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Prefa
e

Control theory is one of the most rapidly developing dis
iplines of mathemati
s and

engineering in the se
ond half of the 20th 
entury. In the past de
ade, implementations

of numeri
ally robust algorithms for many types of dense problems in 
ontrol theory have

be
ome available in software pa
kages, su
h as SLICOT [7℄. However, little resear
h has

been done on e�
ient numeri
al methods for 
ontrol problems related to large sparse

or stru
tured dynami
al systems before 1990. In the last few years, quite a number of

approa
hes for several types of large 
ontrol problems have been proposed, but, at present,

it is often not 
lear, whi
h of them are the more promising ones. It is needless to say that

there is little software for large 
ontrol problems available. In this situation, the author

took the opportunity to implement the software pa
kage LYAPACK (�Lyapunov Pa
kage�),

whi
h 
overs one parti
ular approa
h to a 
lass of large problems in 
ontrol theory. An

e�
ient ADI-based solver for large Lyapunov equations is the �workhorse� of LYAPACK,

whi
h also 
ontains implementations of two model redu
tion methods and modi�
ations

of the Newton method for the solution of large Ri

ati equations and linear-quadrati


optimal 
ontrol problems. Most of the underlying algorithms have been developed by

the author in the past three years. A part of this resear
h was done simultaneously and

independently by Jing-Rebe

a Li. A bene�t of her work to LYAPACK is in parti
ular an

improvement in the e�
ien
y of the Lyapunov solver.

LYAPACK aims at two goals. First, of 
ourse, the pa
kage will hopefully be used

to solve problems that arise from pra
ti
al appli
ations. The availability of easy-to-use

software is surely one step to make pra
titioners 
onsider alternative numeri
al te
hniques:

�unless mathemati
s is put into software, it will never be used� [The SIAM Report on

Mathemati
s in Industry, 1996℄. (This statement might be somewhat too strong. And, of


ourse, the reverse statement is not ne
essarily true.) Se
ond, SLICOT 
an be 
onsidered

as a 
ontribution to a fair and 
omprehensive 
omparison of the existing methods for large

Lyapunov equations, model redu
tion problems, et
., whi
h is yet to be done.

For several reasons LYAPACK has been implemented in MATLAB

1

rather than pro-

gramming languages like FORTRAN, C, or JAVA. MATLAB 
odes are easier to under-

stand, to modify, and to verify. On the other hand, their performan
e 
annot 
ompete

with that of 
odes in the aforementioned programming languages. However, this does not

mean that LYAPACK is restri
ted to the solution of �toy problems�. Several measures,

su
h as the use of global variables for large data stru
tures, have been taken to enhan
e the


omputational performan
e of LYAPACK routines. To put this into the right perspe
tive,

Lyapunov equations of order larger than 12000 were solved by LYAPACK within few hours

on a regular workstation. When using standard methods, super
omputers are needed to

solve problems of this size.

LYAPACK was implemented and tested in a UNIX environment. Note, in parti
ular,

that the �le names of some routines do not 
omply the DOS-like �xxxxxxxx.yyy� naming


onvention.

The author a
knowledges the support of the DAAD (Deuts
her Akademis
her Aus-

taus
hdienst = German A
ademi
 Ex
hange Servi
e). He is grateful to Peter Benner,

Peter Lan
aster, Jing-Rebe

a Li, Volker Mehrmann, Enrique Quintana-Orti, and Andras

Varga for their dire
t or indire
t help on the proje
t. He also wants to thank the sta�
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of �The First Cup� (University of Calgary), where the 
onsiderable quantity of 
o�ee was

produ
ed, whi
h was needed to realize the LYAPACK proje
t.

Finally, it should be stressed that any kind of feedba
k from people who applied or

tried to apply this pa
kage is highly appre
iated.

Thilo Penzl

Calgary, November 1999

Addendum to Prefa
e

This manus
ript was mostly �nished just before Thilo Penzl died in a tragi
 a

ident

in De
ember 1999, a few days before his return to work in the Numeri
al Analysis Group

at TU Chemnitz where he also 
ompleted his PhD in 1998. I felt that this very ni
e pie
e

of work should be made available to the s
ienti�
 
ommunity and we therefore tested

the 
odes, proofread the manus
ript and performed minor 
orre
tions in the text. The

MATLAB 
odes were tested by Falk Ebert and the 
orre
tions to the Users' Guide were

performed by myself.

Any 
omments or questions 
on
erning the pa
kage should be addressed to Volker

Mehrmann mehrmann�mathematik.tu-
hemnitz.de.

The LYAPACK 
odes are available at http://www.tu-
hemnitz.de/sfb393/lyapa
k

Volker Mehrmann

Chemnitz, August 2000



Dis
laimer and usage notes

� The author dis
laims responsibility for any kind

of damage sustained in 
ontext with the use of the

software pa
kage LYAPACK.

� LYAPACK is restri
ted to non-
ommer
ial use.

� Referen
es to LYAPACK and/or to the publi
a-

tions on the underlying numeri
al methods must

be provided in reports on numeri
al 
omputations

in whi
h LYAPACK routines are involved.
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1 Introdu
tion

1.1 What is LYAPACK?

LYAPACK is the a
ronym for �Lyapunov Pa
kage�. It is a MATLAB toolbox (i.e., a set of

MATLAB routines) for the solution of 
ertain large s
ale problems in 
ontrol theory, whi
h

are 
losely related to Lyapunov equations. Basi
ally, LYAPACK works on realizations

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(1)

of 
ontinuous-time, time-invariant, linear, dynami
al systems, where A 2 R

n;n

, B 2 R

n;m

,

C 2 R

q;n

, and � 2 R. n is the order of the system (1). LYAPACK is intended to solve

problems of large s
ale (say n > 500). The matri
es A, B, and C must ful�ll 
ertain


onditions, whi
h are dis
ussed in more detail in �1.2. We 
all the entries of the ve
tors

(or, more pre
isely, ve
tor-valued fun
tions) u, x, and y the inputs, states, and outputs of

the dynami
al system, respe
tively.

There are three types of problems LYAPACK 
an deal with.

� Solution of Lyapunov equations. Continuous-time algebrai
 Lyapunov equations

(CALEs) play the 
entral role in LYAPACK. Lyapunov equations are linear matrix

equations of the type

FX +XF

T

= �GG

T

; (2)

where F 2 R

n;n

and G 2 R

n;t

are given and X 2 R

n;n

is the solution. In some

appli
ations the solution X itself might be of interest, but mostly it is only an

auxiliary matrix, whi
h arises in the 
ourse of the numeri
al solution of another

problem. Su
h problems are model redu
tion, Ri

ati equations, and linear-quadrati


optimal 
ontrol problems, for example.

� Model redu
tion. Roughly speaking, model redu
tion is the approximation of the

dynami
al system (1) by a system

_

x̂(�) =

^

Ax̂(�) +

^

Bu(�)

y(�) =

^

Cx̂(�)

(3)

of smaller order k, whose behavior is similar to that of the original one in some sense.

There exist a large number of model redu
tion methods whi
h rely on Lyapunov

equations [2℄. LYAPACK 
ontains implementations of two su
h methods. Both are

based on the Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(4)

A

T

X

C

+X

C

A = �C

T

C: (5)

Their solutions X

B

and X

C

are 
alled 
ontrollability Gramian and observability

Gramian of the system (1), respe
tively.



2 1 INTRODUCTION

� Ri

ati equations and linear-quadrati
 optimal 
ontrol problems. The min-

imization of

J (u; y; x

0

) =

1

2

Z

1

0

y(�)

T

Qy(�) + u(�)

T

Ru(�)d� (6)

subje
t to the dynami
al system (1) and the initial 
ondition x(0) = x

0

is 
alled the

linear-quadrati
 optimal 
ontrol problem (LQOCP). Its optimal solution is des
ribed

by the state-feedba
k

u(�) = �R

�1

B

T

Xx(�) =: �K

T

x(�); (7)

whi
h 
an be 
omputed by solving the (
ontinuous-time algebrai
) Ri

ati equation

(CARE)

C

T

QC + A

T

X +XA�XBR

�1

B

T

X = 0: (8)

Ri

ati equations also arise in further appli
ations in 
ontrol theory.

LYAPACK 
ontains routines for these three types of problems. The underlying algo-

rithms are e�
ient w.r.t. both memory and 
omputation for many large s
ale problems.

1.2 When 
an LYAPACK be applied?

There exist a number of 
onditions, that must be ful�lled by the dynami
al system (1) to

guarantee appli
ability and usefulness of LYAPACK:

� Stability. In most 
ases, the matrix A must be stable, i.e., its spe
trum must be

a subset of the open left half of the 
omplex plane. For the solution of Ri

ati

equations and optimal 
ontrol problems it is su�
ient that a matrix K

(0)

is given,

for whi
h A� BK

(0)

T

is stable.

� The number of the inputs and outputs must be small 
ompared to the

number of states, i.e., m << n and q << n. As a rule of thumb, we re
ommend

n=m; n=q � 100. The larger these ratios are, the better is the performan
e of

LYAPACK 
ompared to implementations of standard methods.

� The matrix A must have a stru
ture, whi
h allows the e�
ient solution

of (shifted) systems of linear equations and the e�
ient realization of

produ
ts with ve
tors. Examples for su
h matri
es are 
lasses of sparse matri-


es, produ
ts of sparse matri
es and inverses of sparse matri
es, 
ir
ulant matri
es,

Toeplitz matri
es, et
.

At this point, it should be stressed that problems related to 
ertain generalized dynami
al

systems

M

_

~x(�) = N ~x(�) +

~

Bu(�)

y(�) =

~

C~x(�)

(9)

where M;N 2 R

n;n

, 
an be treated with LYAPACK as well. However, it is ne
essary

that the generalized system 
an be transformed into a stable, standard system (1). This

is the 
ase when M is invertible and M

�1

N is stable. The transformation is done by an

LU fa
torization (or a Cholesky fa
torization in the symmetri
 de�nite 
ase) of M , i.e.,

M = M

L

M

U

. Then an equivalent standard system (1) is given by

A = M

�1

L

NM

�1

U

; B = M

�1

L

~

B; C =

~

CM

�1

U

: (10)
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1.3 When 
an or should LYAPACK not be applied?

To avoid misunderstandings and to make the 
ontents of the previous se
tion more 
lear,

it should be pointed out that the following problems 
annot be solved or should not be

attempted by LYAPACK routines.

� LYAPACK 
annot solve Lyapunov equations and model redu
tion problems, where

the system matrix A is not stable. It 
annot solve Ri

ati equations and optimal


ontrol problems if no (initial) stabilizing feedba
k is provided.

� LYAPACK 
annot be used to solve problems related to singular systems, i.e., gen-

eralized systems (9) where M is singular.

� LYAPACK is not able to solve problems e�
iently whi
h are highly �ill-
onditioned�

(in some sense). LYAPACK relies on iterative methods. Unlike dire
t methods,

whose 
omplexity does usually not depend on the 
onditioning of the problem, iter-

ative methods generally perform poorly w.r.t. both a

ura
y and 
omplexity if the

problem to be solved is highly ill-
onditioned.

� LYAPACK is ine�
ient if the system is of small order (say, n � 500). In this 
ase,

it is re
ommended to apply standard methods to solve the problem; see �7.

� LYAPACK is ine�
ient if the number of inputs and outputs is not mu
h smaller than

the system order. (For example, there is not mu
h sense in applying LYAPACK to

problems with, say, 1000 states, 100 inputs, and 100 outputs.)

� LYAPACK is not very e�
ient if it is not possible to realize basi
 matrix operations,

su
h as produ
ts with ve
tors and the solution of 
ertain (shifted) systems of linear

equations with A, in an e�
ient way. For example, applying LYAPACK to systems

with an unstru
tured, dense matrix A is dubious.

� LYAPACK is not intended to solve dis
rete-time problems. However, su
h problems


an be transformed into 
ontinuous-time problems by the Cayley transformation. It

is possible to implement the stru
tured, Cayley-transformed problem in user-supplied

fun
tions; see �2.2.

� LYAPACK 
annot handle more 
ompli
ated types of problems, su
h as problems

related to time-invariant or nonlinear dynami
al systems.

1.4 Highlights and features

LYAPACK 
onsists of the following 
omponents (algorithms):

� Lyapunov equations are solved by the Low Rank Cholesky Fa
tor ADI (LRCF-

ADI) iteration. This iteration is implemented in the LYAPACK routine lp_lradi,

whi
h is the �workhorse� of the pa
kage.

� The performan
e of LRCF-ADI depends on 
ertain parameters, so-
alled ADI shift

parameters. These 
an be 
omputed by a heuristi
 algorithm provided as routine

lp_para.
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� There are twomodel redu
tion algorithms in LYAPACK. Algorithm LRSRM, that

is implemented in the routine lp_lrsrm, is a version of the well-known square-root

method, whi
h is a balan
ed trun
ation te
hnique. Algorithm DSPMR provided as

routine lp_dspmr is more heuristi
 in nature and related to dominant 
ontrollable

and observable subspa
es. Both algorithms heavily rely on low rank approximations

to the system Gramians X

B

and X

C

provided by lp_lradi).

� Ri

ati equations and linear-quadrati
 optimal 
ontrol problems are solved

by the Low Rank Cholesky Fa
tor Newton Method (LRCF-NM) or the Impli
it LRCF-

NM (LRCF-NM-I). Both algorithms are implemented in the routine lp_lrnm.

� LYAPACK 
ontains some supplementary routines, su
h as routines for generating

test examples or Bode plots, and a number of demo programs.

� A basi
 
on
ept of LYAPACK is that matrix operations with A are impli
itly realized

by so-
alled user-supplied fun
tions (USFs). For general problems, these routines

must be written by the users themselves. However, for the most 
ommon problems

su
h routines are provided in LYAPACK.

In parti
ular, the 
on
ept of user-supplied fun
tions, whi
h relies on the storage of

large data stru
tures in global MATLAB variables, makes LYAPACK routines e�
ient,

w.r.t. both memory and 
omputation. Of 
ourse, LYAPACK 
ould not 
ompete with

FORTRAN or C implementations of the 
ode (if there were any). However, this pa
kage


an be used to solve problems of quite large s
ale e�
iently. The essential advantages

of a MATLAB implementation are, of 
ourse, 
larity and the simpli
ity of adapting and

modifying the 
ode.

Versatility is another feature of LYAPACK. The 
on
ept of user supplied fun
tions

does not only result in a relatively high degree of numeri
al e�
ien
y, it also enables

solving 
lasses of problems with a 
ompli
ated stru
ture (in parti
ular, problems related

to systems, where the system matrix A is not given expli
itly as a sparse matrix).

Typi
ally, large s
ale problems are solved by iterative methods. In LYAPACK iterative

methods are implemented in the routines lp_lradi, lp_lrnm, lp_para, and some user

supplied fun
tions. LYAPACK o�ers a variety of stopping 
riteria for these iterative

methods.

2 Realization of basi
 matrix operations

In this se
tion we des
ribe in detail how operations with the stru
tured system matrix A

are realized in LYAPACK. Understanding this is important for using LYAPACK routines.

However, this se
tion 
an be skipped by readers who only want to get a general idea of

the algorithms in LYAPACK.

2.1 Basi
 matrix operations

The e�
ien
y of most LYAPACK routines strongly depends on the way how matrix op-

erations with the stru
tured matrix A are implemented. More pre
isely, in LYAPACK

three types of su
h basi
 matrix operations (BMOs) are used. In this se
tion, X denotes

a 
omplex n� t matrix, where t << n.
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� Multipli
ations with A or A

T

:

Y  � AX or  � A

T

X:

� Solution of systems of linear equations (SLEs) with A or A

T

:

Y  � A

�1

X or  � A

�T

X:

� Solution of shifted systems of linear equations (shifted SLEs) with A or A

T

,

where the shifts are the ADI parameters (see �3.2):

Y  � (A+ p

i

I

n

)

�1

X or  � (A

T

+ p

i

I

n

)

�1

X:

2.2 The 
on
ept of user-supplied fun
tions

All operations with the stru
tured matrix A are realized by user supplied fun
tions. More-

over, all data related to the matrix A is stored in �hidden� global variables for the sake of

e�
ien
y. One distin
t merit of using global variables for storing large quantities of data is

that MATLAB 
odes be
ome 
onsiderably faster 
ompared to the standard 
on
ept, where

su
h variables are transfered as input or output arguments from one routine to another

over and over again. The purpose of user supplied fun
tions is to generate these �hidden�

data stru
tures, to realize basi
 matrix operations listed in �2.1, and destroy �hidden� data

stru
tures on
e they are not needed anymore. Moreover, pre- and postpro
essing of the

dynami
al system (1) 
an be realized by user supplied fun
tions. At �rst glan
e, the use

of user supplied fun
tions might seem a bit 
umbersome 
ompared to the expli
it a

ess

to the matrix A, but this 
on
ept turns out to be a good means to attain a high degree of

�exibility and e�
ien
y. The two main advantages of this 
on
ept are the following:

� Adequate stru
tures for storing the data, whi
h 
orresponds to the matrix A, 
an

be used. (In other words, one is not restri
ted to storing A expli
itely in a sparse or

dense array.)

� Adequate methods for solving linear systems 
an be used. (This means that one is not

restri
ted to using �standard� LU fa
torizations. Instead, Cholesky fa
torizations,

Krylov subspa
e methods, or even multi-grid methods 
an be used.)

In general, users have to implement user supplied fun
tions themselves in a way that is

as highly e�
ient w.r.t. both 
omputation and memory demand. However, user supplied

fun
tions for the following most 
ommon types of matri
es A (and ways to implement the


orresponding basi
 matrix operations) are already 
ontained in LYAPACK. Note that

the basis name, whi
h must be provided as input parameter name to many LYAPACK

routines, is the �rst part of the name of the 
orresponding user supplied fun
tion.

� [basis name℄ = as: A in (1) is sparse and symmetri
. (Shifted) linear systems are

solved by sparse Cholesky fa
torization. In this 
ase, the ADI shift parameters p

i

must be real. Note: This is not guaranteed in the routine lp_lrnm for Ri

ati

equations and optimal 
ontrol problems. If this routine is used, the unsymmetri


version au must be applied instead of as.
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� [basis name℄ = au: A in (1) is sparse and (possibly) unsymmetri
. (Shifted) linear

systems are solved by sparse LU fa
torization.

� [basis name℄ = au_qmr_ilu: A in (1) is sparse and (possibly) unsymmetri
. (Shifted)

linear systems are solved iteratively by QMR using ILU pre
onditioning, [14℄.

� [basis name℄ = msns: Here, the system arises from a generalized system (9), where

M and N are symmetri
. Linear systems involved in all three types of basi
 matrix

operations are solved by sparse Cholesky fa
torizations. In this 
ase, the ADI shift

parameters p

i

must be real. Note: This is not guaranteed in the routine lp_lrnm

for Ri

ati equations and optimal 
ontrol problems. If this routine is used, the

unsymmetri
 version munu must be applied instead of msns.

� [basis name℄ = munu: Here, the system arises from a generalized system (9), where

M and N are sparse and possibly unsymmetri
. Linear systems involved in all three

types of basi
 matrix operations are solved by sparse LU fa
torizations.

Although, these 
lasses of user supplied fun
tions 
an be applied to a great variety of

problems, users might want to write their user supplied fun
tions themselves (or modify

the user supplied fun
tions 
ontained in LYAPACK). For example, this might be the


ase if A is a dense Toeplitz or 
ir
ulant matrix, or if alternative iterative solvers or

pre
onditioners should be applied to solve linear systems. Obviously, it is impossible to

provide user supplied fun
tions in LYAPACK for all possible stru
tures the matrix A 
an

have.

For ea
h type of problems listed above the following routines are needed. Here, one or

two extensions are added to the basis name:

[basis name℄_[extension 1℄ or [basis name℄_[extension 1℄_[extension 2℄

Five di�erent �rst extensions are possible. They have the following meaning:

� [extension 1℄ = m: matrix multipli
ation; see �2.1.

� [extension 1℄ = l: solution of systems of linear equations; see �2.1.

� [extension 1℄ = s: solution of shifted systems of linear equations; see �2.1.

� [extension 1℄ = pre: prepro
essing.

