;T

; h

min;T

g :

Proof: Let us start to bound %(T

E;Æ

) from above. Obviously h

E;T

E;Æ

= Æ � h

E;T

and

%(T

E;Æ

) � %(T ) � h

min;T

sin
e T

E;Æ

� T . Using Lemma 3.1 this results in

%(T

E;Æ

) . minfÆ � h

E;T

; h

min;T

g :

In order to bound %(T

E;Æ

) from below, 
onsider the fa
es of T

E;Æ

and apply Lemma 3.2

giving

jPQ

i

Q

i+1

j . jEj + Æ � (jE

1

j+ jE

2

j+ jE

3

j) � max fjEj; Æ � max

i=1;2;3

jE

i

jg

max fjEj; jPQ

1

Q

2

j; jPQ

2

Q

3

j; jPQ

3

Q

1

jg . max fjEj; Æ � max

i=1;2;3

jE

i

jg

(re
all that E and E

1

; E

2

; E

3

are the fa
es of T ). Employing Lemma 3.1 and jT

E;Æ

j = Æ � jT j

one obtains

%(T

E;Æ

) &

jT

E;Æ

j

max

�

jEj; Æ � max

i=1;2;3

jE

i

j

�

� min

8

<

:

Æ � jT j

jEj

;

Æ � jT j

Æ � max

i=1;2;3

jE

i

j

9

=

;

& minfÆ � h

E;T

; h

min;T

g

whi
h 
ompletes the assertion.

The next lemma bounds the transformation matrix of F

�1

T;E;Æ

; this will be vital to prove

the inverse inequalities of Lemma 3.7 below.

Lemma 3.4 The norm of the transformation matrix F

�1

T;E;Æ

is bounded by

kF

�1

T;E;Æ

k

R

3�3

. minfÆ � h

E;T

; h

min;T

g

�1

:

Proof: The bound follows immediately from kF

�1

T;E;Æ

k

R

3�3

� d(

�

T )=%(T

E;Æ

) and Lemma

3.3.

Tra
e inequality: The lemma below plays an important role when spe
i�
 interpolation

estimates are to be derived.

Lemma 3.5 (Tra
e inequality) Let T be an arbitrary tetrahedron and E be a fa
e of it.

For v 2 H

1

(T ) the tra
e inequality holds:

kvk

2

E

. h

�1

E;T

� kvk

T

�

�

kvk

T

+ kC

T

T

rvk

T

�

: (5)
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Proof: Consider the transformation F

A

, the standard tetrahedron

�

T := F

�1

A

(T ), the fa
e

�

E := F

�1

A

(E) of

�

T , and the fun
tion �v := v Æ F

A

2 H

1

(

�

T ). On the standard tetrahedron

�

T , the well{known (isotropi
) tra
e inequality implies

k�vk

2

�

E

. k�vk

�

T

�

�

k�vk

�

T

+ k

�

r�vk

�

T

�

;


f. [22℄. The transformation onto the a
tual tetrahedron (via F

A

) yields

jEj

�1

� kvk

2

E

. jT j

�1

� kvk

T

�

�

kvk

T

+ kA

T

T

rvk

T

�

:

From (4) one derives

kA

T

T

rvk

T

= kA

T

T

C

�T

T

� C

T

T

rvk

T

� kA

T

T

C

�T

T

k

R

3�3

� kC

T

T

rvk

T

. kC

T

T

rvk

T

:

Utilizing 3 jT j = jEj � h

E;T

results in the anisotropi
 tra
e inequality (5).

3.2 Bubble fun
tions and inverse inequalities

As another useful and important tool we now introdu
e so-
alled bubble fun
tions. They

are used, for example, for bounding 
ertain residual norms. The de�nitions below are

partly as in the isotropi
 
ase, 
f. [21℄.

Denote by �

T;1

; � � � ; �

T;4

the bary
entri
 
oordinates of an arbitrary tetrahedron T . The

element bubble fun
tion b

T

is de�ned by

b

T

:= 256�

T;1

� �

T;2

� �

T;3

� �

T;4

2 P

4

(T ) on T : (6)

Let E = T

1

\T

2

be an inner fa
e (triangle) of T

h

. Enumerate the verti
es of T

1

and T

2

su
h

that the verti
es of E are numbered �rst. De�ne the fa
e bubble fun
tion b

E

2 C

0

(!

