Technische Universitat Chemnitz
Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Gerd Kunert

Robust a posteriori error
estimation for a singularly
perturbed reaction—diffusion
equation on anisotropic
tetrahedral meshes

Preprint SFB393/00-39

Abstract

We consider a singularly perturbed reaction—diffusion problem and derive and
rigorously analyse an a posteriori residual error estimator that can be applied to
anisotropic finite element meshes. The quotient of the upper and lower error bounds
is the so—called matching function which depends on the anisotropy (of the mesh and
the solution) but not on the small perturbation parameter. This matching function
measures how well the anisotropic finite element mesh corresponds to the anisotropic
problem. Provided this correspondence is sufficiently good, the matching function is
O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and
efficient as well as robust with respect to the small perturbation parameter.

A numerical example supports the anisotropic error analysis.

Keywords: error estimator, anisotropic solution, stretched elements, reaction diffu-
sion equation, singularly perturbed problem

AMS (MOS): 65N15, 65N30, 35B25

Preprint-Reihe des Chemnitzer SFB 393

SFB393/00-39 November 2000



Contents

1 Introduction 1
2 The singularly perturbed model problem 2
3 Notation, basic tools and Lemmas 3
3.1 Tetrahedron — Subdomains — Mesh requirements — Transformations 3
3.2 Bubble functions and inverse inequalities . . . . . . . ... ... 9
3.3 Matching function and interpolation estimates . . . . . . ... .. ... .. 10
4 Residual error estimator 13
5 Numerical experiments 18
6 Summary 20

Author’s address:

Gerd Kunert

TU Chemnitz

Fakultat fiir Mathematik
09107 Chemnitz
Germany

http://www.tu-chemnitz.de/~gku
http://www.tu-chemnitz.de/sfb393/



1 Introduction

Adaptive finite element algorithms have become an important tool for numerical simula-
tions. Along with other ingredients, they usually employ a posterior: error estimators or
indicators, cf. Ainsworth/Oden [2], Verfiirth [21] and the literature cited therein.

In this work we consider a singularly perturbed reaction-diffusion model problem whose
classical formulation reads: Find u € C%(2) N C(£2) such that

—cAu+u = f in uw=0 onlp=090 (1)

in a bounded, polyhedral domain © C R% d = 2,3. The perturbation parameter ¢ is
supposed to be very small, 0 < ¢ < 1, and to have much influence on the solution. For a
comprehensive discussion of its analysis and numerical treatment we refer to Roos, Stynes,
Tobiska [19], and to Miller, O’Riordan, Shishkin [16], and the citations therein. Here it will
suffice to remark that the singularly perturbed problem (1) usually gives rise to a solution
with boundary layers when a non-vanishing right-hand side f meets homogeneous Dirichlet
boundary conditions. Inside the domain  and sufficiently far away from the boundary,
the solution is usually smooth provided f is smooth enough too. Thus the boundary layers
mark the domain of interest, and their resolution requires increased numerical effort.

The knowledge of a posteriori error estimators for the singularly perturbed problem
(1) has been unsatisfactory until recently. Most estimators yield upper and lower bounds
on the error that are not asymptotically equivalent. By this we mean that the upper and
lower bound differ by a factor that increases, for example, as the discretization parameter
h — 0, or as the perturbation parameter ¢ — 0 . The first a posteriori error estimate
with asymptotically equivalent upper and lower bound on the error is, to our knowledge,
due to Angermann [3]. He measures the error in a somewhat strange norm which seems
to be mainly of theoretical interest. Only recently Verfiirth [22] derived the first robust
a posteriori error estimator for the energy norm. Ainsworth/Babuska [1] extended the
‘equilibrated residual method’ to the singularly perturbed problem and obtained a robust
error estimate as well.

Let us now consider the finite element method and some discretization aspects in par-
ticular. Standard methods employ so—called isotropic meshes. That is, the elements are
shape regular or, equivalently, the ratio of the diameters of the circumscribed and inscribes
spheres is bounded. However, some problems (e.g. the singularly perturbed problem above)
admit a solution with strong directional features such as boundary or interior layers. To ap-
proximate such an anisotropic solution, it can be advantageous to use anisotropic elements,
i.e. elements that are no longer shape regular.

Anisotropic elements are already used in practice, see e.g. [4, 5, 7, 11, 17, 18, 23], but
when commonly known (isotropic) a posteriori error estimators are applied to anisotropic
meshes, they usually fail. The development of error estimators that are suitable for aniso-
tropic elements is just beginning. The only mathematically founded anisotropic estimators
are, as far as we know, due to [20, 14, 13, 15, 10|, and will be discussed now briefly.

