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Cholesky-like Fa
torizations

of Skew-Symmetri
 Matri
es

Abstra
t

Every real skew-symmetri
 matrix B admits Cholesky-like fa
-

torizations B = R

T

JR where J =

h

0

�I

I

0

i

. This paper presents a

ba
kward-stable O(n

3

) pro
ess for 
omputing su
h a de
omposition,

in whi
h R is a permuted triangular matrix. De
ompositions of this

type are a key ingredient of algorithms for solving eigenvalue problems

with Hamiltonian stru
ture.

Keywords: skew-symmetri
 matri
es, matrix fa
torizations,

Hamiltonian eigenproblems, 
omplete pivoting.

AMS(MOS) subje
t 
lassi�
ation: 15A23, 65F05

1 Introdu
tion

Let B 2 R

2n;2n

be a skew-symmetri
 matrix. We will study de
ompositions

of the form

B = R

T

JR; (1)

where

J =

�

0 I

n

�I

n

0

�

: (2)

As will be shown in this paper, there always exists an R su
h that (1) holds.

We present a stable O(n

3

) algorithm that 
omputes an R that has the form

of a permuted triangular matrix.

Our motivation 
omes from eigenvalue problems with Hamiltonian stru
ture.

A matrix H 2 R

2n;2n

is said to be Hamiltonian if (JH)

T

= JH and skew-

Hamiltonian if (JH)

T

= �JH.

Example 1 The study of 
orner singularities in anisotropi
 elasti
 materials

[5, 6, 11, 9℄ leads to generalized eigenvalue problems of the form

��

0 M

�K 0

�

� �

�

M 0

G M

���

v

w

�

= 0;

1



where M = M

T

2 R

n;n

, K = K

T

2 R

n;n

and G = �G

T

2 R

n;n

. All three

matri
es are large and sparse, as they are obtained from a �nite element

dis
retization. M is a positive de�nite mass matrix, and K is a negative

de�nite matrix related to the sti�ness matrix. In this pen
il the �rst matrix

is Hamiltonian and the se
ond is skew-Hamiltonian. If we multiply the pen
il

by J on the left, we obtain the equivalent pen
il

��

�K 0

0 �M

�

� �

�

G M

�M 0

���

v

w

�

= 0: (3)

Now the �rst matrix is symmetri
 and the se
ond is skew-symmetri
.

Example 2 Linear quadrati
 optimal 
ontrol problems for des
riptor sys-

tems [8, 1℄ lead to eigenvalue problems of the form

��

A BB

T

C

T

C �A

T

�

� �

�

E 0

0 E

T

���

v

w

�

= 0: (4)

Again the �rst matrix is Hamiltonian and the se
ond is skew-Hamiltonian,

and again we 
an multiply by J to obtain an equivalent pen
il

��

C

T

C �A

T

�A �BB

T

�

� �

�

0 E

T

�E 0

���

v

w

�

= 0; (5)

in whi
h the �rst matrix is symmetri
 and the se
ond is skew-symmetri
.

Consider a generalized eigenvalue problem of the form (A��B)v = 0, where

A is symmetri
 and B is skew-symmetri
 and nonsingular. We 
an often

fa
ilitate solution of this problem by transforming it to a standard eigen-

value problem (H ��I)z = 0, in whi
h H is a Hamiltonian matrix. Suppose

we 
an fa
tor B into a produ
t B = R

T

JR as in (1). Then we 
an trans-

form the pen
il A� �B to R

�T

AR

�1

� �J , in whi
h the 
oeÆ
ient matri
es

are still symmetri
 and skew-symmetri
, respe
tively. If we then premul-

tiply by J

�1

= J

T

, we obtain J

T

R

�T

AR

�1

� �I, in whi
h the 
oeÆ
ient

matrix H = J

T

R

�T

AR

�1

is Hamiltonian. Equivalently, using L = JA and

N = JB for some symmetri
 A and skew-symmetri
 B, we may 
onsider a

Hamiltonian/skew-Hamiltonian eigenproblem (L� �N)v = 0 and use a fa
-

torization J

T

R

T

JR of the skew-Hamiltonian matrix N in order to transform

this generalized eigenproblem to a standard Hamiltonian eigenproblem.

2



Transformations of this type were exploited in [1℄ and [9℄ to yield new

stru
ture-preserving algorithms for the 
omputation of eigenvalues, eigen-

ve
tors, and de
ating subspa
es of Hamiltonian/skew-Hamiltonian pen
ils.