E

) on

(the three{dimensional domain) !

E

= T

1

[ T

2

by

b

E

:= 27�

T

k

;1

� �

T

k

;2

� �

T

k

;3

on T

k

; k = 1; 2 : (7)

For simpli
ity assume that b

T

and b

E

are extended by zero outside their original domain

of de�nition. Note that 0 � b

T

(x); b

E

(x) � 1 and kb

T

k

1

= kb

E

k

1

= 1.

Next we introdu
e an extension operator F

ext

: P

0

(E) ! C

0

(!

E

). For some 
onstant

fun
tion ' 2 P

0

(E) de�ne

F

ext

(')(x) := ' for x 2 !

E

: (8)

If E is a boundary fa
e then b

E

and F

ext

are obviously de�ned only on the single tetrahedron

T � E.

The following anisotropi
 equivalen
es and inverse inequalities 
an be derived easily,


f. [12℄, so we only state the results.
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Lemma 3.6 (Inverse inequalities I) Assume '

T

2 P

1

(T ) and '

E

2 P

0

(E). Then

kb

1=2

T

� '

T

k

T

� k'

T

k

T

(9)

kr(b

T

� '

T

)k

T

. h

�1

min;T

� k'

T

k

T

(10)

kb

1=2

E

� '

E

k

E

� k'

E

k

E

(11)

kF

ext

('

E

) � b

E

k

T

� h

1=2

E;T

� k'

E

k

E

for E � T (12)

kr(F

ext

('

E

) � b

E

)k

T

. h

1=2

E;T

� h

�1

min;T

� k'

E

k

E

for E � T (13)

The bubble fun
tions above suÆ
e to analyse the residual error estimator for the Pois-

son equation, 
f. [21℄. However, for the singularly perturbed problem 
onsidered here we

have to introdu
e modi�ed fa
e bubble fun
tions, 
f. also [12, 22℄. For some tetrahedron T

and a fa
e E thereof 
onsider the sub{tetrahedron T

E;Æ

(
f. Figure 3). De�ne the so{
alled

squeezed fa
e bubble fun
tion b

E;T;Æ

by

b

E;T;Æ

:=

�

b

�

E

Æ F

�1

T;E;Æ

on T

E;Æ

0 on T n T

E;Æ

(14)

where b

�

E

is the standard fa
e bubble fun
tion for the fa
e

�

E = F

�1

T;E;Æ

(E) of the tetrahedron

�

T = F

�1

T;E;Æ

(T

E;Æ

). In other words, b

E;T;Æ

is the usual fa
e bubble fun
tion for fa
e E in the

tetrahedron T

E;Æ

, and it is extended by zero in T n T

E;Æ

.

Standard s
aling arguments for the transformation F

T;E;Æ

:

�

T ! T

E;Æ

, together with

the essential Lemma 3.4 yield now the inverse inequalities for the squeezed fa
e bubble

fun
tion.

Lemma 3.7 (Inverse inequalities II) Let E be an arbitrary fa
e of T , and assume '

E

2

P

0

(E). Then

kb

E;T;Æ

� F

ext

('

E

)k

T

. Æ

1=2

� h

1=2

E;T

� k'

E

k

E

(15)

kr(b

E;T;Æ

� F

ext

('

E

))k

T

. Æ

1=2

� h

1=2

E;T

�minfÆ � h

E;T

; h

min;T

g

�1

� k'

E

k

E

: (16)

3.3 Mat
hing fun
tion and interpolation estimates

When investigating interpolation error estimates on anisotropi
 meshes, one soon dis
overs

that the anisotropi
 mesh and the anisotropi
 fun
tion have to 
orrespond in some way.

Hen
e we �rst dis
uss the relation between mesh and fun
tion before the interpolation

properties are given.