Siebert [20] considers a residual error estimator for the Poisson problem on cuboidal
or prismatic grids. He has to impose two conditions to obtain upper and lower error
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bounds. Kunert [14, 13] investigates the Poisson equation on tetrahedral meshes, and
a residual error estimator and a local problem based error estimator are derived. The
lower error bounds there hold unconditionally, whereas the upper bounds are formulated
such that the influence of the anisotropy becomes apparent. In Kunert/Verfiirth [15] it
is shown that anisotropic residual error estimators can be modified such that they only
contain the face residuals, but they still bound the error reliably. This has been proven
for the Poisson equation (H' and L, error estimators). The investigation has already been
extended there to a reaction diffusion problem by using certain results that are presented
in our paper here. Finally, Dobrowolski/Gréf/Pflaum [10] propose an error estimator that
requires the solution of a global problem (and slightly more restrictive mesh assumptions,
e.g. a maximum angle condition). The sharpness of the error bounds relies on a saturation
assumption whose dependence on the anisotropy is not fully discussed.

Almost all of the aforementioned anisotropic error estimators deal with the Poisson
equation. In contrast to this, we consider the singularly perturbed problem (1) and derive
a robust a posteriori error estimator that can be applied to anisotropic meshes. The
upper and lower error bounds involve the same terms and are asymptotically equivalent,
provided that the anisotropic mesh corresponds sufficiently to the anisotropic problem. Our
estimator is partially influenced by Verfiirth’s isotropic version [22]. The results coincide
when our estimator is applied to isotropic meshes.

As a side effect and a corollary of this paper here we prove some results that have
already been utilized (without proof) in [15] to investigate face residual error estimators
not only for the Poisson equation but also for a reaction diffusion equation. In particular
we prove now the fundamental interpolation estimates of section 3.3 and the lower error
bound (22) of section 4. Note further that our error estimator here is improved by a
different scaling of the gradient jump.

The paper is organized as follows. In section 2 we describe the model problem. Section
3 is devoted to some basic ingredients of the error estimation analysis. More precisely, we
start by presenting the transformation technique and related lemmas, proceed with special
bubble functions that will be essential for deriving lower error bounds, and conclude with
specific interpolation estimates which eventually give the upper error bound. In section 4
the error estimator is defined and the main result, the error estimation, is presented and
proved. A numerical experiment and the summary conclude this paper.

2 The singularly perturbed model problem

The classical formulation (1) is often too restrictive to describe real-world problems prop-
erly. So assume f € Ly(Q), and let H}(Q2) be the usual Sobolev space of functions that
vanish on I'p. The variational formulation is now more appropriate:

Find u € H(Q) : a(u,v) = (f,v)  Vve HY(Q)

with a(u,v) := /e-VTqu + uv (fv) := /fv 2)
Q Q



The continuous problem (2) is discretized by the finite element method which employs a
family F of triangulations 7, of Q. Then let V,;, C HX(Q2) be the space of continuous,
piecewise linear functions over 7, that vanish on I'p. The finite element solution u;, € V,,
is uniquely defined by

a(un,vy) = (f,vn) Vo, € Vo - (3)

Both problems (2) and (3) admit unique solutions due to the Lax-Milgram Lemma.
Our main objective is to bound the error v — u;,. Here we concentrate on the energy
norm

2
o/l = a(v,v) = e[ Vo[|* + [v]|?

This energy norm is the most natural norm when considering a singularly perturbed reac-
tion diffusion problem (in weak formulation). When applied in adaptive algorithms, this
energy norm is able to produce appropriately refined meshes. This can be seen easily on
some 1D model problem, e.g. for —eu” +u =01in Q = (0, 1) with «(0) = 1,u(1) = 0. Even
the optimal order of convergence can be recovered uniformly in €.

Apart from these reasons for using the energy norm, we will here repudiate the common
argument that the energy norm can not distinguish between a boundary layer and the zero
function (cf. [16, pages 12f]). Such an argument can not be applied here since it would
erroneously neglect boundary conditions. Furthermore, even if the error in the energy
norm is small in absolute terms, this error can be large in relative terms and thus suffice
to devise adaptive algorithms.

3 Notation, basic tools and Lemmas

In the following, let P* (w) be the space of polynomials of order k or less over some domain
wC R®orwcC R Furthermore, instead of z < ¢-y or ¢yz < y < cor (with constants
independent of z, y, ¢, and T;,) we use the shorthand notation x < y and z ~ y, respectively.
The Ly norm of a function over a domain w is denoted by || -||., and (-, -),, means the Ls(w)
scalar product. For w = () the subscript is omitted.

The next sections introduce the notation and important tools. Some basic relations and
lemmas are given as well. All considerations are made for the 3D case. The application to
the simpler 2D case is readily possible.

3.1 Tetrahedron — Subdomains — Mesh requirements — Transfor-
mations

Tetrahedron: The four vertices of an arbitrary tetrahedron 7" € 7, are denoted by
Py, ..., Py such that PyP; is the longest edge of T, measy(APy Py Py) > measy(APyPy Ps),
and meas; (P Py) > meas; (PyPs).

Additionally define three pairwise orthogonal vectors p; with lengths h; 7 := |p;|, see
ﬁgure 1. Observe hl,T > hQ,T > hg,T and set hmin,T = h37T.
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Figure 1: Notation of tetrahedron 7'

Tetrahedra are denoted by T, 7" or T;. Faces of a tetrahedron are denoted by E. Set
|T| = meass(T'), |E| = meass(FE), and let

hpr = 3|T|/|E|

be the length of the height over a face E. Note that hgr is not the diameter of £, as in
the usual convention. Because of the geometrical properties of the tetrahedron one has

1
hE,T > 5 hmin,T VE COT

Auxiliary subdomains: Let 7" € 7, be an arbitrary tetrahedron. Let wr be that domain
that is formed by T and all tetrahedra that have a common face with 7. Note that wr
consists of less than five tetrahedra if 7" has a boundary face.