The numeri
ally stable fa
torization presented in this paper extends the algo-

rithms proposed in [1℄ and [9℄ to all Hamiltonian/skew-Hamiltonian pen
ils.

It is an important point that none of the methods proposed in [1, 9℄ requires

expli
it formation of the Hamiltonian matrix H = J

T

R

�T

AR

�1

.

2 Skew-Symmetri
 Cholesky-like Fa
toriza-

tions

In some 
ases a useful fa
torization of the form B = R

T

JR 
an be found by

inspe
tion.

Example 3 Consider the matrix

B =

�

0 E

T

�E 0

�

from (5). By inspe
tion

B =

�

0 I

�E 0

� �

0 I

�I 0

� �

0 E

T

�I 0

�

= R

T

JR:

If E is nonsingular, then this is a useful fa
torization [1℄.

Example 4 Consider the matrix

B =

�

G M

�M 0

�

from (3). We have

B =

�

I �

1

2

G

0 M

� �

0 I

�I 0

� �

I 0

1

2

G M

�

= R

T

JR:

This is essentially the de
omposition that was used in [9℄. With this de
om-

position, the Hamiltonian matrix 
orresponding to the pen
il A� �B of (3)

3



is

H = J

T

R

�T

AR

�1

=

�

0 �I

I 0

� �

I �

1

2

GM

�1

0 M

�1

� �

�K 0

0 �M

� �

I 0

�

1

2

M

�1

G M

�1

�

=

�

0 I

�I 0

� �

I �

1

2

G

0 I

� �

K 0

0 M

�1

� �

I 0

�

1

2

G I

�

:

It is relatively easy to see that any nonsingular skew-symmetri
 matrix has

a de
omposition of the form (1).

Proposition 1 Let B 2 R

m;m

be skew-symmetri
. If B is nonsingular, then

there exists R 2 R

m;m

su
h that B 
an be fa
tored as B = R

T

JR.

Proof. This is an easy 
onsequen
e of the spe
tral de
ompositionB = Q

T

XQ

(Murnaghan 
anoni
al form), see e.g. [10℄, in whi
h Q is orthogonal and X

is blo
k diagonal. Ea
h blo
k on the main diagonal is 2� 2 and has the form

�

0 Æ

i

�Æ

i

0

�

with Æ

i

> 0 where �{Æ

i

is a pair of 
omplex 
onjugate (purely imaginary)

eigenvalues of B. If we let D = diagf

p

Æ

1

;

p

Æ

1

; : : : ;

p

Æ

n

;

p

Æ

n

g, then X =

D

^

JD = D

T

^

JD, where

^

J is the blo
k diagonal matrix with 2� 2 blo
ks

�

0 1

�1 0

�

running down the main diagonal. Clearly

^

J is permutationally similar to J .

Indeed

^

J = PJP

T

;

where P is the perfe
t-shu�e permutation

P =

�

e

1

; e

3

; : : : ; e

2n�1

; e

2

; e

4

; : : : ; e

2n

�

; (6)

with e

j

the jth unit ve
tor in R

2n

. Combining these fa
torizations, we obtain

B = R

T

JR, where R = P

T

DQ.

Not only have we shown the existen
e of a de
omposition B = R

T

JR, we

have sket
hed a pra
ti
al (and stable) algorithm for 
omputing one. The only

nontrivial step is the 
omputation of the Murnaghan form. EÆ
ient methods

4



for 
omputing this form are given in [10, 12℄. The de
omposition is also usable

in pra
ti
e, sin
e R

�1

is easily a

essible; ea
h of its fa
tors P

T

, D, and Q,

has an easily 
omputable inverse. However, this fa
torization has substantial

drawba
ks. The iterative algorithms needed to 
ompute the Murnaghan

form use substantially more arithmeti
 work than the dire
t fa
torization

algorithm presented below. Furthermore, and perhaps more importantly,

the Murnaghan de
omposition does not preserve sparseness. Q is essentially

a matrix of eigenve
tors of B. Even if B is extremely sparse (as, e.g., for

problems as in Example 1), Q will be full.