From a heuristi
 point of view the anisotropy of the mesh should be aligned with the

anisotropy of the fun
tion to provide a satisfying interpolation. Intuitively all pra
ti
al

appli
ations follow this 
on
ept. For a rigorous analysis, however, we want to have some

measure of the alignment of mesh and fun
tion. To this end the so-
alledmat
hing fun
tion

has been proposed by Kunert [12, 14℄.
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De�nition 3.1 (Mat
hing fun
tion) Let v 2 H

1

(
), and T

h

2 F be a triangulation of


. De�ne the mat
hing fun
tion m

1

: H

1

(
)� F 7! R by

m

1

(v; T

h

) :=

�

X

T2T

h

h

�2

min;T

� kC

T

T

rvk

2

T

�

1=2

.

krvk : (17)

A 
omprehensive dis
ussion is given in the literature 
ited above; some remarks shall suÆ
e

here. Setting h

max;T

:= h

1;T

, one obtains

1 � m

1

(v; T

h

) . max

T2T

h

h

max;T

=h

min;T

:

The de�nition implies that a mesh T

h

whi
h is well aligned with an anisotropi
 fun
tion,

results in a small mat
hing fun
tion m

1

. The 
rude upper bound of m

1

implies that,

on isotropi
 meshes, m

1

� 1, and hen
e the mat
hing fun
tion merges there with other


onstants. In this sense, (17) is a natural extension of the theory for isotropi
 meshes.

Remark 3.1 A di�erent possibility to de�ne a mat
hing fun
tion 
onsists in

m

1;"

(v; T

h

) :=

�

X

T2T

h

kvk

2

T

+ " � h

�2

min;T

� kC

T

T

rvk

2

T

�

1=2

.

jjjvjjj : (18)

This de�nition implies 1 � m

1;"

(v; T

h

) � m

1

(v; T

h

) while all the other inequalities below

are preserved (with m

1

repla
ed by m

1;"

). The original de�nition however gives rise to a

straight{forward approximation of m

1

(u� u

h

; T

h

), see Remark 4.2.

Let us now swit
h to the interpolation of some fun
tion v 2 H

1

(
). The usual La-

grange interpolation 
annot be employed. Instead, in Kunert [12℄ the Cl�ement interpola-

tion te
hnique [9℄ is extended to anisotropi
 tetrahedral meshes. The resulting Cl�ement

like interpolation operator R

o

is analysed there. Here we state the basi
 interpolation error

estimates obtained.

Lemma 3.8 Let v 2 H

1

o

(
). The Cl�ement interpolation operator R

o

: H

1

o

(
) 7! V

o;h

of

[12℄ satis�es the inequalities below:

kv � R

o

vk . kvk

X

T2T

h

h

�2

min;T

� kv � R

o

vk

2

T

. m

1

(v; T

h

)

2

� krvk

2

X

T2T

h

h

�2

min;T

� kC

T

T

r(v � R

o

v)k

2

T

. m

1

(v; T

h

)

2

� krvk

2

:

In 
ontrast to 
ommon isotropi
 estimates, the additional fa
torm

1

(v; T

h

) in the right{hand

side of the previous two inequalities is indispensable here [12℄.

For the analysis of the error estimator we want to obtain spe
i�
 interpolation esti-

mates that are related to the rea
tion{di�usion problem. More pre
isely, the estimates
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shall involve the energy norm (whi
h is related to the di�erential operator but not to the

interpolation operator). To shorten the notation, introdu
e the auxiliary term

�

T

:= minf1; "

�1=2

� h

min;T

g :

Lemma 3.9 Let v 2 H

1

o

(
). The Cl�ement interpolation operator R

o

: H

1

o

(
) 7! V

o;h

satis�es the inequalities below:

X

T2T

h

�

�2

T

� kv � R

o

vk

2

T

. m

1

(v; T

h

)

2

� jjjvjjj

2

(19)

"

1=2

X

T2T

h

X

E��Tn�

D

�

�1

T

� kv �R

o

vk

2

E

. m

1

(v; T

h

)

2

� jjjvjjj

2

: (20)

Proof: The de�nition of �

T

implies

�

�1

T

= max

�

1; "

1=2

� h

�1

min;T

	

:

With the help of Lemma 3.8 one obtains

X

T2T

h

�

�2

T

� kv �R

o

vk

2

T

=

X

T2T

h

1�"�h

�2

min;T

kv �R

o

vk

2

T

+

X

T2T

h

1<"�h

�2

min;T

"h

�2

min;T

� kv � R

o

vk

2

T

� kv �R

o

vk

2

+ " �

X

T2T

h

h

�2

min;T

� kv � R

o

vk

2

T

. kvk

2

+ " �m

1

(v; T

h

)

2

� krvk

2

� m

1

(v; T

h

)

2

� jjjvjjj

2

whi
h proves the �rst inequality.