Let E be an inner face (triangle) of Ty, i.e. there are two tetrahedra 7 and T having
the common face E. Set the domain wg := T1 UT,. If E is a boundary face set wg := T
with T' D FE.

Mesh requirements: In addition to the usual conformity conditions of the mesh (see
Ciarlet [8], Chapter 2) we demand the following two assumptions.

1. The number of tetrahedra containing a node z; is bounded uniformly.

2. The dimensions of adjacent tetrahedra must not change rapidly, i.e.

hi,T’Nhi,T VT,TIWIthTﬁTI#(D,Zzld

The last condition also implies that terms such as hy,i, 1 or hpr do not change rapidly
across adjacent tetrahedra.

Note that the analysis of the error estimator does not require a maximum angle condi-
tion.

Transformations and auxiliary tetrahedra: The usual transformation technique be-
tween a tetrahedron 7' € 7T, and a standard tetrahedron plays a vital role in many
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proofs (cf. [8]). However, our refined analysis even shows that two different transfor-
mations facilitate matters considerably, see also below. Hence define the matrices Hr :=
diag(hr, hor, har) and Ar,Cr € R**® by

—

Ap = ( PPy, PyP>, PyPs ) and Cr = (P1, P2, P3) :
and introduce affine linear mappings
— — 5
Fa(p) :=Ar-pn+ Py and Fo(p) =Cr-pu+ P, , peR’.

These mappings implicitly define the standard tetrahedron T := F*(T) and the reference
tetrahedron T := FZ'(T). Then T has vertices Py = (0,0,0)” and P, = e7,i = 1...3,
whereas 7' has vertices at Py, = (0,0,0)7, P, = (1,0,0)7, P, = (i2,1,0)" and Py =
(23,93, 1)T. The conditions on the P; yield immediately 0 < &, < 1/2, 0 < #3 < 1 and
—1 < g3 < 1. Figures 1 and 2 may illustrate this definition.

3 Ps

\ L2 \

pg pl,ul PO Pl

Figure 2: Standard tetrahedron T and reference tetrahedron T

Variables that are related to the standard tetrahedron T and the reference tetrahedron
T are referred to with a bar and a hat, respectively (e.g. V, ©). The determinants of
both mappings are |det(Ar)| = | det(Cr)| = 6|T|, and the transformed derivatives satisfy
Vo = ALVv and Vi = CT V.

Although C7 is naturally associated with our analysis, it transforms T into T. In-
equality constants would thus depend on T. This drawback is remedied by using the
transformation via Ar in conjunction with C7. To illustrate this principle, consider the
mapping Cr ! A7 which maps the standard tetrahedron T onto the reference tetrahedron T.
Since the radii of the inscribed and circumscribed spheres of T and T' are bounded from
above and below, respectively, one immediately derives

|ATCHT ||goxs = [|CF Ar||goxs ~ 1. (4)
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This equivalence facilitates the interaction of Ar and C7, see e.g. the proof of the trace
inequality below.

Because of the singular perturbation character of the differential equation we can
favourably employ a sub-tetrahedron T s C T" which depends on a face £ of T" and a real
number 0 € (0,1]. For a precise definition of Tx 5, let T be an arbitrary but fixed tetrahe-
dron, and enumerate temporarily its vertices such that F = Q1Q2Q3 and T' = OQ1Q2Qs,
cf. Figure 3. Introduce barycentric coordinates such that )\, is related to O, and A\, s, A3
correspond to Q1, Q)o, Q3, respectively.

Let P be that point with barycentric coordinates

Mo(P) =0 and A (P) = Xy (P) = A\3(P) = ——

Then T is that tetrahedron that has vertices P and @1, Q2,Qs, i.e. Trs has the same
face E as T but the fourth vertex is moved towards F with the rate 9.

An alternative description is as follows. With Sg being the midpoint (i.e. center of
gravity) of face E, point P lies on the line SO such that [SgP| = é-|SgO|. Note that for
0 =1 one gets Tg s = T whereas in the limiting case 9 — 0 the tetrahedron Tg s collapses
to the face F.

Qs

Q1

Figure 3: Tetrahedra T = 0Q1Q2Q)s; and Tr s = PQ1Q2Qs3

In order to utilize T s efficiently, we also require an affine linear transformation Fr g
that maps the standard tetrahedron T onto Tg 5. This affine linear mapping is unique (up
to permutations of the enumeration of the vertices of T' and Tg 5).