2.1 Triangular Fa
torizations

For sparse problems we require a di�erent fa
torization. Chan
es for pre-

serving sparseness are better if R is obtained through a pro
ess similar to

Gaussian elimination, whi
h leads to a triangular R. This te
hnique has

proven su

essful in 
omputing sparse LU and Cholesky fa
torizations; see,

e.g, [2, 3℄. We begin with a theorem that tells what 
an be done without

pivoting. Of greatest interest to us is the even-dimensional 
ase. However,

we in
lude the odd-dimensional 
ase for 
ompleteness.

For notational 
onvenien
e we will produ
e de
ompositions of the form B =

R

T

^

JR, using the shu�ed matrix

^

J instead of J . We then obtain the desired

results by deshu�ing.

We will use the following notation. When we want to emphasize the dimen-

sion of

^

J , we write

^

J

2n

. Thus

^

J

2n

= PJ

2n

P

T

, where P is as in (6) and

J

2n

=

�

0 I

n

�I

n

0

�

:

In addition we de�ne

^

J

2n+1

=

�

^

J

2n

0

0 0

�

:

FinallyB[< i >℄ will denote the ith leading prin
ipal submatrix of the matrix

B.

Theorem 2 i) Let B 2 R

2n;2n

be a skew-symmetri
 matrix su
h that

detB[< 2j >℄ 6= 0 for j = 1; : : : ; n. Then B has a unique fa
torization

B = R

T

^

J

2n

R; (7)

5



where R is upper triangular with r

2j�1;2j

= 0, r

2j�1;2j�1

> 0 and r

2j;2j

=

�r

2j�1;2j�1

for j = 1; : : : ; n. Thus R has 2� 2 blo
ks of the form

�

r 0

0 �r

�

running down the main diagonal.

ii) Let B 2 R

(2n+1);(2n+1)

be a skew-symmetri
 matrix su
h that detB[<

2j >℄ 6= 0 for j = 1; : : : ; n. Then B has a unique fa
torization

B = R

T

^

J

2n+1

R (8)

with R as in part i), along with the additional 
ondition r

2n+1;2n+1

= 0.

Proof. We begin by proving part i) by indu
tion on n. If n = 1 we have

B =

�

0

�v

v

0

�

, where v 6= 0 by the assumption detB[< 2 >℄ 6= 0. From the

equation

�

r 0

0 s

� �

0 1

�1 0

� �

r 0

0 s

�

=

�

0 rs

�rs 0

�

we see that we need to 
hoose r and s so that rs = v. Sin
e we want r > 0

and s = �r, we must 
hoose r and s as follows. If v > 0, take r = +

p

v and

s = r; if v < 0, take r = +

p

�v and s = �r. This establishes existen
e and

uniqueness of the fa
torization in the 
ase n = 1.

For the indu
tion step partition B as

B =

�

B

11

B

12

�B

T

12

B

22

�

;

where B

11

2 R

2;2

. As we have just demonstrated, B

11

has a unique de
om-

position B

11

= R

T

11

^

J

2

R

11

, where R

11

= diagfr;�rg. Let R

12

=

^

J

T

2

R

�T

11

B

12

and S = B

22

� R

T

12

^

J

2

R

12

. Then

B =

�

B

11

B

12

�B

T

12

B

22

�

=

�

R

T

11

0

R

T

12

I

� �

^

J

2

S

� �

R

11

R

12

0 I

�

: (9)

The S
hur 
omplement S 2 R

2n�2;2n�2

is skew-symmetri
. It also satis�es

detS[< 2j >℄ 6= 0 for j = 1; : : : ; n�1, inheriting the property from B. This is

an easy 
onsequen
e of (9). Therefore, by the indu
tion hypothesis, there is a

6



unique upper triangularR

22

of the spe
i�ed form, su
h that S = R

T

22

^

J

2n�2

R

22

.

Substituting this expression for S into (9), we obtain

B =

�

B

11

B

12

�B

T

12

B

22

�

=

�

R

T

11

0

R

T

12

R

T

22

� �

^

J

2

^

J

2n�2

� �

R

11

R

12

0 R

22

�

; (10)

whi
h is the desired de
omposition.

We easily 
he
k uniqueness. Equation (10) implies B

12

= R

T

11

^

J

2

R

12

, whi
h

determines R

12

uniquely, sin
e R

T

11

^

J

2

is nonsingular. Equation (10) also

implies B

22

= R

T

12

^

J

2

R

12

+ R

T

22

^

J

2n�2

R

22

, whi
h for
es R

T

22

^

J

2n�2

R

22

= S. As

part of the indu
tion hypothesis, R

22

is unique.

