
Te
hnis
he Universität Chemnitz

Sonderfors
hungsberei
h 393

Numeris
he Simulation auf massiv parallelen Re
hnern

Thilo Penzl

Lyapa
k Users Guide

Preprint SFB393/00-33

A Matlab Toolbox for Large Lyapunov and Ri

ati Equations, Model Redu
tion

Problems, and Linear�Quadrati
 Optimal Control Problems

Preprint-Reihe des Chemnitzer SFB 393

SFB393/00-33 August 2000

See also http://www.tu-
hemnitz.de/sfb393/lyapa
k

1

Prefa
e

Control theory is one of the most rapidly developing dis
iplines of mathemati
s and

engineering in the se
ond half of the 20th
entury. In the past de
ade, implementations

of numeri
ally robust algorithms for many types of dense problems in
ontrol theory have

be
ome available in software pa
kages, su
h as SLICOT [7℄. However, little resear
h has

been done on e�
ient numeri
al methods for
ontrol problems related to large sparse

or stru
tured dynami
al systems before 1990. In the last few years, quite a number of

approa
hes for several types of large
ontrol problems have been proposed, but, at present,

it is often not
lear, whi
h of them are the more promising ones. It is needless to say that

there is little software for large
ontrol problems available. In this situation, the author

took the opportunity to implement the software pa
kage LYAPACK (�Lyapunov Pa
kage�),

whi
h
overs one parti
ular approa
h to a
lass of large problems in
ontrol theory. An

e�
ient ADI-based solver for large Lyapunov equations is the �workhorse� of LYAPACK,

whi
h also
ontains implementations of two model redu
tion methods and modi�
ations

of the Newton method for the solution of large Ri

ati equations and linear-quadrati

optimal
ontrol problems. Most of the underlying algorithms have been developed by

the author in the past three years. A part of this resear
h was done simultaneously and

independently by Jing-Rebe

a Li. A bene�t of her work to LYAPACK is in parti
ular an

improvement in the e�
ien
y of the Lyapunov solver.

LYAPACK aims at two goals. First, of
ourse, the pa
kage will hopefully be used

to solve problems that arise from pra
ti
al appli
ations. The availability of easy-to-use

software is surely one step to make pra
titioners
onsider alternative numeri
al te
hniques:

�unless mathemati
s is put into software, it will never be used� [The SIAM Report on

Mathemati
s in Industry, 1996℄. (This statement might be somewhat too strong. And, of

ourse, the reverse statement is not ne
essarily true.) Se
ond, SLICOT
an be
onsidered

as a
ontribution to a fair and
omprehensive
omparison of the existing methods for large

Lyapunov equations, model redu
tion problems, et
., whi
h is yet to be done.

For several reasons LYAPACK has been implemented in MATLAB

1

rather than pro-

gramming languages like FORTRAN, C, or JAVA. MATLAB
odes are easier to under-

stand, to modify, and to verify. On the other hand, their performan
e
annot
ompete

with that of
odes in the aforementioned programming languages. However, this does not

mean that LYAPACK is restri
ted to the solution of �toy problems�. Several measures,

su
h as the use of global variables for large data stru
tures, have been taken to enhan
e the

omputational performan
e of LYAPACK routines. To put this into the right perspe
tive,

Lyapunov equations of order larger than 12000 were solved by LYAPACK within few hours

on a regular workstation. When using standard methods, super
omputers are needed to

solve problems of this size.

LYAPACK was implemented and tested in a UNIX environment. Note, in parti
ular,

that the �le names of some routines do not
omply the DOS-like �xxxxxxxx.yyy� naming

onvention.

The author a
knowledges the support of the DAAD (Deuts
her Akademis
her Aus-

taus
hdienst = German A
ademi
 Ex
hange Servi
e). He is grateful to Peter Benner,

Peter Lan
aster, Jing-Rebe

a Li, Volker Mehrmann, Enrique Quintana-Orti, and Andras

Varga for their dire
t or indire
t help on the proje
t. He also wants to thank the sta�

1

MATLAB is a trademark of The MathWorks In
.

of �The First Cup� (University of Calgary), where the
onsiderable quantity of
o�ee was

produ
ed, whi
h was needed to realize the LYAPACK proje
t.

Finally, it should be stressed that any kind of feedba
k from people who applied or

tried to apply this pa
kage is highly appre
iated.

Thilo Penzl

Calgary, November 1999

Addendum to Prefa
e

This manus
ript was mostly �nished just before Thilo Penzl died in a tragi
 a

ident

in De
ember 1999, a few days before his return to work in the Numeri
al Analysis Group

at TU Chemnitz where he also
ompleted his PhD in 1998. I felt that this very ni
e pie
e

of work should be made available to the s
ienti�

ommunity and we therefore tested

the
odes, proofread the manus
ript and performed minor
orre
tions in the text. The

MATLAB
odes were tested by Falk Ebert and the
orre
tions to the Users' Guide were

performed by myself.

Any
omments or questions
on
erning the pa
kage should be addressed to Volker

Mehrmann mehrmann�mathematik.tu-
hemnitz.de.

The LYAPACK
odes are available at http://www.tu-
hemnitz.de/sfb393/lyapa
k

Volker Mehrmann

Chemnitz, August 2000

Dis
laimer and usage notes

� The author dis
laims responsibility for any kind

of damage sustained in
ontext with the use of the

software pa
kage LYAPACK.

� LYAPACK is restri
ted to non-
ommer
ial use.

� Referen
es to LYAPACK and/or to the publi
a-

tions on the underlying numeri
al methods must

be provided in reports on numeri
al
omputations

in whi
h LYAPACK routines are involved.

Contents

1 Introdu
tion 1

1.1 What is LYAPACK? . 1

1.2 When
an LYAPACK be applied? . 2

1.3 When
an or should LYAPACK not be applied? 3

1.4 Highlights and features . 3

2 Realization of basi
 matrix operations 4

2.1 Basi
 matrix operations . 4

2.2 The
on
ept of user-supplied fun
tions . 5

2.3 Prepro
essing and postpro
essing . 7

2.4 Organization of user-supplied fun
tions for basi
 matrix operations and

guidelines for their implementation . 8

2.5 Case studies . 11

3 Lyapunov equations 11

3.1 Low Rank Cholesky Fa
tor ADI . 11

3.1.1 Theory and algorithm . 11

3.1.2 Stopping
riteria . 12

3.1.3 The routine lp_lradi . 16

3.2 Computation of ADI shift parameters . 19

3.2.1 Theory and algorithm . 19

3.2.2 The routine lp_para . 20

3.3 Case studies . 22

4 Model redu
tion 22

4.1 Preliminaries . 22

4.2 Low rank square root method . 23

4.2.1 Theory and algorithm . 23

4.2.2 Choi
e of redu
ed order . 24

4.2.3 The routine lp_lrsrm . 24

4.2.4 Case studies . 25

4.3 Dominant subspa
es proje
tion model redu
tion 25

4.3.1 Theory and algorithms . 25

4.3.2 Choi
e of redu
ed order . 26

4.3.3 The routine lp_dspmr . 26

4.3.4 Case studies . 27

5 Ri

ati equations and linear-quadrati
 optimal
ontrol problems 27

5.1 Preliminaries . 27

5.2 Low rank Cholesky fa
tor Newton method 29

5.3 Impli
it low rank Cholesky fa
tor Newton method 30

5.4 Stopping
riteria . 31

5.5 The routine lp_lrnm . 34

6 Supplementary routines and data �les 38

6.1 Computation of residual norms for Lyapunov and Ri

ati equations 38

6.2 Evaluation of model redu
tion error . 38

6.2.1 Generation of test examples . 39

6.3 Case studies . 40

7 Alternative methods 40

A A
ronyms and symbols 42

B List of LYAPACK routines 42

B.1 Main routines . 42

B.2 Supplementary routines and data �les . 43

B.3 Auxiliary routines . 43

B.4 User-supplied fun
tions . 44

B.5 Demo programs . 44

C Case studies 45

C.1 Demo programs for user-supplied fun
tions 45

C.1.1 Demo program demo_u1: . 45

C.1.2 Demo program demo_u2: . 48

C.1.3 Demo program demo_u3: . 52

C.2 Demo program for LRCF-ADI iteration and algorithm for
omputing ADI

parameters . 54

C.2.1 Demo program demo_l1 . 54

C.2.2 Results and remarks . 58

C.3 Demo programs for model redu
tion algorithms 59

C.3.1 Demo program demo_m1 . 59

C.3.2 Results and remarks . 63

C.3.3 Demo program demo_m2 . 63

C.3.4 Results and remarks . 68

C.4 Demo program for algorithms for Ri

ati equations and linear-quadrati

optimal problems . 69

C.4.1 Demo program demo_r1 . 69

C.4.2 Results and remarks . 75

1

1 Introdu
tion

1.1 What is LYAPACK?

LYAPACK is the a
ronym for �Lyapunov Pa
kage�. It is a MATLAB toolbox (i.e., a set of

MATLAB routines) for the solution of
ertain large s
ale problems in
ontrol theory, whi
h

are
losely related to Lyapunov equations. Basi
ally, LYAPACK works on realizations

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(1)

of
ontinuous-time, time-invariant, linear, dynami
al systems, where A 2 R

n;n

, B 2 R

n;m

,

C 2 R

q;n

, and � 2 R. n is the order of the system (1). LYAPACK is intended to solve

problems of large s
ale (say n > 500). The matri
es A, B, and C must ful�ll
ertain

onditions, whi
h are dis
ussed in more detail in �1.2. We
all the entries of the ve
tors

(or, more pre
isely, ve
tor-valued fun
tions) u, x, and y the inputs, states, and outputs of

the dynami
al system, respe
tively.

There are three types of problems LYAPACK
an deal with.

� Solution of Lyapunov equations. Continuous-time algebrai
 Lyapunov equations

(CALEs) play the
entral role in LYAPACK. Lyapunov equations are linear matrix

equations of the type

FX +XF

T

= �GG

T

; (2)

where F 2 R

n;n

and G 2 R

n;t

are given and X 2 R

n;n

is the solution. In some

appli
ations the solution X itself might be of interest, but mostly it is only an

auxiliary matrix, whi
h arises in the
ourse of the numeri
al solution of another

problem. Su
h problems are model redu
tion, Ri

ati equations, and linear-quadrati

optimal
ontrol problems, for example.

� Model redu
tion. Roughly speaking, model redu
tion is the approximation of the

dynami
al system (1) by a system

_

x̂(�) =

^

Ax̂(�) +

^

Bu(�)

y(�) =

^

Cx̂(�)

(3)

of smaller order k, whose behavior is similar to that of the original one in some sense.

There exist a large number of model redu
tion methods whi
h rely on Lyapunov

equations [2℄. LYAPACK
ontains implementations of two su
h methods. Both are

based on the Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(4)

A

T

X

C

+X

C

A = �C

T

C: (5)

Their solutions X

B

and X

C

are
alled
ontrollability Gramian and observability

Gramian of the system (1), respe
tively.

2 1 INTRODUCTION

� Ri

ati equations and linear-quadrati
 optimal
ontrol problems. The min-

imization of

J (u; y; x

0

) =

1

2

Z

1

0

y(�)

T

Qy(�) + u(�)

T

Ru(�)d� (6)

subje
t to the dynami
al system (1) and the initial
ondition x(0) = x

0

is
alled the

linear-quadrati
 optimal
ontrol problem (LQOCP). Its optimal solution is des
ribed

by the state-feedba
k

u(�) = �R

�1

B

T

Xx(�) =: �K

T

x(�); (7)

whi
h
an be
omputed by solving the (
ontinuous-time algebrai
) Ri

ati equation

(CARE)

C

T

QC + A

T

X +XA�XBR

�1

B

T

X = 0: (8)

Ri

ati equations also arise in further appli
ations in
ontrol theory.

LYAPACK
ontains routines for these three types of problems. The underlying algo-

rithms are e�
ient w.r.t. both memory and
omputation for many large s
ale problems.

1.2 When
an LYAPACK be applied?

There exist a number of
onditions, that must be ful�lled by the dynami
al system (1) to

guarantee appli
ability and usefulness of LYAPACK:

� Stability. In most
ases, the matrix A must be stable, i.e., its spe
trum must be

a subset of the open left half of the
omplex plane. For the solution of Ri

ati

equations and optimal
ontrol problems it is su�
ient that a matrix K

(0)

is given,

for whi
h A� BK

(0)

T

is stable.

� The number of the inputs and outputs must be small
ompared to the

number of states, i.e., m << n and q << n. As a rule of thumb, we re
ommend

n=m; n=q � 100. The larger these ratios are, the better is the performan
e of

LYAPACK
ompared to implementations of standard methods.

� The matrix A must have a stru
ture, whi
h allows the e�
ient solution

of (shifted) systems of linear equations and the e�
ient realization of

produ
ts with ve
tors. Examples for su
h matri
es are
lasses of sparse matri-

es, produ
ts of sparse matri
es and inverses of sparse matri
es,
ir
ulant matri
es,

Toeplitz matri
es, et
.

At this point, it should be stressed that problems related to
ertain generalized dynami
al

systems

M

_

~x(�) = N ~x(�) +

~

Bu(�)

y(�) =

~

C~x(�)

(9)

where M;N 2 R

n;n

,
an be treated with LYAPACK as well. However, it is ne
essary

that the generalized system
an be transformed into a stable, standard system (1). This

is the
ase when M is invertible and M

�1

N is stable. The transformation is done by an

LU fa
torization (or a Cholesky fa
torization in the symmetri
 de�nite
ase) of M , i.e.,

M = M

L

M

U

. Then an equivalent standard system (1) is given by

A = M

�1

L

NM

�1

U

; B = M

�1

L

~

B; C =

~

CM

�1

U

: (10)

1.3 When
an or should LYAPACK not be applied? 3

1.3 When
an or should LYAPACK not be applied?

To avoid misunderstandings and to make the
ontents of the previous se
tion more
lear,

it should be pointed out that the following problems
annot be solved or should not be

attempted by LYAPACK routines.

� LYAPACK
annot solve Lyapunov equations and model redu
tion problems, where

the system matrix A is not stable. It
annot solve Ri

ati equations and optimal

ontrol problems if no (initial) stabilizing feedba
k is provided.

� LYAPACK
annot be used to solve problems related to singular systems, i.e., gen-

eralized systems (9) where M is singular.

� LYAPACK is not able to solve problems e�
iently whi
h are highly �ill-
onditioned�

(in some sense). LYAPACK relies on iterative methods. Unlike dire
t methods,

whose
omplexity does usually not depend on the
onditioning of the problem, iter-

ative methods generally perform poorly w.r.t. both a

ura
y and
omplexity if the

problem to be solved is highly ill-
onditioned.

� LYAPACK is ine�
ient if the system is of small order (say, n � 500). In this
ase,

it is re
ommended to apply standard methods to solve the problem; see �7.

� LYAPACK is ine�
ient if the number of inputs and outputs is not mu
h smaller than

the system order. (For example, there is not mu
h sense in applying LYAPACK to

problems with, say, 1000 states, 100 inputs, and 100 outputs.)

� LYAPACK is not very e�
ient if it is not possible to realize basi
 matrix operations,

su
h as produ
ts with ve
tors and the solution of
ertain (shifted) systems of linear

equations with A, in an e�
ient way. For example, applying LYAPACK to systems

with an unstru
tured, dense matrix A is dubious.