For the se
ond estimate the tra
e inequality (5) is invoked giving

h

E;T

� kv �R

o

vk

2

E

. kv �R

o

vk

T

�

�

kv �R

o

vk

T

+ kC

T

T

r(v � R

o

v)k

T

�

:

Using the �rst result (19), the Cau
hy{S
hwarz inequality, Lemma 3.8 and the fa
t that

h

min;T

. h

E;T

results in

"

1=2

X

T2T

h

X

E��Tn�

D

�

�1

T

� kv � R

o

vk

2

E

.

. "

1=2

X

T2T

h

h

�

�1

T

� kv �R

o

vk

T

� h

�1

min;T

�

�

kv �R

o

vk

T

+ kC

T

T

r(v �R

o

v)k

T

�

i

. "

1=2

�

 

X

T2T

h

�

�2

T

� kv � R

o

vk

2

T

!

1=2

�

�

 

X

T2T

h

h

�2

min;T

� kv �R

o

vk

2

T

+ h

�2

min;T

� kC

T

T

r(v � R

o

v)k

2

T

!

1=2

. "

1=2

�m

1

(v; T

h

) � jjjvjjj �m

1

(v; T

h

) � krvk � m

1

(v; T

h

)

2

� jjjvjjj

2

:

Hen
e the se
ond estimate is proven.
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4 Residual error estimator

Residual error estimators bound the error u � u

h

by measuring the residual. However,

instead of 
omputing the norm of the residual in the dual spa
e [H

1

o

(
)℄

�

= H

�1

(
), one

tries to obtain an equivalent measure by evaluating easier terms that involve the given data

(e.g. f , 
, or T

h

). The main task is to 
arefully 
alibrate the weights of the residual norms

su
h that both an upper and lower error bound hold. The diÆ
ulties that arise from the

singularly perturbed problem are here even emphasized and ampli�ed by the anisotropi


elements.

Furthermore, in order to obtain lower error bounds, we repla
e f 2 L

2

(
) by some

approximation f

h

from a �nite dimensional spa
e. In parti
ular, f

h

shall be pie
ewise


onstant over T

h

(but otherwise arbitrary). A more 
omprehensive dis
ussion is given in

[21, 12℄.

Next, the (approximate) element residuals and the fa
e residuals are de�ned with the

help of f

h

.

De�nition 4.1 (Element and fa
e residual) Let u

h

2 V

o;h

be the �nite element solu-

tion. For an element T , de�ne the element residual r

T

2 P

1

(T ) by

r

T

:= f

h

� (�" ��u

h

+ u

h

) on T :

For an interior fa
e E � 
 de�ne the fa
e residual r

E

2 P

0

(E) by

r

E

(x) := lim

t!+0

�

�u

h

�n

E

(x + tn

E

)�

�u

h

�n

E

(x� tn

E

)

�

x 2 E :

Here n

E

? E is any of the two unitary normal ve
tors. The fa
e residual is also known as

gradient jump or jump residual. Note that the element residual r

T

is 
learly related to the

strong form of the di�erential equation.

Now the error estimator is de�ned, and the main result is presented and proved.

De�nition 4.2 (Residual error estimator) De�ne the lo
al residual error estimator

�

";T

for a tetrahedron T by

�

";T

:=

0

�

�

2

T

� kr

T

k

2

T

+ "

3=2

� �

T

�

X

E��Tn�

D

kr

E

k

2

E

1

A

1=2

: (21)

To shorten the notation, de�ne the lo
al approximation term

�

";T

:= �

T

� kf � f

h

k

!