Next we bound the transformation matrix of the affine linear mapping FT?}H (in a slight
abuse of the notation this matrix is denoted by Fj?}” too). Since F:,T}Eﬁ maps Ty onto
T, such a bound is obtained via

1P psllgexs < d(T)/o(Tes)

with d(T) = v/2 being the diameter of T, and 0(Tgs) being the diameter of the largest
inscribed sphere of T 5. Thus the goal of the next lemmas will be to bound that diameter.
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Lemma 3.1 Let T be an arbitrary tetrahedron with faces E;, © = 1...4. The length of the
height over Ej; is again denoted by hg, v. Then

7]

Q(T) ~ .min4h’Ei,T ~ W ~ Nmin,T

i=1...

1=1...

Proof: The inequality o(T) < hg, r for i =1...4 is obvious.

To bound ¢(T) from below, consider the midpoint S of T' (i.e. the centre of gravity).
Let [; := dist(St, E;) be the distance between St and the plane that contains the face E;.
Then the sphere with centre at St and radius min;—;_4/; lies inside T'; therefore

o(T)/2 > .I_nlin4 l;
On the other hand I; = hg, r/4 since St is the midpoint of 7. This gives

L.
o) 2 3 minheur
Recalling 3|T'| = hg, r - |E;| completes the proof. n

Let us now investigate the sub—tetrahedron 7% s, i.e. consider an arbitrary tetrahedron
T and some fixed face F thereof. Enumerate both tetrahedra again as in Figure 3, and
denote the three remaining faces of T' (apart from E) by E; := OQ;Q;11. Indices are to be
considered modulo 3 if necessary.

Lemma 3.2 The measure of the face PQ;Qit1 of Ty is bounded by
PQQinl < 5+ [IB] + 6+ QBN +1Eis] + o]
Proof: Simple vector algebra yields
0Sg = (0Q, +0Q,+0Q;)/3 and  OP = (1-46)-08g
The measure of some faces is computed via the vector product. This implies
SpQ; x OSp = %O@z x 0Q;_y + %O@z X O_Qi+1
S5Q, x O] < 2100, x 00, 4| + 3100, x 0@l = 3 (1Bl + |5
since 2|E;| = |0Q; x O@i+1|. Using this result, one obtains
PQ; = SpQi +6-05g
|PQ; x PQiy| < |SeQ; x SpQipy| + 0+ (1SEQ; x OSk| + |SpQ;4y x OSp|)
< 2S5QuQunt| + 36+ (Eia +1E] + 1B +|Ein]

2
— S [1B1+ 5+ @B+ 1Bl + | Bona]

Together with 2|PQ;Qi1| = |PQ; x P@i+1| this proves the assertion. u



8 3 NOTATION, BASIC TOOLS AND LEMMAS

Lemma 3.3 The diameter of the inscribed sphere of Ty s satisfies
o(Tes) ~ min{6-hpr, hminr}

Proof: Let us start to bound o(Tgs) from above. Obviously hpr,, = 6 - hgr and
0o(Tgs) < o(T) ~ hpmin since Trs C T. Using Lemma 3.1 this results in

Q(TE,a) 5 min{(S : hE,Tahmin,T}

In order to bound o(Tks) from below, consider the faces of T ; and apply Lemma 3.2
giving

PQiQual £ 1B| + - (Bi| + Bl +|Bsl) ~ max{|E].5- max [Ei]}
max {|B], [PQuQsl, [PQ:Qsl. [PQsQul} < max{|F],6 max |Fil}

(recall that E' and Ey, Es, E5 are the faces of T'). Employing Lemma 3.1 and |[Tgs| = 6-|T|
one obtains

T, o-|T 0-|T
oTes) 2 Tz > mind L
max{|E|,5- max |Et|} itrhg
i=1,2,3
2 min{d - hpr, hin1}
which completes the assertion. [ ]

The next lemma bounds the transformation matrix of F }E s+ this will be vital to prove
the inverse inequalities of Lemma 3.7 below.

Lemma 3.4 The norm of the transformation matriz FilE,é s bounded by
||F7:,2‘,6||R3X3 S/ m1n{(5 . hE,T y hmmvT}il

Proof: The bound follows immediately from ||F£E~75||R3><3 < d(T)/o(Tgs) and Lemma
3.3. u

Trace inequality: The lemma below plays an important role when specific interpolation
estimates are to be derived.

Lemma 3.5 (Trace inequality) Let T' be an arbitrary tetrahedron and E be a face of it.
For v € HY(T) the trace inequality holds:

Il < her - lolle - (lolle + 1€ Vollz) (5)
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Proof: Consider the transformation Fy4, the standard tetrahedron T := F{Y(T), the face
B = F{Y(E) of T, and the function v := v o Fy € H(T). On the standard tetrahedron
T, the well-known (isotropic) trace inequality implies

19% < olle - (lolle + 1Vollz)
cf. [22]. The transformation onto the actual tetrahedron (via F4) yields
E]7 ol S IT17 ollr - (lolle + A7 Volir)
From (4) one derives
IATVolir = |A7CF" - CrVullr < |AZCE [[gaxa - [|CT Vllr S ICT Vo lr

Utilizing 3 |T'| = |E| - hgr results in the anisotropic trace inequality (5). u

3.2 Bubble functions and inverse inequalities

As another useful and important tool we now introduce so-called bubble functions. They
are used, for example, for bounding certain residual norms. The definitions below are
partly as in the isotropic case, cf. [21].