� LYAPACK is not intended to solve dis
rete-time problems. However, su
h problems

an be transformed into
ontinuous-time problems by the Cayley transformation. It

is possible to implement the stru
tured, Cayley-transformed problem in user-supplied

fun
tions; see �2.2.

� LYAPACK
annot handle more
ompli
ated types of problems, su
h as problems

related to time-invariant or nonlinear dynami
al systems.

1.4 Highlights and features

LYAPACK
onsists of the following
omponents (algorithms):

� Lyapunov equations are solved by the Low Rank Cholesky Fa
tor ADI (LRCF-

ADI) iteration. This iteration is implemented in the LYAPACK routine lp_lradi,

whi
h is the �workhorse� of the pa
kage.

� The performan
e of LRCF-ADI depends on
ertain parameters, so-
alled ADI shift

parameters. These
an be
omputed by a heuristi
 algorithm provided as routine

lp_para.

4 2 REALIZATION OF BASIC MATRIX OPERATIONS

� There are twomodel redu
tion algorithms in LYAPACK. Algorithm LRSRM, that

is implemented in the routine lp_lrsrm, is a version of the well-known square-root

method, whi
h is a balan
ed trun
ation te
hnique. Algorithm DSPMR provided as

routine lp_dspmr is more heuristi
 in nature and related to dominant
ontrollable

and observable subspa
es. Both algorithms heavily rely on low rank approximations

to the system Gramians X

B

and X

C

provided by lp_lradi).

� Ri

ati equations and linear-quadrati
 optimal
ontrol problems are solved

by the Low Rank Cholesky Fa
tor Newton Method (LRCF-NM) or the Impli
it LRCF-

NM (LRCF-NM-I). Both algorithms are implemented in the routine lp_lrnm.

� LYAPACK
ontains some supplementary routines, su
h as routines for generating

test examples or Bode plots, and a number of demo programs.

� A basi

on
ept of LYAPACK is that matrix operations with A are impli
itly realized

by so-
alled user-supplied fun
tions (USFs). For general problems, these routines

must be written by the users themselves. However, for the most
ommon problems

su
h routines are provided in LYAPACK.

In parti
ular, the
on
ept of user-supplied fun
tions, whi
h relies on the storage of

large data stru
tures in global MATLAB variables, makes LYAPACK routines e�
ient,

w.r.t. both memory and
omputation. Of
ourse, LYAPACK
ould not
ompete with

FORTRAN or C implementations of the
ode (if there were any). However, this pa
kage

an be used to solve problems of quite large s
ale e�
iently. The essential advantages

of a MATLAB implementation are, of
ourse,
larity and the simpli
ity of adapting and

modifying the
ode.

Versatility is another feature of LYAPACK. The
on
ept of user supplied fun
tions

does not only result in a relatively high degree of numeri
al e�
ien
y, it also enables

solving
lasses of problems with a
ompli
ated stru
ture (in parti
ular, problems related

to systems, where the system matrix A is not given expli
itly as a sparse matrix).

Typi
ally, large s
ale problems are solved by iterative methods. In LYAPACK iterative

methods are implemented in the routines lp_lradi, lp_lrnm, lp_para, and some user

supplied fun
tions. LYAPACK o�ers a variety of stopping
riteria for these iterative

methods.

2 Realization of basi
 matrix operations

In this se
tion we des
ribe in detail how operations with the stru
tured system matrix A

are realized in LYAPACK. Understanding this is important for using LYAPACK routines.

However, this se
tion
an be skipped by readers who only want to get a general idea of

the algorithms in LYAPACK.

2.1 Basi
 matrix operations

The e�
ien
y of most LYAPACK routines strongly depends on the way how matrix op-

erations with the stru
tured matrix A are implemented. More pre
isely, in LYAPACK

three types of su
h basi
 matrix operations (BMOs) are used. In this se
tion, X denotes

a
omplex n� t matrix, where t << n.

2.2 The
on
ept of user-supplied fun
tions 5

� Multipli
ations with A or A

T

:

Y � AX or � A

T

X:

� Solution of systems of linear equations (SLEs) with A or A

T

:

Y � A

�1

X or � A

�T

X:

� Solution of shifted systems of linear equations (shifted SLEs) with A or A

T

,

where the shifts are the ADI parameters (see �3.2):

Y � (A+ p

i

I

n

)

�1

X or � (A

T

+ p

i

I

n

)

�1

X:

2.2 The
on
ept of user-supplied fun
tions

All operations with the stru
tured matrix A are realized by user supplied fun
tions. More-

over, all data related to the matrix A is stored in �hidden� global variables for the sake of

e�
ien
y. One distin
t merit of using global variables for storing large quantities of data is

that MATLAB
odes be
ome
onsiderably faster
ompared to the standard
on
ept, where

su
h variables are transfered as input or output arguments from one routine to another

over and over again. The purpose of user supplied fun
tions is to generate these �hidden�

data stru
tures, to realize basi
 matrix operations listed in �2.1, and destroy �hidden� data

stru
tures on
e they are not needed anymore. Moreover, pre- and postpro
essing of the

dynami
al system (1)
an be realized by user supplied fun
tions. At �rst glan
e, the use

of user supplied fun
tions might seem a bit
umbersome
ompared to the expli
it a

ess

to the matrix A, but this
on
ept turns out to be a good means to attain a high degree of

�exibility and e�
ien
y. The two main advantages of this
on
ept are the following:

� Adequate stru
tures for storing the data, whi
h
orresponds to the matrix A,
an

be used. (In other words, one is not restri
ted to storing A expli
itely in a sparse or

dense array.)

� Adequate methods for solving linear systems
an be used. (This means that one is not

restri
ted to using �standard� LU fa
torizations. Instead, Cholesky fa
torizations,

Krylov subspa
e methods, or even multi-grid methods
an be used.)

In general, users have to implement user supplied fun
tions themselves in a way that is

as highly e�
ient w.r.t. both
omputation and memory demand. However, user supplied

fun
tions for the following most
ommon types of matri
es A (and ways to implement the

orresponding basi
 matrix operations) are already
ontained in LYAPACK. Note that

the basis name, whi
h must be provided as input parameter name to many LYAPACK

routines, is the �rst part of the name of the
orresponding user supplied fun
tion.

� [basis name℄ = as: A in (1) is sparse and symmetri
. (Shifted) linear systems are

solved by sparse Cholesky fa
torization. In this
ase, the ADI shift parameters p

i

must be real. Note: This is not guaranteed in the routine lp_lrnm for Ri

ati

equations and optimal
ontrol problems. If this routine is used, the unsymmetri

version au must be applied instead of as.

6 2 REALIZATION OF BASIC MATRIX OPERATIONS

� [basis name℄ = au: A in (1) is sparse and (possibly) unsymmetri
. (Shifted) linear

systems are solved by sparse LU fa
torization.

� [basis name℄ = au_qmr_ilu: A in (1) is sparse and (possibly) unsymmetri
. (Shifted)

linear systems are solved iteratively by QMR using ILU pre
onditioning, [14℄.

� [basis name℄ = msns: Here, the system arises from a generalized system (9), where

M and N are symmetri
. Linear systems involved in all three types of basi
 matrix

operations are solved by sparse Cholesky fa
torizations. In this
ase, the ADI shift

parameters p

i

must be real. Note: This is not guaranteed in the routine lp_lrnm

for Ri

ati equations and optimal
ontrol problems. If this routine is used, the

unsymmetri
 version munu must be applied instead of msns.

� [basis name℄ = munu: Here, the system arises from a generalized system (9), where

M and N are sparse and possibly unsymmetri
. Linear systems involved in all three

types of basi
 matrix operations are solved by sparse LU fa
torizations.

Although, these
lasses of user supplied fun
tions
an be applied to a great variety of

problems, users might want to write their user supplied fun
tions themselves (or modify

the user supplied fun
tions
ontained in LYAPACK). For example, this might be the

ase if A is a dense Toeplitz or
ir
ulant matrix, or if alternative iterative solvers or

pre
onditioners should be applied to solve linear systems. Obviously, it is impossible to

provide user supplied fun
tions in LYAPACK for all possible stru
tures the matrix A
an

have.

For ea
h type of problems listed above the following routines are needed. Here, one or

two extensions are added to the basis name:

[basis name℄_[extension 1℄ or [basis name℄_[extension 1℄_[extension 2℄

Five di�erent �rst extensions are possible. They have the following meaning:

� [extension 1℄ = m: matrix multipli
ation; see �2.1.

� [extension 1℄ = l: solution of systems of linear equations; see �2.1.

� [extension 1℄ = s: solution of shifted systems of linear equations; see �2.1.

� [extension 1℄ = pre: prepro
essing.

� [extension 1℄ = pst: postpro
essing.

For some
lasses of user supplied fun
tions prepro
essing and postpro
essing routines do

not exist be
ause they are not needed. There is no se
ond extension if [extension 1℄ = pre

or pst. If [extension 1℄ = m, l, or s, there are the following three possibilities w.r.t. the

se
ond extension:

� [extension 2℄ = i: initialization of the data needed for the
orresponding basi
 matrix

operations.

� no [extension 2℄: the routine a
tually performs the basi
 matrix operations.

2.3 Prepro
essing and postpro
essing 7

� [extension 2℄ = d: destru
tion of the global data generated by the
orresponding

initialization routine ([extension 2℄ = i).

This
on
ept is somewhat similar to that of
onstru
tors and destru
tors in obje
t-oriented

programming. Note that user supplied fun
tions with [extension 1℄ = pre or pst will be

alled only in the main program (i.e., the program written by the user). user supplied

fun
tions with [extension 2℄ = i and d will be often (but not always)
alled in the main

program. In
ontrast, the remaining three types of user supplied fun
tions ([extension

1℄ = m, l, or s) will be used internally in LYAPACK main routines.

For example, au_m_i initializes the data for matrix multipli
ations with the unsymmet-

ri
 matrix A in a global variable, au_m_i performs su
h multipli
ations, whereas au_m_d

destroys the global data generated by au_m_i to save memory.

For more details and examples see �C.1.

Note: In the user supplied fun
tions, that are
ontained in LYAPACK, the data for

realizing basi
 matrix operations is stored in �xed global variables. This means that it

is impossible to store data for more than one problem (in other words for more than one

matrix A) at the same time. If, for example, several model redu
tion problems (with

di�erent matri
es A should be solved, then these problems have to be treated one after

another. The user supplied fun
tions for initialization ([extension 2℄ = i) overwrite the

data, that has been written to global variables in prior
alls of these user supplied fun
tions.

2.3 Prepro
essing and postpro
essing

In most
ases, it is re
ommended or even ne
essary to perform a prepro
essing step be-

fore initializing or generating global data stru
tures by the routines [basis name℄_fm, l,

sg_i and before using LYAPACK main routines (see �B.1). Su
h prepro
essing steps are

implemented in the routines [basis name℄_pre. There are no well-de�ned rules what has

to be done in the prepro
essing step, but in general this step
onsists of a transformation

of the input data (for example, F and G for solving the Lyapunov equation (2), or A,

B, and C for the model redu
tion problem, et
.), su
h that the transformed input data

has an improved stru
ture from the numeri
al point of view. For example, if a standard

system (1) with a sparse matrix A is
onsidered, then the prepro
essing done by as_pre or

au_pre is a reordering of the nonzero pattern of A for bandwidth redu
tion. If the prob-

lem is given in form of a generalized system (9) with sparse matri
es M and N , then the

prepro
essing in msns_pre or munu_pre is done in two steps. First, the
olumns and rows

of both matri
es are reordered (using the same permutation). Se
ond, the transformation

(10) into a standard system is performed.

Although LYAPACK routines
ould often be applied to the original data, reordering

of sparse matri
es is most
ases
ru
ial to a
hieve a high e�
ien
y, when sparse LU or

Cholesky fa
torizations are
omputed in MATLAB. Figure 1 shows the nonzero pattern

of the matrix M (whi
h equals to that of N) for a system (9) arising from a �nite element

dis
retization of a two-dimensional partial di�erential equation.

There are a few situations, when prepro
essing is not ne
essary. Examples are standard

systems (1), where A is a tridiagonal matrix and (shifted) linear systems are solved dire
tly

(Here, reordering would be super�uous.), or where A is sparse and (shifted) linear systems

are solved by QMR [14℄.

8 2 REALIZATION OF BASIC MATRIX OPERATIONS

0 200 400 600 800

0

100

200

300

400

500

600

700

800

0 200 400 600 800

0

100

200

300

400

500

600

700

800

Figure 1: Nonzero pattern before (left) and after (right) reordering.

Usually, the prepro
essing step
onsists of an equivalen
e transformation of the system.

In rare
ases not only the system matri
es, but also further matri
es must be transformed.

In parti
ular, this applies to nonzero initial stabilizing state-feedba
k matri
es K

0

when

a Ri

ati equation or an optimal
ontrol problems should be solved.

It is important for users to understand, what is done during the prepro
essing and

to distinguish
arefully between �original� and �transformed� (prepro
essed) data. Often

the output data of LYAPACK routines must be ba
ktransformed (postpro
essed) in order

to obtain the solution of the original problem. Su
h data are, for example, the low rank

Cholesky fa
tor Z that des
ribes the (approximate) solution of a Lyapunov equation or a

Ri

ati equation, or the (approximate) state-feedba
k K for solving the optimal
ontrol

problems. For instan
e, if as_pre or au_pre have been applied for prepro
essing, then the

rows of Z or K must be reordered by the inverse permutation. If msns_pre or munu_pre

are used, these quantities must be transformed with the inverse of the Cholesky fa
tor

M

U

and subsequently re-reordered. These ba
ktransformations are implemented in the

orresponding user supplied fun
tions [basis name℄_pst for postpro
essing.

In some
ases, postpro
essing
an be omitted, despite prepro
essing has been done.

This is the
ase, when the output data does not depend on what has been done as pre-

pro
essing (whi
h is usually an equivalen
e transformation of the system). An exam-

ple is model redu
tion by LRSRM or DSPMR. Here, the redu
ed systems are invariant

w.r.t. equivalen
e transformations of the original system.

2.4 Organization of user-supplied fun
tions for basi
 matrix op-

erations and guidelines for their implementation

In the �rst part of this se
tion we explain how user supplied fun
tions are organized and

how they work. We take a standard system (1), where A is sparse, and the
orresponding

user supplied fun
tions au_� as an illustrative example. The order in whi
h these user

supplied fun
tions are invoked is important. A typi
al sequen
e is shown below. Note

that this is a s
heme displaying the
hronologi
al order rather than a �main program�.

For example, Steps 6�13
ould be exe
uted inside the routine lp_lrnm for the Newton

iteration.

2.4 Organization of user-supplied fun
tions 9

...

[A0,B0,C0,prm,iprm℄ = au_pre(A,B,C); % Step 1

au_m_i(A0); % Step 2

Y0 = au_m('N',X0); % Step 3

...

au_l_i; % Step 4

Y0 = au_l('N',X0); % Step 5

...

p = lp_para(...); % Step 6

au_s_i(p); % Step 7

...

Y0 = au_s('N',X0,i); % Step 8

...

au_s_d(p); % Step 9

...

p = lp_para(...); % Step 10

...

au_s_i(p); % Step 11

...

Y0 = au_s('N',X0,i); % Step 12

...

au_s_d(p); % Step 13

...

Z = au_pst(Z0,iprm); % Step 14

au_l_d; % Step 15

au_m_d; % Step 16

...

Note, in parti
ular, that the user supplied fun
tions au_m (multipli
ation), au_l (solution

of linear systems), and au_s (solution of shifted linear systems)
an be
alled anywhere

between the following steps:

au_m: between Steps 2 and 16,

au_l: between Steps 4 and 15,

au_s: between Steps 7 and 9, Steps 11 and 13, et
.