T

and introdu
e the global terms

�

2

"

:=

X

T2T

h

�

2

";T

and �

2

"

:=

X

T2T

h

�

2

";T

:
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Theorem 4.1 (Residual error estimation) Let u 2 H

1

o

(
) be the exa
t solution and

u

h

2 V

o;h

be the �nite element solution. Then the error is bounded lo
ally from below by

�

";T

. jjju� u

h

jjj

!

T

+ �

";T

(22)

for all T 2 T

h

. The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

�

�

2

"

+ �

2

"

�

1=2

: (23)

Remark 4.1 Combining the lower and upper error bound yields

�

2

"

� 
 � �

2

"

. jjju� u

h

jjj . m

2

1

(u� u

h

; T

h

) �

�

�

2

"

+ �

2

"

�

:

Assuming that the approximation term �

"

is negligible, one obtains sharp error bounds if

the mat
hing fun
tion m

1

(u� u

h

; T

h

) is small, whi
h in turn implies that the anisotropi


mesh is well suited to the anisotropi
 solution.

Note that in pra
ti
al appli
ations m

1

(u � u

h

; T

h

) has to be approximated, e.g. by

means of a re
overed gradient [12, 14℄.

Proof: The stru
ture of the proofs is similar to that of known residual error estimators,


f. [21℄. The lower error bound is derived with the help of bubble fun
tions and inverse

inequalities, whereas the upper bound relies on interpolation estimates. All ingredients are,

of 
ourse, 
arefully adapted to suit our spe
i�
 rea
tion{di�usion problem on anisotropi


meshes.

Start with the lower error bound (22) for an arbitrary but �xed tetrahedron T , and


onsider the norm kr

T

k

T

of the element residual r

T

= f

h

+" ��u

h

�u

h

. Sin
e we use linear

ansatz fun
tions there holds r

T

� f

h

� u

h

2 P

1

(T ). For x 2 T let

w(x) := r

T

(x) � b

T

(x) 2 P

5

(T ) \H

1

o

(T ) ;

with b

T

being the usual bubble fun
tions of (6). Integration by parts yields

Z

T

r

T

� w =

Z

T

(f + " ��u

h

� u

h

) � w +

Z

T

(f

h

� f) � w

=

Z

T

" � r

T

(u� u

h

) � rw + (u� u

h

) � w +

Z

T

(f

h

� f) � w

j(r

T

; w)

T

j � " � kr(u� u

h

)k

T

� krwk

T

+ ku� u

h

k � kwk

T

+ kf � f

h

k

T

� kwk

T

:

The inverse inequalities (9), (10) and 0 � b

T

� 1 readily imply the bounds

j(r

T

; w)

T

j = kb

1=2

T

� r

T

k

2

T

� kr

T

k

2

T

krwk

T

= kr(b

T

� r

T

)k

T

. h

�1

min;T

� kr

T

k

T

kwk

T

= kb

T

� r

T

k

T

� kr

T

k

T

:
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Hen
e one obtains

kr

T

k

2

T

. "

2

� h

�2

min;T

� kr(u� u

h

)k

2

T

+ ku� u

h

k

2

T

+ kf � f

h

k

2

T

giving �

2

T

� kr

T

k

2

T

. minf" � h

�2

min;T

; 1g � " � kr(u� u

h

)k

2

T

+

+�

2

T

� ku� u

h

k

2

T

+ �

2

T

� kf � f

h

k

2

T

� " � kr(u� u

h

)k

2

T

+ ku� u

h

k

2

T

+ �

2

T

� kf � f

h

k

2

T

= jjju� u

h

jjj

2

T

+ �

2

T

� kf � f

h

k

2

T

: (24)

Now we aim at a bound of the norm kr

E

k

E

of the gradient jump a
ross some inner fa
e

(triangle) E � �T . Sin
e we use linear ansatz fun
tions r

E

2 P

0

(E) holds. Let T

1

� T

and T

2

be the two tetrahedra that E belongs to. Sin
e f 2 L

2

(
), integration by parts

yields for any fun
tion w 2 H

1

o

(!

E

)

0 =

Z

!