Now 
onsider the odd-dimensional 
ase ii). Suppose B 2 R

m;m

, where m =

2n + 1. The 
ase m = 1 is trivial. If m > 1, we dedu
e the result from the

even 
ase m� 1. Partition B as

B =

�

~

B v

�v

T

0

�

;

where

~

B 2 R

2n;2n

. Sin
e we have already established the even 
ase,

~

B has a

unique de
omposition

~

B =

~

R

T

^

J

2n

~

R of the spe
i�ed form. Let w =

^

J

T

2n

~

R

�T

v.

Then

B =

�

~

B v

�v

T

0

�

=

�

~

R

T

0

w

T

0

� �

^

J

2n

0

� �

~

R w

0 0

�

;

whi
h is the desired de
omposition. One easily 
he
ks that this equation

determines

~

R and w uniquely.

In the odd-dimensional 
ase, the 
ondition r

2n+1;2n+1

= 0 was spe
i�ed arbi-

trarily in order to obtain uniqueness of the fa
torization. In fa
t, r

2n+1;2n+1


an be given any value.

2.2 Fa
torization with Complete Pivoting

If we allow pivoting, we 
an drop the assumptions on the nonsingularity of

prin
ipal submatri
es. To preserve skew-symmetry in a skew-symmetri
 B

we only 
onsider symmetri
 permutations of B, that is B  PBP

T

where P

is a permutation matrix. Row permutations or 
olumn permutations alone

destroy skew-symmetry.

7



Theorem 3 Let B 2 R

m;m

be skew-symmetri
 and let rank(B) = 2s. Then

there exists a permutation matrix Q su
h that

B = Q

T

R

T

^

JRQ; (11)

where R is upper triangular, r

2j�1;2j

= 0, r

2j�1;2j�1

= r

2j;2j

> 0 for j =

1; : : : ; s, jr

jk

j � r

jj

for k > j, j = 1; : : : ; 2s, and r

jk

= 0 for j > 2s. In

general Q is not uniquely determined. On
e Q has been �xed, R is uniquely

determined.

Proof. The proof is by indu
tion on s. If s = 0, the 
orre
t de
omposition is

B = 0

T

^

J0. Now suppose s > 0, and assume the result holds for matri
es of

rank 2(s� 1). We use a 
omplete pivoting strategy. Sear
h B for its largest

(positive) entry. Suppose this is in position (i; j), noting that i 6= j. If i 6= 1,

inter
hange rows 1 and i. The largest entry is now in position (1; j). Now

inter
hange 
olumns 1 and i. If j = 1, the largest entry is now in position

(1; i); let k = i. If j 6= 1, then sin
e i 6= j, the largest entry remains in

position (1; j); let k = j. Now if k 6= 2, inter
hange 
olumns 2 and k and

also rows 2 and k. The result is a skew-symmetri
 matrix

~

B = Q

T

1

BQ

1

whose

largest entry is in the (1; 2) position. Q

1

is a permutation matrix.

Partition

~

B as

~

B =

�

~

B

11

~

B

12

�

~

B

T

12

~

B

22

�

;

where

~

B

11

2 R

2;2

.

~

B

11

=

�

0

�v

v

0

�

; where v is the largest (positive) entry of

~

B.

Let r =

p

v and R

11

=

�

r

0

0

r

�

. Then

~

B

11

= R

T

11

^

J

2

R

11

. Let

~

R

12

=

^

J

T

2

R

�T

11

~

B

12

and S =

~

B

22

�

~

R

T

12

^

J

2

~

R

12

. Then

~

B =

�

~

B

11

~

B

12

�

~

B

T

12

~

B

22

�

=

�

R

T

11

0

~

R

T

12

I

� �

^

J

2

S

� �

R

11

~

R

12

0 I

�

: (12)

From the de�nition of

~

R

12

, we see that ea
h of its entries has the form

~

b=r,

where

~

b is an entry of

~

B

12

. Sin
e j

~

b j=r � v=r = r, we 
on
lude that all

entries in the �rst two rows are bounded in modulus by r.