Next, we des
ribe what is done in the single steps.

Step 1: Prepro
essing, whi
h has been dis
ussed in �2.3. The system matri
es A, B, and

C are transformed into A

0

, B

0

and C

0

(by a simultaneous reordering of
olumns and

rows).

Step 2: Initialization of data for multipli
ations with A

0

. Here, the input parameter A0

is stored in the �hidden� global variable LP_A.

Step 3: Matrix multipli
ation with A

0

. au_m has a

ess to the global variable LP_A.

Step 4: Initialization of data for the solution of linear systems with A

0

. Here, an LU

fa
torization of the matrix A

0

(provided as LP_A) is
omputed and stored in the

global variables LP_L and LP_U.

10 2 REALIZATION OF BASIC MATRIX OPERATIONS

Step 5: Solution of linear system A

0

Y

0

= X

0

. au_l has a

ess to the global variables

LP_L and LP_U.

Step 6: Compute shift parameters fp

1

; : : : ; p

l

g.

Step 7: Initialization of data for the solution of shifted linear systems with A

0

. Here,

the LU fa
tors of the matri
es A

0

+ p

1

I, . . . , A

0

+ p

l

I (A

0

is provided in LP_A) are

omputed and stored in the global variables LP_L1, LP_U1, . . . , LP_Ll, LP_Ul.

Step 8: Solution of shifted linear system (A

0

+p

i

I)Y

0

= X

0

. au_s has a

ess to the global

variables LP_Li and LP_Ui.

Step 9: Delete the global variables LP_L1, LP_U1, . . . , LP_Ll, LP_Ul.

Step 10: Possibly, a new set of shift parameters is
omputed, whi
h is used for a further

run of the LRCF-ADI iteration. (This is the
ase within the routine lp_lrnm, but

typi
ally not for model redu
tion problems.)

Step 11: (Re)initialization of data for the solution of shifted linear systems with A

0

and

the new shift parameters. Again, the LU fa
tors are stored in the global variables

LP_L1, LP_U1, . . . , LP_Ll, LP_Ul. Here, the value of l may di�er from that in Step 7.

Step 12: Solve shifted linear system.

Step 13: Delete the data generated in Step 11, i.e.,
lear the global variables LP_L1,

LP_U1, . . . , LP_Ll, LP_Ul. (Steps 9�13
an be repeated several times.)

Step 14: Postpro
essing, whi
h has been dis
ussed in �2.3. The result Z

0

of the prepro-

essed problem is ba
ktransformed into Z.

Step 15: Delete the data generated in Step 4, i.e.,
lear the global variables LP_L and

LP_U.

Step 16: Delete the data generated in Step 2, i.e.,
lear the global variable LP_A.

The other user supplied fun
tions, whi
h are
ontained in LYAPACK, are organized in a

similar way. Consult the
orresponding m-�les for details.

The following table shows whi
h user supplied fun
tions are invoked within the single

LYAPACK main routines. [b.n.℄ means [basis name℄.

main routine invoked USFs

lp_para [b.n.℄_m, [b.n.℄_l.

lp_lradi [b.n.℄_m, [b.n.℄_s.

lp_lrsrm [b.n.℄_m.

lp_dspmr [b.n.℄_m.

lp_lrnm [b.n.℄_m, [b.n.℄_l, [b.n.℄_s_i, [b.n.℄_s, [b.n.℄_s_d.

The
alling sequen
es for these user supplied fun
tions are �xed. It is mandatory to sti
k

to these sequen
es when implementing new user supplied fun
tions. The
alling sequen
es

are shown below. There it is assumed that X

0

(parameter X0) is a
omplex n� t matrix,

p is a ve
tor
ontaining shift parameters, and the �ag tr is either 'N' (�not transposed�)

or 'T' (�transposed�).

2.5 Case studies 11

� [basis name℄_m. Calling sequen
es: Y0 = [b.n.℄_m(tr,X0) or n = [b.n.℄_m. In the

�rst
ase, the result is Y

0

= A

0

X

0

for tr = 'N' and Y

0

= A

T

0

X

0

for tr = 'T'. The

parameter tr must also be provided (and is ignored) if A

0

is symmetri
. In the

se
ond
ase, where the user supplied fun
tion is
alled without input parameters,

only the problem dimension n is returned.

� [basis name℄_l. Calling sequen
e: Y0 = [b.n.℄_l(tr,X0). The result is Y

0

=

A

�1

0

X

0

for tr = 'N' and Y

0

= A

�T

0

X

0

for tr = 'T'.

� [basis name℄_i_p. Calling sequen
e: [b.n.℄_s_i(p).

� [basis name℄_s. Calling sequen
e: Y0 = [b.n.℄_s(tr,X0,i). The result is Y

0

=

(A

0

+ p

i

I)

�1

X

0

for tr = 'N' and Y

0

= (A

T

0

+ p

i

I)

�1

X

0

for tr = 'T'.

� [basis name℄_s_d. Calling sequen
e: [b.n.℄_s_d(p).

2.5 Case studies

See �C.1.

3 Lyapunov equations

3.1 Low Rank Cholesky Fa
tor ADI

3.1.1 Theory and algorithm

This se
tion gives a brief introdu
tion to the solution te
hnique for
ontinuous time Lya-

punov equations used in LYAPACK. For more details, the reader is referred to[31, 6, 33, 37℄.

We
onsider the
ontinuous time Lyapunov equation

FX +XF

T

= �GG

T

; (11)

where F 2 R

n;n

is stable, G 2 R

n;t

and t << n. It is well-known that su
h
ontinuous time

Lyapunov equations have a unique solution X, whi
h is symmetri
 and positive semidef-

inite. Moreover, in many
ases, the eigenvalues of X de
ay very fast, whi
h is dis
ussed

for symmetri
 matri
es F in [40℄. Thus, there exist often very a

urate approximations of

a rank, that is mu
h smaller than n. This property is most important for the e�
ien
y of

LYAPACK.

The ADI iteration [36, 50℄ for the Lyapunov equation (11) is given by X

0

= 0 and

(F + p

i

I

n

)X

i�1=2

= �GG

T

�X

i�1

(F

T

� p

i

I

n

)

(F + �p

i

I

n

)X

i

T

= �GG

T

�X

i�1=2

T

(F

T

� �p

i

I

n

); (12)

for i = 1; 2; : : : It is one of the most popular iterative te
hniques for solving Lyapunov equa-

tions. This method generates a sequen
e of matri
es X

i

whi
h often
onverges very fast

towards the solution, provided that the ADI shift parameters p

i

are
hosen (sub)optimally.

The basi
 idea for a more e�
ient implementation of the ADI method is to repla
e the

ADI iterates by their Cholesky fa
tors, i.e., X

i

= Z

i

Z

H

i

and to reformulate in terms of

the fa
tors Z

i

. Generally, these fa
tors have ti
olumns. For this reason, we
all them low

12 3 LYAPUNOV EQUATIONS

rank Cholesky fa
tors (LRCFs) and their produ
ts, whi
h are equal to the ADI iterates,

low rank Cholesky fa
tor produ
ts (LRCFPs). Obviously, the low rank Cholesky fa
tors

Z

i

are not uniquely determined. Di�erent ways to generate them exist; see [31, 37℄. The

following algorithm, whi
h we refer to as Low Rank Cholesky Fa
tor ADI (LRCF-ADI),

is the most e�
ient of these ways. It is a slight modi�
ation of the iteration proposed in

[31℄. Note that the number of iteration steps i

max

needs not be �xed a priori. Instead,

several stopping
riteria, whi
h are des
ribed in �3.1.2
an be applied.

Algorithm 1 (Low rank Cholesky fa
tor ADI iteration (LRCF-ADI))

INPUT: F , G, fp

1

; p

2

; : : : ; p

i

max

g

OUTPUT: Z = Z

i

max

2 C

n;ti

max

, su
h that ZZ

H

� X.

1. V

1

=

p

�2Re p

1

(F + p

1

I

n

)

�1

G

2. Z

1

= V

1

FOR i = 2; 3; : : : ; i

max

3. V

i

=

p

Re p

i

=Re p

i�1

(V

i�1

� (p

i

+ �p

i�1

)(F + p

i

I

n

)

�1

V

i�1

)

4. Z

i

=

�

Z

i�1

V

i

�

END

Let P

j

be either a negative real number or a pair of
omplex
onjugate numbers

with negative real part and nonzero imaginary part. We
all a parameter set of type

fp

1

; p

2

; : : : ; p

i

g = fP

1

;P

2

; : : : ;P

j

g a proper parameter set. The LYAPACK implementa-

tion of LRCF-ADI requires proper parameter sets fp

1

; p

2

; : : : ; p

i

max

g. If X

i

= Z

i

Z

H

i

is

generated by a proper parameter set fp

1

; : : : ; p

i

g, then X

i

is real, whi
h follows from (12).

However, if there are non-real parameters in this subsequen
e, Z

i

is not real. A more

ompli
ated modi�
ation of Algorithm 1 for generating real LRCFs has been proposed

in [6℄. However, in the LYAPACK implementation of Algorithm 1, real LRCFs
an be

derived from the
omplex fa
tors
omputed by this algorithm (at the pri
e of additional

omputation). That means for the delivered
omplex low rank Cholesky fa
tor Z = Z

i

max

a real low rank Cholesky fa
tor

~

Z is
omputed in a
ertain way, su
h that ZZ

H

=

~

Z

~

Z

T

.

The low rank Cholesky fa
tor

~

Z is returned as output parameter of the
orresponding

routine lp_lradi.

3.1.2 Stopping
riteria

The LYAPACK implementation of the LRCF-ADI iteration in the routine lp_lradi o�ers

the following stopping
riteria:

� maximal number of iteration steps;

� toleran
e for the normalized residual norm (NRN);

� stagnation of the normalized residual norm (most likely
aused by round-o� errors);

� smallness of the values kV

i

k

F

.

3.1 Low Rank Cholesky Fa
tor ADI 13

Here, the normalized residual norm
orresponding to the low rank Cholesky fa
tor Z is

de�ned as

NRN(Z) =

�

�

�

�

FZZ

T

+ ZZ

T

F

T

+GG

T

�

�

�

�

F

jjGG

T

jj

F

: (13)

Note: In LYAPACK, a quite e�
ient method for the
omputation of this quantity is

applied. See [37℄ for details. However, the
omputation of the values NRN(Z

i

) in the

ourse of the iteration
an still be very expensive. Sometimes, this amount of
omputation

an ex
eed the
omputational
ost for the a
tual iteration itself! Besides this,
omputing

the normalized residual norms
an require a
onsiderable amount of memory. This amount

is about proportional to ti. For this reason, it
an be preferable to avoid stopping
riteria

based on the normalized residual norm (toleran
e for the NRN, stagnation of the NRN)

and to use
heaper, possibly heuristi
al
riteria instead.

In the sequel, we dis
uss the above stopping
riteria and show some sample
onvergen
e

histories (in terms of the normalized residual norm) for LRCF-ADI runs. Here, this

method is applied to a given test example, but the iterations are stopped by di�erent

stopping
riteria and di�erent values of the
orresponding stopping parameters. It should

be noted that the
onvergen
e history plotted in Figures 2�5 is quite typi
al for LRCF-ADI

provided that shift parameters generated by lp_para are used in the given order. In the

�rst stage of the iteration, the logarithm of the normalized residual norm de
reases about

linearly. Typi
ally, this slope be
omes less steep, when more �ill-
onditioned� problems are

onsidered. (Su
h problems are in parti
ular Lyapunov equations, where many eigenvalues

of F are lo
ated near the imaginary axis, but far away from the real one. In
ontrast,

symmetri
 problems, where the
ondition number of F is quite large,
an usually be

solved by LYAPACK within a reasonable number of iteration steps.) In the se
ond stage,

the normalized residual norm
urve nearly stagnates on a relatively small level (mostly,

between 10

�12

and 10

�15

), whi
h is
aused by round-o� errors. That means the a

ura
y

(in terms of the NRN) of the low rank Cholesky fa
tor produ
t Z

i

Z

H

i

annot be improved

after a
ertain number of steps. Note, however, that the stagnation of the error norm

kZ

i

Z

H

i

�Xk

F

an o

ur a number of iteration steps later. Unfortunately, the error
annot

be measured in pra
ti
e be
ause the exa
t solution X is unknown.

Ea
h of the four stopping
riteria
an be �a
tivated� or �avoided� by the
hoi
e of the

orresponding input argument (stopping parameter) of the routine lp_lradi. If more

than one
riterion is a
tivated, the LRCF-ADI iteration is stopped as soon as (at least)

one of the �a
tivated�
riteria is ful�lled.

� Stopping
riterion: maximal number of iteration steps. This
riterion is

represented by the input parameter max_it in the routine lp_lradi. The iteration

is stopped by this
riterion after max_it iterations steps. This
riterion
an be

avoided by setting max_it = +Inf (i.e., max_it = 1). Obviously, no additional

omputations need to be performed to evaluate it. The drawba
k of this stopping

riterion is, that it is not related to the attainable a

ura
y of the delivered low rank

Cholesky fa
tor produ
t ZZ

H

. This is illustrated by Figure 2.

� Stopping
riterion: toleran
e for the normalized residual norms. This

riterion is represented by the input parameter min_res in the routine lp_lradi.

The iteration is stopped by this
riterion as soon as

NRN(Z

i

) � min_res:

14 3 LYAPUNOV EQUATIONS

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 2: Stopping
riterion: maximal number of iteration steps. Solid line: max_it = 20;

dash-dotted line: max_it = 60; dotted line: max_it = 100. The other three
riteria are

avoided.

This
riterion
an be avoided by setting min_res = 0. (Be
ause of round-o� errors

it is pra
ti
ally impossible to attain NRN(Z

i

) = 0.) It requires the
omputation of

normalized residual norms and is
omputationally expensive. A further drawba
k of

this
riterion is that it will either stop the iteration before the maximal a

ura
y is

attained (see min_res = 10

�5

, 10

�10

in Figure 3) or it will not stop the iteration at all

(see min_res = 10

�15

in Figure 3). If one wants to avoid this
riterion, but
ompute

the
onvergen
e history provided by the output ve
tor res, one should set min_res

to a value mu
h smaller than the ma
hine pre
ision (say, min_res = 10

�100

).

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 3: Stopping
riterion: toleran
e for the normalized residual norm. Solid line:

min_res = 10

�5

; dash-dotted line: min_res = 10

�10

; dotted line: min_res = 10

�15

. The

other three
riteria are avoided.

� Stopping
riterion: stagnation of the normalized residual norm. This
ri-

terion is represented by the input parameter with_rs in the routine lp_lradi. It is

3.1 Low Rank Cholesky Fa
tor ADI 15

a
tivated if with_rs = 'S' and avoided if with_rs = 'N'. The iteration is stopped

by this
riterion when a stagnation of the normalized residual norm
urve is dete
ted.

We do not dis
uss the implementation of this
riterion in detail here, but, roughly

speaking, the normalized residual norm
urve is
onsidered as �stagnating�, when no

noti
eable de
rease of the normalized residual norms is observed in 10
onse
utive

iteration steps. In extreme
ases, where the shape of the normalized residual norm

urve is not so
learly subdivided in the linearly de
reasing and the stagnating part

as in Figure 4, this
riterion might terminate the iteration prematurely. However, it

works well in pra
ti
e. It requires the
omputation of normalized residual norms and

is
omputationally expensive. Note that the delay between stagnation and stopping

of the
urve is 10 iteration steps.