E

"r

T

urw + u � w � f � w

�"

Z

E

r

E

� w = "

2

X

i=1

Z

�T

i

w �

�u

h

�n

= "

2

X

i=1

Z

T

i

�

r

T

u

h

rw + �u

h

� w

�

=

2

X

i=1

Z

T

i

�

"r

T

u

h

rw + (r

T

i

� f

h

+ u

h

) � w

�

=

2

X

i=1

Z

T

i

�

"r

T

(u

h

� u)rw + (u

h

� u) � w + (r

T

i

+ f � f

h

) � w

�

sin
e "�u

h

= r

T

i

� f

h

+ u

h

on T

i

. Let now the fun
tion w be de�ned by

w :=

�

b

E;T

1

;Æ

1

� F

ext

(r

E

) on T

1

b

E;T

2

;Æ

2

� F

ext

(r

E

) on T

2

;

with F

ext

being the extension operator of (8) and b

E;T

i

;Æ

i

being the squeezed fa
e bubble

fun
tions of (14). The real numbers Æ

i

will be 
hosen later. Note that indeed w 2 H

1

o

(!

E

)

sin
e b

E;T

1

;Æ

1

�

�

�

E

= b

E;T

2

;Æ

2

�

�

�

E

= b

E

�

�

�

E

. Hen
e we 
on
lude

" kb

1=2

E

r

E

k

2

E

�

2

X

i=1

�

" kr(u� u

h

)k

T

i

� krwk

T

i

+

+

h

ku� u

h

k

T

i

+ kr

T

i

k

T

i

+ kf � f

h

k

T

i

i

� kwk

T

i

�

:

The inverse inequalities (15) and (16) are used to bound kwk

T

i

and krwk

T

i

, respe
tively.
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Together with kb

1=2

E

� r

E

k

E

� kr

E

k

E

from (11) this implies

kr

E

k

E

.

2

X

i=1

Æ

1=2

i

� h

1=2

E;T

i

�

�

minfÆ

i

� h

E;T

i

; h

min;T

i

g

�1

� kr(u� u

h

)k

T

i

+

+ "

�1

� (ku� u

h

k

T

i

+ kr

T

i

k

T

i

+ kf � f

h

k

T

i

)

�

:

Now we 
hoose

Æ

i

:=

1

2

"

1=2

� h

�1

E;T

i

� �

T

i

�

1

2

minf"

1=2

=h

E;T

i

; h

min;T

i

=h

E;T

i

g < 1

(re
all h

E;T

i

> h

min;T

i

=2). This yields minfÆ

i

�h

E;T

i

; h

min;T

i

g � "

1=2

��

T

i

. Insert the previous

estimate (24) whi
h provides a bound of kr

T

i

k

T

i

to obtain

"

3=2

� �

T

� kr

E

k

2

E

.

.

2

X

i=1

" � kr(u� u

h

)k

2

T

i

+ �

2

T

i

� ku� u

h

k

2

T

i

+ jjju� u

h

jjj

2

T

i

+ �

2

T

i

� kf � f

h

k

2

T

i

. jjju� u

h

jjj

2

!

E

+ �

2

T

� kf � f

h

k

2

!

E

sin
e h

min;T

i

and �

T

i

do not 
hange rapidly a
ross adja
ent tetrahedra, and sin
e �

T

i

� 1.

Summing up over all fa
es E of T , re
alling the de�nition of �

";T

and applying (24) �nishes

the proof of the lower error bound (22).

Se
ondly, in order to derive (23) we utilize the orthogonality property of the error

a(u� u

h

; v

h

) = 0 8 v

h

2 V

o;h

:

Integration by parts gives for all v 2 H

1

o

(
)

a(u� u

h

; v) = a(u� u

h

; v � R

o

v)

= "(r(u� u

h

);r(v �R

o

v)) + (u� u

h

; v � R

o

v)

=

X

T2T

h

(f + "�u

h

� u

h

; v � R

o

v)

T

+ "

X

E�
n�

(r

E

; v � R

o

v)

E

=

X

T2T

h

h

(r

T

+ f � f

h

; v � R

o

v)

T

+

1

2

� "

X

E��Tn�

D

(r

E

; v � R

o

v)