Denote by Az, -+, Ar4 the barycentric coordinates of an arbitrary tetrahedron 7'. The
element bubble function by is defined by

bT = 256 )\T,l . /\T,g . )\T,S . /\T,4 € P4(T) on T . (6)

Let £ = Ty NT5, be an inner face (triangle) of 7,. Enumerate the vertices of Ty and T3 such
that the vertices of E are numbered first. Define the face bubble function by € C°(wg) on
(the three—dimensional domain) wg = T1 U T, by

bp :=2TAr,1-An, 2 A13 on Ty, k=1,2 . (7)

For simplicity assume that by and bg are extended by zero outside their original domain
of definition. Note that 0 < bp(x),bg(x) <1 and ||br|ls = ||bElle = 1.

Next we introduce an extension operator F,,; : P°(E) — C°(wg). For some constant
function ¢ € P°(E) define

Fout(p)(z) := ¢ for z € wg : (8)

If F is a boundary face then bg and F,,; are obviously defined only on the single tetrahedron
TOE.

The following anisotropic equivalences and inverse inequalities can be derived easily,
cf. [12], so we only state the results.
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Lemma 3.6 (Inverse inequalities I) Assume op € P'(T) and ¢p € P°(E). Then

62 - orllz ~ llerlir (9)
IV(r-or)llr S hpinr - llorllr (10)
63 - elle ~ lleele (11)
|Fuct() - bellr ~ hip-leele  for ECT (12)
(13)

IV (Feat () - be)lr < h”z ot leele  for ECT

The bubble functions above suffice to analyse the residual error estimator for the Pois-
son equation, cf. [21]. However, for the singularly perturbed problem considered here we
have to introduce modified face bubble functions, cf. also [12, 22]|. For some tetrahedron T'
and a face E thereof consider the sub—tetrahedron Tg s (cf. Figure 3). Define the so—called
squeezed face bubble function bg s by

o bg o quéé on TE,(;
birs 1= { 0 on T\ Tg. (14)

where by is the standard face bubble function for the face £ = F;}”(E) of the tetrahedron
T = Fq:,}g',g(TE,é)- In other words, bg 1 is the usual face bubble function for face E in the
tetrahedron T s, and it is extended by zero in T'\ Tg .

Standard scaling arguments for the transformation Frps : T — Tgs, together with
the essential Lemma 3.4 yield now the inverse inequalities for the squeezed face bubble
function.

Lemma 3.7 (Inverse inequalities II) Let E be an arbitrary face of T, and assume pg €
P°(E). Then

lbgrs - Fet(pp)llr < 02 hil% - lloplle (15)
IV (bers - Feer(@p)llr < 51/2'h1/2 -min{0 - hpr s hpinr} ' lleelle . (16)

3.3 Matching function and interpolation estimates

When investigating interpolation error estimates on anisotropic meshes, one soon discovers
that the anisotropic mesh and the anisotropic function have to correspond in some way.
Hence we first discuss the relation between mesh and function before the interpolation
properties are given.

From a heuristic point of view the anisotropy of the mesh should be aligned with the
anisotropy of the function to provide a satisfying interpolation. Intuitively all practical
applications follow this concept. For a rigorous analysis, however, we want to have some
measure of the alignment of mesh and function. To this end the so-called matching function
has been proposed by Kunert [12, 14].
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Definition 3.1 (Matching function) Let v € H'(Q), and T, € F be a triangulation of
Q. Define the matching function my : H*(Q) x F — R by

m(. ) = (X b ICEVeR)/ Ivel (17)

TeT,

A comprehensive discussion is given in the literature cited above; some remarks shall suffice
here. Setting Aye.1 = h1r, one obtains

I < m(v,Th) S jrpe%z)fhmax,T/hmm,T

The definition implies that a mesh 7, which is well aligned with an anisotropic function,
results in a small matching function m;. The crude upper bound of m; implies that,
on isotropic meshes, m; ~ 1, and hence the matching function merges there with other
constants. In this sense, (17) is a natural extension of the theory for isotropic meshes.

Remark 3.1 A different possibility to define a matching function consists in

1/2
micT) = (3 Il +e bt ICEVOlR) T Sl (1)

TET

This definition implies 1 < my (v, T) < mq(v, 75) while all the other inequalities below
are preserved (with my replaced by m;.). The original definition however gives rise to a
straight—forward approximation of my(u — uy, 7), see Remark 4.2.

Let us now switch to the interpolation of some function v € H'(Q). The usual La-
grange interpolation cannot be employed. Instead, in Kunert [12] the Clément interpola-
tion technique [9] is extended to anisotropic tetrahedral meshes. The resulting Clément
like interpolation operator R, is analysed there. Here we state the basic interpolation error
estimates obtained.

Lemma 3.8 Let v € HX(Q). The Clément interpolation operator R, : Hy(Q) — V,, of
[12] satisfies the inequalities below:

lv = Rovll < o
Dl o= Rovllz S ma(v,7a) - |V
TeT,
Y g ICTV (0 = Rov)llz S ma(v, To)? - || Vol?