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 4: Stopping
riterion: Stagnation of the normalized residual norm. Solid line:

with_rs = 'S'; dotted line: with_rs = 'N'. The other three
riteria are avoided.

� Stopping
riterion: smallness of the values kV

i

k

F

. This
riterion is represented

by the input parameter min_in in the routine lp_lradi. It is based on the obser-

vation that the values kV

i

k

F

tend to de
rease very fast. Note in this
ontext that

V

i

V

H

i

is the di�eren
e between the ADI iterates X

i

and X

i�1

, and that the sequen
e

of the matri
es X

i

is monotoni
ally
onverging (i.e., X

i

� X

i�1

). Loosely speaking,

this means the following. When kV

i

k

2

F

and
onsequently kV

i

V

H

i

k

F

� kV

i

k

2

F

be
ome

nearly as small as the ma
hine pre
ision, then the �
ontribution� from iteration step

i � 1 to i is almost
ompletely
orrupted by round-o� errors and, thus, there is

no point in
ontinuing the iteration. However, sin
e kV

i

k

F

is not monotoni
ally

de
reasing, it is required in lp_lradi that

kV

i

k

2

F

kZ

i

k

2

F

� min_in

is ful�lled in 10
onse
utive iteration steps before the iteration is stopped to keep

the risk of a premature termination very small. The evaluation of this
riterion is

inexpensive (see also [6℄)
ompared to both
riteria based on the normalized residual

norms. Moreover, it is less �stati
� as the
riterion based on the number of iteration

16 3 LYAPUNOV EQUATIONS

steps. Unfortunately, it is not
lear how the a

ura
y of the approximate solution

Z

i

Z

T

i

is related to the ratio of kV

i

k

F

and kZ

i

k

F

. Thus, the
riterion is not absolutely

safe. However, if the Lyapunov equation should be solved as a

urate as possible,

good results are usually a
hieved for values of min_in, that are slightly larger than

the ma
hine pre
ision (say, min_in = 10

�12

). The
riterion
an be avoided by setting

min_in = 0. See Figure 5.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 5: Stopping
riterion: smallness of the values kV

i

k

F

. Solid line: min_in = 10

�5

;

dash-dotted line: min_in = 10

�10

; dotted line: min_in = 10

�15

. The other three
riteria

are avoided.

We re
ommend to use (only) the stopping
riterion related to with_rs if Lyapunov so-

lutions of high a

ura
y should be
omputed and if it is a�ordable to
ompute residual

norms. If the
omputation of the residual norms must be avoided, the
riterion related to

min_in is probably the best
hoi
e.

3.1.3 The routine lp_lradi

The LRCF-ADI iteration is implemented in the LYAPACK routine lp_lradi. Here, we

provide a brief des
ription of this routine. For more details see the inline do
umentation

whi
h is displayed by typing the MATLAB
ommand � help lp_lradi.

The routine
an solve either the
ontinuous time Lyapunov equation

FX +XF

T

= �GG

T

(14)

or to the �dual�
ontinuous time Lyapunov equation

F

T

X +XF = �G

T

G: (15)

Here, F = A�B

f

K

T

f

. Basi
 matrix operations must be supplied by user-supplied fun
tions

for the matrix A (not F !). G in (14) or G

T

in (15) should
ontain very few
olumns

ompared to the system order. B

f

and K

f

are matri
es, that represent a so-
alled state

feedba
k. They are needed in the routine lp_lrnm for the Newton method, in whi
h

lp_lradi is invoked. In general, users will not use this option, whi
h means B

f

= K

f

= 0.

3.1 Low Rank Cholesky Fa
tor ADI 17

However, if this is not the
ase, the matri
es B

f

and K

f

must
ontain very few
olumns

to guarantee the e�
ien
y of the routine.

The approximate solution of either Lyapunov equation is given by the low rank

Cholesky fa
tor Z, for whi
h ZZ

H

� X. Z has typi
ally fewer
olumns than rows.

(Otherwise, this routine and LYAPACK itself are useless!) In general, Z
an be a
omplex

matrix, but the produ
t ZZ

H

is real. lp_lradi
an perform an optional internal post-

pro
essing step, whi
h guarantees that the delivered low rank Cholesky fa
tor Z is real.

More pre
isely, the
omplex low rank Cholesky fa
tor delivered by the LRCF-ADI itera-

tion is transformed into a real low rank Cholesky fa
tor of the same size, su
h that both

low rank Cholesky fa
tor produ
ts are identi
al. However, doing this requires additional

omputation. (This option is not related to the �real version� of LRCF-ADI des
ribed in

[6℄.)

Furthermore, there exists an option for dire
tly generating the produ
t of the (approx-

imate) solution with a matrix, i.e., K

out

= ZZ

H

K

in

is
omputed without forming the low

rank Cholesky fa
tor Z. Here, K

in

must
ontain only few
olumns. However, this option

should not be used by the user. It is needed in the impli
it version of the Newton method.

If this mode is used, stopping
riteria based on the residual
annot be applied.

Calling sequen
es:

Depending on the
hoi
e of the mode parameter zk, the following two
alling sequen
es

exist. However, it is re
ommended to use only the �rst mode.

� zk = 'Z':

[Z, flag, res, flp℄ = lp_lradi(tp, zk, r
, name, Bf, Kf, G, p, ...

max_it, min_res, with_rs, min_in, info)

� zk = 'K':

[K_out, flag, flp℄ = lp_lradi(tp, zk, r
, name, Bf, Kf, G, p, ...

K_in, max_it, min_in, info)

Input parameters:

tp: Mode parameter, whi
h is either 'B' or 'C'. If tp = 'B', CALE (14) is solved.

Otherwise, CALE (15) is solved.

zk: Mode parameter, whi
h is either 'Z' or 'K'. If zk = 'Z', the low rank Cholesky

fa
tor Z is
omputed. Otherwise, K

out

= ZZ

H

K

in

is
omputed dire
tly.

r
: Mode parameter, whi
h is either 'R' or 'C'. If r
 = 'C', the routine delivers a low

rank Cholesky fa
tor, whi
h is not real when non-real shift parameters are used.

Otherwise, the low rank Cholesky fa
tor resulting from the LRCF-ADI iteration is

transformed into a real low rank Cholesky fa
tor

~

Z, whi
h des
ribes the identi
al

approximate solution

~

Z

~

Z

T

.

~

Z is returned instead of Z.

name: The basis name of the USFs that realize BMOs with A.

18 3 LYAPUNOV EQUATIONS

Bf: Feedba
k matrix B

f

, whi
h is not used expli
itely in general. For B

f

= 0, set Bf =

[℄.

Kf: Feedba
k matrix K

f

, whi
h is not used expli
itely in general. For K

f

= 0, set Kf =

[℄.

G: The matrix G.

p: Ve
tor
ontaining the suitably ordered ADI shift parameters P = fp

1

; : : : ; p

l

g, whi
h

are delivered by the routine lp_para. If the number l of distin
t parameters is

smaller than i

max

in Algorithm 1, shift parameters are used
y
li
ally. That means,

p

l+1

= p

1

, p

l+2

= p

2

, : : :, p

2l

= p

l

, p

2l+1

= p

1

, : : :

K_in: The matrix K

in

, whi
h is only used in the mode zk = 'K'.

max_it: Stopping parameter. See �3.1.2.

min_res: Stopping parameter. See �3.1.2.

with_rs: Stopping parameter. See �3.1.2.

min_in: Stopping parameter. See �3.1.2.

info: Parameter, whi
h determines the �amount� of information that is provided as

text and/or residual history plot. The following values are possible: info = 0 (no

information), 1, 2, and 3 (most possible information)

Output parameters:

Z: The low rank Cholesky fa
tor Z, whi
h is
omplex if r
 = 'C' and p is not a real

ve
tor.

K_out: The matrix K

out

, whi
h is only returned in the mode zk = 'K'.

flag: A �ag, that shows by whi
h stopping
riterion (or stopping parameter) the iteration

has been stopped. Possible values are 'I' (for max_it), 'R' (for min_res), 'S' (for

with_rs), and 'N' (for min_in).

res: A ve
tor
ontaining the history of the normalized residual norms. res(1) = 1 and

res(i+1) is the normalized residual norm w.r.t. the iteration step i. If the stopping

riteria are
hosen, so that the normalized residual norms need not be
omputed,

res = [℄ is returned.

flp: A ve
tor
ontaining the history of the �ops needed for the iteration. flp(1) = 0 and

flp(i+1) is the number of �ops required for the iteration steps 1 to i. flp displays

only the number of �ops required for the a
tual iteration. The numeri
al
osts for

initializing and generating data by USFs, the
omputation of ADI shift parameters,

and the
omputation of normalized residual norms are not in
luded.

3.2 Computation of ADI shift parameters 19

3.2 Computation of ADI shift parameters

3.2.1 Theory and algorithm

In this se
tion, we brie�y des
ribe a pra
ti
al algorithm to
ompute a set P = fp

1

; : : : ; p

l

g

of suboptimal shift parameters, whi
h are needed in the LRCF-ADI iteration. This al-

gorithm [37℄ is implemented in the routine lp_para, whose output is an ordered set of l

distin
t shift parameters.

The determination of (sub)optimal ADI shift parameters is
losely
onne
ted with a

rational minimax problem (e.g., [46, 49, 51℄) related to the fun
tion

s

P

(t) =

j(t� p

1

) � : : : � (t� p

l

)j

j(t+ p

1

) � : : : � (t+ p

l

)j

:

This minimax problem
an be stated as the
hoi
e of P, su
h that

max

t2�(F)

s

P

(t)

is minimized. Unfortunately, the spe
trum �(F) is not known in general and it
annot be

omputed inexpensively if F is very large. Furthermore, even if the spe
trum or bounds for

the spe
trum are known, no algorithms are available to
ompute the optimal parameters

p

i

.

Our algorithm for the
omputation of a set of suboptimal shift parameters is numer-

i
ally inexpensive and heuristi
. It is based on two ideas. First, we generate a dis
rete

set, whi
h �approximates� the spe
trum. This is done by a pair of Arnoldi pro
esses; e.g.,

[19℄. The �rst pro
ess w.r.t. F delivers k

+

values that tend to approximate �outer� eigen-

values, whi
h are generally not
lose to the origin, well. The se
ond pro
ess w.r.t. F

�1

is

used to get k

�

approximations of eigenvalues near the origin, whose
onsideration in the

ADI minimax problem is
ru
ial. The eigenvalue approximations delivered by the Arnoldi

pro
esses are
alled Ritz values. Se
ond, we
hoose a set of shift parameters, whi
h is a

subset of the set of Ritz values R. This is done by a heuristi
, that delivers a suboptimal

solution for the resulting dis
rete optimization problem. Note that the order in whi
h this

heuristi
 delivers the parameters is advantageous. Loosely speaking, the parameters are

ordered su
h that parameters, whi
h are related to a strong redu
tion in the ADI error,

are applied �rst. For more details about the parameter algorithm, see [37℄.

Algorithm 2 (Suboptimal ADI parameters)

INPUT: F , l

0

, k

+

, k

�

OUTPUT: P = fp

1

; : : : ; p

l

g, where l = l

0

or l

0

+ 1

1. Choose b

0

2 R

n

at random.

2. Perform k

+

steps of the Arnoldi pro
ess w.r.t. (F; b

0

) and
ompute the set of Ritz values

R

+

.

3. Perform k

�

steps of the Arnoldi pro
ess w.r.t. (F

�1

; b

0

) and
ompute the set of Ritz

values R

�

.

4. R = f�

1

; : : : ; �

k

+

+k

�

g := R

+

[(1=R

�

)

20 3 LYAPUNOV EQUATIONS

5. IF R 6� C

�

, remove unstable elements from R and display a warning.

6. Dete
t i with max

t2R

s

f�

i

g

(t) = min

�2R

max

t2R

s

f�g

(t) and initialize

P :=

�

f�

i

g : �

i

real

f�

i

; ��

i

g : otherwise

:

WHILE
ard(P) < l

0

7. Dete
t i with s

P

(�

i

) = max

t2R

s

P

(t) and set

P :=

�

P [f�

i

g : �

i

real

P [f�

i

; ��

i

g : otherwise

:

END WHILE

Obviously, the output of this algorithm is a proper parameter set; see �3.1.1. The number

of shift parameters is either l

0

or l

0

+ 1. Larger values of k

+

and k

�

lead to better

approximations of the spe
trum, but in
rease also the
omputational
ost, be
ause k

+

matrix-ve
tor multipli
ations with F must be
omputed in the �rst Arnoldi algorithm

and k

�

systems of linear equations with F must be solved in the se
ond one. A typi
al

hoi
e of the triple (l

0

; k

+

; k

�

) is (20,50,25). For �tough� problems these values should be

in
reased. For �easy� ones they
an be de
reased. Note that de
reasing l

0

will redu
e the

memory demand if shifted SLEs are solved dire
tly, be
ause in this
ase the amount of

the memory needed to store the matrix fa
tors is proportional to l.

Steps 6 and 7 require that R is
ontained in C

�

. However, this
an only be guaranteed

if F + F

T

is negative de�nite and exa
t ma
hine pre
ision is used. If F is unstable, than

LYAPACK
annot be applied anyway, be
ause the ADI iteration diverges or, at least,

stagnates. Experien
e shows that also in the
ase, when F is stable but F + F

T

is not

de�nite, the Ritz values tend to be
ontained in the left half of the
omplex plane. If

this is not the
ase, unstable Ritz values are removed in Step 5, whi
h is more or less

a not very elegant emergen
y measure. If LRCF-ADI run with the resulting parameters

diverges despite this measure, the matrix F is most likely unstable. In
onne
tion with

the LRCF-NM or LRCF-NM-I applied to ill-
onditioned CAREs, this might be
aused by

round-o� errors. There the so-
alled
losed-loop matrix A � B

f

K

T

f

an be proved to be

stable (in exa
t arithmeti
s), but the
losed-loop poles (i.e, the eigenvalues of A�B

f

K

T

f

)

an be extremely sensitive to perturbations, so that stability is not guaranteed in pra
ti
e.

Figure 6 shows the result of the parameter algorithm for a random example of order

n = 500. The triple (l

0

; k

+

; k

�

) is
hosen as (20,50,25). 21 shift parameters were returned.

The pi
ture shows the eigenvalues of F , the set R of Ritz values, and the set P of shift

parameters. Note that the majority of the shift parameters is
lose to the imaginary axis.

3.2.2 The routine lp_para

Calling sequen
es:

The following two
alling sequen
es are possible:

[p,err_
ode,rw,Hp,Hm℄ = lp_para(name,Bf,Kf,l0,kp,km)

[p,err_
ode,rw,Hp,Hm℄ = lp_para(name,Bf,Kf,l0,kp,km,b0)

However, usually one is only interested in the �rst output parameter p.

3.2 Computation of ADI shift parameters 21

−2000 −1500 −1000 −500 0
−500

−400

−300

−200

−100

0

100

200

300

400

500

real axis

im
ag

in
ar

y
ax

is

Figure 6: Results of Algorithm 2. �: eigenvalues of F ;
: elements of R; �: elements of

P � R.

Input parameters:

name: The basis name of the USFs that realize BMOs with A.

Bf: Feedba
k matrix B

f

, whi
h is not used expli
itely in general. For B

f

= 0, set Bf =

[℄.