E

i

�

X

T2T

h

h

�

T

(kr

T

k

T

+ kf � f

h

k

T

) � �

�1

T

kv � R

o

vk

T

+

+

1

2

X

E��Tn�

D

"

3=4

�

1=2

T

kr

E

k

E

� "

1=4

�

�1=2

T

kv � R

o

vk

E

i

:
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The Cau
hy-S
hwarz inequality and the interpolation estimate (19) yield

X

T2T

h

�

T

(kr

T

k

T

+ kf � f

h

k

T

) � �

�1

T

kv �R

o

vk

T

�

�

�

2

X

T2T

h

�

2

T

�

kr

T

k

2

T

+ kf � f

h

k

2

T

�

�

1=2

�

�

X

T2T

h

�

�2

T

kv � R

o

vk

2

T

�

1=2

(19)

.

�

X

T2T

h

�

2

T

�

kr

T

k

2

T

+ kf � f

h

k

2

T

�

�

1=2

�m

1

(v; T

h

) � jjjvjjj :

With the help of interpolation estimate (20) one derives analogously

X

T2T

h

X

E��Tn�

D

"

3=4

�

1=2

T

kr

E

k

E

� "

1=4

�

�1=2

T

kv �R

o

vk

E

�

�

�

"

3=2

X

T2T

h

X

E��Tn�

D

�

T

kr

E

k

2

E

�

1=2

�

�

"

1=2

X

T2T

h

X

E��Tn�

D

�

�1

T

kv �R

o

vk

2

E

�

1=2

(20)

.

�

"

3=2

X

T2T

h

X

E��Tn�

D

�

T

kr

E

k

2

E

�

1=2

�m

1

(v; T

h

) � jjjvjjj :

Combining these estimates results in

a(u� u

h

; v) .

�

X

T2T

h

h

�

2

T

�

kr

T

k

2

T

+ kf � f

h

k

2

T

�

+ "

3=2

�

T

X

E��Tn�

D

kr

E

k

2

E

i

�

1=2

�m

1

(v; T

h

) � jjjvjjj :

Substituting v := u� u

h

2 H

1

o

(
) �nishes the proof.

Remark 4.2 The upper error bound (23) 
ontains the mat
hing fun
tion m

1

(u�u

h

; T

h

).

Sin
e u � u

h

is not known, m

1

(u � u

h

; T

h

) 
annot be 
omputed exa
tly. This 
an be

remedied by using an approximation m

R

1

by means of a re
overed gradient r

R

u

h

� ru:

m

1

(u� u

h

; T

h

) �

�

X

T2T

h

h

�2

min;T

� kC

T

T

r(u� u

h

)k

2

T

�

1=2

.

kr(u� u

h

)k

�

�

X

T2T

h

h

�2

min;T

� kC

T

T

(r

R

u

h

�ru

h

)k

2

T

�

1=2

.

kr

R

u

h

�ru

h

k

=: m

R

1

(u

h

; T

h

) ; (25)


f. [14℄ for a more 
omprehensive dis
ussion. All numeri
al experiments so far indi
ate

that m

R

1

is a robust approximation to m

1

, see also Se
tion 5 below.
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5 Numeri
al experiments

In this se
tion we will illustrate the error estimates of the previous se
tion by means of

numeri
al experiments. Here we 
hoose the same model problem that has been employed

in [15℄ to analyse a fa
e{based error estimator.

Consider the three{dimensional model problem

�"�u+ u = 0 in 
 := [0; 1℄

3

; u = u

0

on �

D

:= �


with the perturbation parameter " = 10

�4

. The exa
t solution is pres
ribed to be

u = e

�x=

p

"

+ e

�y=

p

"

+ e

�z=

p

"

:

It displays typi
al boundary layers along the planes x = 0, y = 0, and z = 0. The boundary

value u

0

is 
hosen a

ordingly.