TeT,

In contrast to common isotropic estimates, the additional factor m4 (v, 7) in the right-hand
side of the previous two inequalities is indispensable here [12].

For the analysis of the error estimator we want to obtain specific interpolation esti-
mates that are related to the reaction—diffusion problem. More precisely, the estimates
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shall involve the energy norm (which is related to the differential operator but not to the
interpolation operator). To shorten the notation, introduce the auxiliary term

ar := min{1, e~1/2. Pomin.T}

Lemma 3.9 Let v € HY(Q). The Clément interpolation operator R, : HX(Q) — V,,
satisfies the inequalities below:

Sl = Rl S ma(0, T0)% o] (19)

TeT,

RSN el - Rl S o, T I (20)

TeT, ECOT\I'p
Proof: The definition of ar implies

-1 _ 12 p-1
az' = max{l,e Porin.

With the help of Lemma 3.8 one obtains

Yoo v=Rolr = Y lw=Rollz + Y ehpiipllv— RolF
TET, TeTh TETh
1>e- hmln T 1<e- hmln T
< o= Rooll* + e+ Y hidur - llv = Rovll7
TET),
S P+ e omuo, T)? - IVolP < ma(o, Ta)? - ol

which proves the first inequality.
For the second estimate the trace inequality (5) is invoked giving
her-llv = Rovlly S v = Rovllr - ([lv = Rovllr + [CTV (v = Rov)lr)

Using the first result (19), the Cauchy—Schwarz inequality, Lemma 3.8 and the fact that
hmint < hpr results in

ey, Y. ar'lv-RalE S

TET;, ECOT\Tp

S 237 Jart - o= Rollr - btz (lo = Rollr + [CFV (0 = Rov) ) |

TeT,
1/2
S (Z o7 lo - Rovn%) -
TeT
1/2
(Z hmmT - R UHT + hmmT ||077:V(,U - ROU)H%)
TeTh

< om0, T Il (o, ) 90l < o, T ol

Hence the second estimate is proven. [ ]
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4 Residual error estimator

Residual error estimators bound the error w — u;, by measuring the residual. However,
instead of computing the norm of the residual in the dual space [H!(Q)]* = H~'(Q), one
tries to obtain an equivalent measure by evaluating easier terms that involve the given data
(e.g. f, Q, or Ty). The main task is to carefully calibrate the weights of the residual norms
such that both an upper and lower error bound hold. The difficulties that arise from the
singularly perturbed problem are here even emphasized and amplified by the anisotropic
elements.

Furthermore, in order to obtain lower error bounds, we replace f € L3(Q2) by some
approximation f, from a finite dimensional space. In particular, f; shall be piecewise
constant over T, (but otherwise arbitrary). A more comprehensive discussion is given in
[21, 12].

Next, the (approximate) element residuals and the face residuals are defined with the
help of f;.

Definition 4.1 (Element and face residual) Let u, € V,, be the finite element solu-
tion. For an element T, define the element residual rp € P'(T) by

rr = fr — (—e- Aup + up) onT
For an interior face E C Q define the face residual rg € P°(E) by

— T duy, duy,
re(r) = tl_l)I_Ii_lo %(x +tng) — %(x —tng) r€FE

Here ng L F is any of the two unitary normal vectors. The face residual is also known as
gradient jump or jump residual. Note that the element residual r7 is clearly related to the
strong form of the differential equation.

Now the error estimator is defined, and the main result is presented and proved.

Definition 4.2 (Residual error estimator) Define the local residual error estimator
Ner for a tetrahedron T by

1/2

nri= | g lrrllz + €2 ar- Y relln : (21)
ECOT\Tp

To shorten the notation, define the local approximation term
CE,T =ar- ||f - thwT

and introduce the global terms

773 = Z 7752,T and ng = Z ng,T

TeTh TeTh
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Theorem 4.1 (Residual error estimation) Let v € HL(Q) be the exact solution and
up, € Vo, 5, be the finite element solution. Then the error is bounded locally from below by

e S lllw—wnlll,, + Cor (22)
for all T € Ty,. The error is bounded globally from above by
e = anlll s = o) - [+ 21 (23)
Remark 4.1 Combining the lower and upper error bound yields
e —c S e —unll < mi(u—un, Ta) - [nZ +¢Z]

Assuming that the approximation term (. is negligible, one obtains sharp error bounds if
the matching function my(u — uy, Tp) is small, which in turn implies that the anisotropic
mesh is well suited to the anisotropic solution.

Note that in practical applications mi(u — uy, T,) has to be approximated, e.g. by
means of a recovered gradient [12, 14].

Proof: The structure of the proofs is similar to that of known residual error estimators,
cf. [21]. The lower error bound is derived with the help of bubble functions and inverse
inequalities, whereas the upper bound relies on interpolation estimates. All ingredients are,
of course, carefully adapted to suit our specific reaction—diffusion problem on anisotropic
meshes.