� [extension 1℄ = pst: postpro
essing.

For some 
lasses of user supplied fun
tions prepro
essing and postpro
essing routines do

not exist be
ause they are not needed. There is no se
ond extension if [extension 1℄ = pre

or pst. If [extension 1℄ = m, l, or s, there are the following three possibilities w.r.t. the

se
ond extension:

� [extension 2℄ = i: initialization of the data needed for the 
orresponding basi
 matrix

operations.

� no [extension 2℄: the routine a
tually performs the basi
 matrix operations.
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� [extension 2℄ = d: destru
tion of the global data generated by the 
orresponding

initialization routine ([extension 2℄ = i).

This 
on
ept is somewhat similar to that of 
onstru
tors and destru
tors in obje
t-oriented

programming. Note that user supplied fun
tions with [extension 1℄ = pre or pst will be


alled only in the main program (i.e., the program written by the user). user supplied

fun
tions with [extension 2℄ = i and d will be often (but not always) 
alled in the main

program. In 
ontrast, the remaining three types of user supplied fun
tions ([extension

1℄ = m, l, or s) will be used internally in LYAPACK main routines.

For example, au_m_i initializes the data for matrix multipli
ations with the unsymmet-

ri
 matrix A in a global variable, au_m_i performs su
h multipli
ations, whereas au_m_d

destroys the global data generated by au_m_i to save memory.

For more details and examples see �C.1.

Note: In the user supplied fun
tions, that are 
ontained in LYAPACK, the data for

realizing basi
 matrix operations is stored in �xed global variables. This means that it

is impossible to store data for more than one problem (in other words for more than one

matrix A) at the same time. If, for example, several model redu
tion problems (with

di�erent matri
es A should be solved, then these problems have to be treated one after

another. The user supplied fun
tions for initialization ([extension 2℄ = i) overwrite the

data, that has been written to global variables in prior 
alls of these user supplied fun
tions.

2.3 Prepro
essing and postpro
essing

In most 
ases, it is re
ommended or even ne
essary to perform a prepro
essing step be-

fore initializing or generating global data stru
tures by the routines [basis name℄_fm, l,

sg_i and before using LYAPACK main routines (see �B.1). Su
h prepro
essing steps are

implemented in the routines [basis name℄_pre. There are no well-de�ned rules what has

to be done in the prepro
essing step, but in general this step 
onsists of a transformation

of the input data (for example, F and G for solving the Lyapunov equation (2), or A,

B, and C for the model redu
tion problem, et
.), su
h that the transformed input data

has an improved stru
ture from the numeri
al point of view. For example, if a standard

system (1) with a sparse matrix A is 
onsidered, then the prepro
essing done by as_pre or

au_pre is a reordering of the nonzero pattern of A for bandwidth redu
tion. If the prob-

lem is given in form of a generalized system (9) with sparse matri
es M and N , then the

prepro
essing in msns_pre or munu_pre is done in two steps. First, the 
olumns and rows

of both matri
es are reordered (using the same permutation). Se
ond, the transformation

(10) into a standard system is performed.

Although LYAPACK routines 
ould often be applied to the original data, reordering

of sparse matri
es is most 
ases 
ru
ial to a
hieve a high e�
ien
y, when sparse LU or

Cholesky fa
torizations are 
omputed in MATLAB. Figure 1 shows the nonzero pattern

of the matrix M (whi
h equals to that of N) for a system (9) arising from a �nite element

dis
retization of a two-dimensional partial di�erential equation.

There are a few situations, when prepro
essing is not ne
essary. Examples are standard

systems (1), where A is a tridiagonal matrix and (shifted) linear systems are solved dire
tly

(Here, reordering would be super�uous.), or where A is sparse and (shifted) linear systems

are solved by QMR [14℄.



8 2 REALIZATION OF BASIC MATRIX OPERATIONS

0 200 400 600 800

0

100

200

300

400

500

600

700

800

  
0 200 400 600 800

0

100

200

300

400

500

600

700

800

  

Figure 1: Nonzero pattern before (left) and after (right) reordering.

Usually, the prepro
essing step 
onsists of an equivalen
e transformation of the system.

In rare 
ases not only the system matri
es, but also further matri
es must be transformed.

In parti
ular, this applies to nonzero initial stabilizing state-feedba
k matri
es K

0

when

a Ri

ati equation or an optimal 
ontrol problems should be solved.

It is important for users to understand, what is done during the prepro
essing and

to distinguish 
arefully between �original� and �transformed� (prepro
essed) data. Often

the output data of LYAPACK routines must be ba
ktransformed (postpro
essed) in order

to obtain the solution of the original problem. Su
h data are, for example, the low rank

Cholesky fa
tor Z that des
ribes the (approximate) solution of a Lyapunov equation or a

Ri

ati equation, or the (approximate) state-feedba
k K for solving the optimal 
ontrol

problems. For instan
e, if as_pre or au_pre have been applied for prepro
essing, then the

rows of Z or K must be reordered by the inverse permutation. If msns_pre or munu_pre

are used, these quantities must be transformed with the inverse of the Cholesky fa
tor

M

U

and subsequently re-reordered. These ba
ktransformations are implemented in the


orresponding user supplied fun
tions [basis name℄_pst for postpro
essing.

In some 
ases, postpro
essing 
an be omitted, despite prepro
essing has been done.

This is the 
ase, when the output data does not depend on what has been done as pre-

pro
essing (whi
h is usually an equivalen
e transformation of the system). An exam-

ple is model redu
tion by LRSRM or DSPMR. Here, the redu
ed systems are invariant

w.r.t. equivalen
e transformations of the original system.

2.4 Organization of user-supplied fun
tions for basi
 matrix op-

erations and guidelines for their implementation

In the �rst part of this se
tion we explain how user supplied fun
tions are organized and

how they work. We take a standard system (1), where A is sparse, and the 
orresponding

user supplied fun
tions au_� as an illustrative example. The order in whi
h these user

supplied fun
tions are invoked is important. A typi
al sequen
e is shown below. Note

that this is a s
heme displaying the 
hronologi
al order rather than a �main program�.

For example, Steps 6�13 
ould be exe
uted inside the routine lp_lrnm for the Newton

iteration.



2.4 Organization of user-supplied fun
tions 9

...

[A0,B0,C0,prm,iprm℄ = au_pre(A,B,C); % Step 1

au_m_i(A0); % Step 2

Y0 = au_m('N',X0); % Step 3

...

au_l_i; % Step 4

Y0 = au_l('N',X0); % Step 5

...

p = lp_para(...); % Step 6

au_s_i(p); % Step 7

...

Y0 = au_s('N',X0,i); % Step 8

...

au_s_d(p); % Step 9

...

p = lp_para(...); % Step 10

...

au_s_i(p); % Step 11

...

Y0 = au_s('N',X0,i); % Step 12

...

au_s_d(p); % Step 13

...

Z = au_pst(Z0,iprm); % Step 14

au_l_d; % Step 15

au_m_d; % Step 16

...

Note, in parti
ular, that the user supplied fun
tions au_m (multipli
ation), au_l (solution

of linear systems), and au_s (solution of shifted linear systems) 
an be 
alled anywhere

between the following steps:

au_m: between Steps 2 and 16,

au_l: between Steps 4 and 15,

au_s: between Steps 7 and 9, Steps 11 and 13, et
.

Next, we des
ribe what is done in the single steps.

Step 1: Prepro
essing, whi
h has been dis
ussed in �2.3. The system matri
es A, B, and

C are transformed into A

0

, B

0

and C

0

(by a simultaneous reordering of 
olumns and

rows).

Step 2: Initialization of data for multipli
ations with A

0

. Here, the input parameter A0

is stored in the �hidden� global variable LP_A.

Step 3: Matrix multipli
ation with A

0

. au_m has a

ess to the global variable LP_A.

Step 4: Initialization of data for the solution of linear systems with A

0

. Here, an LU

fa
torization of the matrix A

0

(provided as LP_A) is 
omputed and stored in the

global variables LP_L and LP_U.
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Step 5: Solution of linear system A

0

Y

0

= X

0

. au_l has a

ess to the global variables

LP_L and LP_U.

Step 6: Compute shift parameters fp

1

; : : : ; p

l

g.

Step 7: Initialization of data for the solution of shifted linear systems with A

0

. Here,

the LU fa
tors of the matri
es A

0

+ p

1

I, . . . , A

0

+ p

l

I (A

0

is provided in LP_A) are


omputed and stored in the global variables LP_L1, LP_U1, . . . , LP_Ll, LP_Ul.

Step 8: Solution of shifted linear system (A

0

+p

i

I)Y

0

= X

0

. au_s has a

ess to the global

variables LP_Li and LP_Ui.

Step 9: Delete the global variables LP_L1, LP_U1, . . . , LP_Ll, LP_Ul.

Step 10: Possibly, a new set of shift parameters is 
omputed, whi
h is used for a further

run of the LRCF-ADI iteration. (This is the 
ase within the routine lp_lrnm, but

typi
ally not for model redu
tion problems.)

Step 11: (Re)initialization of data for the solution of shifted linear systems with A

0

and

the new shift parameters. Again, the LU fa
tors are stored in the global variables

LP_L1, LP_U1, . . . , LP_Ll, LP_Ul. Here, the value of l may di�er from that in Step 7.

Step 12: Solve shifted linear system.

Step 13: Delete the data generated in Step 11, i.e., 
lear the global variables LP_L1,

LP_U1, . . . , LP_Ll, LP_Ul. (Steps 9�13 
an be repeated several times.)

Step 14: Postpro
essing, whi
h has been dis
ussed in �2.3. The result Z

0

of the prepro-


essed problem is ba
ktransformed into Z.

Step 15: Delete the data generated in Step 4, i.e., 
lear the global variables LP_L and

LP_U.

Step 16: Delete the data generated in Step 2, i.e., 
lear the global variable LP_A.

The other user supplied fun
tions, whi
h are 
ontained in LYAPACK, are organized in a

similar way. Consult the 
orresponding m-�les for details.

The following table shows whi
h user supplied fun
tions are invoked within the single

LYAPACK main routines. [b.n.℄ means [basis name℄.

main routine invoked USFs

lp_para [b.n.℄_m, [b.n.℄_l.

lp_lradi [b.n.℄_m, [b.n.℄_s.

lp_lrsrm [b.n.℄_m.

lp_dspmr [b.n.℄_m.

lp_lrnm [b.n.℄_m, [b.n.℄_l, [b.n.℄_s_i, [b.n.℄_s, [b.n.℄_s_d.

The 
alling sequen
es for these user supplied fun
tions are �xed. It is mandatory to sti
k

to these sequen
es when implementing new user supplied fun
tions. The 
alling sequen
es

are shown below. There it is assumed that X

0

(parameter X0) is a 
omplex n� t matrix,

p is a ve
tor 
ontaining shift parameters, and the �ag tr is either 'N' (�not transposed�)

or 'T' (�transposed�).
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� [basis name℄_m. Calling sequen
es: Y0 = [b.n.℄_m(tr,X0) or n = [b.n.℄_m. In the

�rst 
ase, the result is Y

0

= A

0

X

0

for tr = 'N' and Y

0

= A

T

0

X

0

for tr = 'T'. The

parameter tr must also be provided (and is ignored) if A

0

is symmetri
. In the

se
ond 
ase, where the user supplied fun
tion is 
alled without input parameters,

only the problem dimension n is returned.

� [basis name℄_l. Calling sequen
e: Y0 = [b.n.℄_l(tr,X0). The result is Y

0

=

A

�1

0

X

0

for tr = 'N' and Y

0

= A

�T

0

X

0

for tr = 'T'.

� [basis name℄_i_p. Calling sequen
e: [b.n.℄_s_i(p).

� [basis name℄_s. Calling sequen
e: Y0 = [b.n.℄_s(tr,X0,i). The result is Y

0

=

(A

0

+ p

i

I)

�1

X

0

for tr = 'N' and Y

0

= (A

T

0

+ p

i

I)

�1

X

0

for tr = 'T'.

� [basis name℄_s_d. Calling sequen
e: [b.n.℄_s_d(p).

2.5 Case studies

See �C.1.

3 Lyapunov equations

3.1 Low Rank Cholesky Fa
tor ADI

3.1.1 Theory and algorithm

This se
tion gives a brief introdu
tion to the solution te
hnique for 
ontinuous time Lya-

punov equations used in LYAPACK. For more details, the reader is referred to[31, 6, 33, 37℄.

We 
onsider the 
ontinuous time Lyapunov equation

FX +XF

T

= �GG

T

; (11)

where F 2 R

n;n

is stable, G 2 R

n;t

and t << n. It is well-known that su
h 
ontinuous time

Lyapunov equations have a unique solution X, whi
h is symmetri
 and positive semidef-

inite. Moreover, in many 
ases, the eigenvalues of X de
ay very fast, whi
h is dis
ussed

for symmetri
 matri
es F in [40℄. Thus, there exist often very a

urate approximations of

a rank, that is mu
h smaller than n. This property is most important for the e�
ien
y of

LYAPACK.

The ADI iteration [36, 50℄ for the Lyapunov equation (11) is given by X

0

= 0 and

(F + p

i

I

n

)X

i�1=2

= �GG

T

�X

i�1

(F

T

� p

i

I

n

)

(F + �p

i

I

n

)X

i

T

= �GG

T

�X

i�1=2

T

(F

T

� �p

i

I

n

); (12)

for i = 1; 2; : : : It is one of the most popular iterative te
hniques for solving Lyapunov equa-

tions. This method generates a sequen
e of matri
es X

i

whi
h often 
onverges very fast

towards the solution, provided that the ADI shift parameters p

i

are 
hosen (sub)optimally.

The basi
 idea for a more e�
ient implementation of the ADI method is to repla
e the

ADI iterates by their Cholesky fa
tors, i.e., X

i

= Z

i

Z

H

i

and to reformulate in terms of

the fa
tors Z

i

. Generally, these fa
tors have ti 
olumns. For this reason, we 
all them low
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rank Cholesky fa
tors (LRCFs) and their produ
ts, whi
h are equal to the ADI iterates,

low rank Cholesky fa
tor produ
ts (LRCFPs). Obviously, the low rank Cholesky fa
tors

Z

i

are not uniquely determined. Di�erent ways to generate them exist; see [31, 37℄. The

following algorithm, whi
h we refer to as Low Rank Cholesky Fa
tor ADI (LRCF-ADI),

is the most e�
ient of these ways. It is a slight modi�
ation of the iteration proposed in

[31℄. Note that the number of iteration steps i

max

needs not be �xed a priori. Instead,

several stopping 
riteria, whi
h are des
ribed in �3.1.2 
an be applied.

Algorithm 1 (Low rank Cholesky fa
tor ADI iteration (LRCF-ADI))

INPUT: F , G, fp

1

; p

2

; : : : ; p

i

max

g

OUTPUT: Z = Z

i

max

2 C

n;ti

max

, su
h that ZZ

H

� X.

1. V

1

=

p

�2Re p

1

(F + p

1

I

n

)

�1

G

2. Z

1

= V

1

FOR i = 2; 3; : : : ; i

max

3. V

i

=

p

Re p

i

=Re p

i�1

(V

i�1

� (p

i

+ �p

i�1

)(F + p

i

I

n

)

�1

V

i�1

)

4. Z

i

=

�

Z

i�1

V

i

�

END

Let P

j

be either a negative real number or a pair of 
omplex 
onjugate numbers

with negative real part and nonzero imaginary part. We 
all a parameter set of type

fp

1

; p

2

; : : : ; p

i

g = fP

1

;P

2

; : : : ;P

j

g a proper parameter set. The LYAPACK implementa-

tion of LRCF-ADI requires proper parameter sets fp

1

; p

2

; : : : ; p

i

max

g. If X

i

= Z

i

Z

H

i

is

generated by a proper parameter set fp

1

; : : : ; p

i

g, then X

i

is real, whi
h follows from (12).

However, if there are non-real parameters in this subsequen
e, Z

i

is not real. A more


ompli
ated modi�
ation of Algorithm 1 for generating real LRCFs has been proposed

in [6℄. However, in the LYAPACK implementation of Algorithm 1, real LRCFs 
an be

derived from the 
omplex fa
tors 
omputed by this algorithm (at the pri
e of additional


omputation). That means for the delivered 
omplex low rank Cholesky fa
tor Z = Z

i

max

a real low rank Cholesky fa
tor

~

Z is 
omputed in a 
ertain way, su
h that ZZ

H

=

~

Z

~

Z

T

.

The low rank Cholesky fa
tor

~

Z is returned as output parameter of the 
orresponding

routine lp_lradi.

3.1.2 Stopping 
riteria

The LYAPACK implementation of the LRCF-ADI iteration in the routine lp_lradi o�ers

the following stopping 
riteria:

� maximal number of iteration steps;

� toleran
e for the normalized residual norm (NRN);

� stagnation of the normalized residual norm (most likely 
aused by round-o� errors);

� smallness of the values kV

i

k

F

.
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Here, the normalized residual norm 
orresponding to the low rank Cholesky fa
tor Z is

de�ned as

NRN(Z) =

�

�

�

�

FZZ

T

+ ZZ

T

F

T

+GG

T

�

�

�

�

F

jjGG

T

jj

F

: (13)

Note: In LYAPACK, a quite e�
ient method for the 
omputation of this quantity is

applied. See [37℄ for details. However, the 
omputation of the values NRN(Z

i

) in the


ourse of the iteration 
an still be very expensive. Sometimes, this amount of 
omputation


an ex
eed the 
omputational 
ost for the a
tual iteration itself! Besides this, 
omputing

the normalized residual norms 
an require a 
onsiderable amount of memory. This amount

is about proportional to ti. For this reason, it 
an be preferable to avoid stopping 
riteria

based on the normalized residual norm (toleran
e for the NRN, stagnation of the NRN)

and to use 
heaper, possibly heuristi
al 
riteria instead.

In the sequel, we dis
uss the above stopping 
riteria and show some sample 
onvergen
e

histories (in terms of the normalized residual norm) for LRCF-ADI runs. Here, this

method is applied to a given test example, but the iterations are stopped by di�erent

stopping 
riteria and di�erent values of the 
orresponding stopping parameters. It should

be noted that the 
onvergen
e history plotted in Figures 2�5 is quite typi
al for LRCF-ADI

provided that shift parameters generated by lp_para are used in the given order. In the

�rst stage of the iteration, the logarithm of the normalized residual norm de
reases about

linearly. Typi
ally, this slope be
omes less steep, when more �ill-
onditioned� problems are


onsidered. (Su
h problems are in parti
ular Lyapunov equations, where many eigenvalues

of F are lo
ated near the imaginary axis, but far away from the real one. In 
ontrast,

symmetri
 problems, where the 
ondition number of F is quite large, 
an usually be

solved by LYAPACK within a reasonable number of iteration steps.) In the se
ond stage,

the normalized residual norm 
urve nearly stagnates on a relatively small level (mostly,

between 10

�12

and 10

�15

), whi
h is 
aused by round-o� errors. That means the a

ura
y

(in terms of the NRN) of the low rank Cholesky fa
tor produ
t Z

i

Z

H

i


annot be improved

after a 
ertain number of steps. Note, however, that the stagnation of the error norm

kZ

i

Z

H

i

�Xk

F


an o

ur a number of iteration steps later. Unfortunately, the error 
annot

be measured in pra
ti
e be
ause the exa
t solution X is unknown.

Ea
h of the four stopping 
riteria 
an be �a
tivated� or �avoided� by the 
hoi
e of the


orresponding input argument (stopping parameter) of the routine lp_lradi. If more

than one 
riterion is a
tivated, the LRCF-ADI iteration is stopped as soon as (at least)

one of the �a
tivated� 
riteria is ful�lled.

� Stopping 
riterion: maximal number of iteration steps. This 
riterion is

represented by the input parameter max_it in the routine lp_lradi. The iteration

is stopped by this 
riterion after max_it iterations steps. This 
riterion 
an be

avoided by setting max_it = +Inf (i.e., max_it = 1). Obviously, no additional


omputations need to be performed to evaluate it. The drawba
k of this stopping


riterion is, that it is not related to the attainable a

ura
y of the delivered low rank

Cholesky fa
tor produ
t ZZ

H

. This is illustrated by Figure 2.