Kf: Feedba
k matrix K

f

, whi
h is not used expli
itely in general. For K

f

= 0, set Kf =

[℄.

l0: Parameter l

0

. Note that k

+

+ k

�

> 2l

0

is required.

kp: Parameter k

+

.

km: Parameter k

�

.

b0: This optional argument is an n-ve
tor, that is used as starting ve
tor in both Arnoldi

pro
esses. If b0 is not provided, this ve
tor is
hosen at random, whi
h means that

di�erent results
an be returned by lp_para in two di�erent runs with identi
al

input parameters.

Output parameters:

p: A ve
tor
ontaining the ADI shift parameters P = fp

1

; : : : ; p

l

g, where either l = l

0

or

l = l

0

+1. It is re
ommended to apply the shift parameters in the same order in the

routine lp_lradi as they are returned by this routine.

err_
ode: This parameter is an error �ag, whi
h is either 0 or 1. If err_
ode = 1, the

routine en
ountered Ritz values in the right half of the
omplex plane, whi
h are

removed in Step 5 of Algorithm 2. err_
ode = 0 is the standard return value.

22 4 MODEL REDUCTION

rw: A ve
tor
ontaining the Ritz value set R.

Hp: The Hessenberg matrix produ
ed by the Arnoldi pro
ess w.r.t. F .

Hm: The Hessenberg matrix produ
ed by the Arnoldi pro
ess w.r.t. F

�1

.

3.3 Case studies

See �C.2.1.

4 Model redu
tion

4.1 Preliminaries

Roughly speaking, model redu
tion is the approximation of the dynami
al system

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(16)

with A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

by a redu
ed system

_

x̂(�) =

^

Ax̂(�) +

^

Bu(�)

y(�) =

^

Cx̂(�)

(17)

with

^

A 2 R

k;k

,

^

B 2 R

k;m

,

^

C 2 R

q;k

(or, possibly,

^

A 2 C

k;k

,

^

B 2 C

k;m

,

^

C 2 C

q;k

), and

k < n. In parti
ular, we
onsider the
ase where the system order n is large, and m and

q are mu
h smaller than n. Furthermore, we assume that A is stable. Several ways exist

to evaluate the approximation error between the original system and the redu
ed system.

Frequently, the di�eren
e between the systems (16) and (17) measured in the L

1

norm

kG�

^

Gk

L

1

= sup

!2R

kG(|!)�

^

G(|!)k (18)

is used to do this, where | =

p

�1 and k � k is the spe
tral norm of a matrix. Moreover,

G and

^

G are the transfer fun
tions of the systems (16) and (17), whi
h are de�ned as

G(s) = C(sI

n

� A)

�1

B and

^

G(s) =

^

C(sI

k

�

^

A)

�1

^

B.

LYAPACK
ontains implementations of two algorithms (LRSRM and DSPMR) for

omputing redu
ed systems. Both model redu
tion algorithms belong to the
lass of state

spa
e proje
tion methods, where the redu
ed system is given as

^

A = S

H

C

AS

B

;

^

B = S

H

C

B;

^

C = CS

B

: (19)

Here, S

B

; S

C

2 C

n;k

are
ertain proje
tion matri
es, whi
h ful�ll the biorthogonality
on-

dition

S

H

C

S

B

= I

k

:

Furthermore, both model redu
tion algorithms rely on low rank approximations to the

solutions (Gramians) of the
ontinuous time Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(20)

A

T

X

C

+X

C

A = �C

T

C: (21)

4.2 Low rank square root method 23

This means that we assume that low rank Cholesky fa
tors Z

B

2 C

n;r

B

and Z

C

2 C

n;r

C

with r

B

; r

C

<< n are available, su
h that Z

B

Z

H

B

� X

B

and Z

C

Z

H

C

� X

C

. In LYAPACK

these low rank Cholesky fa
tors are
omputed by the LRCF-ADI iteration; see �3.1. In

��4.2 and 4.3 we will brie�y des
ribe the two model redu
tion algorithms LRSRM [39, 33℄

and DSPMR [32, 39℄. In [39℄ a third method
alled LRSM (low rank S
hur method)

is proposed. However, this less e�
ient method is not implemented in LYAPACK. The

distin
t merit of LRSRM and DSPMR
ompared to standard model redu
tion algorithms,

su
h as standard balan
ed trun
ation methods [47, 44, 48℄ or all-optimal Hankel norm

approximation [18℄), is their low numeri
al
ost w.r.t. both memory and
omputation. On

the other hand, unlike some standard methods, the algorithms implemented in LYAPACK

do generally not guarantee the stability of the redu
ed system. If stability is
ru
ial, this

property must be
he
ked numeri
ally after running LRSRM or DSPMR. If the redu
ed

system is not stable, several measures
an be tried. For example, one
an simply remove the

unstable modes by modal trun
ation [11℄. Another option is to run LRSRM or DSPMR

again using more a

urate low rank Cholesky fa
tors Z

B

and Z

C

. Note that for some

problems the error fun
tion kG(|!) �

^

G(|!)k in !, whi
h
hara
terizes the frequen
y

response of the di�eren
e of both systems,
an be evaluated by supplementary LYAPACK

routines; see �6.

If the low rank Cholesky fa
tors Z

B

and Z

C

delivered by the LRCF-ADI iteration

are not real, then the redu
ed systems are not guaranteed to be real. This problem is

dis
ussed more detailed in [33℄ for the low rank square root method. If the redu
ed

system needs to be real, it is re
ommended to
he
k a posteriori whether the result of low

rank square root method or dominant subspa
e proje
tion model redu
tion is real. It is

possible to transform a redu
ed
omplex system into a real one by a unitary equivalen
e

transformation; see [33℄. A mu
h simpler way, of
ourse, is using the option r
 = 'R'

for whi
h the routine lp_lradi delivers real low rank Cholesky fa
tors (at the pri
e of a

somewhat in
reased numeri
al
ost).

4.2 Low rank square root method

4.2.1 Theory and algorithm

The low rank square root method (This algorithm is named SLA in [33℄.) (LRSRM) [39, 33℄

is only a slight modi�
ation of the
lassi
al square root method [47℄, whi
h in turn is a

numeri
ally advantageous version of the balan
ed trun
ation te
hnique [35℄. The following

algorithm is implemented in the LYAPACK routine lp_lrsrm:

Algorithm 3 (Low rank square root method (LRSRM))

INPUT: A, B, C, Z

B

, Z

C

, k

OUTPUT:

^

A,

^

B,

^

C

1. U

C

�U

H

B

:= Z

H

C

Z

B

(�thin� SVD with des
ending ordered singular values)

2. S

B

= Z

B

U

B (:;1:k)

�

�1=2

(1:k;1:k)

; S

C

= Z

C

U

C (:;1:k)

�

�1=2

(1:k;1:k)

3.

^

A = S

H

C

AS

B

;

^

B = S

H

C

B;

^

C = CS

B

The only di�eren
e between the
lassi
al square root method and this algorithm is, that

24 4 MODEL REDUCTION

here (approximate) low rank Cholesky fa
tors Z

B

and Z

C

are used instead of exa
t

Cholesky fa
tors of the Gramians, whi
h have possibly full rank. This redu
es in par-

ti
ular the numeri
al
ost for the singular value de
omposition in Step 1
onsiderably.

However, there are two basi
 drawba
ks of LRSRM
ompared to the �exa
t� square

root method. Unlike LRSRM, the latter delivers stable redu
ed systems under mild
ondi-

tions. Furthermore, there exists an upper error bound for (18) for the standard square root

method, whi
h does not apply to the low rank square root method. Thus, it is not surpris-

ing that the performan
e of Algorithm 3 depends on the a

ura
y of the approximate low

rank Cholesky fa
tor produ
ts Z

B

Z

H

B

and Z

C

Z

H

C

and the value k, where k � rankZ

H

C

Z

B

.

This makes the
hoi
e of the quantities r

B

, r

C

, and k a trade-o�. Large values of r

B

and

r

C

, and values of k mu
h smaller than rankZ

H

C

Z

B

tend to keep the deviation of the low

rank square root method from the standard square root method small. On the other hand

the
omputational e�
ien
y of the low rank square roo method is de
reased in this way.

However, LRCF-ADI often delivers low rank Cholesky fa
tors Z

B

and Z

C

, whose produ
ts

approximate the system Gramians nearly up to ma
hine pre
ision. In this
ase the re-

sults of the LYAPACK implementation of the low rank square root method will be about

as good as those by any standard implementation of the balan
ed trun
ation te
hnique,

whi
h, however,
an be still numeri
ally mu
h more expensive.

Finally, note that the
lassi
al square root method is well-suited to
ompute (nu-

meri
ally) minimal realizations; e.g., [48℄. LRSRM (as well as DSPMR)
an be used to

ompute su
h realizations for large systems. The term �numeri
ally minimal realization�

is not well-de�ned. Loosely speaking, it is rather the
on
ept of
omputing a redu
ed

system, for whi
h the (relative) approximation error (18) is of magnitude of the ma
hine

pre
ision. See Figure 14 in �C.3.3.

4.2.2 Choi
e of redu
ed order

In the LYAPACK implementation of the low rank square root method, the redu
ed or-

der k
an be
hosen a priori or in dependen
e of the des
ending ordered singular values

�

1

; �

2

; : : : ; �

r

omputed in Step 1, where r = rankZ

H

C

Z

B

.

� Maximal redu
ed order. The input parameters max_ord of the routine lp_lrsrm

pres
ribes the maximal admissible value for the redu
ed order k, i.e., k � max_ord

is required. If the
hoi
e of this value should be avoided, one
an set max_ord = n

or max_ord = [℄.

� Maximal ratio �

k

=�

1

. The input parameter tol pres
ribes the maximal admissible

value for the ratio �

k

=�

1

. That means k is
hosen as the largest index for whi
h

�

k

=�

1

� tol. This means that one will generally
hoose a value of tol between the

ma
hine pre
ision an 1.

In general, both parameters will determine di�erent values of k. The routine lp_lrsrm

uses the smaller value.

4.2.3 The routine lp_lrsrm

Algorithm LRSRM is implemented in the LYAPACK routine lp_lrsrm. We provide a

brief des
ription of this routine. For more details see the inline do
umentation whi
h is

displayed by typing the MATLAB
ommand � help lp_lrsrm.

4.3 Dominant subspa
es proje
tion model redu
tion 25

Calling sequen
e:

[Ar ,Br, Cr, SB, SC, sigma℄ = lp_lrsrm(name, B, C, ZB, ZC, ...

max_ord, tol)

Input parameters:

name: The basis name of the user supplied fun
tions that realize basi
 matrix operations

with A.

B: System matrix B.

C: System matrix C.

ZB: LRCF Z

B

2 C

n;r

B

. This routine is only e�
ient if r

B

<< n.

ZC: LRCF Z

C

2 C

n;r

C

. This routine is only e�
ient if r

C

<< n.

max_ord: A parameter for the
hoi
e of the redu
ed order k; see �4.2.2.

tol: A parameter for the
hoi
e of the redu
ed order k; see �4.2.2.

Output parameters:

Ar: Matrix

^

A 2 C

k;k

of redu
ed system.

Br: Matrix

^

B 2 C

k;m

of redu
ed system.

Cr: Matrix

^

C 2 C

q;k

of redu
ed system.

SB: Proje
tion matrix S

B

.

SC: Proje
tion matrix S

C

.

sigma: Ve
tor
ontaining the singular values
omputed in Step 1.

Usually, one is only interested in the �rst three output parameters.

4.2.4 Case studies

See �C.3.

4.3 Dominant subspa
es proje
tion model redu
tion

4.3.1 Theory and algorithms

The dominant subspa
es proje
tion model redu
tion (DSPMR) [32, 39℄, whi
h is provided

as LYAPACK routine lp_dspmr, is more heuristi
 in nature. The basi
 idea behind this

method is that the input-state behavior and the state-output behavior of the system (16)

tend to be dominated by states, whi
h have a strong
omponent w.r.t. the dominant

invariant subspa
es of the Gramians X

B

and X

C

. These dominant invariant subspa
es are

approximated by the left singular ve
tors of Z

B

and Z

C

provided that X

B

� Z

B

Z

H

B

and

26 4 MODEL REDUCTION

X

C

� Z

C

Z

H

C

. The motivation of the dominant subspa
e
orre
tion method is dis
ussed

at length in [39℄. Compared to the low rank square root method, the approximation

properties of the redu
ed systems by DSPMR are often less satisfa
tory, i.e., the error

fun
tion kG(s) �

^

G(s)k tends to be less small. On the other hand, DSPMR sometimes

delivers a stable redu
ed system, when that by LRSRM is not stable. In DSPMR, the

stability of the redu
ed system is guaranteed at least ifA+A

T

is negative de�nite. Note also

that DSPMR uses an orthoproje
tion, whereas LRSRM is based on an oblique proje
tion.

For this reason, DSPMR is also advantageous w.r.t. preserving passivity.

Algorithm 4 (Dominant subspa
es proje
tion model redu
tion (DSPMR))

INPUT: A, B, C, Z

B

, Z

C

, k

OUTPUT:

^

A,

^

B,

^

C

1. Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

2. U�V

H

:= Z (�thin� SVD with des
ending ordered singular values)

3. S = U

(:;1:k)

4.

^

A = S

H

AS;

^

B = S

H

B;

^

C = CS

4.3.2 Choi
e of redu
ed order

In the LYAPACK implementation of DSPMR, the redu
ed order k
an be
hosen a priori

or in dependen
e of the des
ending ordered singular values �

1

; �

2

; : : : ; �

r

omputed in Step

2, where r = rankZ.

� Maximal redu
ed order. The input parameter max_ord of the routine lp_dspmr

pres
ribes the maximal admissible value for the redu
ed order k, i.e., k � max_ord

is required. To avoid this
hoi
e, one
an set max_ord = n or max_ord = [℄.

� Maximal ratio �

k

=�

1

. The input parameter tol determines the maximal admissible

value for the ratio �

k

=�

1

. More pre
isely, k is
hosen as the largest index for whi
h

�

k

=�

1

�

p

tol. Note that here the square root of tol is used in
ontrast to LRSRM.

(Note that the values �

i

have somewhat di�erent meanings in LRSRM and DSPMR.)

In general, both parameters will determine di�erent values of k. The routine lp_dspmr

uses the smaller value. Finally, it should be mentioned, that, at least in exa
t arithmeti
s,

both LRSRM and DSPMR (run with identi
al values max_ord and tol) deliver the same

result for state-spa
e symmetri
 systems (i.e., systems, where A = A

T

and C = B

T

).

4.3.3 The routine lp_dspmr

Algorithm DSPMR is implemented in the LYAPACK routine lp_dspmr. We provide a

brief des
ription of this routine. For more details see the inline do
umentation whi
h is

displayed by typing the MATLAB
ommand � help lp_dspmr.

27

Calling sequen
e:

[Ar ,Br, Cr, S℄ = lp_dspmr(name, B, C, ZB, ZC, max_ord, tol)

Input parameters:

name: The basis name of the user supplied fun
tions that realize basi
 matrix operations

with A.

B: System matrix B.

C: System matrix C.

ZB: LRCF Z

B

2 C

n;r

B

. This routine is only e�
ient if r

B

<< n.

ZC: LRCF Z

C

2 C

n;r

C

. This routine is only e�
ient if r

C

<< n.

max_ord: A parameter for the
hoi
e of the redu
ed order k; see �4.3.2.

tol: A parameter for the
hoi
e of the redu
ed order k; see �4.3.2.

Output parameters:

Ar: Matrix

^

A 2 C

k;k

of redu
ed system.