Start with the lower error bound (22) for an arbitrary but fixed tetrahedron 7', and
consider the norm ||r7||7 of the element residual r = f; +¢- Aup — up,. Since we use linear
ansatz functions there holds rp = f;, — up, € P! (T). For z € T let

w(z) == rp(z) - br(x) € P°(T) N HYT) :

with br being the usual bubble functions of (6). Integration by parts yields

/TrT-w = /T(f—l-s-Auh—uh)-w + /T(fh—f)-w
= /5-VT(u—uh)-Vw—|—(u—uh)-w + /(fh—f)-w
T T
((rr.w)r| < e |IV(u—up)lr-[[Vwllr + [lu—wl - |lwllz + [[f = fallz - [[w]lr

The inverse inequalities (9), (10) and 0 < by < 1 readily imply the bounds

1/2
(r,w)r] = |07 - ol ~ |lrel®
IVullz = IV(br-ro)llr S boinr - lIrzllr

|wllz = |lor - rolle < |lrollr
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Hence one obtains

lrell7 S & hpu g IV —un)llF + llu—unllz + |f = full7
giving  of - |lroll7 < min{e-h 2 51} e - [[V(u—un)ll7 +
+az-lu—upllz + af - | f = full7
< e [[V(u—up)llF + llu— w7 + oF - |f = full

llu = wnllly: + o - If = fullz (24)

Now we aim at a bound of the norm ||rg||g of the gradient jump across some inner face
(triangle) E C OT. Since we use linear ansatz functions rz € P*(E) holds. Let T} = T
and Ty be the two tetrahedra that F belongs to. Since f € Ly(2), integration by parts
yields for any function w € H}(wg)

0 = / eVTuVw + uv-w — f-w
Ez o 2
—5/TE-w = 52/ w-—hzsz/ (VTuth—i-Auh-w)
E i=1 Y OTi on i=1 /T
2
= Z/ (5VTuth + (TTi—fh+uh)-w)
i=1 YT
2
= > [TV + ) (- i) )
i=1 YT

since eAuy, = r1, — fr, +up on T;. Let now the function w be defined by

W= bE,T1,(51 . Fewt(rE) on Tl
. bE,TQ,(52 : Fewt(rE) on T2

with Fi,: being the extension operator of (8) and bg 1, s, being the squeezed face bubble
functions of (14). The real numbers §; will be chosen later. Note that indeed w € H} (wg)

since bg 1, 5,

=bemn.s| = bE‘ . Hence we conclude
E E E

2

elbrelr < D0 (elViu—w)

i=1

T;° ||V’LU

T, +

+ [l —

Ti+||f_fh

T + ||TTi

")

The inverse inequalities (15) and (16) are used to bound ||w||r; and ||Vw||z;, respectively.

r| - lhw
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Together with ||bjlg/2 -rg|lg ~ ||re||g from (11) this implies

2
Irele 5 3267 ki, - (minfd: - b, s bning} ™ - IV (@ = w)lr, +
i=1

)

+ e (lu = upllg, + [,

Ti+||f_fh

Now we choose

1

(SZ' = 5 61/2 : hE‘,lT, o, = min{&‘l/Q/hE,Ti , hmin,Ti/hE,Ti} <1

1
2
(vecall hg.1, > hpint,/2). This yields min{d;-hg 1., hyinz, } ~ €/ ar,. Insert the previous

estimate (24) which provides a bound of ||rz. ||z, to obtain

e ar-|relz <

~Y
2
S Do IVl —w)llf + o, - flu—u
i=1

S M —wll, + oF - If = £l

2
7oAl —wnllly, + o, - If = fal%

since Nyin,m, and ar; do not change rapidly across adjacent tetrahedra, and since a, < 1.
Summing up over all faces E of T', recalling the definition of 7. 7 and applying (24) finishes
the proof of the lower error bound (22).

Secondly, in order to derive (23) we utilize the orthogonality property of the error
a(u — up,vy) = 0 Vo, € Vou
Integration by parts gives for all v € H!(Q)

a(u — up,v) = alu — up, v — Ryv)
= e(V(u—up),V(v—R,w)) + (u—up,v— Ryv)
= (f +eAup, — up,v — Rov)r + € Z (re,v— Ryv)g

TET EcCQ\T
1
= Y [tr+ s v Ra)r +5oe S (rmv— R
TeTh ECOT\T'p
< 3 [ox(lrelie + 1 = fullr) - oz llo = Rovlle +
TET

1 _
T3 S alrplle - e ar P - RovHE]'
ECOT\Tp
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The Cauchy-Schwarz inequality and the interpolation estimate (19) yield

> or(lrrllr + If = fullr) - o7 llv — Rovllr <

TET
1/2 1/2
< (20X ar(irml+r-2)) (3 ar?lo - Rl

TeTh TeTy

(19) ) ) , 1/2

S (S (41— al)) o ol
TeTh

With the help of interpolation estimate (20) one derives analogously

S S Sl rells - e4ar o - Rovlls <

TeT, ECOT\I'p

1/2 1/2
< (22X Sarelt) (22X X oo Ral)