� Stopping 
riterion: toleran
e for the normalized residual norms. This


riterion is represented by the input parameter min_res in the routine lp_lradi.

The iteration is stopped by this 
riterion as soon as

NRN(Z

i

) � min_res:
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Figure 2: Stopping 
riterion: maximal number of iteration steps. Solid line: max_it = 20;

dash-dotted line: max_it = 60; dotted line: max_it = 100. The other three 
riteria are

avoided.

This 
riterion 
an be avoided by setting min_res = 0. (Be
ause of round-o� errors

it is pra
ti
ally impossible to attain NRN(Z

i

) = 0.) It requires the 
omputation of

normalized residual norms and is 
omputationally expensive. A further drawba
k of

this 
riterion is that it will either stop the iteration before the maximal a

ura
y is

attained (see min_res = 10

�5

, 10

�10

in Figure 3) or it will not stop the iteration at all

(see min_res = 10

�15

in Figure 3). If one wants to avoid this 
riterion, but 
ompute

the 
onvergen
e history provided by the output ve
tor res, one should set min_res

to a value mu
h smaller than the ma
hine pre
ision (say, min_res = 10

�100

).

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 3: Stopping 
riterion: toleran
e for the normalized residual norm. Solid line:

min_res = 10

�5

; dash-dotted line: min_res = 10

�10

; dotted line: min_res = 10

�15

. The

other three 
riteria are avoided.

� Stopping 
riterion: stagnation of the normalized residual norm. This 
ri-

terion is represented by the input parameter with_rs in the routine lp_lradi. It is
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a
tivated if with_rs = 'S' and avoided if with_rs = 'N'. The iteration is stopped

by this 
riterion when a stagnation of the normalized residual norm 
urve is dete
ted.

We do not dis
uss the implementation of this 
riterion in detail here, but, roughly

speaking, the normalized residual norm 
urve is 
onsidered as �stagnating�, when no

noti
eable de
rease of the normalized residual norms is observed in 10 
onse
utive

iteration steps. In extreme 
ases, where the shape of the normalized residual norm


urve is not so 
learly subdivided in the linearly de
reasing and the stagnating part

as in Figure 4, this 
riterion might terminate the iteration prematurely. However, it

works well in pra
ti
e. It requires the 
omputation of normalized residual norms and

is 
omputationally expensive. Note that the delay between stagnation and stopping

of the 
urve is 10 iteration steps.
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Figure 4: Stopping 
riterion: Stagnation of the normalized residual norm. Solid line:

with_rs = 'S'; dotted line: with_rs = 'N'. The other three 
riteria are avoided.

� Stopping 
riterion: smallness of the values kV

i

k

F

. This 
riterion is represented

by the input parameter min_in in the routine lp_lradi. It is based on the obser-

vation that the values kV

i

k

F

tend to de
rease very fast. Note in this 
ontext that

V

i

V

H

i

is the di�eren
e between the ADI iterates X

i

and X

i�1

, and that the sequen
e

of the matri
es X

i

is monotoni
ally 
onverging (i.e., X

i

� X

i�1

). Loosely speaking,

this means the following. When kV

i

k

2

F

and 
onsequently kV

i

V

H

i

k

F

� kV

i

k

2

F

be
ome

nearly as small as the ma
hine pre
ision, then the �
ontribution� from iteration step

i � 1 to i is almost 
ompletely 
orrupted by round-o� errors and, thus, there is

no point in 
ontinuing the iteration. However, sin
e kV

i

k

F

is not monotoni
ally

de
reasing, it is required in lp_lradi that

kV

i

k

2

F

kZ

i

k

2

F

� min_in

is ful�lled in 10 
onse
utive iteration steps before the iteration is stopped to keep

the risk of a premature termination very small. The evaluation of this 
riterion is

inexpensive (see also [6℄) 
ompared to both 
riteria based on the normalized residual

norms. Moreover, it is less �stati
� as the 
riterion based on the number of iteration
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steps. Unfortunately, it is not 
lear how the a

ura
y of the approximate solution

Z

i

Z

T

i

is related to the ratio of kV

i

k

F

and kZ

i

k

F

. Thus, the 
riterion is not absolutely

safe. However, if the Lyapunov equation should be solved as a

urate as possible,

good results are usually a
hieved for values of min_in, that are slightly larger than

the ma
hine pre
ision (say, min_in = 10

�12

). The 
riterion 
an be avoided by setting

min_in = 0. See Figure 5.
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Figure 5: Stopping 
riterion: smallness of the values kV

i

k

F

. Solid line: min_in = 10

�5

;

dash-dotted line: min_in = 10

�10

; dotted line: min_in = 10

�15

. The other three 
riteria

are avoided.

We re
ommend to use (only) the stopping 
riterion related to with_rs if Lyapunov so-

lutions of high a

ura
y should be 
omputed and if it is a�ordable to 
ompute residual

norms. If the 
omputation of the residual norms must be avoided, the 
riterion related to

min_in is probably the best 
hoi
e.

3.1.3 The routine lp_lradi

The LRCF-ADI iteration is implemented in the LYAPACK routine lp_lradi. Here, we

provide a brief des
ription of this routine. For more details see the inline do
umentation

whi
h is displayed by typing the MATLAB 
ommand � help lp_lradi.

The routine 
an solve either the 
ontinuous time Lyapunov equation

FX +XF

T

= �GG

T

(14)

or to the �dual� 
ontinuous time Lyapunov equation

F

T

X +XF = �G

T

G: (15)

Here, F = A�B

f

K

T

f

. Basi
 matrix operations must be supplied by user-supplied fun
tions

for the matrix A (not F !). G in (14) or G

T

in (15) should 
ontain very few 
olumns


ompared to the system order. B

f

and K

f

are matri
es, that represent a so-
alled state

feedba
k. They are needed in the routine lp_lrnm for the Newton method, in whi
h

lp_lradi is invoked. In general, users will not use this option, whi
h means B

f

= K

f

= 0.
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However, if this is not the 
ase, the matri
es B

f

and K

f

must 
ontain very few 
olumns

to guarantee the e�
ien
y of the routine.

The approximate solution of either Lyapunov equation is given by the low rank

Cholesky fa
tor Z, for whi
h ZZ

H

� X. Z has typi
ally fewer 
olumns than rows.

(Otherwise, this routine and LYAPACK itself are useless!) In general, Z 
an be a 
omplex

matrix, but the produ
t ZZ

H

is real. lp_lradi 
an perform an optional internal post-

pro
essing step, whi
h guarantees that the delivered low rank Cholesky fa
tor Z is real.

More pre
isely, the 
omplex low rank Cholesky fa
tor delivered by the LRCF-ADI itera-

tion is transformed into a real low rank Cholesky fa
tor of the same size, su
h that both

low rank Cholesky fa
tor produ
ts are identi
al. However, doing this requires additional


omputation. (This option is not related to the �real version� of LRCF-ADI des
ribed in

[6℄.)

Furthermore, there exists an option for dire
tly generating the produ
t of the (approx-

imate) solution with a matrix, i.e., K

out

= ZZ

H

K

in

is 
omputed without forming the low

rank Cholesky fa
tor Z. Here, K

in

must 
ontain only few 
olumns. However, this option

should not be used by the user. It is needed in the impli
it version of the Newton method.

If this mode is used, stopping 
riteria based on the residual 
annot be applied.

Calling sequen
es:

Depending on the 
hoi
e of the mode parameter zk, the following two 
alling sequen
es

exist. However, it is re
ommended to use only the �rst mode.

� zk = 'Z':

[Z, flag, res, flp℄ = lp_lradi( tp, zk, r
, name, Bf, Kf, G, p, ...

max_it, min_res, with_rs, min_in, info)

� zk = 'K':

[K_out, flag, flp℄ = lp_lradi( tp, zk, r
, name, Bf, Kf, G, p, ...

K_in, max_it, min_in, info)

Input parameters:

tp: Mode parameter, whi
h is either 'B' or 'C'. If tp = 'B', CALE (14) is solved.

Otherwise, CALE (15) is solved.

zk: Mode parameter, whi
h is either 'Z' or 'K'. If zk = 'Z', the low rank Cholesky

fa
tor Z is 
omputed. Otherwise, K

out

= ZZ

H

K

in

is 
omputed dire
tly.

r
: Mode parameter, whi
h is either 'R' or 'C'. If r
 = 'C', the routine delivers a low

rank Cholesky fa
tor, whi
h is not real when non-real shift parameters are used.

Otherwise, the low rank Cholesky fa
tor resulting from the LRCF-ADI iteration is

transformed into a real low rank Cholesky fa
tor

~

Z, whi
h des
ribes the identi
al

approximate solution

~

Z

~

Z

T

.

~

Z is returned instead of Z.

name: The basis name of the USFs that realize BMOs with A.
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Bf: Feedba
k matrix B

f

, whi
h is not used expli
itely in general. For B

f

= 0, set Bf =

[℄.

Kf: Feedba
k matrix K

f

, whi
h is not used expli
itely in general. For K

f

= 0, set Kf =

[℄.

G: The matrix G.

p: Ve
tor 
ontaining the suitably ordered ADI shift parameters P = fp

1

; : : : ; p

l

g, whi
h

are delivered by the routine lp_para. If the number l of distin
t parameters is

smaller than i

max

in Algorithm 1, shift parameters are used 
y
li
ally. That means,

p

l+1

= p

1

, p

l+2

= p

2

, : : :, p

2l

= p

l

, p

2l+1

= p

1

, : : :

K_in: The matrix K

in

, whi
h is only used in the mode zk = 'K'.

max_it: Stopping parameter. See �3.1.2.

min_res: Stopping parameter. See �3.1.2.

with_rs: Stopping parameter. See �3.1.2.

min_in: Stopping parameter. See �3.1.2.

info: Parameter, whi
h determines the �amount� of information that is provided as

text and/or residual history plot. The following values are possible: info = 0 (no

information), 1, 2, and 3 (most possible information)

Output parameters:

Z: The low rank Cholesky fa
tor Z, whi
h is 
omplex if r
 = 'C' and p is not a real

ve
tor.

K_out: The matrix K

out

, whi
h is only returned in the mode zk = 'K'.

flag: A �ag, that shows by whi
h stopping 
riterion (or stopping parameter) the iteration

has been stopped. Possible values are 'I' (for max_it), 'R' (for min_res), 'S' (for

with_rs), and 'N' (for min_in).

res: A ve
tor 
ontaining the history of the normalized residual norms. res(1) = 1 and

res(i+1) is the normalized residual norm w.r.t. the iteration step i. If the stopping


riteria are 
hosen, so that the normalized residual norms need not be 
omputed,

res = [℄ is returned.

flp: A ve
tor 
ontaining the history of the �ops needed for the iteration. flp(1) = 0 and

flp(i+1) is the number of �ops required for the iteration steps 1 to i. flp displays

only the number of �ops required for the a
tual iteration. The numeri
al 
osts for

initializing and generating data by USFs, the 
omputation of ADI shift parameters,

and the 
omputation of normalized residual norms are not in
luded.
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3.2 Computation of ADI shift parameters

3.2.1 Theory and algorithm

In this se
tion, we brie�y des
ribe a pra
ti
al algorithm to 
ompute a set P = fp

1

; : : : ; p

l

g

of suboptimal shift parameters, whi
h are needed in the LRCF-ADI iteration. This al-

gorithm [37℄ is implemented in the routine lp_para, whose output is an ordered set of l

distin
t shift parameters.

The determination of (sub)optimal ADI shift parameters is 
losely 
onne
ted with a

rational minimax problem (e.g., [46, 49, 51℄) related to the fun
tion

s

P

(t) =

j(t� p

1

) � : : : � (t� p

l

)j

j(t+ p

1

) � : : : � (t+ p

l

)j

:

This minimax problem 
an be stated as the 
hoi
e of P, su
h that

max

t2�(F )

s

P

(t)

is minimized. Unfortunately, the spe
trum �(F ) is not known in general and it 
annot be


omputed inexpensively if F is very large. Furthermore, even if the spe
trum or bounds for

the spe
trum are known, no algorithms are available to 
ompute the optimal parameters

p

i

.

Our algorithm for the 
omputation of a set of suboptimal shift parameters is numer-

i
ally inexpensive and heuristi
. It is based on two ideas. First, we generate a dis
rete

set, whi
h �approximates� the spe
trum. This is done by a pair of Arnoldi pro
esses; e.g.,

[19℄. The �rst pro
ess w.r.t. F delivers k

+

values that tend to approximate �outer� eigen-

values, whi
h are generally not 
lose to the origin, well. The se
ond pro
ess w.r.t. F

�1

is

used to get k

�

approximations of eigenvalues near the origin, whose 
onsideration in the

ADI minimax problem is 
ru
ial. The eigenvalue approximations delivered by the Arnoldi

pro
esses are 
alled Ritz values. Se
ond, we 
hoose a set of shift parameters, whi
h is a

subset of the set of Ritz values R. This is done by a heuristi
, that delivers a suboptimal

solution for the resulting dis
rete optimization problem. Note that the order in whi
h this

heuristi
 delivers the parameters is advantageous. Loosely speaking, the parameters are

ordered su
h that parameters, whi
h are related to a strong redu
tion in the ADI error,

are applied �rst. For more details about the parameter algorithm, see [37℄.

Algorithm 2 (Suboptimal ADI parameters)

INPUT: F , l

0

, k

+

, k

�

OUTPUT: P = fp

1

; : : : ; p

l

g, where l = l

0

or l

0

+ 1

1. Choose b

0

2 R

n

at random.

2. Perform k

+

steps of the Arnoldi pro
ess w.r.t. (F; b

0

) and 
ompute the set of Ritz values

R

+

.

3. Perform k

�

steps of the Arnoldi pro
ess w.r.t. (F

�1

; b

0

) and 
ompute the set of Ritz

values R

�

.

4. R = f�

1

; : : : ; �

k

+

+k

�

g := R

+

[ (1=R

�

)
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5. IF R 6� C

�

, remove unstable elements from R and display a warning.

6. Dete
t i with max

t2R

s

f�

i

g

(t) = min

�2R

max

t2R

s

f�g

(t) and initialize

P :=

�

f�

i

g : �

i

real

f�

i

; ��

i

g : otherwise

:

WHILE 
ard(P) < l

0

7. Dete
t i with s

P

(�

i

) = max

t2R

s

P

(t) and set

P :=

�

P [ f�

i

g : �

i

real

P [ f�

i

; ��

i

g : otherwise

:

END WHILE

Obviously, the output of this algorithm is a proper parameter set; see �3.1.1. The number

of shift parameters is either l

0

or l

0

+ 1. Larger values of k

+

and k

�

lead to better

approximations of the spe
trum, but in
rease also the 
omputational 
ost, be
ause k

+

matrix-ve
tor multipli
ations with F must be 
omputed in the �rst Arnoldi algorithm

and k

�

systems of linear equations with F must be solved in the se
ond one. A typi
al


hoi
e of the triple (l

0

; k

+

; k

�

) is (20,50,25). For �tough� problems these values should be

in
reased. For �easy� ones they 
an be de
reased. Note that de
reasing l

0

will redu
e the

memory demand if shifted SLEs are solved dire
tly, be
ause in this 
ase the amount of

the memory needed to store the matrix fa
tors is proportional to l.

Steps 6 and 7 require that R is 
ontained in C

�

. However, this 
an only be guaranteed

if F + F

T

is negative de�nite and exa
t ma
hine pre
ision is used. If F is unstable, than

LYAPACK 
annot be applied anyway, be
ause the ADI iteration diverges or, at least,

stagnates. Experien
e shows that also in the 
ase, when F is stable but F + F

T

is not

de�nite, the Ritz values tend to be 
ontained in the left half of the 
omplex plane. If

this is not the 
ase, unstable Ritz values are removed in Step 5, whi
h is more or less

a not very elegant emergen
y measure. If LRCF-ADI run with the resulting parameters

diverges despite this measure, the matrix F is most likely unstable. In 
onne
tion with

the LRCF-NM or LRCF-NM-I applied to ill-
onditioned CAREs, this might be 
aused by

round-o� errors. There the so-
alled 
losed-loop matrix A � B

f

K

T

f


an be proved to be

stable (in exa
t arithmeti
s), but the 
losed-loop poles (i.e, the eigenvalues of A�B

f

K

T

f

)


an be extremely sensitive to perturbations, so that stability is not guaranteed in pra
ti
e.

Figure 6 shows the result of the parameter algorithm for a random example of order

n = 500. The triple (l

0

; k

+

; k

�

) is 
hosen as (20,50,25). 21 shift parameters were returned.

The pi
ture shows the eigenvalues of F , the set R of Ritz values, and the set P of shift

parameters. Note that the majority of the shift parameters is 
lose to the imaginary axis.

3.2.2 The routine lp_para

Calling sequen
es:

The following two 
alling sequen
es are possible:

[p,err_
ode,rw,Hp,Hm℄ = lp_para(name,Bf,Kf,l0,kp,km)

[p,err_
ode,rw,Hp,Hm℄ = lp_para(name,Bf,Kf,l0,kp,km,b0)

However, usually one is only interested in the �rst output parameter p.
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Figure 6: Results of Algorithm 2. �: eigenvalues of F ; 
: elements of R; �: elements of

P � R.

Input parameters:

name: The basis name of the USFs that realize BMOs with A.

Bf: Feedba
k matrix B

f

, whi
h is not used expli
itely in general. For B

f

= 0, set Bf =

[℄.

Kf: Feedba
k matrix K

f

, whi
h is not used expli
itely in general. For K

f

= 0, set Kf =

[℄.

l0: Parameter l

0

. Note that k

+

+ k

�

> 2l

0

is required.

kp: Parameter k

+

.

km: Parameter k

�

.

b0: This optional argument is an n-ve
tor, that is used as starting ve
tor in both Arnoldi

pro
esses. If b0 is not provided, this ve
tor is 
hosen at random, whi
h means that

di�erent results 
an be returned by lp_para in two di�erent runs with identi
al

input parameters.

Output parameters:

p: A ve
tor 
ontaining the ADI shift parameters P = fp

1

; : : : ; p

l

g, where either l = l

0

or

l = l

0

+1. It is re
ommended to apply the shift parameters in the same order in the

routine lp_lradi as they are returned by this routine.

err_
ode: This parameter is an error �ag, whi
h is either 0 or 1. If err_
ode = 1, the

routine en
ountered Ritz values in the right half of the 
omplex plane, whi
h are

removed in Step 5 of Algorithm 2. err_
ode = 0 is the standard return value.
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rw: A ve
tor 
ontaining the Ritz value set R.

Hp: The Hessenberg matrix produ
ed by the Arnoldi pro
ess w.r.t. F .

Hm: The Hessenberg matrix produ
ed by the Arnoldi pro
ess w.r.t. F

�1

.

3.3 Case studies

See �C.2.1.

4 Model redu
tion

4.1 Preliminaries

Roughly speaking, model redu
tion is the approximation of the dynami
al system

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(16)

with A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

by a redu
ed system

_

x̂(�) =

^

Ax̂(�) +

^

Bu(�)

y(�) =

^

Cx̂(�)

(17)

with

^

A 2 R

k;k

,

^

B 2 R

k;m

,

^

C 2 R

q;k

(or, possibly,

^

A 2 C

k;k

,

^

B 2 C

k;m

,

^

C 2 C

q;k

), and

k < n. In parti
ular, we 
onsider the 
ase where the system order n is large, and m and

q are mu
h smaller than n. Furthermore, we assume that A is stable. Several ways exist

to evaluate the approximation error between the original system and the redu
ed system.

Frequently, the di�eren
e between the systems (16) and (17) measured in the L

1

norm

kG�

^

Gk

L

1

= sup

!2R

kG(|!)�

^

G(|!)k (18)

is used to do this, where | =

p

�1 and k � k is the spe
tral norm of a matrix. Moreover,

G and

^

G are the transfer fun
tions of the systems (16) and (17), whi
h are de�ned as

G(s) = C(sI

n

� A)

�1

B and

^

G(s) =

^

C(sI

k

�

^

A)

�1

^

B.