Br: Matrix

^

B 2 C

k;m

of redu
ed system.

Cr: Matrix

^

C 2 C

q;k

of redu
ed system.

S: Proje
tion matrix S.

4.3.4 Case studies

See �C.3.

5 Ri

ati equations and linear-quadrati
 optimal
on-

trol problems

5.1 Preliminaries

This se
tion mainly deals with the e�
ient numeri
al solution of
ontinuous time algebrai

Ri

ati equations of the type

C

T

QC + A

T

X +XA�XBR

�1

B

T

X = 0; (22)

where A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

with m; q << n. Moreover, we assume that

Q 2 R

q;q

is symmetri
, positive semide�nite and R 2 R

m;m

is symmetri
, positive de�nite.

Unlike in the other se
tions of this do
ument, we do not assume here that A is stable, but

it is required that a matrix K

(0)

is given, su
h that A� BK

(0)

T

is stable. Su
h a matrix

K

(0)

an be
omputed by partial pole pla
ement algorithms [21℄, for example.

28 5 RICCATI EQUATIONS

In general, the solution of (22) is not unique. However, under the above assumptions, a

unique, stabilizing solution X exists, whi
h is the solution of interest in most appli
ations;

e.g., [34, 29℄. A solution X is
alled stabilizing if the
losed-loop matrix A�BR

�1

B

T

X is

stable.

Algebrai
 Ri

ati equations arise from numerous problems in
ontrol theory, su
h as

robust
ontrol or
ertain balan
ing and model redu
tion te
hniques for unstable systems.

Another appli
ation, for whi
h algorithms are provided by LYAPACK, is the solution

of the linear quadrati
 optimal
ontrol problem. In this paragraph, we brie�y des
ribe

the
onne
tion between linear quadrati
 optimal
ontrol problems and algebrai
 Ri

ati

equations. The linear quadrati
 optimal
ontrol problem is a
onstrained optimization

problem. The
ost fun
tional to be minimized, is

J (u; y; x

0

) =

1

2

Z

1

0

y(�)

T

Qy(�) + u(�)

T

Ru(�)d� ; (23)

where Q = Q

T

� 0 and R = R

T

> 0. The
onstraints are given by the dynami
al system

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(24)

and the initial
ondition

x(0) = x

0

: (25)

The solution of this optimization problem is des
ribed by the feedba
k matrix K, that is

de�ned as

K = XBR

�1

; (26)

where X is the stabilizing solution of the algebrai
 Ri

ati equation (22). The
orrespond-

ing
ontrol fun
tion is given by the state-feedba
k

u(�) = �K

T

x(�)

and the initial
ondition (25).

To sum up, we
onsider two problems in this se
tion. The �rst one is the numeri
al

omputation of the stabilizing solution of the
ontinuous time algebrai
 Ri

ati equations

(22). The se
ond problem is the solution of the linear quadrati
 optimal
ontrol problem

(23,24,25), whi
h is a parti
ular appli
ation of algebrai
 Ri

ati equations. Its solution

an be des
ribed by the stabilizing solution X, from whi
h the optimal state-feedba
k
an

easily be
omputed via (26), or by the feedba
k K itself.

LYAPACK
ontains implementations of the low rank Cholesky fa
tor Newton method

(LRCF-NM) and the impli
it low rank Cholesky fa
tor Newton method (LRCF-NM-I) pro-

posed in [6℄. LRCF-NM delivers a LRCF Z, su
h that the produ
t ZZ

H

approximates the

Ri

ati solution X. This means that LRCF-NM
an be used to solve both
ontinuous time

algebrai
 Ri

ati equations and linear quadrati
 optimal
ontrol problems. The impli
it

version LRCF-NM-I, whi
h dire
tly
omputes an approximation to K without forming Z

or X,
an only be used to solve the linear quadrati
 optimal
ontrol problem in a more

memory e�
ient way.

Both LRCF-NM and LRCF-NM-I are modi�
ations of the
lassi
al Newton method

for algebrai
 Ri

ati equations [28℄, or more pre
isely,
ombinations of the Newton method

5.2 Low rank Cholesky fa
tor Newton method 29

with the LRCF-ADI iteration. We will des
ribe these
ombinations in ��5.2 and 5.3. The

lassi
al formulation of the Newton method is given by the double step iteration

Solve Lyapunov equation

(A

T

�K

(k�1)

B

T

)X

(k)

+X

(k)

(A� BK

(k�1)

T

) = �C

T

QC �K

(k�1)

RK

(k�1)

T

for X

(k)

;

K

(k)

= X

(k)

BR

�1

(27)

for k = 1; 2; 3; : : :, whi
h generates a sequen
e of iterates X

(k)

. This sequen
e
onverges

towards the stabilizing solution X if the initial feedba
k K

0

is stabilizing, i.e., A�BK

(0)

T

is stable. Then, the
onvergen
e is global and quadrati
.

5.2 Low rank Cholesky fa
tor Newton method

Due to the symmetry and de�niteness assumptions, the matri
es Q and R
an be fa
tored

(by a Cholesky fa
torization, for example) as

Q =

~

Q

~

Q

T

and R =

~

R

~

R

T

; (28)

where the matri
es

~

Q 2 R

q;h

(h � q) and

~

R 2 R

m;m

have full rank. Thus, the Lyapunov

equations to be solved in (27) have the stru
ture

F

(k)

X

(k)

+X

(k)

F

(k)

T

= �G

(k)

G

(k)

T

where F

(k)

= A

T

� K

(k�1)

B

T

and G

(k)

=

�

C

T

~

Q K

(k�1)

~

R

�

. Note that G

(k)

ontains

only t = m + h << n
olumns. Hen
e, these Lyapunov
an be solved e�
iently by the

LRCF-ADI iteration. The Lyapunov solutions form a sequen
e of approximate solutions

to the algebrai
 Ri

ati equations (22). Therefore, the in
lusion of Algorithm 1 into the

Newton iteration (27)
an be utilized to determine low rank Cholesky fa
tor produ
ts

whi
h approximate the solution of the algebrai
 Ri

ati equation (22). The resulting

algorithm low rank Cholesky fa
tor Newton method is des
ribed below.

Algorithm 5 (Low rank Cholesky fa
tor Newton method (LRCF-NM))

INPUT: A, B, C, Q, R, K

(0)

for whi
h A�BK

(0)

T

is stable (e.g., K

(0)

= 0 if A is stable)

OUTPUT: Z = Z

(k

max

)

, su
h that ZZ

H

approximates the solution X of the algebrai

Ri

ati equation (8)

FOR k = 1; 2; : : : ; k

max

1. Determine (sub)optimal ADI shift parameters p

(k)

1

; p

(k)

2

; : : : with respe
t to the

matrix F

(k)

= A

T

�K

(k�1)

B

T

.

2. G

(k)

=

�

C

T

~

Q
K

(k�1)

~

R

�

3. Compute matrix Z

(k)

by Algorithm 1, su
h that the low rank Cholesky fa
tor

produ
t Z

(k)

Z

(k)

H

approximates the solution of F

(k)

X

(k)

+X

(k)

F

(k)

T

= �G

(k)

G

(k)

T

.

30 5 RICCATI EQUATIONS

4. K

(k)

= Z

(k)

(Z

(k)

H

BR

�1

)

END

Similar to the LRCF-ADI iteration for the solution of Lyapunov equations, the distin
t

merit of this algorithm is that the (approximate) solution of the algebrai
 Ri

ati equations

is provided as a low rank Cholesky fa
tor produ
t rather than an expli
it dense matrix. In

parti
ular, this allows the appli
ation of the algorithm to problems of large order n, where

dense n�n matri
es
annot be stored in the
omputer memory. Moreover, the LRCF-NM

requires often mu
h less
omputation
ompared to the standard implementation, where

Lyapunov are solved dire
tly by the Bartels-Stewart or the Hammarling method; see �7.

See [6℄ for more te
hni
al details of the LRCF-NM.

5.3 Impli
it low rank Cholesky fa
tor Newton method

The idea behind the impli
it version of LRCF-NM is that the solution of the linear

quadrati
 optimal
ontrol problem is des
ribed by the state feedba
k matrix K, whi
h

generally
ontains mu
h less
olumns than the low rank Cholesky fa
tor Z delivered by

LRCF-NM or even the exa
t solution X. LRCF-NM-I is mathemati
ally equivalent to

LRCF-NM. It
omputes an approximation to K without forming LRCF-NM iterates Z

(k)

and LRCF-ADI iterates Z

(k)

i

at all. The tri
k is to generate the matrix K

(k)

itself in Step

3 of Algorithm 5 instead of solving the Lyapunov equation for Z

(k)

and
omputing the

produ
t K

(k)

= Z

(k)

Z

(k)

H

BR

�1

in Step 4. Note that the matrix K

(k)

an be a

umulated

in the
ourse of the �inner� LRCF-ADI iteration as

K

(k)

= lim

i!1

K

(k)

i

;

where

K

(k)

i

:= Z

(k)

i

Z

(k)

i

H

BR

�1

=

i

X

j=1

V

(k)

j

�

V

(k)

j

H

BR

�1

�

: (29)

This means, that the (exa
t) matrix K is the limit of the matri
es K

(k)

i

for k; i!1. This

onsideration motivates the following Algorithm 6, whi
h is best understood as a version

of the LRCF-NM with an inner loop (Steps 4 and 5)
onsisting of interla
ed sequen
es

based on Step 3 in Algorithm 1 and the partial sums given by the right hand term in (29).

Algorithm 6 (Impli
it low rank Cholesky fa
tor Newton method (LRCF-NM-I))

INPUT: A, B, C, Q, R, K

(0)

for whi
h A�BK

(0)

T

is stable (e.g., K

(0)

= 0, if A is stable)

OUTPUT: K

(k

max

)

, whi
h approximates K given by (26)

FOR k = 1; 2; : : : ; k

max

1. Determine (sub)optimal ADI shift parameters p

(k)

1

; p

(k)

2

; : : : with respe
t to the

matrix F

(k)

= A

T

�K

(k�1)

B

T

.

2. G

(k)

=

�

C

T

~

Q K

(k�1)

~

R

�

3. V

(k)

1

=

q

�2Re p

(k)

1

(F

(k)

+ p

(k)

1

I

n

)

�1

G

(k)

5.4 Stopping
riteria 31

FOR i = 2; 3; : : : ; i

(k)

max

4. V

(k)

i

=

q

Re p

(k)

i

=Re p

(k)

i�1

�

V

(k)

i�1

� (p

(k)

i

+ �p

(k)

i�1

)(F

(k)

+ p

(k)

i

I

n

)

�1

V

(k)

i�1

�

5. K

(k)

i

= K

(k)

i�1

+ V

(k)

i

�

V

(k)

i

H

BR

�1

�

END

6. K

(k)

= K

(k)

i

(k)

max

END

Again, see [6℄ for more implementational details.

5.4 Stopping
riteria

As far as possible, the same stopping
riteria are used in LRCF-NM and LRCF-NM-I for

terminating the (outer) Newton iteration. The LYAPACK routine lp_lrnm, in whi
h both

methods are implemented, o�ers the following �ve
riteria:

� maximal number of iteration steps: used in LRCF-NM and LRCF-NM-I;

� toleran
e for the normalized residual norm: used in LRCF-NM only;

� stagnation of the normalized residual norm (most likely
aused by round-o� errors):

used in LRCF-NM only;

� smallness of the relative
hange of the feedba
k matrix (RCF): Used in LRCF-NM

and LRCF-NM-I;

� stagnation of the relative
hange of the feedba
k matrix: used in LRCF-NM and

LRCF-NM-I.

Here, the normalized residual norm
orresponding to the low rank Cholesky fa
tor Z

(k)

is

de�ned as

NRN(Z

(k)

) =

kC

T

QC + A

T

Z

(k)

Z

(k)

H

+ Z

(k)

Z

(k)

H

A� Z

(k)

Z

(k)

H

BR

�1

B

T

Z

(k)

Z

(k)

H

k

F

kC

T

QCk

F

;

(30)

whereas the relative
hange of the feedba
k matrix related to the matri
es K

(k�1)

and K

(k)

is

RCF(K

(k�1)

; K

(k)

) =

kK

(k)

�K

(k�1)

k

F

kK

(k)

k

F

: (31)

Many of the remarks on stopping
riteria for the LRCF-ADI iteration made in �3.1.2 also

apply to stopping
riteria for LRCF-NM or LRCF-NM-I. In parti
ular, the appli
ation of

stopping
riteria, whi
h require the
omputation of normalized residual norms is numer-

i
ally expensive. Although the applied
omputational method [6℄ exploits the low rank

stru
ture of the approximate solutions, it
an be more expensive than the iteration itself.

Moreover, it is not possible to use residual based stopping
riteria for LRCF-NM-I, be
ause

32 5 RICCATI EQUATIONS

there the low rank Cholesky fa
tors Z

(k)

are not formed at all, whi
h is the only reason

why one would apply LRCF-NM-I instead of LRCF-NM.

The
onsideration of (31) for the
onstru
tion of heuristi
 stopping
riteria is related

to the fa
t that in some sense the matri
es K

(k)

rather than the low rank Cholesky fa
tors

Z

(k)

or their produ
ts are the quantities of interest when the optimal
ontrol problem

should be solved. However, stopping
riteria related to K

(k)

are somewhat dubious when

the optimal feedba
k K or, more pre
isely, the produ
t BK

T

is very small
ompared to A,

be
ause then small relative
hanges in K hardly
hange the
losed-loop matrix A�BK

T

.

On the other hand, the a

ura
y of K does not play a
ru
ial role in su
h situations, whi
h

means that a possibly premature termination of the Newton iteration would not be very

harmful.

We will now dis
uss the �ve stopping
riteria. Convergen
e plots generated for an

example problem illustrate their e�e
ts. Note that, similar to the
riteria for the LRCF-

ADI iteration des
ribed in �3.1.2, the following stopping
riteria
an be �a
tivated� or

�avoided�.

� Stopping
riterion: maximal number of iteration steps. This
riterion is

represented by the input parameter max_it_r in the routine lp_lrnm. The itera-

tion is stopped by this
riterion after max_it_r iterations steps. This
riterion
an

be avoided by setting max_it_r = +Inf (i.e., max_it_r = 1). Obviously, no ad-

ditional
omputations need to be performed to evaluate it. The drawba
k of this

stopping
riterion is, that it is not dire
tly related to the attainable a

ura
y. This

is illustrated by Figure 7.

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 7: Stopping
riterion: maximal number of iteration steps. Solid line: max_it_r

= 5; dash-dotted line: max_it_r = 10; dotted line: max_it_r = 20. The other four
riteria

are avoided.

� Stopping
riterion: toleran
e for the normalized residual norm. This
rite-

rion is represented by the input parameter min_res_r in the routine lp_lrnm. The

iteration is stopped by this
riterion as soon as

NRN(Z

(k)

) � min_res_r:

5.4 Stopping
riteria 33

This
riterion
an be avoided by setting min_res_r = 0. (Be
ause of round-o� errors

it is pra
ti
ally impossible to attain NRN(Z

(k)

) = 0.) It requires the
omputation of

normalized residual norms and is
omputationally expensive. A further drawba
k of

this
riterion is that it will either stop the iteration before the maximal a

ura
y is

attained (see min_res_r = 10

�5

, 10

�10

in Figure 8) or it will not stop the iteration

at all (see min_res_r = 10

�15

in Figure 8). If you want to avoid this
riterion, but

ompute the
onvergen
e history provided by the output ve
tor res_r, set min_res_r

to a value mu
h smaller than the ma
hine pre
ision (say, min_res_r = 10

�100

).