The S
hur 
omplement S is skew-symmetri
 and has rank 2(s�1). Therefore,

by the indu
tion hypothesis, S =

~

Q

T

2

R

T

22

^

J

m�2

R

22

~

Q

2

, where

~

Q

2

is a permuta-

tion matrix, and R

22

is an upper-triangular matrix satisfying the hypotheses

of the theorem. Substituting this expression for S in (12), we obtain

~

B =

�

R

T

11

0

~

R

T

12

~

Q

T

2

R

T

22

� �

^

J

2

^

J

m�2

� �

R

11

~

R

12

0 R

22

~

Q

2

�

8



=

�

I

2

~

Q

T

2

� �

R

T

11

0

~

Q

2

~

R

T

12

R

T

22

�

^

J

m

�

R

11

~

R

12

~

Q

T

2

0 R

22

� �

I

2

~

Q

2

�

Letting R

12

=

~

R

12

~

Q

T

2

,

R =

�

R

11

R

12

0 R

22

�

; Q

2

=

�

I

2

~

Q

2

�

;

and Q = Q

2

Q

1

, we have

~

B = Q

1

BQ

T

1

= Q

T

2

R

T

^

JRQ

2

, i.e. B = Q

T

R

T

^

JRQ.

The proof of Theorem 3 is 
onstru
tive; it yields an algorithm, whi
h 
an be

sket
hed as follows. The algorithm writes R over B.

for j = 1; : : : ; bm=2


2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�nd (ii; jj) su
h that B[ii; jj℄ = maxB[2j � 1 : m; 2j � 1 : m℄

if B[ii; jj℄ = 0, then

�

rank = 2j � 2

return

if jj = 2j � 1, then kk  ii, else kk  jj

if ii 6= 2j � 1, then inter
hange rows, 
olumns ii and 2j � 1

if kk 6= 2j, then inter
hange rows, 
olumns kk and 2j

r  +

p

B[2j � 1; 2j℄

B[2j � 1; 2j � 1℄ r;

B[2j; 2j℄ r;

B[2j � 1; 2j℄ 0

B[2j � 1 : 2j; 2j + 1 : m℄ �r

�1

^

J

2

B[2j � 1 : 2j; 2j + 1 : m℄

^

B  B[2j � 1 : 2j; 2j + 1 : m℄

T

^

J

2

B[2j � 1 : 2j; 2j + 1 : m℄

B[2j + 1 : m; 2j + 1 : m℄ B[2j + 1 : m; 2j + 1 : m℄�

^

B

end for

rank = 2bm=2


return

To this brief des
ription we add a few details. By symmetry we need only

store and operate on the upper half of B. In parti
ular, only about half of

the operations indi
ated in the 
onstru
tion and appli
ation of the update

^

B (bottom two lines in the loop) need to be performed. The permutation

matrix Q is determined by keeping a re
ord of the 
olumn inter
hanges.

Ea
h 
olumn inter
hange should be applied to all rows of the array, not just

the 
urrent S
hur 
omplement B[2j � 1 : m; 2j � 1 : m℄. This way the

9



update R

12

=

~

R

12

~

Q

T

2

, indi
ated in the proof of Theorem 3, is performed

automati
ally.

The 
op 
ount, for a dense B, is about

1

3

(m

3

� (m � 2s)

3

), i.e.

1

3

m

3

in the

high-rank 
ase and 2sm

2

in the low-rank 
ase. In addition the pivot sear
hes

make about

1

12

m

3


omparisons in all.

Less expensive pivoting strategies are possible. For example, the pivot sear
h


ould be 
on�ned to the top two rows, unless no suitable pivot is found there.

One 
an also 
onsider pivoting strategies that take sparseness into a

ount,


ompromising on stability in order to obtain a sparser fa
tor R. In
omplete

fa
torizations 
an also be obtained from the given algorithm analogously to

in
omplete LU or Cholesky de
ompositions by pres
ribing a level of allowed

�ll-in or using a drop toleran
e.

The desired fa
torization of B is an easy 
orollary of Theorem 3.

Corollary 4 Let B 2 R

2n;2n

be skew-symmetri
. Then

B = R

T

JR;

where R = P

T

RQ, P is the perfe
t-shu�e permutation (6), R is an upper-

triangular matrix satifying the hypotheses of Theorem 3, and Q is a permu-

tation matrix.

Analogously, we obtain a result for skew-Hamiltonian matri
es using the

isomorphism N ! JN whi
h maps skew-Hamiltonian matri
es to skew-

symmetri
 matri
es and vi
e versa.

Corollary 5 Let N 2 R

2n;2n

be skew-Hamiltonian. Then

N = J

T

R

T

JR;

where R is the fa
tor of JN as in Corollary 4.