LYAPACK 
ontains implementations of two algorithms (LRSRM and DSPMR) for


omputing redu
ed systems. Both model redu
tion algorithms belong to the 
lass of state

spa
e proje
tion methods, where the redu
ed system is given as

^

A = S

H

C

AS

B

;

^

B = S

H

C

B;

^

C = CS

B

: (19)

Here, S

B

; S

C

2 C

n;k

are 
ertain proje
tion matri
es, whi
h ful�ll the biorthogonality 
on-

dition

S

H

C

S

B

= I

k

:

Furthermore, both model redu
tion algorithms rely on low rank approximations to the

solutions (Gramians) of the 
ontinuous time Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(20)

A

T

X

C

+X

C

A = �C

T

C: (21)
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This means that we assume that low rank Cholesky fa
tors Z

B

2 C

n;r

B

and Z

C

2 C

n;r

C

with r

B

; r

C

<< n are available, su
h that Z

B

Z

H

B

� X

B

and Z

C

Z

H

C

� X

C

. In LYAPACK

these low rank Cholesky fa
tors are 
omputed by the LRCF-ADI iteration; see �3.1. In

��4.2 and 4.3 we will brie�y des
ribe the two model redu
tion algorithms LRSRM [39, 33℄

and DSPMR [32, 39℄. In [39℄ a third method 
alled LRSM (low rank S
hur method)

is proposed. However, this less e�
ient method is not implemented in LYAPACK. The

distin
t merit of LRSRM and DSPMR 
ompared to standard model redu
tion algorithms,

su
h as standard balan
ed trun
ation methods [47, 44, 48℄ or all-optimal Hankel norm

approximation [18℄), is their low numeri
al 
ost w.r.t. both memory and 
omputation. On

the other hand, unlike some standard methods, the algorithms implemented in LYAPACK

do generally not guarantee the stability of the redu
ed system. If stability is 
ru
ial, this

property must be 
he
ked numeri
ally after running LRSRM or DSPMR. If the redu
ed

system is not stable, several measures 
an be tried. For example, one 
an simply remove the

unstable modes by modal trun
ation [11℄. Another option is to run LRSRM or DSPMR

again using more a

urate low rank Cholesky fa
tors Z

B

and Z

C

. Note that for some

problems the error fun
tion kG(|!) �

^

G(|!)k in !, whi
h 
hara
terizes the frequen
y

response of the di�eren
e of both systems, 
an be evaluated by supplementary LYAPACK

routines; see �6.

If the low rank Cholesky fa
tors Z

B

and Z

C

delivered by the LRCF-ADI iteration

are not real, then the redu
ed systems are not guaranteed to be real. This problem is

dis
ussed more detailed in [33℄ for the low rank square root method. If the redu
ed

system needs to be real, it is re
ommended to 
he
k a posteriori whether the result of low

rank square root method or dominant subspa
e proje
tion model redu
tion is real. It is

possible to transform a redu
ed 
omplex system into a real one by a unitary equivalen
e

transformation; see [33℄. A mu
h simpler way, of 
ourse, is using the option r
 = 'R'

for whi
h the routine lp_lradi delivers real low rank Cholesky fa
tors (at the pri
e of a

somewhat in
reased numeri
al 
ost).

4.2 Low rank square root method

4.2.1 Theory and algorithm

The low rank square root method (This algorithm is named SLA in [33℄.) (LRSRM) [39, 33℄

is only a slight modi�
ation of the 
lassi
al square root method [47℄, whi
h in turn is a

numeri
ally advantageous version of the balan
ed trun
ation te
hnique [35℄. The following

algorithm is implemented in the LYAPACK routine lp_lrsrm:

Algorithm 3 (Low rank square root method (LRSRM))

INPUT: A, B, C, Z

B

, Z

C

, k

OUTPUT:

^

A,

^

B,

^

C

1. U

C

�U

H

B

:= Z

H

C

Z

B

(�thin� SVD with des
ending ordered singular values)

2. S

B

= Z

B

U

B (:;1:k)

�

�1=2

(1:k;1:k)

; S

C

= Z

C

U

C (:;1:k)

�

�1=2

(1:k;1:k)

3.

^

A = S

H

C

AS

B

;

^

B = S

H

C

B;

^

C = CS

B

The only di�eren
e between the 
lassi
al square root method and this algorithm is, that
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here (approximate) low rank Cholesky fa
tors Z

B

and Z

C

are used instead of exa
t

Cholesky fa
tors of the Gramians, whi
h have possibly full rank. This redu
es in par-

ti
ular the numeri
al 
ost for the singular value de
omposition in Step 1 
onsiderably.

However, there are two basi
 drawba
ks of LRSRM 
ompared to the �exa
t� square

root method. Unlike LRSRM, the latter delivers stable redu
ed systems under mild 
ondi-

tions. Furthermore, there exists an upper error bound for (18) for the standard square root

method, whi
h does not apply to the low rank square root method. Thus, it is not surpris-

ing that the performan
e of Algorithm 3 depends on the a

ura
y of the approximate low

rank Cholesky fa
tor produ
ts Z

B

Z

H

B

and Z

C

Z

H

C

and the value k, where k � rankZ

H

C

Z

B

.

This makes the 
hoi
e of the quantities r

B

, r

C

, and k a trade-o�. Large values of r

B

and

r

C

, and values of k mu
h smaller than rankZ

H

C

Z

B

tend to keep the deviation of the low

rank square root method from the standard square root method small. On the other hand

the 
omputational e�
ien
y of the low rank square roo method is de
reased in this way.

However, LRCF-ADI often delivers low rank Cholesky fa
tors Z

B

and Z

C

, whose produ
ts

approximate the system Gramians nearly up to ma
hine pre
ision. In this 
ase the re-

sults of the LYAPACK implementation of the low rank square root method will be about

as good as those by any standard implementation of the balan
ed trun
ation te
hnique,

whi
h, however, 
an be still numeri
ally mu
h more expensive.

Finally, note that the 
lassi
al square root method is well-suited to 
ompute (nu-

meri
ally) minimal realizations; e.g., [48℄. LRSRM (as well as DSPMR) 
an be used to


ompute su
h realizations for large systems. The term �numeri
ally minimal realization�

is not well-de�ned. Loosely speaking, it is rather the 
on
ept of 
omputing a redu
ed

system, for whi
h the (relative) approximation error (18) is of magnitude of the ma
hine

pre
ision. See Figure 14 in �C.3.3.

4.2.2 Choi
e of redu
ed order

In the LYAPACK implementation of the low rank square root method, the redu
ed or-

der k 
an be 
hosen a priori or in dependen
e of the des
ending ordered singular values

�

1

; �

2

; : : : ; �

r


omputed in Step 1, where r = rankZ

H

C

Z

B

.

� Maximal redu
ed order. The input parameters max_ord of the routine lp_lrsrm

pres
ribes the maximal admissible value for the redu
ed order k, i.e., k � max_ord

is required. If the 
hoi
e of this value should be avoided, one 
an set max_ord = n

or max_ord = [℄.

� Maximal ratio �

k

=�

1

. The input parameter tol pres
ribes the maximal admissible

value for the ratio �

k

=�

1

. That means k is 
hosen as the largest index for whi
h

�

k

=�

1

� tol. This means that one will generally 
hoose a value of tol between the

ma
hine pre
ision an 1.

In general, both parameters will determine di�erent values of k. The routine lp_lrsrm

uses the smaller value.

4.2.3 The routine lp_lrsrm

Algorithm LRSRM is implemented in the LYAPACK routine lp_lrsrm. We provide a

brief des
ription of this routine. For more details see the inline do
umentation whi
h is

displayed by typing the MATLAB 
ommand � help lp_lrsrm.
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Calling sequen
e:

[Ar ,Br, Cr, SB, SC, sigma℄ = lp_lrsrm( name, B, C, ZB, ZC, ...

max_ord, tol)

Input parameters:

name: The basis name of the user supplied fun
tions that realize basi
 matrix operations

with A.

B: System matrix B.

C: System matrix C.

ZB: LRCF Z

B

2 C

n;r

B

. This routine is only e�
ient if r

B

<< n.

ZC: LRCF Z

C

2 C

n;r

C

. This routine is only e�
ient if r

C

<< n.

max_ord: A parameter for the 
hoi
e of the redu
ed order k; see �4.2.2.

tol: A parameter for the 
hoi
e of the redu
ed order k; see �4.2.2.

Output parameters:

Ar: Matrix

^

A 2 C

k;k

of redu
ed system.

Br: Matrix

^

B 2 C

k;m

of redu
ed system.

Cr: Matrix

^

C 2 C

q;k

of redu
ed system.

SB: Proje
tion matrix S

B

.

SC: Proje
tion matrix S

C

.

sigma: Ve
tor 
ontaining the singular values 
omputed in Step 1.

Usually, one is only interested in the �rst three output parameters.

4.2.4 Case studies

See �C.3.

4.3 Dominant subspa
es proje
tion model redu
tion

4.3.1 Theory and algorithms

The dominant subspa
es proje
tion model redu
tion (DSPMR) [32, 39℄, whi
h is provided

as LYAPACK routine lp_dspmr, is more heuristi
 in nature. The basi
 idea behind this

method is that the input-state behavior and the state-output behavior of the system (16)

tend to be dominated by states, whi
h have a strong 
omponent w.r.t. the dominant

invariant subspa
es of the Gramians X

B

and X

C

. These dominant invariant subspa
es are

approximated by the left singular ve
tors of Z

B

and Z

C

provided that X

B

� Z

B

Z

H

B

and
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X

C

� Z

C

Z

H

C

. The motivation of the dominant subspa
e 
orre
tion method is dis
ussed

at length in [39℄. Compared to the low rank square root method, the approximation

properties of the redu
ed systems by DSPMR are often less satisfa
tory, i.e., the error

fun
tion kG(s) �

^

G(s)k tends to be less small. On the other hand, DSPMR sometimes

delivers a stable redu
ed system, when that by LRSRM is not stable. In DSPMR, the

stability of the redu
ed system is guaranteed at least ifA+A

T

is negative de�nite. Note also

that DSPMR uses an orthoproje
tion, whereas LRSRM is based on an oblique proje
tion.

For this reason, DSPMR is also advantageous w.r.t. preserving passivity.

Algorithm 4 (Dominant subspa
es proje
tion model redu
tion (DSPMR))

INPUT: A, B, C, Z

B

, Z

C

, k

OUTPUT:

^

A,

^

B,

^

C

1. Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

2. U�V

H

:= Z (�thin� SVD with des
ending ordered singular values)

3. S = U

(:;1:k)

4.

^

A = S

H

AS;

^

B = S

H

B;

^

C = CS

4.3.2 Choi
e of redu
ed order

In the LYAPACK implementation of DSPMR, the redu
ed order k 
an be 
hosen a priori

or in dependen
e of the des
ending ordered singular values �

1

; �

2

; : : : ; �

r


omputed in Step

2, where r = rankZ.

� Maximal redu
ed order. The input parameter max_ord of the routine lp_dspmr

pres
ribes the maximal admissible value for the redu
ed order k, i.e., k � max_ord

is required. To avoid this 
hoi
e, one 
an set max_ord = n or max_ord = [℄.

� Maximal ratio �

k

=�

1

. The input parameter tol determines the maximal admissible

value for the ratio �

k

=�

1

. More pre
isely, k is 
hosen as the largest index for whi
h

�

k

=�

1

�

p

tol. Note that here the square root of tol is used in 
ontrast to LRSRM.

(Note that the values �

i

have somewhat di�erent meanings in LRSRM and DSPMR.)

In general, both parameters will determine di�erent values of k. The routine lp_dspmr

uses the smaller value. Finally, it should be mentioned, that, at least in exa
t arithmeti
s,

both LRSRM and DSPMR (run with identi
al values max_ord and tol) deliver the same

result for state-spa
e symmetri
 systems (i.e., systems, where A = A

T

and C = B

T

).

4.3.3 The routine lp_dspmr

Algorithm DSPMR is implemented in the LYAPACK routine lp_dspmr. We provide a

brief des
ription of this routine. For more details see the inline do
umentation whi
h is

displayed by typing the MATLAB 
ommand � help lp_dspmr.
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Calling sequen
e:

[Ar ,Br, Cr, S℄ = lp_dspmr( name, B, C, ZB, ZC, max_ord, tol)

Input parameters:

name: The basis name of the user supplied fun
tions that realize basi
 matrix operations

with A.

B: System matrix B.

C: System matrix C.

ZB: LRCF Z

B

2 C

n;r

B

. This routine is only e�
ient if r

B

<< n.

ZC: LRCF Z

C

2 C

n;r

C

. This routine is only e�
ient if r

C

<< n.

max_ord: A parameter for the 
hoi
e of the redu
ed order k; see �4.3.2.

tol: A parameter for the 
hoi
e of the redu
ed order k; see �4.3.2.

Output parameters:

Ar: Matrix

^

A 2 C

k;k

of redu
ed system.

Br: Matrix

^

B 2 C

k;m

of redu
ed system.

Cr: Matrix

^

C 2 C

q;k

of redu
ed system.

S: Proje
tion matrix S.

4.3.4 Case studies

See �C.3.

5 Ri

ati equations and linear-quadrati
 optimal 
on-

trol problems

5.1 Preliminaries

This se
tion mainly deals with the e�
ient numeri
al solution of 
ontinuous time algebrai


Ri

ati equations of the type

C

T

QC + A

T

X +XA�XBR

�1

B

T

X = 0; (22)

where A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

with m; q << n. Moreover, we assume that

Q 2 R

q;q

is symmetri
, positive semide�nite and R 2 R

m;m

is symmetri
, positive de�nite.

Unlike in the other se
tions of this do
ument, we do not assume here that A is stable, but

it is required that a matrix K

(0)

is given, su
h that A� BK

(0)

T

is stable. Su
h a matrix

K

(0)


an be 
omputed by partial pole pla
ement algorithms [21℄, for example.
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In general, the solution of (22) is not unique. However, under the above assumptions, a

unique, stabilizing solution X exists, whi
h is the solution of interest in most appli
ations;

e.g., [34, 29℄. A solution X is 
alled stabilizing if the 
losed-loop matrix A�BR

�1

B

T

X is

stable.

Algebrai
 Ri

ati equations arise from numerous problems in 
ontrol theory, su
h as

robust 
ontrol or 
ertain balan
ing and model redu
tion te
hniques for unstable systems.

Another appli
ation, for whi
h algorithms are provided by LYAPACK, is the solution

of the linear quadrati
 optimal 
ontrol problem. In this paragraph, we brie�y des
ribe

the 
onne
tion between linear quadrati
 optimal 
ontrol problems and algebrai
 Ri

ati

equations. The linear quadrati
 optimal 
ontrol problem is a 
onstrained optimization

problem. The 
ost fun
tional to be minimized, is

J (u; y; x

0

) =

1

2

Z

1

0

y(�)

T

Qy(�) + u(�)

T

Ru(�)d� ; (23)

where Q = Q

T

� 0 and R = R

T

> 0. The 
onstraints are given by the dynami
al system

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(24)

and the initial 
ondition

x(0) = x

0

: (25)

The solution of this optimization problem is des
ribed by the feedba
k matrix K, that is

de�ned as

K = XBR

�1

; (26)

where X is the stabilizing solution of the algebrai
 Ri

ati equation (22). The 
orrespond-

ing 
ontrol fun
tion is given by the state-feedba
k

u(�) = �K

T

x(�)

and the initial 
ondition (25).

To sum up, we 
onsider two problems in this se
tion. The �rst one is the numeri
al


omputation of the stabilizing solution of the 
ontinuous time algebrai
 Ri

ati equations

(22). The se
ond problem is the solution of the linear quadrati
 optimal 
ontrol problem

(23,24,25), whi
h is a parti
ular appli
ation of algebrai
 Ri

ati equations. Its solution


an be des
ribed by the stabilizing solution X, from whi
h the optimal state-feedba
k 
an

easily be 
omputed via (26), or by the feedba
k K itself.

LYAPACK 
ontains implementations of the low rank Cholesky fa
tor Newton method

(LRCF-NM) and the impli
it low rank Cholesky fa
tor Newton method (LRCF-NM-I) pro-

posed in [6℄. LRCF-NM delivers a LRCF Z, su
h that the produ
t ZZ

H

approximates the

Ri

ati solution X. This means that LRCF-NM 
an be used to solve both 
ontinuous time

algebrai
 Ri

ati equations and linear quadrati
 optimal 
ontrol problems. The impli
it

version LRCF-NM-I, whi
h dire
tly 
omputes an approximation to K without forming Z

or X, 
an only be used to solve the linear quadrati
 optimal 
ontrol problem in a more

memory e�
ient way.

Both LRCF-NM and LRCF-NM-I are modi�
ations of the 
lassi
al Newton method

for algebrai
 Ri

ati equations [28℄, or more pre
isely, 
ombinations of the Newton method
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with the LRCF-ADI iteration. We will des
ribe these 
ombinations in ��5.2 and 5.3. The


lassi
al formulation of the Newton method is given by the double step iteration

Solve Lyapunov equation

(A

T

�K

(k�1)

B

T

)X

(k)

+X

(k)

(A� BK

(k�1)

T

) = �C

T

QC �K

(k�1)

RK

(k�1)

T

for X

(k)

;

K

(k)

= X

(k)

BR

�1

(27)

for k = 1; 2; 3; : : :, whi
h generates a sequen
e of iterates X

(k)

. This sequen
e 
onverges

towards the stabilizing solution X if the initial feedba
k K

0

is stabilizing, i.e., A�BK

(0)

T

is stable. Then, the 
onvergen
e is global and quadrati
.

5.2 Low rank Cholesky fa
tor Newton method

Due to the symmetry and de�niteness assumptions, the matri
es Q and R 
an be fa
tored

(by a Cholesky fa
torization, for example) as

Q =

~

Q

~

Q

T

and R =

~

R

~

R

T

; (28)

where the matri
es

~

Q 2 R

q;h

(h � q) and

~

R 2 R

m;m

have full rank. Thus, the Lyapunov

equations to be solved in (27) have the stru
ture

F

(k)

X

(k)

+X

(k)

F

(k)

T

= �G

(k)

G

(k)

T

where F

(k)

= A

T

� K

(k�1)

B

T

and G

(k)

=

�

C

T

~

Q K

(k�1)

~

R

�

. Note that G

(k)


ontains

only t = m + h << n 
olumns. Hen
e, these Lyapunov 
an be solved e�
iently by the

LRCF-ADI iteration. The Lyapunov solutions form a sequen
e of approximate solutions

to the algebrai
 Ri

ati equations (22). Therefore, the in
lusion of Algorithm 1 into the

Newton iteration (27) 
an be utilized to determine low rank Cholesky fa
tor produ
ts

whi
h approximate the solution of the algebrai
 Ri

ati equation (22). The resulting

algorithm low rank Cholesky fa
tor Newton method is des
ribed below.

Algorithm 5 (Low rank Cholesky fa
tor Newton method (LRCF-NM))

INPUT: A, B, C, Q, R, K

(0)

for whi
h A�BK

(0)

T

is stable (e.g., K

(0)

= 0 if A is stable)

OUTPUT: Z = Z

(k

max

)

, su
h that ZZ

H

approximates the solution X of the algebrai


Ri

ati equation (8)

FOR k = 1; 2; : : : ; k

max

1. Determine (sub)optimal ADI shift parameters p

(k)

1

; p

(k)

2

; : : : with respe
t to the

matrix F

(k)

= A

T

�K

(k�1)

B

T

.

2. G

(k)

=

�

C

T

~

Q
K

(k�1)

~

R

�

3. Compute matrix Z

(k)

by Algorithm 1, su
h that the low rank Cholesky fa
tor

produ
t Z

(k)

Z

(k)

H

approximates the solution of F

(k)

X

(k)

+X

(k)

F

(k)

T

= �G

(k)

G

(k)

T

.
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4. K

(k)

= Z

(k)

(Z

(k)

H

BR

�1

)

END

Similar to the LRCF-ADI iteration for the solution of Lyapunov equations, the distin
t

merit of this algorithm is that the (approximate) solution of the algebrai
 Ri

ati equations

is provided as a low rank Cholesky fa
tor produ
t rather than an expli
it dense matrix. In

parti
ular, this allows the appli
ation of the algorithm to problems of large order n, where

dense n�n matri
es 
annot be stored in the 
omputer memory. Moreover, the LRCF-NM

requires often mu
h less 
omputation 
ompared to the standard implementation, where

Lyapunov are solved dire
tly by the Bartels-Stewart or the Hammarling method; see �7.