The domain is dis
retized by a sequen
e of meshes, ea
h one being the tensor produ
t of

three one{dimensional Bakhvalov{like meshes [6℄ with 2

k

intervals in [0,1℄, k = 1 : : : 6. To

des
ribe the 1D nodal distribution properly, denote the transition point of the boundary

layer by � :=

p

"j ln

p

"j. Then 2

k�1

nodes are exponentially distributed in the boundary

layer interval [0; � ℄ whereas the remaining interval [�; 1℄ is divided into 2

k�1

equidistant

intervals, 
f. Figure 4. More pre
isely, the (1D) nodal 
oordinate of the m-th node is

x

m

:=

8

>

<

>

:

��

p

" ln

h

1�

m

2

k�1

(1� e

��=�=

p

"

)

i

for m = 0 : : : 2

k�1

; � = 3=2

� + (1� �) �

�

m

2

k�1

� 1

�

for m = 2

k�1

+ 1 : : : 2

k

:

Note that the only di�eren
e to the original Bakhvalov mesh 
onsists in the slightly di�erent


hoi
e of the transition point � .

Figure 4: Mesh 2 { Mesh 3

We start by presenting the size and the maximum aspe
t ratio of the meshes as well as

the mat
hing fun
tion m

1

.
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Mesh k # Elements Aspe
t ratio m

1

(u� u

h

; T

h

)

1 48 29.4 1.55

2 384 69.5 1.62

3 3 072 82.6 1.69

4 24 576 88.6 1.88

5 196 608 91.5 2.37

6 1 572 864 92.9 3.04

The size of m

1

is 
omparatively small and grows only mildly. This implies that the


hosen meshes dis
retize the problem suÆ
iently well.

Next, we investigate the results of the error estimation of Theorem 4.1 by 
omputing

the 
orresponding ratios. Re
all that the approximation terms �

";T

and �

"

vanish here.

Mesh k jjju� u

h

jjj

jjju� u

h

jjj

m

1

� �

"

max

T2T

h

�

";T

jjju� u

h

jjj

!

T

1 0:154E + 0 0:435 1:026

2 0:536E � 1 0:167 2:693

3 0:229E � 1 0:118 4:214

4 0:110E � 1 0:096 4:163

5 0:553E � 2 0:074 4:054

6 0:282E � 2 0:058 3:948

To start with, the error norm jjju� u

h

jjj displays the optimal rate of 
onvergen
e. Next


onsider the ratios of the third and fourth 
olumn whi
h 
orrespond to our main theo-

reti
al result. These ratios are bounded from above and thus 
on�rm the predi
tions of

Theorem 4.1. Note that from a pra
ti
al point of view the moderately de
reasing values of

the upper error bound (third 
olumn) imply that the error is in
reasingly overestimated.

Finally we will investigate the mat
hing fun
tion more 
losely, 
f. the table below. We


ompare the mat
hing fun
tion m

1

(u � u

h

; T

h

) from (17) and its modi�
ation m

1;"

(u �

u

h

; T

h

) from (18). Clearly only marginal di�eren
es 
an be seen, so either 
hoi
e seems

possible.

On the other hand we present the approximation m

R

1

proposed in equation (25) of

Remark 4.2. The results show a suÆ
ient 
oin
iden
e with the values of m

1

(u � u

h

; T

h

).

Hen
e the mat
hing fun
tion and its approximation are useful tools for the theoreti
al

analysis as well as for assessing the mesh quality in numeri
al 
omputations. This topi


has already been dis
ussed for the Poisson equation in [14℄.
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Mesh k m

1

(u� u

h

; T

h

) m

1;"

(u� u

h

; T

h

) m

R

1

(u

h

; T

h

)

1 1:55 1:23 1:68

2 1:62 1:48 1:52

3 1:69 1:64 1:69

4 1:88 1:86 1:86

5 2:37 2:34 2:03

6 3:04 3:01 2:29

6 Summary

For a singularly perturbed rea
tion{di�usion model problem, we have proposed and rigor-

ously analysed a new residual error estimator that is suitable for anisotropi
 meshes. It

has been shown that the error estimation is uniform in the small perturbation parameter.

The analysis implies that tight error bounds are obtained as long as the anisotropi
 mesh

is 
hosen a

ording to the anisotropy of the solution. A numeri
al experiment 
on�rms

the theory. Hen
e reliable and eÆ
ient error estimation is possible on anisotropi
 meshes.

This is a �rst important step towards a general adaptive anisotropi
 algorithm.
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