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 8: Stopping
riterion: toleran
e for the normalized residual norm. Solid line:

min_res_r = 10

�5

; dash-dotted line: min_res_r = 10

�10

; dotted line: min_res_r = 10

�15

.

Here, the dash-dotted and the solid line are identi
al. The other four
riteria are avoided.

� Stopping
riterion: stagnation of the normalized residual norm. This
ri-

terion is represented by the input parameter with_rs_r in the routine lp_lrnm. It

is a
tivated if with_rs_r = 'S' and avoided if with_rs_r = 'N'. The iteration is

stopped by this
riterion when a stagnation of the normalized residual norm
urve is

dete
ted. In
ontrast to the
orresponding
riterion for the LRCF-ADI iteration, this

riterion stops the iteration, when the stagnation of the normalized residual norm

is dete
ted for a single iteration step. Of
ourse, this is a slightly heuristi

riterion

but it works very well in pra
ti
e. It requires the
omputation of the normalized

residual norm and is
omputationally expensive. See Figure 9.

� Stopping
riterion: smallness of the the relative
hange of the feedba
k

matrix. This
riterion is represented by the input parameter min_
k_r in the

routine lp_lrnm. The iteration is stopped by this
riterion as soon as

RCF(K

(k�1)

; K

(k)

) � min_
k_r:

This
riterion
an be avoided by setting min_
k_r = 0. It is numeri
ally very

inexpensive. On the other hand it is heuristi
 and not dire
tly related to the a

ura
y

in Z

(k)

. See Figure 10.

34 5 RICCATI EQUATIONS

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 9: Stopping
riterion: Stagnation of the normalized residual norms. Solid line:

with_rs_r = 'S'; dotted line: with_rs_r = 'N'. The other four
riteria are avoided.

� Stopping
riterion: stagnation of the relative
hange of the feedba
k ma-

trix. This
riterion is represented by the input parameter with_ks_r in the routine

lp_lrnm. It is a
tivated if with_ks_r = 'L' and avoided if with_ks_r = 'N'. The

iteration is stopped by this
riterion when a stagnation of the relative
hange of the

feedba
k matrix is dete
ted. Similar to the last
riterion, this is a inexpensive, but

heuristi
 stopping
riterion. See Figure 11.

We re
ommend to use (only) the stopping
riterion related to with_rs_r if algebrai

Ri

ati equations solutions of high a

ura
y should be
omputed and if it is a�ordable to

ompute normalized residual norms. If the
omputation of the normalized residual norms

must be avoided, the
ombination of the
riteria related to min_
k_r and with_rs_r is

probably the best
hoi
e. Experien
e shows that often only one of them will stop the

iteration after a reasonable number of steps. See, for example, Figure 11, where the

riterion related to with_rs_r failed.

5.5 The routine lp_lrnm

Both LRCF-NM and LRCF-NM-I are implemented in the LYAPACK routine lp_lrnm. We

provide a brief des
ription of this routine. For more details see the inline do
umentation

whi
h is displayed by typing the MATLAB
ommand � help lp_lrnm.

The approximate solution of the algebrai
 Ri

ati equations (22) is given by the low

rank Cholesky fa
tor Z, su
h that ZZ

H

� X. Z has typi
ally fewer
olumns than rows.

Otherwise, LRCF-NM is useless! In general, Z
an be a
omplex matrix, but the produ
t

ZZ

H

is real. In the expli
it mode of lp_lrnm (i.e., the one for LRCF-NM) an optional

internal postpro
essing step
an be performed, whi
h guarantees that the delivered low

rank Cholesky fa
tor Z is real. This requires additional
omputation. This postpro
essing

is only done for the low rank Cholesky fa
tor
omputed in the last Newton step. This

means, that its relative
ontribution to the overall
ost is smaller than in the LRCF-ADI

iteration.

5.5 The routine lp_lrnm 35

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 10: Stopping
riterion: Smallness of the the relative
hange of the feedba
k matrix.

Solid line: min_
k_r = 10

�4

; dash-dotted line: min_
k_r = 10

�8

; dotted line: min_
k_r

= 10

�16

. The other four
riteria are avoided. Note that it is mere
oin
iden
e, that

min_
k_r = 10

�8

(dash-dotted line) leads to the termination after the �optimal� number

of steps.

Calling sequen
es:

Depending on the
hoi
e of the mode parameter zk, the following two
alling sequen
es

exist. For zk = 'Z', the low rank Cholesky fa
tor Z is
omputed by LRCF-NM, whereas

for zk = 'K', the feedba
k matrix K is
omputed by LRCF-NM-I.

� zk = 'Z':

[Z, flag_r, res_r, flp_r, flag_l, its_l, res_l, flp_l℄ = ...

lp_lrnm(zk, r
, name, B, C, Q0, R0, K_in, max_it_r, ...

min_res_r, with_rs_r, min_
k_r, with_ks_r, info_r, kp, km, ...

l0, max_it_l, min_res_l, with_rs_l, min_in_l, info_l)

� zk = 'K':

[K_out, flag_r, flp_r, flag_l, its_l, flp_l℄ = lp_lrnm(...

zk, name, B, C, Q0, R0, K_in, max_it_r, min_
k_r, ...

with_ks_r, info_r, kp, km, l0, max_it_l, min_in_l, info_l)

Input parameters:

zk: Mode parameter, whi
h is either 'Z' or 'K'. If zk = 'Z', the low rank Cholesky fa
tor

Z = Z

(k

max

)

is
omputed by LRCF-NM. Otherwise, K

(k

max

)

is dire
tly
omputed by

LRCF-ADI-I.

r
: Mode parameter, whi
h is either 'R' or 'C'. If r
 = 'C', the routine delivers a low

rank Cholesky fa
tor, whi
h is not real when non-real shift parameters are used in

the last Newton step. Otherwise, this possibly
omplex low rank Cholesky fa
tor is

36 5 RICCATI EQUATIONS

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 11: Stopping
riterion: Stagnation of the relative
hange of the feedba
k matrix.

Solid line: with_rs_r = 'L'; dotted line: with_rs_r = 'N'. The other four
riteria are

avoided. For this parti
ular example, no stagnation in the relative
hange of the feedba
k

matrix is observed within 20 iteration steps.

transformed into a real low rank Cholesky fa
tor

~

Z, whi
h des
ribes the identi
al

approximate solution

~

Z

~

Z

T

.

~

Z is returned instead of Z. The parameter r
 is not

needed in the mode for LRCF-NM-I, be
ause the returned feedba
k (parameter

K_out) is always real, provided that K

(0)

(parameter K_in) is real.

name: The basis name of the user supplied fun
tions that realize basi
 matrix operations

with A.

B: System matrix B.

C: System matrix C.

Q0: The Cholesky fa
tor

~

Q de�ned in (28).

R0: The Cholesky fa
tor

~

R de�ned in (28).

K_in: The stabilizing initial state feedba
k K

(0)

. If A is stable, K

(0)

= 0
an be used, for

example.

max_it_r: Stopping parameter for (outer) Newton iteration. See �5.4.

min_res_r: Stopping parameter for (outer) Newton iteration. See �5.4.

with_rs_r: Stopping parameter for (outer) Newton iteration. See �5.4.

min_
k_r: Stopping parameter for (outer) Newton iteration. See �5.4.

with_ks_r: Stopping parameter for (outer) Newton iteration. See �5.4.

info_r: Parameter, whi
h determines the �amount� of information on the (outer) Newton

iteration that is provided as text and/or residual history plot. The following values

are possible: info_r = 0 (no information), 1, 2, and 3 (most possible information).

5.5 The routine lp_lrnm 37

l0: Parameter l

0

for the ADI parameter routine lp_para, whi
h is invoked in ea
h

Newton step. Note that k

+

+ k

�

> 2l

0

is required.

kp: Parameter k

+

for the ADI parameter routine lp_para.

km: Parameter k

�

for the ADI parameter routine lp_para.

max_it_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

min_res_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

with_rs_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

min_in_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

info_l: Parameter, whi
h determines the �amount� of information on the (inner) LRCF-

ADI iterations that is provided as text and/or residual history plot. The following

values are possible: info_l = 0 (no information), 1, 2, and 3 (most possible infor-

mation).

Output parameters:

Z: The low rank Cholesky fa
tor Z, whi
h is the result of LRCF-NM. It
an be
omplex

under
ertain
ir
umstan
es.

K_out: The matrix K

(k

max

)

, whi
h is the result of LRCF-NM-I.

flag_r: A �ag, that shows by whi
h stopping
riterion (or stopping parameter) the

(outer) Newton iteration has been stopped. Possible values are 'I' (for max_it_r),

'R' (for min_res_r), 'S' (for with_rs_r), 'K' (for min_
k_r), and 'L' (for

with_ks_r).

res_r: A ve
tor
ontaining the history of the algebrai
 Ri

ati equations normalized

residual norms (30). res_r(1) = 1 and res_r(i + 1) is the normalized residual

norm w.r.t. the Newton step i. If the stopping
riteria are
hosen, so that the

normalized residual norms need not be
omputed, res_r = [℄ is returned.

flp_r: A ve
tor
ontaining the history of the �ops needed for the algorithm. flp_r(1)

= 0 and flp_r(i + 1) is the number of �ops required for the Newton steps 1 to i.

flp_r displays the number of �ops required for the a
tual iteration. It also
ontains

the numeri
al
osts for all user supplied fun
tions invoked within lp_lrnm as well

as the
omputation of the sets of ADI shift parameters. However, the
osts for the

omputation of Ri

ati equations or Lyapunov equation normalized residual norms

are not in
luded.

flag_l: Ve
tor
ontaining the values flag returned by the LRCF-ADI routine lp_lradi,

whi
h is
alled in ea
h Newton step.

its_l: Ve
tor
ontaining the number of iteration steps of the (inner) LRCF-ADI itera-

tions.

38 6 SUPPLEMENTARY ROUTINES AND DATA FILES

res_l: Matrix whose
olumns
ontain the normalized residual norm history ve
tors res

returned by the LRCF-ADI routine lp_lradi. Here, normalized residual norms in

the sense of (13) are
onsidered.

flp_l: Matrix whose
olumns
ontain the �op history ve
tors flp returned by the LRCF-

ADI routine lp_lradi in ea
h Newton step.

6 Supplementary routines and data �les

Supplementary routines are routines whi
h do not play a
entral role in LYAPACK but
an

be used to generate test problems in order to validate the results delivered by LYAPACK

main routines. There are also test examples in form of data �les provided.

6.1 Computation of residual norms for Lyapunov and Ri

ati

equations

The a

ura
y of the approximate solution ZZ

H

of the Lyapunov equation (2) or the Ri

ati

equation (8)
an be assessed by the residual norm of the Lyapunov equation

kFZZ

H

+ ZZ

H

F

T

+GG

T

k

F

(32)

or the residual norm of the Ri

ati equation

kC

T

QC + A

T

ZZ

H

+ ZZ

H

A� ZZ

H

BR

�1

B

T

ZZ

H

k

F

: (33)

The following two LYAPACK routines
an be used to
ompute su
h norms.

lp_nrm: Computes the Lyapunov equation residual norm (32) by the te
hnique des
ribed

in [39℄.

lp_r
nrm: Computes the Ri

ati equation residual norm (33) by the te
hnique des
ribed

in [6℄.

Note, that these routines do not evaluate the residual matri
es, i.e., the terms inside the

norms. They rather make use of the low rank stru
ture of ZZ

H

, whi
h is often mu
h more

e�
ient w.r.t. both memory and
omputation. However, both routines are not e�
ient if

the number of
olumns in Z is almost n or even larger than n.

6.2 Evaluation of model redu
tion error

The a

ura
y of the redu
ed system (3), whi
h approximates the system (1), is usually

evaluated by
omparing their transfer fun
tions

^

G(s) and G(s) on the imaginary axis,

whi
h show the frequen
y responses of both systems.

If the system is a single-input single-output (SISO) system (i.e., m = q = 1) and

the redu
ed system is not very a

urate, simultaneous magnitude Bode plots
an be used

to
ompare both frequen
y responses. To do this, one plots the fun
tions jG(|!)j and

j

^

G(|!)j simultaneously for a
ertain �frequen
y range� ! 2 [!

min

; !

max

℄. There, exist also

Bode phase plots, where the phase angles of the
omplex fun
tions G(|!) and

^

G(|!) are

6.2 Evaluation of model redu
tion error 39

ompared, but these are usually less important. If the system is not a SISO system, mq

plots w.r.t. the single
omponents of the transfer fun
tion
an be used for the
omparison.

If the system has multiple inputs or multiple outputs, or when the approximation error

of the redu
ed system is very small, error plots, whi
h show the fun
tion kG(|!)�

^

G(|!)k

for an interval ! 2 [!

min

; !

max

℄ are more meaningful.

To generate either type of plot, the following LYAPACK fun
tions
an be used.

lp_lgfrq: Generates a set of logarithmi
ally distributed �frequen
y sampling points�

!

i

(i = 1; : : : ; i

max

) in the interval [!

min

; !

max

℄, i.e, !

1

= !

min

, !

i

max

= !

max

, and

!

i+1

=!

i

=
onst.

lp_trfia: Generates the matri
es G(|!

i

) (i = 1; : : : ; i

max

). Their sta
ked
olumns are

stored in an mq � i

max

�transfer fun
tion sample� matrix G

s

.

lp_gnorm: Computes kG(|!

i

)k (i = 1; : : : ; i

max

), where the matri
es kG(|!

i

)k are re-

trieved from the matrix G

s

generated by lp_trfia.

Finally, a few
omments on the usage of these fun
tions should be made.

Unlike the other LYAPACK routines, whi
h have a

ess to the system matrix A,

lp_trfia does not make use of user supplied fun
tions. On the other hand, this rou-

tine
an be applied to the more general form of a dynami
al system (whi
h is slightly

more general than (9))

E _x(�) = Ax(�) +Bu(�)

y(�) = Cx(�) +Du(�)

(34)

to generate its transfer fun
tionG(s) = C(sE�A)

�1

B+D on the imaginary axis. However,

it is required that all matri
es are given expli
itely. A and E should be preferably sparse.

Typi
ally, lp_trfia and lp_gnorm will be used subsequently. It is important that

the same set of frequen
y sampling points !

i

is used in both routines. If the mq Bode

magnitude plots of a system with multiple inputs or multiple outputs should be generated,

then lp_gnorm must be applied mq times to the single rows of the matrix G

s

generated

by lp_trfia. The approximation error fun
tion kG(|!)�

^

G(|!)k
an be evaluated easily.

First, lp_trfia is applied to both the original and the redu
ed system, whi
h results in

the transfer fun
tion samples G

s

and

^

G

s

. Then, lp_gnorm is applied to the di�eren
e

G

s

�

^

G

s

, whi
h delivers the desired result.

6.2.1 Generation of test examples

The following two routines
an generate very simple test examples of systems (1).

fdm_2d_matrix: Generates the negative sti�ness matrix for a 2D paraboli
 di�erential

equation, whi
h is semidis
retized by the �nite di�eren
e method (FDM). This sti�-

ness matrix
an be used as system matrix A.

fdm_2d_ve
tor: Generates the
orresponding load ve
tors, whi
h
an be used as system

matri
es B and C

T

.

The matri
es of a generalized system (9), whi
h arises from the semidis
retization of a steel

rail
ooling problem (see, e.g., [39℄) by the �nite element method (FEM), are provided in

two MATLAB data �les.