See [6℄ for more te
hni
al details of the LRCF-NM.

5.3 Impli
it low rank Cholesky fa
tor Newton method

The idea behind the impli
it version of LRCF-NM is that the solution of the linear

quadrati
 optimal 
ontrol problem is des
ribed by the state feedba
k matrix K, whi
h

generally 
ontains mu
h less 
olumns than the low rank Cholesky fa
tor Z delivered by

LRCF-NM or even the exa
t solution X. LRCF-NM-I is mathemati
ally equivalent to

LRCF-NM. It 
omputes an approximation to K without forming LRCF-NM iterates Z

(k)

and LRCF-ADI iterates Z

(k)

i

at all. The tri
k is to generate the matrix K

(k)

itself in Step

3 of Algorithm 5 instead of solving the Lyapunov equation for Z

(k)

and 
omputing the

produ
t K

(k)

= Z

(k)

Z

(k)

H

BR

�1

in Step 4. Note that the matrix K

(k)


an be a

umulated

in the 
ourse of the �inner� LRCF-ADI iteration as

K

(k)

= lim

i!1

K

(k)

i

;

where

K

(k)

i

:= Z

(k)

i

Z

(k)

i

H

BR

�1

=

i

X

j=1

V

(k)

j

�

V

(k)

j

H

BR

�1

�

: (29)

This means, that the (exa
t) matrix K is the limit of the matri
es K

(k)

i

for k; i!1. This


onsideration motivates the following Algorithm 6, whi
h is best understood as a version

of the LRCF-NM with an inner loop (Steps 4 and 5) 
onsisting of interla
ed sequen
es

based on Step 3 in Algorithm 1 and the partial sums given by the right hand term in (29).

Algorithm 6 (Impli
it low rank Cholesky fa
tor Newton method (LRCF-NM-I))

INPUT: A, B, C, Q, R, K

(0)

for whi
h A�BK

(0)

T

is stable (e.g., K

(0)

= 0, if A is stable)

OUTPUT: K

(k

max

)

, whi
h approximates K given by (26)

FOR k = 1; 2; : : : ; k

max

1. Determine (sub)optimal ADI shift parameters p

(k)

1

; p

(k)

2

; : : : with respe
t to the

matrix F

(k)

= A

T

�K

(k�1)

B

T

.

2. G

(k)

=

�

C

T

~

Q K

(k�1)

~

R

�

3. V

(k)

1

=

q

�2Re p

(k)

1

(F

(k)

+ p

(k)

1

I

n

)

�1

G

(k)
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FOR i = 2; 3; : : : ; i

(k)

max

4. V

(k)

i

=

q

Re p

(k)

i

=Re p

(k)

i�1

�

V

(k)

i�1

� (p

(k)

i

+ �p

(k)

i�1

)(F

(k)

+ p

(k)

i

I

n

)

�1

V

(k)

i�1

�

5. K

(k)

i

= K

(k)

i�1

+ V

(k)

i

�

V

(k)

i

H

BR

�1

�

END

6. K

(k)

= K

(k)

i

(k)

max

END

Again, see [6℄ for more implementational details.

5.4 Stopping 
riteria

As far as possible, the same stopping 
riteria are used in LRCF-NM and LRCF-NM-I for

terminating the (outer) Newton iteration. The LYAPACK routine lp_lrnm, in whi
h both

methods are implemented, o�ers the following �ve 
riteria:

� maximal number of iteration steps: used in LRCF-NM and LRCF-NM-I;

� toleran
e for the normalized residual norm: used in LRCF-NM only;

� stagnation of the normalized residual norm (most likely 
aused by round-o� errors):

used in LRCF-NM only;

� smallness of the relative 
hange of the feedba
k matrix (RCF): Used in LRCF-NM

and LRCF-NM-I;

� stagnation of the relative 
hange of the feedba
k matrix: used in LRCF-NM and

LRCF-NM-I.

Here, the normalized residual norm 
orresponding to the low rank Cholesky fa
tor Z

(k)

is

de�ned as

NRN(Z

(k)

) =

kC

T

QC + A

T

Z

(k)

Z

(k)

H

+ Z

(k)

Z

(k)

H

A� Z

(k)

Z

(k)

H

BR

�1

B

T

Z

(k)

Z

(k)

H

k

F

kC

T

QCk

F

;

(30)

whereas the relative 
hange of the feedba
k matrix related to the matri
es K

(k�1)

and K

(k)

is

RCF(K

(k�1)

; K

(k)

) =

kK

(k)

�K

(k�1)

k

F

kK

(k)

k

F

: (31)

Many of the remarks on stopping 
riteria for the LRCF-ADI iteration made in �3.1.2 also

apply to stopping 
riteria for LRCF-NM or LRCF-NM-I. In parti
ular, the appli
ation of

stopping 
riteria, whi
h require the 
omputation of normalized residual norms is numer-

i
ally expensive. Although the applied 
omputational method [6℄ exploits the low rank

stru
ture of the approximate solutions, it 
an be more expensive than the iteration itself.

Moreover, it is not possible to use residual based stopping 
riteria for LRCF-NM-I, be
ause
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there the low rank Cholesky fa
tors Z

(k)

are not formed at all, whi
h is the only reason

why one would apply LRCF-NM-I instead of LRCF-NM.

The 
onsideration of (31) for the 
onstru
tion of heuristi
 stopping 
riteria is related

to the fa
t that in some sense the matri
es K

(k)

rather than the low rank Cholesky fa
tors

Z

(k)

or their produ
ts are the quantities of interest when the optimal 
ontrol problem

should be solved. However, stopping 
riteria related to K

(k)

are somewhat dubious when

the optimal feedba
k K or, more pre
isely, the produ
t BK

T

is very small 
ompared to A,

be
ause then small relative 
hanges in K hardly 
hange the 
losed-loop matrix A�BK

T

.

On the other hand, the a

ura
y of K does not play a 
ru
ial role in su
h situations, whi
h

means that a possibly premature termination of the Newton iteration would not be very

harmful.

We will now dis
uss the �ve stopping 
riteria. Convergen
e plots generated for an

example problem illustrate their e�e
ts. Note that, similar to the 
riteria for the LRCF-

ADI iteration des
ribed in �3.1.2, the following stopping 
riteria 
an be �a
tivated� or

�avoided�.

� Stopping 
riterion: maximal number of iteration steps. This 
riterion is

represented by the input parameter max_it_r in the routine lp_lrnm. The itera-

tion is stopped by this 
riterion after max_it_r iterations steps. This 
riterion 
an

be avoided by setting max_it_r = +Inf (i.e., max_it_r = 1). Obviously, no ad-

ditional 
omputations need to be performed to evaluate it. The drawba
k of this

stopping 
riterion is, that it is not dire
tly related to the attainable a

ura
y. This

is illustrated by Figure 7.
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Figure 7: Stopping 
riterion: maximal number of iteration steps. Solid line: max_it_r

= 5; dash-dotted line: max_it_r = 10; dotted line: max_it_r = 20. The other four 
riteria

are avoided.

� Stopping 
riterion: toleran
e for the normalized residual norm. This 
rite-

rion is represented by the input parameter min_res_r in the routine lp_lrnm. The

iteration is stopped by this 
riterion as soon as

NRN(Z

(k)

) � min_res_r:
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This 
riterion 
an be avoided by setting min_res_r = 0. (Be
ause of round-o� errors

it is pra
ti
ally impossible to attain NRN(Z

(k)

) = 0.) It requires the 
omputation of

normalized residual norms and is 
omputationally expensive. A further drawba
k of

this 
riterion is that it will either stop the iteration before the maximal a

ura
y is

attained (see min_res_r = 10

�5

, 10

�10

in Figure 8) or it will not stop the iteration

at all (see min_res_r = 10

�15

in Figure 8). If you want to avoid this 
riterion, but


ompute the 
onvergen
e history provided by the output ve
tor res_r, set min_res_r

to a value mu
h smaller than the ma
hine pre
ision (say, min_res_r = 10

�100

).
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Figure 8: Stopping 
riterion: toleran
e for the normalized residual norm. Solid line:

min_res_r = 10

�5

; dash-dotted line: min_res_r = 10

�10

; dotted line: min_res_r = 10

�15

.

Here, the dash-dotted and the solid line are identi
al. The other four 
riteria are avoided.

� Stopping 
riterion: stagnation of the normalized residual norm. This 
ri-

terion is represented by the input parameter with_rs_r in the routine lp_lrnm. It

is a
tivated if with_rs_r = 'S' and avoided if with_rs_r = 'N'. The iteration is

stopped by this 
riterion when a stagnation of the normalized residual norm 
urve is

dete
ted. In 
ontrast to the 
orresponding 
riterion for the LRCF-ADI iteration, this


riterion stops the iteration, when the stagnation of the normalized residual norm

is dete
ted for a single iteration step. Of 
ourse, this is a slightly heuristi
 
riterion

but it works very well in pra
ti
e. It requires the 
omputation of the normalized

residual norm and is 
omputationally expensive. See Figure 9.

� Stopping 
riterion: smallness of the the relative 
hange of the feedba
k

matrix. This 
riterion is represented by the input parameter min_
k_r in the

routine lp_lrnm. The iteration is stopped by this 
riterion as soon as

RCF(K

(k�1)

; K

(k)

) � min_
k_r:

This 
riterion 
an be avoided by setting min_
k_r = 0. It is numeri
ally very

inexpensive. On the other hand it is heuristi
 and not dire
tly related to the a

ura
y

in Z

(k)

. See Figure 10.
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Figure 9: Stopping 
riterion: Stagnation of the normalized residual norms. Solid line:

with_rs_r = 'S'; dotted line: with_rs_r = 'N'. The other four 
riteria are avoided.

� Stopping 
riterion: stagnation of the relative 
hange of the feedba
k ma-

trix. This 
riterion is represented by the input parameter with_ks_r in the routine

lp_lrnm. It is a
tivated if with_ks_r = 'L' and avoided if with_ks_r = 'N'. The

iteration is stopped by this 
riterion when a stagnation of the relative 
hange of the

feedba
k matrix is dete
ted. Similar to the last 
riterion, this is a inexpensive, but

heuristi
 stopping 
riterion. See Figure 11.

We re
ommend to use (only) the stopping 
riterion related to with_rs_r if algebrai


Ri

ati equations solutions of high a

ura
y should be 
omputed and if it is a�ordable to


ompute normalized residual norms. If the 
omputation of the normalized residual norms

must be avoided, the 
ombination of the 
riteria related to min_
k_r and with_rs_r is

probably the best 
hoi
e. Experien
e shows that often only one of them will stop the

iteration after a reasonable number of steps. See, for example, Figure 11, where the


riterion related to with_rs_r failed.

5.5 The routine lp_lrnm

Both LRCF-NM and LRCF-NM-I are implemented in the LYAPACK routine lp_lrnm. We

provide a brief des
ription of this routine. For more details see the inline do
umentation

whi
h is displayed by typing the MATLAB 
ommand � help lp_lrnm.

The approximate solution of the algebrai
 Ri

ati equations (22) is given by the low

rank Cholesky fa
tor Z, su
h that ZZ

H

� X. Z has typi
ally fewer 
olumns than rows.

Otherwise, LRCF-NM is useless! In general, Z 
an be a 
omplex matrix, but the produ
t

ZZ

H

is real. In the expli
it mode of lp_lrnm (i.e., the one for LRCF-NM) an optional

internal postpro
essing step 
an be performed, whi
h guarantees that the delivered low

rank Cholesky fa
tor Z is real. This requires additional 
omputation. This postpro
essing

is only done for the low rank Cholesky fa
tor 
omputed in the last Newton step. This

means, that its relative 
ontribution to the overall 
ost is smaller than in the LRCF-ADI

iteration.
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Figure 10: Stopping 
riterion: Smallness of the the relative 
hange of the feedba
k matrix.

Solid line: min_
k_r = 10

�4

; dash-dotted line: min_
k_r = 10

�8

; dotted line: min_
k_r

= 10

�16

. The other four 
riteria are avoided. Note that it is mere 
oin
iden
e, that

min_
k_r = 10

�8

(dash-dotted line) leads to the termination after the �optimal� number

of steps.

Calling sequen
es:

Depending on the 
hoi
e of the mode parameter zk, the following two 
alling sequen
es

exist. For zk = 'Z', the low rank Cholesky fa
tor Z is 
omputed by LRCF-NM, whereas

for zk = 'K', the feedba
k matrix K is 
omputed by LRCF-NM-I.

� zk = 'Z':

[Z, flag_r, res_r, flp_r, flag_l, its_l, res_l, flp_l℄ = ...

lp_lrnm( zk, r
, name, B, C, Q0, R0, K_in, max_it_r, ...

min_res_r, with_rs_r, min_
k_r, with_ks_r, info_r, kp, km, ...

l0, max_it_l, min_res_l, with_rs_l, min_in_l, info_l )

� zk = 'K':

[K_out, flag_r, flp_r, flag_l, its_l, flp_l℄ = lp_lrnm(...

zk, name, B, C, Q0, R0, K_in, max_it_r, min_
k_r, ...

with_ks_r, info_r, kp, km, l0, max_it_l, min_in_l, info_l )

Input parameters:

zk: Mode parameter, whi
h is either 'Z' or 'K'. If zk = 'Z', the low rank Cholesky fa
tor

Z = Z

(k

max

)

is 
omputed by LRCF-NM. Otherwise, K

(k

max

)

is dire
tly 
omputed by

LRCF-ADI-I.

r
: Mode parameter, whi
h is either 'R' or 'C'. If r
 = 'C', the routine delivers a low

rank Cholesky fa
tor, whi
h is not real when non-real shift parameters are used in

the last Newton step. Otherwise, this possibly 
omplex low rank Cholesky fa
tor is



36 5 RICCATI EQUATIONS

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 11: Stopping 
riterion: Stagnation of the relative 
hange of the feedba
k matrix.

Solid line: with_rs_r = 'L'; dotted line: with_rs_r = 'N'. The other four 
riteria are

avoided. For this parti
ular example, no stagnation in the relative 
hange of the feedba
k

matrix is observed within 20 iteration steps.

transformed into a real low rank Cholesky fa
tor

~

Z, whi
h des
ribes the identi
al

approximate solution

~

Z

~

Z

T

.

~

Z is returned instead of Z. The parameter r
 is not

needed in the mode for LRCF-NM-I, be
ause the returned feedba
k (parameter

K_out) is always real, provided that K

(0)

(parameter K_in) is real.

name: The basis name of the user supplied fun
tions that realize basi
 matrix operations

with A.

B: System matrix B.

C: System matrix C.

Q0: The Cholesky fa
tor

~

Q de�ned in (28).

R0: The Cholesky fa
tor

~

R de�ned in (28).

K_in: The stabilizing initial state feedba
k K

(0)

. If A is stable, K

(0)

= 0 
an be used, for

example.

max_it_r: Stopping parameter for (outer) Newton iteration. See �5.4.

min_res_r: Stopping parameter for (outer) Newton iteration. See �5.4.

with_rs_r: Stopping parameter for (outer) Newton iteration. See �5.4.

min_
k_r: Stopping parameter for (outer) Newton iteration. See �5.4.

with_ks_r: Stopping parameter for (outer) Newton iteration. See �5.4.

info_r: Parameter, whi
h determines the �amount� of information on the (outer) Newton

iteration that is provided as text and/or residual history plot. The following values

are possible: info_r = 0 (no information), 1, 2, and 3 (most possible information).
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l0: Parameter l

0

for the ADI parameter routine lp_para, whi
h is invoked in ea
h

Newton step. Note that k

+

+ k

�

> 2l

0

is required.

kp: Parameter k

+

for the ADI parameter routine lp_para.

km: Parameter k

�

for the ADI parameter routine lp_para.

max_it_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

min_res_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

with_rs_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

min_in_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

info_l: Parameter, whi
h determines the �amount� of information on the (inner) LRCF-

ADI iterations that is provided as text and/or residual history plot. The following

values are possible: info_l = 0 (no information), 1, 2, and 3 (most possible infor-

mation).

Output parameters:

Z: The low rank Cholesky fa
tor Z, whi
h is the result of LRCF-NM. It 
an be 
omplex

under 
ertain 
ir
umstan
es.

K_out: The matrix K

(k

max

)

, whi
h is the result of LRCF-NM-I.

flag_r: A �ag, that shows by whi
h stopping 
riterion (or stopping parameter) the

(outer) Newton iteration has been stopped. Possible values are 'I' (for max_it_r),

'R' (for min_res_r), 'S' (for with_rs_r), 'K' (for min_
k_r), and 'L' (for

with_ks_r).

res_r: A ve
tor 
ontaining the history of the algebrai
 Ri

ati equations normalized

residual norms (30). res_r(1) = 1 and res_r(i + 1) is the normalized residual

norm w.r.t. the Newton step i. If the stopping 
riteria are 
hosen, so that the

normalized residual norms need not be 
omputed, res_r = [℄ is returned.

flp_r: A ve
tor 
ontaining the history of the �ops needed for the algorithm. flp_r(1)

= 0 and flp_r(i + 1) is the number of �ops required for the Newton steps 1 to i.

flp_r displays the number of �ops required for the a
tual iteration. It also 
ontains

the numeri
al 
osts for all user supplied fun
tions invoked within lp_lrnm as well

as the 
omputation of the sets of ADI shift parameters. However, the 
osts for the


omputation of Ri

ati equations or Lyapunov equation normalized residual norms

are not in
luded.

flag_l: Ve
tor 
ontaining the values flag returned by the LRCF-ADI routine lp_lradi,

whi
h is 
alled in ea
h Newton step.

its_l: Ve
tor 
ontaining the number of iteration steps of the (inner) LRCF-ADI itera-

tions.
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res_l: Matrix whose 
olumns 
ontain the normalized residual norm history ve
tors res

returned by the LRCF-ADI routine lp_lradi. Here, normalized residual norms in

the sense of (13) are 
onsidered.

flp_l: Matrix whose 
olumns 
ontain the �op history ve
tors flp returned by the LRCF-

ADI routine lp_lradi in ea
h Newton step.

6 Supplementary routines and data �les

Supplementary routines are routines whi
h do not play a 
entral role in LYAPACK but 
an

be used to generate test problems in order to validate the results delivered by LYAPACK

main routines. There are also test examples in form of data �les provided.

6.1 Computation of residual norms for Lyapunov and Ri

ati

equations

The a

ura
y of the approximate solution ZZ

H

of the Lyapunov equation (2) or the Ri

ati

equation (8) 
an be assessed by the residual norm of the Lyapunov equation

kFZZ

H

+ ZZ

H

F

T

+GG

T

k

F

(32)

or the residual norm of the Ri

ati equation

kC

T

QC + A

T

ZZ

H

+ ZZ

H

A� ZZ

H

BR

�1

B

T

ZZ

H

k

F

: (33)

The following two LYAPACK routines 
an be used to 
ompute su
h norms.

lp_nrm: Computes the Lyapunov equation residual norm (32) by the te
hnique des
ribed

in [39℄.

lp_r
nrm: Computes the Ri

ati equation residual norm (33) by the te
hnique des
ribed

in [6℄.

Note, that these routines do not evaluate the residual matri
es, i.e., the terms inside the

norms. They rather make use of the low rank stru
ture of ZZ

H

, whi
h is often mu
h more

e�
ient w.r.t. both memory and 
omputation. However, both routines are not e�
ient if

the number of 
olumns in Z is almost n or even larger than n.

6.2 Evaluation of model redu
tion error

The a

ura
y of the redu
ed system (3), whi
h approximates the system (1), is usually

evaluated by 
omparing their transfer fun
tions

^

G(s) and G(s) on the imaginary axis,

whi
h show the frequen
y responses of both systems.