TeT, ECOT\I'p TeT, ECOT\I'p

(20) 1/2
S (27X X arlel) T ol

TeT, ECOT\I'p

Combining these estimates results in

1/2
otu—n) § (3 [ob (Iorl 41 = ) +ar 3 irel] )

TET, ECOT\Tp
= (0, Tn) - [0l
Substituting v := u — uj, € H!(Q) finishes the proof. ]

Remark 4.2 The upper error bound (23) contains the matching function ms (u — up, 7).
Since u — wuy, is not known, my(u — uh,ﬁ) cannot be computed exactly. This can be
remedied by using an approximation mf by means of a recovered gradient Vu, ~ Vu:

(=T = (X e 1CEV@— )/ 19— )]

TET,

(Z hina - 1CT (VR — V) ||T) /||VRuh— \|

TeT,
= mi(un, Tn) (25)

Q

cf. [14] for a more comprehensive discussion. All numerical experiments so far indicate
that mf is a robust approximation to m;y, see also Section 5 below.
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5 Numerical experiments

In this section we will illustrate the error estimates of the previous section by means of
numerical experiments. Here we choose the same model problem that has been employed
in [15] to analyse a face—based error estimator.

Consider the three—dimensional model problem

—eAu+u=0 inQ:=][0,1] : u=uy on[p:=0Q

with the perturbation parameter ¢ = 10~*. The exact solution is prescribed to be

U = 6_95/\@ + 6‘2//\@ + 6—5/\/<g

It displays typical boundary layers along the planes x = 0, y = 0, and z = 0. The boundary
value wug is chosen accordingly.

The domain is discretized by a sequence of meshes, each one being the tensor product of
three one—dimensional Bakhvalov-like meshes [6] with 2* intervals in [0,1], K =1...6. To
describe the 1D nodal distribution properly, denote the transition point of the boundary
layer by 7 := \/¢|In\/g|. Then 2¥1 nodes are exponentially distributed in the boundary
layer interval [0,7] whereas the remaining interval [r,1] is divided into 2*°! equidistant
intervals, cf. Figure 4. More precisely, the (1D) nodal coordinate of the m-th node is

—fBv/eln [1 - %(1 —677/5/‘/5)] form=0...2"1 3=3/2
T—|—(1—T)'(%—1) for m =2k-1 +1...2%

Note that the only difference to the original Bakhvalov mesh consists in the slightly different
choice of the transition point 7.

—

Figure 4: Mesh 2 — Mesh 3

We start by presenting the size and the maximum aspect ratio of the meshes as well as
the matching function m;.
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Mesh k # Elements Aspect ratio my(u — up, Tp)

1 48 29.4 1.55
2 384 69.5 1.62
3 3072 82.6 1.69
4 24 576 88.6 1.88
d 196 608 91.5 2.37
6 1572 864 92.9 3.04

The size of my is comparatively small and grows only mildly. This implies that the
chosen meshes discretize the problem sufficiently well.

Next, we investigate the results of the error estimation of Theorem 4.1 by computing
the corresponding ratios. Recall that the approximation terms (. r and (. vanish here.

Mesh k e — | o = wnll] e e
my - 1. T [|lu — upll,,

1 0.154F + 0 0.435 1.026

2 0.536F — 1 0.167 2.693

3 0.229F — 1 0.118 4.214

4 0.110F — 1 0.096 4.163

5 0.553F — 2 0.074 4.054

6 0.282F — 2 0.058 3.948

To start with, the error norm |[|ju — uy||| displays the optimal rate of convergence. Next
consider the ratios of the third and fourth column which correspond to our main theo-
retical result. These ratios are bounded from above and thus confirm the predictions of
Theorem 4.1. Note that from a practical point of view the moderately decreasing values of
the upper error bound (third column) imply that the error is increasingly overestimated.

Finally we will investigate the matching function more closely, cf. the table below. We
compare the matching function my(u — up, 7Tp) from (17) and its modification my (u —
up, Tn) from (18). Clearly only marginal differences can be seen, so either choice seems
possible.

On the other hand we present the approximation m¥ proposed in equation (25) of

Remark 4.2. The results show a sufficient coincidence with the values of my(u — up, 7).
Hence the matching function and its approximation are useful tools for the theoretical
analysis as well as for assessing the mesh quality in numerical computations. This topic
has already been discussed for the Poisson equation in [14].



20 REFERENCES

Mesh & my(u — up, Tp) my e (u — up, Tp) mE(up, Tp)

1 1.55 1.23 1.68
2 1.62 1.48 1.52
3 1.69 1.64 1.69
4 1.88 1.86 1.86
5 2.37 2.34 2.03
6 3.04 3.01 2.29

6 Summary

For a singularly perturbed reaction—diffusion model problem, we have proposed and rigor-
ously analysed a new residual error estimator that is suitable for anisotropic meshes. It
has been shown that the error estimation is uniform in the small perturbation parameter.
The analysis implies that tight error bounds are obtained as long as the anisotropic mesh
is chosen according to the anisotropy of the solution. A numerical experiment confirms
the theory. Hence reliable and efficient error estimation is possible on anisotropic meshes.
This is a first important step towards a general adaptive anisotropic algorithm.
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