3 Stability of the Fa
torization

Standard te
hniques of ba
kward error analysis 
an be applied to obtain the

following result (
f. [4, Theorem 9.3℄).

Theorem 6 Let B be skew-symmetri
 with rank 2s. Suppose we 
ompute

the de
omposition B = Q

T

R

T

^

JRQ using 
oating point arithmeti
 with unit

roundo� u. Then the 
omputed R satis�es B + E = Q

T

R

T

^

JRQ, where

jE j � 2suQ

T

jR

T

j j

^

J j jR j Q+O(u

2

):

10



This result is valid for the unpivoted algorithm, but it therefore holds for

all pivoting strategies, sin
e pivoting is equivalent to applying the unpivoted

algorithm to a matrix for whi
h the inter
hanges have been performed in

advan
e. So long as only modest element growth o

urs in the 
omputation

of R, the algorithm is ba
kward stable.

The obje
tive of the 
omplete pivoting strategy is to dis
ourage element

growth. There is both theoreti
al and empiri
al eviden
e that it su

eeds.

We begin with a theoreti
al bound. Let B

(0)

be the skew-symmetri
 matrix

B at the beginning of Algorithm 1, and let B

(r)

be the S
hur 
omplement

matrix B[2r+1 : m; 2r+1 : m℄ at the end of the rth pass through the outer

loop. De�ne the element growth fa
tor 
 by


 = max

r

max

ij

jB

(r)

ij

j

max

ij

jB

(0)

ij

j

:

It is easy to show that max

ij

jr

ij

j �

p


. Wilkinson's 
lassi
al analysis of the

growth fa
tor for Gaussian elimination with 
omplete pivoting (GCP) [13℄


arries over with only trivial modi�
ations to Algorithm 1. It 
an be shown

that for a nonsingular 2n� 2n skew-symmetri
 matrix B,


 �

q

(2n)4

1

6

1=2

8

1=3

� � � (2n)

1=(n�1)

: (13)

This bound has the same order of magnitude as Wilkinson's 
lassi
al bound

on the element growth fa
tor for GCP [13℄.

Mountains of numeri
al eviden
e a

umulated over the years have shown that

the GCP bound is quite pessimisti
. For example, for matri
es of dimension

n = 100 and n = 200 the bound guarantees that the growth fa
tor is no

greater than 3571 and 28298, respe
tively. However, numeri
al experien
e

has shown that the a
tual growth fa
tor is usually mu
h less than n. Indeed

it is diÆ
ult to �nd matri
es for whi
h the growth fa
tor is mu
h greater

than n. See, for example, the dis
ussion in [4, pp. 180{181℄. On the basis of

this eviden
e, GCP has been pronoun
ed stable.

Sin
e the 
omplete pivoting pro
ess in Algorithm 1 is so similar to GCP, we

expe
ted that the bound (13) would also prove pessimisti
. This expe
tation

has been realized. We implemented Algorithm 1 in Matlab [7℄ and found

that when applied to random matri
es, the growth fa
tor is modest. We then

used fminsear
h from Matlab's optimization toolbox to sear
h for skew-

symmetri
 matri
es whose growth fa
tor is large. For ea
h of three 
hoi
es of

11



m, we 
alled fminsear
h �fty times. Ea
h 
all to fminsear
h started with

an m � m skew-symmetri
 matrix with nontrivial entries drawn from the

normal distribution with mean zero and varian
e one. For m = 2n = 10, the

bound (13) is 18:7, but the largest element growth fa
tor that fminsear
h

found was 3. For m = 16 the bound (13) is 46:0, but the largest element

growth fa
tor that we observed was 3:36. For m = 20 the bound (13) is 72:8,

but the largest element growth fa
tor that we observed was 4:37. Based on

these �ndings, as well as the eviden
e that has been a

umulated for GCP,

we assert that Algorithm 1 is stable.

4 Con
lusions

Every real skew-symmetri
 matrixB admits Cholesky-like fa
torizationsB =

R

T

JR where J =

�

0

�I

I

0

�

. Fa
torizations of this type are a key ingredient

of algorithms for solving eigenvalue problems with Hamiltonian stru
ture.

Fa
torizations in whi
h R is a permuted triangular matrix 
an be 
omputed

by an O(n

3

) pro
ess similar to Gaussian elimination. If 
omplete pivoting is

used, the pro
ess is numeri
ally ba
kward stable.
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