If the system is a single-input single-output (SISO) system (i.e., m = q = 1) and

the redu
ed system is not very a

urate, simultaneous magnitude Bode plots 
an be used

to 
ompare both frequen
y responses. To do this, one plots the fun
tions jG(|!)j and

j

^

G(|!)j simultaneously for a 
ertain �frequen
y range� ! 2 [!

min

; !

max

℄. There, exist also

Bode phase plots, where the phase angles of the 
omplex fun
tions G(|!) and

^

G(|!) are
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ompared, but these are usually less important. If the system is not a SISO system, mq

plots w.r.t. the single 
omponents of the transfer fun
tion 
an be used for the 
omparison.

If the system has multiple inputs or multiple outputs, or when the approximation error

of the redu
ed system is very small, error plots, whi
h show the fun
tion kG(|!)�

^

G(|!)k

for an interval ! 2 [!

min

; !

max

℄ are more meaningful.

To generate either type of plot, the following LYAPACK fun
tions 
an be used.

lp_lgfrq: Generates a set of logarithmi
ally distributed �frequen
y sampling points�

!

i

(i = 1; : : : ; i

max

) in the interval [!

min

; !

max

℄, i.e, !

1

= !

min

, !

i

max

= !

max

, and

!

i+1

=!

i

= 
onst.

lp_trfia: Generates the matri
es G(|!

i

) (i = 1; : : : ; i

max

). Their sta
ked 
olumns are

stored in an mq � i

max

�transfer fun
tion sample� matrix G

s

.

lp_gnorm: Computes kG(|!

i

)k (i = 1; : : : ; i

max

), where the matri
es kG(|!

i

)k are re-

trieved from the matrix G

s

generated by lp_trfia.

Finally, a few 
omments on the usage of these fun
tions should be made.

Unlike the other LYAPACK routines, whi
h have a

ess to the system matrix A,

lp_trfia does not make use of user supplied fun
tions. On the other hand, this rou-

tine 
an be applied to the more general form of a dynami
al system (whi
h is slightly

more general than (9))

E _x(�) = Ax(�) +Bu(�)

y(�) = Cx(�) +Du(�)

(34)

to generate its transfer fun
tionG(s) = C(sE�A)

�1

B+D on the imaginary axis. However,

it is required that all matri
es are given expli
itely. A and E should be preferably sparse.

Typi
ally, lp_trfia and lp_gnorm will be used subsequently. It is important that

the same set of frequen
y sampling points !

i

is used in both routines. If the mq Bode

magnitude plots of a system with multiple inputs or multiple outputs should be generated,

then lp_gnorm must be applied mq times to the single rows of the matrix G

s

generated

by lp_trfia. The approximation error fun
tion kG(|!)�

^

G(|!)k 
an be evaluated easily.

First, lp_trfia is applied to both the original and the redu
ed system, whi
h results in

the transfer fun
tion samples G

s

and

^

G

s

. Then, lp_gnorm is applied to the di�eren
e

G

s

�

^

G

s

, whi
h delivers the desired result.

6.2.1 Generation of test examples

The following two routines 
an generate very simple test examples of systems (1).

fdm_2d_matrix: Generates the negative sti�ness matrix for a 2D paraboli
 di�erential

equation, whi
h is semidis
retized by the �nite di�eren
e method (FDM). This sti�-

ness matrix 
an be used as system matrix A.

fdm_2d_ve
tor: Generates the 
orresponding load ve
tors, whi
h 
an be used as system

matri
es B and C

T

.

The matri
es of a generalized system (9), whi
h arises from the semidis
retization of a steel

rail 
ooling problem (see, e.g., [39℄) by the �nite element method (FEM), are provided in

two MATLAB data �les.
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rail821.mat: Data for a 
oarse dis
retization: n = 821, m = q = 6.

rail3113.mat: Data for a �ner dis
retization: n = 3113, m = q = 6.

6.3 Case studies

The usage of the routines for 
omputing Lyapunov equation or Ri

ati equation residual

norms is demonstrated in �C.2.1 and �C.4.1, respe
tively. The appli
ation of lp_lgfrq,

lp_trfia, and lp_gnorm is demonstrated in ��C.3.1 and C.3.3. Routines for the generation

of test examples and data �les are used in all demo programs in �C.

7 Alternative methods

Under 
ertain 
onditions LYAPACK works very well for the types of problems des
ribed

in �1.1. However, we are far from 
laiming that the methods implemented in this pa
kage

are the ultimate solution te
hniques for the respe
tive problems. In this se
tion, we want

to give a brief and by far not 
omplete survey on alternative methods. In many 
ases,

no 
omparative studies of these methods have been done. LYAPACK is one step in this

dire
tion.

� Lyapunov equations. Standard te
hniques for small dense Lyapunov equations

are the Bartels-Stewart method [3℄ or Hammarling method [20℄. Extensions of these

methods to generalized Lyapunov equations are des
ribed in [38℄. Large dense Lya-

punov equations 
an be solved by sign fun
tion based te
hniques [42, 1, 5, 8℄ (see also

referen
es to Ri

ati equations), whi
h perform well on parallel 
omputers. This also

applies to the squared Smith method [45℄. Relatively large sparse Lyapunov equa-

tions 
an be solved by (standard) ADI, e.g., [36, 50℄. Several approa
hes for the

iterative solution of large sparse Lyapunov equations exist. In LYAPACK low rank

versions of the ADI method, whi
h is related to rational matrix fun
tions, are used

[31, 37, 6, 33℄. Krylov subspa
e methods, whi
h are related to matrix polynomials

have been proposed in [43, 22, 24℄, for example.

� Model redu
tion. Model redu
tion methods for small, possibly dense systems

are abundant. The perhaps most popular te
hnique for redu
ing stable systems is

balan
ed trun
ation [35℄ and all-optimal Hankel norm approximation [18℄. Numeri-


ally elaborate implementations of the balan
ed trun
ation te
hnique are proposed

in [47, 44, 48℄. Algorithms for solving large dense model redu
tion problems on par-

allel 
omputers 
an be found in [9℄. The majority of model redu
tion methods for

large sparse problems is related to Padé approximations of the underlying transfer

fun
tion, e.g., [41, 15, 12, 16℄. A quite detailed survey on this topi
 
an be found

in [13℄. Methods that are (dire
tly) based on Krylov subspa
e te
hniques have been

proposed in [25, 23, 26℄. The algorithms implemented in LYAPACK are des
ribed

in [32, 39, 33℄ at length.

� Ri

ati equations and optimal 
ontrol problems. In LYAPACK, only the solu-

tion of large optimal 
ontrol problems by solving Ri

ati equations is 
onsidered [6℄.

However, �Ri

ati equation-free� solution te
hniques for optimal 
ontrol problems
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surely exist. Standard te
hniques for small, possibly dense Ri

ati equations are the

S
hur method [30℄, (standard) Newton method and modi�
ations [28, 34, 29, 4℄, and

the sign fun
tion method, e.g., [42, 10, 17, 27℄.

Numeri
ally reliable and versatile 
odes for dense problems of moderate size are 
an be

found in the freeware subroutine library SLICOT (Subroutine Library in Control Theory)

[7℄.
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A A
ronyms and symbols

ADI alternating dire
tion impli
it (algorithm)

BMO basi
 matrix operation

CALE 
ontinuous-time algebrai
 Lyapunov equation

CARE 
ontinuous-time algebrai
 Ri

ati equation

DSPMR dominant subspa
es proje
tion model redu
tion (algorithm)

FDM �nite di�eren
e method

FEM �nite element method

�op �oating point operation

NRN normalized residual norm

LQOCP linear-quadrati
 optimal 
ontrol problem

LRCF low rank Cholesky fa
tor

LRCF-ADI low rank Cholesky fa
tor ADI (algorithm)

LRCF-NM low rank Cholesky fa
tor Newton method (algorithm)

LRCF-NM-I low rank Cholesky fa
tor Newton method � impli
it version

(algorithm)

LRCFP low rank Cholesky fa
tor produ
t

LRSRM low rank square root method (algorithm)

LYAPACK Lyapunov pa
kage

PDE partial di�erential equation

RCF relative 
hange of the feedba
k matrix

SISO single-input single-output

SLE system of linear equations

SVD singular value de
omposition

USF user-supplied fun
tion

A

H


onjugate transposed of the matrix A

A

T

transposed of the matrix A

C , C

n

, C

n;m


omplex numbers, ve
tors, matri
es

R, R

n

, R

n;m

real numbers, ve
tors, matri
es

kAk spe
tral norm of the matrix A

kAk

F

Frobenius norm of the matrix A

kGk

L

1

L

1

norm of a dynami
al system

�(A) spe
trum of the matrix A

|

p

�1

� �wild 
ard�

B List of LYAPACK routines

B.1 Main routines

These are the essential 
omputational routines, whi
h are 
alled within the main programs

written by users themselves.

lp_dspmr: Model redu
tion algorithm DSPMR.
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lp_lradi: LRCF-ADI iteration for solving Lyapunov equations.

lp_lrnm: Both versions of Newton method (LRCF-NM and LRCF-NM-I) for solving

Ri

ati equations and optimal 
ontrol problems.

lp_lrsrm: Model redu
tion algorithm LRSRM.

lp_para: Computation of ADI shift parameters.

B.2 Supplementary routines and data �les

The following routines 
an be used for a veri�
ation of the results delivered by LYAPACK

main routines.

lp_gnorm: Computation of norms of transfer fun
tion sample.

lp_lgfrq: Computation of logarithmi
ally distributed frequen
y sampling points in a


ertain frequen
y range.

lp_nrm: E�
ient 
omputation of the Lyapunov equation residual norm.

lp_r
nrm: E�
ient 
omputation of the Ri

ati equation residual norm.

lp_trfia: Computation of transfer fun
tion sample.

The following routines and data �les are used for generating test examples.

fdm_2d_matrix: Generates negative sti�ness matrix for 2D PDE problem.

fdm_2d_ve
tor: Generates load ve
tor for 2D PDE problem.

rail821.mat: Data �le for steel rail 
ooling problem (order n = 821).

rail3113.mat: Data �le for steel rail 
ooling problem (order n = 3113).

B.3 Auxiliary routines

These are routines for internal use. They are not intended for expli
it use in main pro-

grams.

lp_arn_m: Arnoldi pro
ess w.r.t. F

�1

.

lp_arn_p: Arnoldi pro
ess w.r.t. F .

lp_e: Evaluation of 
ertain strings.

lp_mnmx: Suboptimal solution of ADI minimax problem.

lp_nrmu: E�
ient 
omputation of the Lyapunov equation residual norm based on up-

dated QR fa
torizations.

lp_prm: Bandwidth redu
tion by reordering the rows and 
olumns of a matrix or a matrix

pair.

lp_s: Auxiliary routine for lp_mnmx.
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B.4 User-supplied fun
tions

This 
lass of user supplied fun
tions 
omprises a relatively large number of routines. The

routine name and the purpose of the single routines arises from the respe
tive 
ombination

of the basis name and the extension(s)

[USF name℄ = [basis name℄_[extension(s)℄,

whi
h has been dis
ussed quite detailed in �2.2.

� [basis name℄:

as: Standard system (1); sparse matrix A is symmetri
 and shift parameters are

real; (shifted) linear systems are solved dire
tly.

au: Standard system (1); sparse matrix A is (possibly) unsymmetri
 or shift pa-

rameters are not ne
essarily real; (shifted) linear systems are solved dire
tly.

au_qmr_ilu: Standard system (1); sparse matrix A is (possibly) unsymmetri
 or

shift parameters are not ne
essarily real; (shifted) linear systems are solved

iteratively by QMR with ILU pre
onditioning.

msns: Generalized system (9); sparse (de�nite) matri
es M and N are symmetri


and shift parameters are real; (shifted) linear systems are solved dire
tly.

munu: generalized system (9); sparse matri
esM and N are (possibly) unsymmetri


or shift parameters are not ne
essarily real; (shifted) linear systems are solved

dire
tly.

� [extension(s)℄:

m_i: Initialization or generation of data needed for multipli
ations with A.

m: Perform multipli
ation.

m_d: Delete data that has been needed for multipli
ations.

l_i: Initialization or generation of data needed for solving linear systems with A.

l: Solve linear system.

l_d: Delete data that has been needed for solving linear systems.

s_i: Initialization or generation of data needed for solving shifted linear systems.

s: Solve shifted linear system.

s_d: Delete data that has been needed for solving shifted linear systems.

pre: Prepro
essing (not for au_qmr_ilu).

pst: Postpro
essing (not for au_qmr_ilu).

B.5 Demo programs

demo_l1: Demo program for LRCF-ADI iteration and 
omputation of ADI parameters.

demo_m1, demo_m2: Demo programs for model redu
tion.

demo_u1, demo_u2, demo_u3: Demo programs for user supplied fun
tions.

demo_r1: Demo program for Ri

ati equations and optimal 
ontrol problems.
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C Case studies

In this se
tion we provide listings of the demo programs whi
h are in
luded in LYAPACK.

In these programs, we usually provide matri
es that 
orrespond to transformed (prepro-


essed) problems with a zero subs
ript (e.g., A0 or A

0

) to distinguish them from data

related to the original problem (e.g., A or A).

C.1 Demo programs for user-supplied fun
tions

C.1.1 Demo program demo_u1:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'au_*'

%

%

% This demo program shows how the user-supplied fun
tions 'au_*' work.

% This means that we 
onsider (possibly) unsymmetri
 matri
es and

% (possibly) non-real shift parameters.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% As test example we use a simple FDM-semidis
retized PDE problem

% (an instationary 
onve
tion-diffusion heat equation on the unit square

% with homogeneous 1st kind boundary 
onditions).

% We reorder the 
olumns and rows of the resulting stiffness matrix by

% a random permutation, to generate a "bad" nonzero pattern.

n0 = 20; % n0 = number of grid points in either spa
e dire
tion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'10*x','100*y','0'); % Note: A is unsymmetri
.

[dummy,pm℄ = sort(randn(n0^2,1)); % generate a random permutation

A = A(pm,pm);

disp('Problem dimensions:')

n = size(A,1) % problem order

t = 3; j = sqrt(-1); % generate 
omplex matrix X0, whi
h

X0 = randn(n,t)+j*randn(n,t); % 
ontains mu
h fewer 
olumns than rows

% -----------------------------------------------------------------------
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% Prepro
essing

% -----------------------------------------------------------------------

[A0,dummy,dummy,prm,iprm℄ = au_pre(A,[℄,[℄);

% au_pre realizes a prepro
essing:

% - The 
olumns and rows of A are simultaneously

% reordered to redu
e the bandwidth. The result

% is A0. prm and iprm are the 
orresponding

% permutation and inverse permutation.

% - Sin
e we 
onsider only the matrix A but not

% a dynami
al system, we use [℄ as 2nd and 3rd

% input parameter. dummy = [℄ is returned.

figure(1), hold off, 
lf

spy(A)

title('Before prepro
essing: nonzero pattern of A.')

figure(2), hold off, 
lf

spy(A0)

title('After prepro
essing: nonzero pattern of A_0.')

disp('Verifi
ation (test_1, test_2, ... should be small):')

% -----------------------------------------------------------------------

% Multipli
ation of matrix A0 with X0

% -----------------------------------------------------------------------

au_m_i(A0); % initialization and generation of data needed for matrix

% multipli
ations with A0 and A0'

Y0 = au_m('N',X0); % 
ompute Y0 = A0*X0

T0 = A0*X0;

test_1 = norm(Y0-T0,'fro')

% -----------------------------------------------------------------------

% Multipli
ation of (transposed) matrix A0' with X0

% -----------------------------------------------------------------------

Y0 = au_m('T',X0); % 
ompute Y0 = A0'*X0

T0 = A0'*X0;

test_2 = norm(Y0-T0,'fro')
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% -----------------------------------------------------------------------

% Solution of system of linear equations with A0

% -----------------------------------------------------------------------

au_l_i; % initialization for solving systems with A0 and A0'

Y0 = au_l('N',X0); % solve A0*Y0 = X0

test_3 = norm(A0*Y0-X0,'fro')

% -----------------------------------------------------------------------

% Solution of (transposed) system of linear equations with A0'

% -----------------------------------------------------------------------

Y0 = au_l('T',X0); % solve A0'*Y0 = X0

test_4 = norm(A0'*Y0-X0,'fro')

% -----------------------------------------------------------------------

% Solve shifted systems of linear equations, i.e.

% solve (A0+p(i)*I)*Y0 = X0.

% -----------------------------------------------------------------------

disp('Shift parameters:')

p = [ -1; -2+3*j; -2-3*j ℄

au_s_i(p) % initialization for solution of shifted systems of linear

% equations with system matrix A0+p(i)*I and A0'+p(i)*I

% (i = 1,...,3)

Y0 = au_s('N',X0,1);

test_5 = norm(A0*Y0+p(1)*Y0-X0,'fro')

Y0 = au_s('N',X0,2);

test_6 = norm(A0*Y0+p(2)*Y0-X0,'fro')

Y0 = au_s('N',X0,3);

test_7 = norm(A0*Y0+p(3)*Y0-X0,'fro')

% -----------------------------------------------------------------------

% Solve (transposed) shifted systems of linear equations, i.e.

% solve (A0'+p(i)*I)*Y0 = X0.

% -----------------------------------------------------------------------

Y0 = au_s('T',X0,1);
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test_8 = norm(A0'*Y0+p(1)*Y0-X0,'fro')

Y0 = au_s('T',X0,2);

test_9 = norm(A0'*Y0+p(2)*Y0-X0,'fro')

Y0 = au_s('T',X0,3);

test_10 = norm(A0'*Y0+p(3)*Y0-X0,'fro')

% -----------------------------------------------------------------------

% Postpro
essing

% -----------------------------------------------------------------------

%

% There is no postpro
essing.

% -----------------------------------------------------------------------

% Destroy global data stru
tures (
lear "hidden" global variables)

% -----------------------------------------------------------------------

au_m_d; % 
lear global variables initialized by au_m_i

au_l_d; % 
lear global variables initialized by au_l_i

au_s_d(p); % 
lear global variables initialized by au_s_i

C.1.2 Demo program demo_u2:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'au_qmr_ilu_*'

%

%

% This demo program shows how the user-supplied fun
tions 'au_qmr_ilu_*'

% work.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% As test example, we use a simple FDM-semidis
retized PDE problem

% (an instationary 
onve
tion-diffusion heat equation on the unit square

% with homogeneous 1st kind boundary 
onditions).

% We reorder the 
olumns and rows of the resulting stiffness matrix by

% a random permutation to generate a "bad" nonzero pattern.

n0 = 30; % n0 = number of grid points in either spa
e dire
tion;
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% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'10*x','100*y','0'); % Note: A is unsymmetri
.

[dummy,pm℄ = sort(randn(n0^2,1)); % generate a random permutation

A = A(pm,pm);

disp('Problem dimensions:')

n = size(A,1) % problem order

t = 3; j = sqrt(-1); % generate 
omplex matrix X, whi
h

X = randn(n,t)+j*randn(n,t); % 
ontains mu
h fewer 
olumns than rows

% -----------------------------------------------------------------------

% Prepro
essing

% -----------------------------------------------------------------------

%

% There is no prepro
essing.

figure(1), hold off, 
lf

spy(A)

title('Nonzero pattern of A.')

disp('Verifi
ation (test_1, test_2, ... should be small):')

% -----------------------------------------------------------------------

% Multipli
ation of matrix A with X

% -----------------------------------------------------------------------

m
 = 'M', % optimize for memory, i.e., pre
onditioners will be

% generated right before any QMR run

max_it_qmr = 50, % maximal number of QMR iteration steps

tol_qmr = 1e-15, % normalized residual norm for stopping the QMR

% iterations

tol_ilu = 1e-2, % dropping toleran
e for generating ILU pre
onditioners

info_qmr = 2, % amount of displayed information on performan
e of

% ILU-QMR iteration

disp('NOTE: The USFs will return a warning message, when they fail to')

disp(' fulfill the stopping 
riteria for the ILU-QMR iteration.')

disp(' Also, the attained a

ura
y is displayed, whi
h allows the')

disp(' user to judge, whether the results are still a

eptable or')

disp(' not.')
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pause(5)

au_qmr_ilu_m_i(A,m
,max_it_qmr,tol_qmr,tol_ilu,info_qmr);

% initialization and generation of data needed for matrix

% multipli
ations with A

Y = au_qmr_ilu_m('N',X); % 
ompute Y = A*X (here, of 
ourse, QMR is

% not involved)

T = A*X;

test_1 = norm(Y-T,'fro')

% -----------------------------------------------------------------------

% Multipli
ation of (transposed) matrix A' with X

% -----------------------------------------------------------------------

Y = au_qmr_ilu_m('T',X); % 
ompute Y = A'*X (here, of 
ourse, QMR is

% not involved)

T = A'*X;

test_2 = norm(Y-T,'fro')

% -----------------------------------------------------------------------

% Solution of system of linear equations with A

% -----------------------------------------------------------------------

au_l_i; % initialization for solving systems with A and A'

Y = au_qmr_ilu_l('N',X); % solve A*Y = X

test_3 = norm(A*Y-X,'fro')

% -----------------------------------------------------------------------

% Solution of (transposed) system of linear equations with A'

% -----------------------------------------------------------------------

Y = au_qmr_ilu_l('T',X); % solve A'*Y = X

test_4 = norm(A'*Y-X,'fro')

% -----------------------------------------------------------------------

% Solve shifted systems of linear equations, i.e.

% solve (A+p(i)*I)*Y = X.

% -----------------------------------------------------------------------

disp('Shift parameters:')
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p = [ -1; -2+3*j; -2-3*j ℄

au_qmr_ilu_s_i(p) % initialization for solution of shifted systems of

% linear equations with system matrix A+p(i)*I and

% A'+p(i)*I (i = 1,...,3)

Y = au_qmr_ilu_s('N',X,1);

test_5 = norm(A*Y+p(1)*Y-X,'fro')

Y = au_qmr_ilu_s('N',X,2);

test_6 = norm(A*Y+p(2)*Y-X,'fro')

Y = au_qmr_ilu_s('N',X,3);

test_7 = norm(A*Y+p(3)*Y-X,'fro')

% -----------------------------------------------------------------------

% Solve (transposed) shifted systems of linear equations, i.e.

% solve (A'+p(i)*I)*Y = X.

% -----------------------------------------------------------------------

Y = au_qmr_ilu_s('T',X,1);

test_8 = norm(A'*Y+p(1)*Y-X,'fro')

Y = au_qmr_ilu_s('T',X,2);

test_9 = norm(A'*Y+p(2)*Y-X,'fro')

Y = au_qmr_ilu_s('T',X,3);

test_10 = norm(A'*Y+p(3)*Y-X,'fro')

% -----------------------------------------------------------------------

% Postpro
essing

% -----------------------------------------------------------------------

%

% There is no postpro
essing.

% -----------------------------------------------------------------------

% Destroy global data stru
tures (
lear "hidden" global variables)

% -----------------------------------------------------------------------

au_qmr_ilu_m_d; % 
lear global variables initialized by au_qmr_ilu_m_i

au_qmr_ilu_l_d; % 
lear global variables initialized by au_qmr_ilu_l_i

au_qmr_ilu_s_d(p); % 
lear global variables initialized by

% au_qmr_ilu_s_i
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C.1.3 Demo program demo_u3:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'munu_*'

%

%

% This demo program shows how the user-supplied fun
tions 'munu_*' work.

% In this parti
ular 
ase, we 
onsider a generalized dynami
al system

% with symmetri
 matri
es M and N, but we will use non-real shift

% parameters. For this reason, 'munu_*' is used instead of 'msns_*'.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% As test example, we use an FEM-semidis
retized problem, whi
h leads to

% a generalized system where M (the mass matrix) and N (the negative

% stiffness matrix) are sparse, symmetri
, and definite.

load rail821 % load the matri
es M N

disp('Problem dimensions:')

n = size(M,1) % problem order

t = 3; j = sqrt(-1); % generate 
omplex matrix X0, whi
h

X0 = randn(n,t)+j*randn(n,t); % 
ontains mu
h fewer 
olumns than rows

% -----------------------------------------------------------------------

% Prepro
essing

% -----------------------------------------------------------------------

[M0,ML,MU,N0,dummy,dummy,prm,iprm℄ = munu_pre(M,N,[℄,[℄);

% munu_pre realizes a prepro
essing:

% - The 
olumns and rows of M and N are

% simultaneously reordered to redu
e the

% bandwidth. The result is M0 and N0. prm and

% iprm are the 
orresponding permutation and

% inverse permutation.

% - A Cholesky fa
torization of M is 
omputed,

% so that the impli
it system matrix A0 is

% A0 = inv(ML)*N0*inv(MU).

% - Sin
e we 
onsider only the matrix A0 but not

% a dynami
al system, we use [℄ as 2nd and 3rd
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% input parameter. dummy = [℄ is returned.

figure(1), hold off, 
lf

spy(M)

title('Before prepro
.: nonzero pattern of M. That of N is the same.')

figure(2), hold off, 
lf

spy(M0)

title('After prepro
.: nonzero pattern of M_0. That of N_0 is the same.')

disp('Verifi
ation (test_1, test_2, ... should be small):')

% -----------------------------------------------------------------------

% Multipli
ation of matrix A0 with X0

% -----------------------------------------------------------------------

munu_m_i(M0,ML,MU,N0) % initialization and generation of data needed

% for matrix multipli
ations with A0

Y0 = munu_m('N',X0); % 
ompute Y0 = A0*X0

T0 = ML\(N0*(MU\X0));

test_1 = norm(Y0-T0,'fro')

% -----------------------------------------------------------------------

% Solution of system of linear equations with A0

% -----------------------------------------------------------------------

munu_l_i; % initialization for solving systems solve with A0

Y0 = munu_l('N',X0); % solve A0*Y0 = X0

test_2 = norm(ML\(N0*(MU\Y0))-X0,'fro')

% -----------------------------------------------------------------------

% Solve shifted systems of linear equations, i.e.

% solve (A0+p(i)*I)*Y0 = X0.

% -----------------------------------------------------------------------

disp('Shift parameters:')

p = [ -1; -2+3*j; -2-3*j ℄

munu_s_i(p) % initialization for solution of shifted systems of linear

% equations with system matrix A0+p(i)*I (i = 1,...,3)
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Y0 = munu_s('N',X0,1);

test_3 = norm(ML\(N0*(MU\Y0))+p(1)*Y0-X0,'fro')

Y0 = munu_s('N',X0,2);

test_4 = norm(ML\(N0*(MU\Y0))+p(2)*Y0-X0,'fro')

Y0 = munu_s('N',X0,3);

test_5 = norm(ML\(N0*(MU\Y0))+p(3)*Y0-X0,'fro')

% -----------------------------------------------------------------------

% Postpro
essing

% -----------------------------------------------------------------------

%

% There is no postpro
essing.

% -----------------------------------------------------------------------

% Destroy global data stru
tures (
lear "hidden" global variables)

% -----------------------------------------------------------------------

munu_m_d; % 
lear global variables initialized by munu_m_i

munu_l_d; % 
lear global variables initialized by munu_l_i

munu_s_d(p); % 
lear global variables initialized by munu_s_i

C.2 Demo program for LRCF-ADI iteration and algorithm for


omputing ADI parameters

C.2.1 Demo program demo_l1

%

% SOLUTION OF LYAPUNOV EQUATION BY THE LRCF-ADI METHOD (AND GENERATION

% OF ADI PARAMETERS)

%

% This demo program shows how the routines 'lp_para' (
omputation of

% ADI shift parameters) and 'lp_lradi' (LRCF-ADI iteration for the

% solution of the Lyapunov equation F*X+X*F'=-G*G') work. Also, the

% use of user-supplied fun
tions is demonstrated.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% As test example, we use a simple FDM-semidis
retized PDE problem

% (an instationary 
onve
tion-diffusion heat equation on the unit square
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% with homogeneous 1st kind boundary 
onditions).

n0 = 20; % n0 = number of grid points in either spa
e dire
tion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

F = fdm_2d_matrix(n0,'10*x','100*y','0');

G = fdm_2d_ve
tor(n0,'.1<x<=.3');

disp('Problem dimensions:')

n = size(G,1) % problem order

m = size(G,2) % number of 
olumns in fa
tor of r.h.s. (mostly, the rank

% of the r.h.s.)

% -----------------------------------------------------------------------

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions and 
omputation of ADI shift parameters

% -----------------------------------------------------------------------

%

% Note that the routines 'au_m_i', 'au_l_i', and 'au_s_i' 
reate global

% variables, whi
h 
ontain the data that is needed for the effi
ient

% realization of basi
 matrix operations with F (multipli
ations,

% solution of systems of linear equations, solution of shifted systems

% of linear equations).

name = 'au'; % basis name of user-supplied fun
tions applied to the

% problem with nonsymmetri
 F. Note: in this 
lass of

% user-supplied fun
tions, sparse LU fa
torizations are

% applied to solve (shifted) systems of linear equations.

f = flops;

[F0,G0,dummy,prm,iprm℄ = au_pre(F,G,[℄); % prepro
essing (reordering

% for bandwidth redu
tion)

% Note the dummy parameter,

% whi
h will be set to [℄ on

% exit.

au_m_i(F0); % initialization for matrix multipli
ations with F0

au_l_i; % initialization for solving systems with F0 (This is needed in

% the Arnoldi algorithm w.r.t. inv(F0). The Arnoldi algorithm

% is part of the algorithm in 'lp_para'.)

disp('Parameters for heuristi
 algorithm whi
h 
omputes ADI parameters:')
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l0 = 15 % desired number of distin
t shift parameters

kp = 50 % number of steps of Arnoldi pro
ess w.r.t. F0

km = 25 % number of steps of Arnoldi pro
ess w.r.t. inv(F0)

b0 = ones(n,1); % This is just one way to 
hoose the Arnoldi start

% ve
tor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); % 
omputation of ADI shift

% parameters

disp('A
tual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

au_s_i(p) % initialization for shifted systems of linear equations with

% F0+p(i)*I (i = 1,...,l)

disp('Flops required for a-priori 
omputations:')

a_priori_flops = flops-f

% -----------------------------------------------------------------------

% Solution of Lyapunov equation F*X+X*F' = -G*G' (or, more pre
isely,

% the transformed equation F0*X0+X0*F0' = -G0*G0') by LRCF-ADI iteration

% -----------------------------------------------------------------------

%

% The approximate solution is given by the low rank Cholesky fa
tor Z0,

% i.e., Z0*Z0' is approximately X0

%

% The stopping 
riteria are 
hosen, su
h that the iteration is stopped

% shortly after the residual 
urve stagnates. This requires the sometimes

% expensive 
omputation of the residual norms. (If you want to avoid

% this, you might 
hoose max_it = 500 (large value), min_res = 0

% ("avoided"), with_rs = 'N' ("avoided"), min_in = 1e-12 ("a
tivated").)

disp('Parameters for stopping 
riteria in LRCF-ADI iteration:')

max_it = 500 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs = 'S' % stopping 
riterion "stagnation of the normalized

% residual norms" a
tivated

min_in = 0 % threshold for smallness of values ||V_i||_F (
riterion

% is "avoided")
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disp('Further input parameters of the routine ''lp_lradi'':');

tp = 'B' % type of Lyapunov equation to be solved

% (here, F0*X0+X0*F0'=-G0*G0')

zk = 'Z' % 
ompute Z0 or generate Z0*Z0'*K0 (here, Z0)

r
 = 'C' % 
ompute possibly 
omplex Z0 or demand for real Z0 (here,

% a 
omplex matrix Z0 may be returned)

Kf = [℄, Bf = [℄ % feedba
k matri
es (these parameters are only used

% in the Newton iteration)

info = 3 % information level (here, maximal amount of information is

% provided during the LRCF-ADI iteration)

figure(1), hold off; 
lf; % (lp_lradi will plot residual history.)

[Z0,flag,res,flp℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,G0,p,max_it,min_res,...

with_rs,min_in,info);

% Note that in lp_lradi the transformed r.h.s.

% matrix G0 must be used.

disp('Termination flag of the routine ''lp_lradi'':')

flag

disp('Internally 
omputed normalized residual norm (of final iterate):');

final_nrn = res(end)

disp('Number of flops required for the whole iteration');

disp('(without a-priori 
omputation and 
omputation of residual norm):');

lr
f_adi_flops = flp(end)

% -----------------------------------------------------------------------

% Postpro
essing, destroy global data stru
tures

% -----------------------------------------------------------------------

%

% NOTE: The matri
es F and G have been reordered in the prepro
essing

% step (''au_pre'') resulting in F0 and G0. This means that the rows of

% the matrix Z0 must be re-reordered in a postpro
essing step to obtain

% the solution to the original Lyapunov equation!

Z = au_pst(Z0,iprm);

au_m_d; % 
lear global variables initialized by au_m_i

au_l_d; % 
lear global variables initialized by au_l_i

au_s_d(p); % 
lear global variables initialized by au_s_i

disp('Size of Z:');

size_Z = size(Z)

disp('Is Z real ( 0 = no, 1 = yes )?')
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is_real = ~any(any(imag(Z)))

% -----------------------------------------------------------------------

% Verify the result

% -----------------------------------------------------------------------

%

% Note that this is only an "illustrative" way of verifying the a

ura
y

% by 
omputing the (normalized) residual norm. A more pra
ti
al (be
ause

% less expensive) way is evaluating the residual norm by means of the

% routine 'lp_nrm' (Must be applied before postpro
essing!), if the

% residual norms have not been generated during the iteration.

disp('The attained residual norm:')

res_norm = norm(F*Z*Z'+Z*Z'*F'+G*G','fro')

disp('The attained normalized residual norm:')

normal_res_norm = res_norm/norm(G*G','fro')

C.2.2 Results and remarks

In demo_l1 the LRCF-ADI iteration is stopped by the stopping 
riterion related to the

parameter with_rs (stagnation of the residual norm). The number of iteration steps is 43.

Hen
e, the low rank Cholesky fa
tor Z is a 400� 43 matrix. It is not real. The attained

normalized residual norm is approximately 1:4 � 10

�15

. About 4 � 10

6

�ops were needed for

the 
omputations (without 
omputing the residual norms). Figure 12 shows the residual

history.
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Figure 12: Residual history for the LRCF-ADI iteration in demo_l1.
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C.3 Demo programs for model redu
tion algorithms

C.3.1 Demo program demo_m1

%

% MODEL REDUCTION BY THE ALGORITHMS LRSRM AND DSPMR. THE GOAL IS TO

% GENERATE A REDUCED SYSTEM OF VERY SMALL ORDER.

%

% This demo program shows how the model redu
tion routines 'lp_lrsrm'

% and 'lp_dspmr' work. Also, the use of 'lp_lradi', supplementary

% routines, and user-supplied fun
tions is demonstrated.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% This is an artifi
ial test problem of a system, whose Bode plot shows

% "spires".

A = sparse(408,408); B = ones(408,1); C = ones(1,408);

A(1:2,1:2) = [-.01 -200; 200 .001℄;

A(3:4,3:4) = [-.2 -300; 300 -.1℄;

A(5:6,5:6) = [-.02 -500; 500 0℄;

A(7:8,7:8) = [-.01 -520; 520 -.01℄;

A(9:408,9:408) = spdiags(-(1:400)',0,400,400);

disp('Problem dimensions:')

n = size(A,1) % problem order (number of states)

m = size(B,2) % number of inputs

q = size(C,1) % number of outputs

% -----------------------------------------------------------------------

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions and 
omputation of ADI shift parameters

% -----------------------------------------------------------------------

%

% See 'demo_u1', 'demo_u2', 'demo_u3', and 'demo_l1' for more detailed

% 
omments.

%

% Note that A is a tridiagonal matrix. No prepro
essing needs to be done.

name = 'au';

au_m_i(A); % initialization for multipli
ation with A

au_l_i; % initialization for solving systems with A

disp('Parameters for heuristi
 algorithm whi
h 
omputes ADI parameters:')
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l0 = 10 % desired number of distin
t shift parameters

kp = 30 % number of steps of Arnoldi pro
ess w.r.t. A

km = 15 % number of steps of Arnoldi pro
ess w.r.t. inv(A)

b0 = ones(n,1); % This is just one way to 
hoose the Arnoldi start

% ve
tor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); % 
omputation of ADI shift

% parameters

disp('A
tual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

au_s_i(p) % initialization for shifted systems of linear equations

% with A+p(i)*I (i = 1,...,l)

% -----------------------------------------------------------------------

% Solution of Lyapunov equations A*X+X*A' = -B*B' and

% A'*X+X*A = -C'*C

% -----------------------------------------------------------------------

disp('Parameters for stopping 
riteria in LRCF-ADI iteration:')

max_it = 20 % (will stop the iteration)

min_res = 1e-100 % (avoided, but the residual history is shown)

with_rs = 'N' % (avoided)

min_in = 0 % (avoided)

zk = 'Z';

r
 = 'C';

Bf = [℄;

Kf = [℄;

info = 3;

disp('... solving A*XB+XB*A'' = - B*B''...');

tp = 'B';

figure(1), hold off; 
lf; % (lp_lradi will plot residual history.)

[ZB,flag_B℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,B,p,max_it,min_res,...

with_rs,min_in,info);

% 
ompute ZB
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title('LRCF-ADI for CALE AX_{B}+X_{B}A^T = -BB^T')

disp('Termination flag:')

flag_B

disp('Size of ZB:');

size_ZB = size(ZB)

disp('... solving A''*XC+XC*A = - C''*C...');

tp = 'C';

figure(2), hold off; 
lf; % (lp_lradi will plot residual history.)

[ZC,flag_C℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,C,p,max_it,min_res,...

with_rs,min_in,info);

% 
ompute ZC

title('LRCF-ADI for CALE A^T X_{C} + X_{C} A_ = -C^TC')

disp('Termination flag:')

flag_C

disp('Size of ZC:');

size_ZC = size(ZC)

% -----------------------------------------------------------------------

% Plot the transfer fun
tion of the system for a 
ertain frequen
y range

% -----------------------------------------------------------------------

disp('... 
omputing transfer fun
tion of original system ...');

freq = lp_lgfrq(100,1000,200); % generate a set of 200 "frequen
y

% sampling points" in the interval

% [100,1000℄.

G = lp_trfia(freq,A,B,C,[℄,[℄); % 
ompute "transfer fun
tion sample"

% for these frequen
y points

nrm_G = lp_gnorm(G,m,q); % 
ompute norms of the "transfer fun
tion

% sample" for these frequen
y points

figure(3); hold off; 
lf;

loglog(freq,nrm_G,'k:');

xlabel('\omega');

ylabel('Magnitude');

t_text = 'Bode plots: dotted: ||G||';

title(t_text);

pause(1)

% -----------------------------------------------------------------------
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% Generate redu
ed systems

% -----------------------------------------------------------------------

disp('Parameters for model redu
tion:')

max_ord = 10 % (This parameter determines the redu
ed order.)

tol = 0 % (avoided)

disp('... 
omputing redu
ed system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B,C,ZB,ZC,max_ord,tol); % run LRSRM

disp('Redu
ed order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); % 
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_Grs = lp_gnorm(Grs,m,q); % 
ompute norm transfer fun
tion samples

% of redu
ed system

figure(3); hold on

loglog(freq,nrm_Grs,'r-');

t_text = [t_text, ', solid: ||G_{LRSRM}||'℄;

title(t_text); pause(1)

disp('... 
omputing redu
ed system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B,C,ZB,ZC,max_ord,tol); % run DSPMR

disp('Redu
ed order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); % 
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_Grd = lp_gnorm(Grd,m,q); % 
ompute norm transfer fun
tion samples

% of redu
ed system

figure(3); hold on

loglog(freq,nrm_Grd,'b--');

t_text = [t_text, ', dashed: ||G_{DSPMR}||'℄;

title(t_text); pause(1)

% -----------------------------------------------------------------------

% Destroy global data stru
tures

% -----------------------------------------------------------------------

au_m_d;

au_l_d;



C.3 Demo programs for model redu
tion algorithms 63

au_s_d(p);

C.3.2 Results and remarks

In the demo program demo_m1 we use very ina

urate Gramians. The normalized residual

norms are only � 7:8 � 10

�2

. The redu
ed order of the systems delivered by LRSRM and

DSPMR is as low as 10. The result of the demo program is shown in Figure 13. There

simultaneous Bode magnitude plots of the original system and and both redu
ed systems

are shown.
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Figure 13: Simultaneous Bode magnitude plots of original system (dotted), redu
ed system

by LRSRM, and redu
ed system by DSPMR generated by the demo program demo_m1.

Both Bode plots of both redu
ed systems are almost identi
al and shown as solid line.

C.3.3 Demo program demo_m2

%

% MODEL REDUCTION BY THE ALGORITHMS LRSRM AND DSPMR. THE GOAL IS TO

% GENERATE A "NUMERICALLY MINIMAL REALIZATION" OF THE GIVEN SYSTEM

% AS WELL AS A REDUCED SYSTEM OF RELATIVELY SMALL ORDER.

%

% This demo program shows how the model redu
tion routines 'lp_lrsrm'

% and 'lp_dspmr' work. Also, the use of 'lp_lradi', supplementary

% routines, and user-supplied fun
tions is demonstrated.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% As test example, we use an FEM-semidis
retized problem, whi
h leads to

% a generalized system where M (the mass matrix) and N (the negative
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% stiffness matrix) are sparse, symmetri
, and definite.

load rail821 % load the matri
es M N Btilde Ctilde of the generalized

% system

%load rail3113 % Un
omment this to get an example of larger order.

disp('Problem dimensions:')

n = size(M,1) % problem order (number of states)

m = size(Btilde,2) % number of inputs

q = size(Ctilde,1) % number of outputs

% -----------------------------------------------------------------------

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions and 
omputation of ADI shift parameters

% -----------------------------------------------------------------------

%

% See 'demo_u1', 'demo_u2', 'demo_u3', and 'demo_l1' for more detailed

% 
omments.

name = 'msns';

[M0,MU,N0,B0,C0,prm,iprm℄ = msns_pre(M,N,Btilde,Ctilde); % prepro
essing

msns_m_i(M0,MU,N0); % initialization for multipli
ation with A0

msns_l_i; % initialization for solving systems with A0

disp('Parameters for heuristi
 algorithm whi
h 
omputes ADI parameters:')

l0 = 20 % desired number of distin
t shift parameters

kp = 50 % number of steps of Arnoldi pro
ess w.r.t. A0

km = 25 % number of steps of Arnoldi pro
ess w.r.t. inv(A0)

b0 = ones(n,1); % This is just one way to 
hoose the Arnoldi start

% ve
tor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); % 
omputation of ADI shift

% parameters

disp('A
tual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

msns_s_i(p) % initialization for shifted systems of linear equations

% with A0+p(i)*I (i = 1,...,l)
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% -----------------------------------------------------------------------

% Solution of Lyapunov equations A0*XB0+XB0*A0' = -B0*B0' and

% A0'*XC0+XC0*A0 = -C0'*C0

% -----------------------------------------------------------------------

disp('Parameters for stopping 
riteria in LRCF-ADI iteration:')

max_it = 200 % (large value)

min_res = 0 % (avoided)

with_rs = 'S' % ("a
tivated")

min_in = 0 % (avoided)

zk = 'Z';

r
 = 'C';

Bf = [℄;

Kf = [℄;

info = 3;

disp('... solving A0*XB0+XB0*A0'' = - B0*B0''...');

tp = 'B';

figure(1), hold off; 
lf;

[ZB0,flag_B℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,B0,p,max_it,min_res,...

with_rs,min_in,info);

% 
ompute ZB0

title('LRCF-ADI for CALE A_0X_{B0}+X_{B0}A_0^T = -B_0B_0^T')

disp('Termination flag:')

flag_B

disp('Size of ZB0:');

size_ZB0 = size(ZB0)

disp('... solving A0''*XC0+XC0*A0 = - C0''*C0...');

tp = 'C';

figure(2), hold off; 
lf;

[ZC0,flag_C℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,C0,p,max_it,min_res,...

with_rs,min_in,info);

% 
ompute ZC0

title('LRCF-ADI for CALE A_0^T X_{C0} + X_{C0} A_0 = -C_0^TC_0')

disp('Termination flag:')

flag_C

disp('Size of ZC0:');

size_ZC0 = size(ZC0)

% -----------------------------------------------------------------------
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% Plot the transfer fun
tion of the system for a 
ertain frequen
y range

% -----------------------------------------------------------------------

disp('... 
omputing transfer fun
tion of original system ...');

freq = lp_lgfrq(1e-10,1e10,200); % generate a set of 200 "frequen
y

% sampling points" in the interval

% [10^-10,10^+10℄.

G = lp_trfia(freq,N,Btilde,Ctilde,[℄,M); % 
ompute "transfer fun
tion

% sample" for these frequen
y

% points

nrm_G = lp_gnorm(G,m,q); % 
ompute norms of the "transfer fun
tion

% sample" for these frequen
y points

figure(3); hold off; 
lf;

loglog(freq,nrm_G,'k:');

xlabel('\omega');

ylabel('Magnitude');

t_text = 'dotted: ||G||';

title(t_text);

pause(1)

% -----------------------------------------------------------------------

% Generate redu
ed systems of high a

ura
y and possibly high order

% -----------------------------------------------------------------------

disp(' ')

disp('Generate redu
ed systems of high a

ura
y and possibly high order')

disp('-----------------------------------------------------------------')

disp('Parameters for model redu
tion:')

max_ord = [℄ % (avoided)

tol = 1e-14 % (This 
riterion determines the redu
ed order. The very

% small value is 
hosen to generate a "numeri
ally minimal

% realization".)

disp('... 
omputing redu
ed system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B0,C0,ZB0,ZC0,max_ord,tol); % run LRSRM

disp('Redu
ed order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); % 
ompute "transfer fun
tion

% sample" for redu
ed system
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nrm_dGrs = lp_gnorm(G-Grs,m,q); % 
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrs,'r-');

t_text = [t_text, ', solid: ||G-G_{DSPMR}||'℄;

title(t_text); pause(1)

disp('... 
omputing redu
ed system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B0,C0,ZB0,ZC0,max_ord,tol); % run DSPMR

disp('Redu
ed order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); % 
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_dGrd = lp_gnorm(G-Grd,m,q); % 
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrd,'b--'); pause(1)

t_text = [t_text, ', solid: ||G-G_{LRSRM}||'℄;

title(t_text); pause(1)

% -----------------------------------------------------------------------

% Generate redu
ed systems of low order

% -----------------------------------------------------------------------

disp(' ')

disp('Generate redu
ed systems of low order')

disp('-------------------------------------')

disp('Parameters for model redu
tion:')

max_ord = 25 % (This 
riterion determines the redu
ed order.)

tol = 0 % (avoided)

disp('... 
omputing redu
ed system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B0,C0,ZB0,ZC0,max_ord,tol); % run LRSRM

disp('Redu
ed order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); % 
ompute "transfer fun
tion
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% sample" for redu
ed system

nrm_dGrs = lp_gnorm(G-Grs,m,q); % 
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrs,'r-');

disp('... 
omputing redu
ed system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B0,C0,ZB0,ZC0,max_ord,tol); % run DSPMR

disp('Redu
ed order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); % 
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_dGrd = lp_gnorm(G-Grd,m,q); % 
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrd,'b--');

% -----------------------------------------------------------------------

% Destroy global data stru
tures

% -----------------------------------------------------------------------

msns_m_d;

msns_l_d;

msns_s_d(p);

C.3.4 Results and remarks

In 
ontrast to demo_m1, we use very a

urate Gramians in the program demo_m2. The

normalized residual norms for Z

B0

and Z

C0

are � 7:0 �10

�14

and � 1:7 �10

�14

, respe
tively.

Using these low rank Cholesky fa
tors of the Gramians we generate two pairs of redu
ed

systems by LRSRM and DSPMR. In the �rst run we attempt to generate a pair of redu
ed

systems, whi
h are very a

urate. Indeed, Figure 14 shows that the approximation error

kG(|!)�

^

G(|!)k for both redu
ed systems is very small 
ompared to the Bode magnitude

fun
tion of the original system. We allow the redu
ed order to be relatively large by


hoosing a very small value for tol. These orders are 118 for LRSRM and 208 for DSPMR.

LRSRM and DSPMR deliver almost identi
al results w.r.t. the approximation error, but

LRSRM delivers a system of lower order. In the se
ond run, we use �xed redu
ed orders

k = 25. We still obtain relatively small approximation errors; see Figure 14. Here, the

result by LRSRM is again better than that by DSPMR. Note that we show approximation
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errors in Figure 14 as opposed to simultaneous Bode plots in Figure 13. The redu
ed

systems generated by demo_m2 are so a

urate that identi
al 
urves would be displayed in

simultaneous Bode magnitude plots.
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Figure 14: Results of demo_m2. The dotted line is the Bode magnitude plot of the original

system, i.e, the fun
tion kG(|!)k. The solid and dashed lines are the approximation

errors, i.e., the fun
tions kG(|!)�

^

G(|!)k, for LRSRM and DSPMR, respe
tively. The

lower two 
urves 
orrespond to the �rst run (highly a

urate redu
ed systems, �numeri
ally

minimal realization�) and the upper two to the se
ond run (low redu
ed order).

C.4 Demo program for algorithms for Ri

ati equations and

linear-quadrati
 optimal problems

C.4.1 Demo program demo_r1

%

% SOLUTION OF RICCATI EQUATION BY LRCF-NM AND SOLUTION OF LINEAR-

% QUADRATIC OPTIMAL CONTROL PROBLEM BY LRCF-NM-I

%

% This demo program shows how both modes (i.e., the one for LRCF-NM and

% the one for LRCF-NM-I) work. Also, the use of user-supplied fun
tions

% is demonstrated in this 
ontext.

% -----------------------------------------------------------------------

% Generate test problem

% -----------------------------------------------------------------------

%

% As test example, we use a simple FDM-semidis
retized PDE problem

% (an instationary heat equation on the unit square with homogeneous 1st

% kind boundary 
onditions).

%

% Note that the negative stiffness matrix A is symmetri
.
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n0 = 20; % n0 = number of grid points in either spa
e dire
tion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'0','0','0');

B = fdm_2d_ve
tor(n0,'.1<x<=.3');

C = (fdm_2d_ve
tor(n0,'.7<x<=.9'))';

Q0 = 10 % Q = Q0*Q0' = 100

R0 = 1 % R = R0*R0' = 1

K_in = [℄; % Initial feedba
k K is zero (Note that A is stable).

disp('Problem dimensions:')

n = size(A,1) % problem order (number of states)

m = size(B,2) % number of inputs

q = size(C,1) % number of outputs

% -----------------------------------------------------------------------

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions

% -----------------------------------------------------------------------

%

% Note that we use routines 'au_*' rather than the routines 'as_*',

% although A is symmetri
. This is be
ause ADI shift parameters w.r.t.

% the nonsymmetri
 
losed loop matrix A-B*K' (generated in the routine

% lp_lrnm) might be not real. The routines 'as_*' are restri
ted to

% problems, where the shift parameters are real.

name = 'au';

[A0,B0,C0,prm,iprm℄ = au_pre(A,B,C); % prepro
essing (reordering for

% bandwidth redu
tion)

% Note that K_in is zero. Otherwise it needs not be transformed as well.

au_m_i(A0); % initialization for matrix multipli
ations with A0

au_l_i; % initialization for solving systems with A0 (This is needed in

% the Arnoldi algorithm w.r.t. inv(A0). The Arnoldi algorithm

% is part of the algorithm in 'lp_para', whi
h in turn will

% be invoked in ea
h Newton step in the routine 'lp_lrnm'.)

% Note that 'au_s_i' will be invoked repeatedly in 'lp_lrnm'.
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disp('Parameters for heuristi
 algorithm whi
h 
omputes ADI parameters:')

l0 = 15 % desired number of distin
t shift parameters

kp = 50 % number of steps of Arnoldi pro
ess w.r.t. A0-B0*K0'

km = 25 % number of steps of Arnoldi pro
ess w.r.t. inv(A0-B0*K0')

% -----------------------------------------------------------------------

% Compute LRCF Z0 by LRCF-NM

% -----------------------------------------------------------------------

%

% The approximate solution is given by the low rank Cholesky fa
tor Z0,

% i.e., Z0*Z0' is approximately X0, where X0 is the solution of the

% transformed Ri

ati equation

%

% C0'*Q0*Q0'*C0+A0'*X0+X0*A0-X0*B0*inv(R0*R0')*B0'*X0 = 0.

%

% The stopping 
riteria for both the (outer) Newton iteration and the

% (inner) LRCF-ADI iteration are 
hosen, su
h that the iterations are

% stopped shortly after the residual 
urves stagnate. This requires

% the sometimes expensive 
omputation of the Lyapunov equation

% and Ri

ati equation residual norms.

disp('Parameters for stopping the (outer) Newton iteration:')

max_it_r = 20 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_r = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_r = 'S' % stopping 
riterion "stagnation of the normalized

% residual norms" a
tivated

min_
k_r = 0 % stopping 
riterion "smallness of the RCF" ("avoided")

% (RCF = relative 
hange of the feedba
k matrix)

with_ks_r = 'N' % stopping 
riterion "stagnation of the RCF"

% (
riterion is "avoided")

disp('Parameters for stopping the (inner) LRCF-ADI iterations:')

max_it_l = 500 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_l = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_l = 'S' % stopping 
riterion "stagnation of the normalized

% residual norms" a
tivated

min_in_l = 0 % threshold for smallness of values ||V_i||_F

% (
riterion is "avoided")

disp('Further input parameters of the routine ''lp_lrnm'':');
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zk = 'Z' % 
ompute Z0 by LRCF-NM or generate dire
tly

% K_out = Z0*Z0'*K_in (here, Z0 is 
omputed)

r
 = 'C' % 
ompute possibly 
omplex Z0 or demand for real Z0 (here,

% a 
omplex matrix Z0 may be returned)

info_r = 3; % information level for the Newton iteration (here,

% maximal amount of information is provided)

info_l = 3; % information level for LRCF-ADI iterations (here,

% maximal amount of information is provided)

randn('state',0); % (This measure is taken to make the test results

% repeatable. Note that a random ve
tor is involved

% into the 
omputation of ADI parameters inside

% 'lp_lrnm'.)

[Z0, flag_r, res_r, flp_r, flag_l, its_l, res_l, flp_l℄ = lp_lrnm(...

zk, r
, name, B0, C0, Q0, R0, K_in, max_it_r, min_res_r, with_rs_r,...

min_
k_r, with_ks_r, info_r, kp, km, l0, max_it_l, min_res_l,...

with_rs_l, min_in_l, info_l );

disp('Results for (outer) Newton iteration in LRCF-NM:')

disp('Termination flag:')

flag_r

disp('Internally 
omputed normalized residual norm of final iterate:');

final_nrn_r = res_r(end)

disp('Results for (inner) LRCF-ADI iterations in LRCF-NM:')

disp('Termination flags:')

flag_l

disp('Number of LRCF-ADI iteration steps:')

its_l

disp('Internally 
omputed normalized residual norms of final iterates:');

final_nrn_l = [℄;

for i = 1:length(its_l)

final_nrn_l = [final_nrn_l; res_l(its_l(i)+1,i)℄;

end

final_nrn_l

% -----------------------------------------------------------------------
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% Compute (approximately) optimal feedba
k K0 by LRCF-NM-I

% -----------------------------------------------------------------------

%

% Here, the matrix K0 that solves the (transformed) linear-quadrati


% optimal 
ontrol problem is 
omputed by LRCF-NM-I.

%

% The stopping 
riteria for both the (outer) Newton iteration and the

% (inner) LRCF-ADI iteration are 
hosen by inexpensive heuristi


% 
riteria.

disp('Parameters for stopping the (outer) Newton iteration:')

max_it_r = 20 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_r = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_r = 'N' % stopping 
riterion "stagnation of the normalized

% residual norms" (
riterion is "avoided")

min_
k_r = 1e-12 % stopping 
riterion "smallness of the RCF"

% ("a
tivated")

with_ks_r = 'L' % stopping 
riterion "stagnation of the RCF"

% ("a
tivated")

disp('Parameters for stopping the (inner) LRCF-ADI iterations:')

max_it_l = 500 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_l = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_l = 'N' % stopping 
riterion "stagnation of the normalized

% residual norms" (
riterion is "avoided")

min_in_l = 1e-12 % threshold for smallness of values in ||V_i||_F

% (
riterion is "a
tivated")

disp('Further input parameters of the routine ''lp_lradi'':');

zk = 'K'

r
 = 'C'

info_r = 3

info_l = 3

randn('state',0);

[K0, flag_r, flp_r, flag_l, its_l, flp_l℄ = ...

lp_lrnm( zk, name, B0, C0, Q0, R0, K_in, max_it_r, min_
k_r, ...

with_ks_r, info_r, kp, km, l0, max_it_l, min_in_l, info_l );

disp('Results for (outer) Newton iteration in LRCF-NM-I:')



74 C CASE STUDIES

disp('Termination flag:')

flag_r

disp('Results for (inner) LRCF-ADI iterations in LRCF-NM-I:')

disp('Termination flags:')

flag_l

disp('Number of LRCF-ADI iteration steps:')

its_l

% -----------------------------------------------------------------------

% Postpro
essing, destroy global data stru
tures

% -----------------------------------------------------------------------

%

% Note that both the LRCF Z0 and the state feedba
k K0 must be

% postpro
essed in order to attain the results for the original problems.

Z = au_pst(Z0,iprm);

K = au_pst(K0,iprm);

% Note that 'au_s_d' has already been invoked in 'lp_lrnm'.

au_l_d; % 
lear global variables initialized by au_l_i

au_m_d; % 
lear global variables initialized by au_m_i

disp('Size of Z:');

size_Z = size(Z)

disp('Is Z real ( 0 = no, 1 = yes )?')

Z_is_real = ~any(any(imag(Z)))

disp('Is K real ( 0 = no, 1 = yes )?')

K_is_real = ~any(any(imag(K)))

% -----------------------------------------------------------------------

% Verify the result

% -----------------------------------------------------------------------

%

% Note that this is only an "illustrative" way of verifying the a

ura
y

% by 
omputing the (normalized) residual norm of the Ri

ati equation.

% A more pra
ti
al (be
ause less expensive) way is evaluating the residual

% norm by means of the routine 'lp_r
nrm' (Must be applied before

% postpro
essing!), if the residual norms have not been generated during
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% the iteration.

%

% In general the result for LRCF-NM-I 
annot be verified. However, we

% will 
ompare the delivered feedba
k K with the feedba
k matrix 
omputed

% by use of the LRCF Z.

disp('The attained CARE residual norm:')

res_norm = norm(C'*Q0*Q0'*C+A'*Z*Z'+Z*Z'*A-Z*Z'*B*((R0*R0')\B')*Z*Z',...

'fro')

disp('The attained normalized CARE residual norm:')

normal_res_norm = res_norm/norm(C'*Q0*Q0'*C,'fro')

disp('The normalized deviation of the feedba
k matri
es 
omputed by')

disp('LRCF-NM and LRCF-NM-I (small value --> high a

ura
y):');

KE = Z*Z'*(B/(R0*R0'));

norm_dev = norm(K-KE,'fro')/max([norm(K,'fro'),norm(KE,'fro')℄)

C.4.2 Results and remarks

In demo_r1 both LRCF-NM and LRCF-NM-I are applied to the same problem. In the �rst

run, the low rank Cholesky fa
tor Z for the solution of the Ri

ati equation is 
omputed.

Residual based stopping 
riteria are used. See Figure 15 for the normalized residual norm

history. The (approximate) optimal state feedba
k K

(E)

(variable KE) for the solution of

the optimal 
ontrol problem is 
omputed �expli
itely� by K

(E)

= ZZ

H

BR

�1

. In the se
ond

run, the optimal 
ontrol problem is solved dire
tly by LRCF-NM-I, whi
h delivers the

approximate optimal state feedba
k K. Heuristi
 stopping 
riteria are used. The results

of both runs are 
ompared by the normalized deviation of the state feedba
k matri
es:

kK �K

(E)

k

F

maxfkKk

F

; kK

(E)

k

F

g

� 5:9 � 10

�16

:
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Figure 15: normalized residual norm history of the LRCF-NM in demo_r1.
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