40 7 ALTERNATIVE METHODS

rail821.mat: Data for a
oarse dis
retization: n = 821, m = q = 6.

rail3113.mat: Data for a �ner dis
retization: n = 3113, m = q = 6.

6.3 Case studies

The usage of the routines for
omputing Lyapunov equation or Ri

ati equation residual

norms is demonstrated in �C.2.1 and �C.4.1, respe
tively. The appli
ation of lp_lgfrq,

lp_trfia, and lp_gnorm is demonstrated in ��C.3.1 and C.3.3. Routines for the generation

of test examples and data �les are used in all demo programs in �C.

7 Alternative methods

Under
ertain
onditions LYAPACK works very well for the types of problems des
ribed

in �1.1. However, we are far from
laiming that the methods implemented in this pa
kage

are the ultimate solution te
hniques for the respe
tive problems. In this se
tion, we want

to give a brief and by far not
omplete survey on alternative methods. In many
ases,

no
omparative studies of these methods have been done. LYAPACK is one step in this

dire
tion.

� Lyapunov equations. Standard te
hniques for small dense Lyapunov equations

are the Bartels-Stewart method [3℄ or Hammarling method [20℄. Extensions of these

methods to generalized Lyapunov equations are des
ribed in [38℄. Large dense Lya-

punov equations
an be solved by sign fun
tion based te
hniques [42, 1, 5, 8℄ (see also

referen
es to Ri

ati equations), whi
h perform well on parallel
omputers. This also

applies to the squared Smith method [45℄. Relatively large sparse Lyapunov equa-

tions
an be solved by (standard) ADI, e.g., [36, 50℄. Several approa
hes for the

iterative solution of large sparse Lyapunov equations exist. In LYAPACK low rank

versions of the ADI method, whi
h is related to rational matrix fun
tions, are used

[31, 37, 6, 33℄. Krylov subspa
e methods, whi
h are related to matrix polynomials

have been proposed in [43, 22, 24℄, for example.

� Model redu
tion. Model redu
tion methods for small, possibly dense systems

are abundant. The perhaps most popular te
hnique for redu
ing stable systems is

balan
ed trun
ation [35℄ and all-optimal Hankel norm approximation [18℄. Numeri-

ally elaborate implementations of the balan
ed trun
ation te
hnique are proposed

in [47, 44, 48℄. Algorithms for solving large dense model redu
tion problems on par-

allel
omputers
an be found in [9℄. The majority of model redu
tion methods for

large sparse problems is related to Padé approximations of the underlying transfer

fun
tion, e.g., [41, 15, 12, 16℄. A quite detailed survey on this topi

an be found

in [13℄. Methods that are (dire
tly) based on Krylov subspa
e te
hniques have been

proposed in [25, 23, 26℄. The algorithms implemented in LYAPACK are des
ribed

in [32, 39, 33℄ at length.

� Ri

ati equations and optimal
ontrol problems. In LYAPACK, only the solu-

tion of large optimal
ontrol problems by solving Ri

ati equations is
onsidered [6℄.

However, �Ri

ati equation-free� solution te
hniques for optimal
ontrol problems

41

surely exist. Standard te
hniques for small, possibly dense Ri

ati equations are the

S
hur method [30℄, (standard) Newton method and modi�
ations [28, 34, 29, 4℄, and

the sign fun
tion method, e.g., [42, 10, 17, 27℄.

Numeri
ally reliable and versatile
odes for dense problems of moderate size are
an be

found in the freeware subroutine library SLICOT (Subroutine Library in Control Theory)

[7℄.

42 B LIST OF LYAPACK ROUTINES

A A
ronyms and symbols

ADI alternating dire
tion impli
it (algorithm)

BMO basi
 matrix operation

CALE
ontinuous-time algebrai
 Lyapunov equation

CARE
ontinuous-time algebrai
 Ri

ati equation

DSPMR dominant subspa
es proje
tion model redu
tion (algorithm)

FDM �nite di�eren
e method

FEM �nite element method

�op �oating point operation

NRN normalized residual norm

LQOCP linear-quadrati
 optimal
ontrol problem

LRCF low rank Cholesky fa
tor

LRCF-ADI low rank Cholesky fa
tor ADI (algorithm)

LRCF-NM low rank Cholesky fa
tor Newton method (algorithm)

LRCF-NM-I low rank Cholesky fa
tor Newton method � impli
it version

(algorithm)

LRCFP low rank Cholesky fa
tor produ
t

LRSRM low rank square root method (algorithm)

LYAPACK Lyapunov pa
kage

PDE partial di�erential equation

RCF relative
hange of the feedba
k matrix

SISO single-input single-output

SLE system of linear equations

SVD singular value de
omposition

USF user-supplied fun
tion

A

H

onjugate transposed of the matrix A

A

T

transposed of the matrix A

C , C

n

, C

n;m

omplex numbers, ve
tors, matri
es

R, R

n

, R

n;m

real numbers, ve
tors, matri
es

kAk spe
tral norm of the matrix A

kAk

F

Frobenius norm of the matrix A

kGk

L

1

L

1

norm of a dynami
al system

�(A) spe
trum of the matrix A

|

p

�1

� �wild
ard�

B List of LYAPACK routines

B.1 Main routines

These are the essential
omputational routines, whi
h are
alled within the main programs

written by users themselves.

lp_dspmr: Model redu
tion algorithm DSPMR.

B.2 Supplementary routines and data �les 43

lp_lradi: LRCF-ADI iteration for solving Lyapunov equations.

lp_lrnm: Both versions of Newton method (LRCF-NM and LRCF-NM-I) for solving

Ri

ati equations and optimal
ontrol problems.

lp_lrsrm: Model redu
tion algorithm LRSRM.

lp_para: Computation of ADI shift parameters.

B.2 Supplementary routines and data �les

The following routines
an be used for a veri�
ation of the results delivered by LYAPACK

main routines.

lp_gnorm: Computation of norms of transfer fun
tion sample.

lp_lgfrq: Computation of logarithmi
ally distributed frequen
y sampling points in a

ertain frequen
y range.

lp_nrm: E�
ient
omputation of the Lyapunov equation residual norm.

lp_r
nrm: E�
ient
omputation of the Ri

ati equation residual norm.

lp_trfia: Computation of transfer fun
tion sample.

The following routines and data �les are used for generating test examples.

fdm_2d_matrix: Generates negative sti�ness matrix for 2D PDE problem.

fdm_2d_ve
tor: Generates load ve
tor for 2D PDE problem.

rail821.mat: Data �le for steel rail
ooling problem (order n = 821).

rail3113.mat: Data �le for steel rail
ooling problem (order n = 3113).

B.3 Auxiliary routines

These are routines for internal use. They are not intended for expli
it use in main pro-

grams.

lp_arn_m: Arnoldi pro
ess w.r.t. F

�1

.

lp_arn_p: Arnoldi pro
ess w.r.t. F .

lp_e: Evaluation of
ertain strings.

lp_mnmx: Suboptimal solution of ADI minimax problem.

lp_nrmu: E�
ient
omputation of the Lyapunov equation residual norm based on up-

dated QR fa
torizations.

lp_prm: Bandwidth redu
tion by reordering the rows and
olumns of a matrix or a matrix

pair.

lp_s: Auxiliary routine for lp_mnmx.

44 B LIST OF LYAPACK ROUTINES

B.4 User-supplied fun
tions

This
lass of user supplied fun
tions
omprises a relatively large number of routines. The

routine name and the purpose of the single routines arises from the respe
tive
ombination

of the basis name and the extension(s)

[USF name℄ = [basis name℄_[extension(s)℄,

whi
h has been dis
ussed quite detailed in �2.2.

� [basis name℄:

as: Standard system (1); sparse matrix A is symmetri
 and shift parameters are

real; (shifted) linear systems are solved dire
tly.

au: Standard system (1); sparse matrix A is (possibly) unsymmetri
 or shift pa-

rameters are not ne
essarily real; (shifted) linear systems are solved dire
tly.

au_qmr_ilu: Standard system (1); sparse matrix A is (possibly) unsymmetri
 or

shift parameters are not ne
essarily real; (shifted) linear systems are solved

iteratively by QMR with ILU pre
onditioning.

msns: Generalized system (9); sparse (de�nite) matri
es M and N are symmetri

and shift parameters are real; (shifted) linear systems are solved dire
tly.

munu: generalized system (9); sparse matri
esM and N are (possibly) unsymmetri

or shift parameters are not ne
essarily real; (shifted) linear systems are solved

dire
tly.

� [extension(s)℄:

m_i: Initialization or generation of data needed for multipli
ations with A.

m: Perform multipli
ation.

m_d: Delete data that has been needed for multipli
ations.

l_i: Initialization or generation of data needed for solving linear systems with A.

l: Solve linear system.

l_d: Delete data that has been needed for solving linear systems.

s_i: Initialization or generation of data needed for solving shifted linear systems.

s: Solve shifted linear system.

s_d: Delete data that has been needed for solving shifted linear systems.

pre: Prepro
essing (not for au_qmr_ilu).

pst: Postpro
essing (not for au_qmr_ilu).

B.5 Demo programs

demo_l1: Demo program for LRCF-ADI iteration and
omputation of ADI parameters.

demo_m1, demo_m2: Demo programs for model redu
tion.

demo_u1, demo_u2, demo_u3: Demo programs for user supplied fun
tions.

demo_r1: Demo program for Ri

ati equations and optimal
ontrol problems.

45

C Case studies

In this se
tion we provide listings of the demo programs whi
h are in
luded in LYAPACK.

In these programs, we usually provide matri
es that
orrespond to transformed (prepro-

essed) problems with a zero subs
ript (e.g., A0 or A

0

) to distinguish them from data

related to the original problem (e.g., A or A).

C.1 Demo programs for user-supplied fun
tions

C.1.1 Demo program demo_u1:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'au_*'

%

%

% This demo program shows how the user-supplied fun
tions 'au_*' work.

% This means that we
onsider (possibly) unsymmetri
 matri
es and

% (possibly) non-real shift parameters.

% ---

% Generate test problem

% ---

%

% As test example we use a simple FDM-semidis
retized PDE problem

% (an instationary
onve
tion-diffusion heat equation on the unit square

% with homogeneous 1st kind boundary
onditions).

% We reorder the
olumns and rows of the resulting stiffness matrix by

% a random permutation, to generate a "bad" nonzero pattern.

n0 = 20; % n0 = number of grid points in either spa
e dire
tion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'10*x','100*y','0'); % Note: A is unsymmetri
.

[dummy,pm℄ = sort(randn(n0^2,1)); % generate a random permutation

A = A(pm,pm);

disp('Problem dimensions:')

n = size(A,1) % problem order

t = 3; j = sqrt(-1); % generate
omplex matrix X0, whi
h

X0 = randn(n,t)+j*randn(n,t); %
ontains mu
h fewer
olumns than rows

% ---

46 C CASE STUDIES

% Prepro
essing

% ---

[A0,dummy,dummy,prm,iprm℄ = au_pre(A,[℄,[℄);

% au_pre realizes a prepro
essing:

% - The
olumns and rows of A are simultaneously

% reordered to redu
e the bandwidth. The result

% is A0. prm and iprm are the
orresponding

% permutation and inverse permutation.

% - Sin
e we
onsider only the matrix A but not

% a dynami
al system, we use [℄ as 2nd and 3rd

% input parameter. dummy = [℄ is returned.

figure(1), hold off,
lf

spy(A)

title('Before prepro
essing: nonzero pattern of A.')

figure(2), hold off,
lf

spy(A0)

title('After prepro
essing: nonzero pattern of A_0.')

disp('Verifi
ation (test_1, test_2, ... should be small):')

% ---

% Multipli
ation of matrix A0 with X0

% ---

au_m_i(A0); % initialization and generation of data needed for matrix

% multipli
ations with A0 and A0'

Y0 = au_m('N',X0); %
ompute Y0 = A0*X0

T0 = A0*X0;

test_1 = norm(Y0-T0,'fro')

% ---

% Multipli
ation of (transposed) matrix A0' with X0

% ---

Y0 = au_m('T',X0); %
ompute Y0 = A0'*X0

T0 = A0'*X0;

test_2 = norm(Y0-T0,'fro')

C.1 Demo programs for user-supplied fun
tions 47

% ---

% Solution of system of linear equations with A0

% ---

au_l_i; % initialization for solving systems with A0 and A0'

Y0 = au_l('N',X0); % solve A0*Y0 = X0

test_3 = norm(A0*Y0-X0,'fro')

% ---

% Solution of (transposed) system of linear equations with A0'

% ---

Y0 = au_l('T',X0); % solve A0'*Y0 = X0

test_4 = norm(A0'*Y0-X0,'fro')

% ---

% Solve shifted systems of linear equations, i.e.

% solve (A0+p(i)*I)*Y0 = X0.

% ---

disp('Shift parameters:')

p = [-1; -2+3*j; -2-3*j ℄

au_s_i(p) % initialization for solution of shifted systems of linear

% equations with system matrix A0+p(i)*I and A0'+p(i)*I

% (i = 1,...,3)

Y0 = au_s('N',X0,1);

test_5 = norm(A0*Y0+p(1)*Y0-X0,'fro')

Y0 = au_s('N',X0,2);

test_6 = norm(A0*Y0+p(2)*Y0-X0,'fro')

Y0 = au_s('N',X0,3);

test_7 = norm(A0*Y0+p(3)*Y0-X0,'fro')

% ---

% Solve (transposed) shifted systems of linear equations, i.e.

% solve (A0'+p(i)*I)*Y0 = X0.

% ---

Y0 = au_s('T',X0,1);

48 C CASE STUDIES

test_8 = norm(A0'*Y0+p(1)*Y0-X0,'fro')

Y0 = au_s('T',X0,2);

test_9 = norm(A0'*Y0+p(2)*Y0-X0,'fro')

Y0 = au_s('T',X0,3);

test_10 = norm(A0'*Y0+p(3)*Y0-X0,'fro')

% ---

% Postpro
essing

% ---

%

% There is no postpro
essing.

% ---

% Destroy global data stru
tures (
lear "hidden" global variables)

% ---

au_m_d; %
lear global variables initialized by au_m_i

au_l_d; %
lear global variables initialized by au_l_i

au_s_d(p); %
lear global variables initialized by au_s_i

C.1.2 Demo program demo_u2:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'au_qmr_ilu_*'

%

%

% This demo program shows how the user-supplied fun
tions 'au_qmr_ilu_*'

% work.

% ---

% Generate test problem

% ---

%

% As test example, we use a simple FDM-semidis
retized PDE problem

% (an instationary
onve
tion-diffusion heat equation on the unit square

% with homogeneous 1st kind boundary
onditions).

% We reorder the
olumns and rows of the resulting stiffness matrix by

% a random permutation to generate a "bad" nonzero pattern.

n0 = 30; % n0 = number of grid points in either spa
e dire
tion;

C.1 Demo programs for user-supplied fun
tions 49

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'10*x','100*y','0'); % Note: A is unsymmetri
.

[dummy,pm℄ = sort(randn(n0^2,1)); % generate a random permutation

A = A(pm,pm);

disp('Problem dimensions:')

n = size(A,1) % problem order

t = 3; j = sqrt(-1); % generate
omplex matrix X, whi
h

X = randn(n,t)+j*randn(n,t); %
ontains mu
h fewer
olumns than rows

% ---

% Prepro
essing

% ---

%

% There is no prepro
essing.

figure(1), hold off,
lf

spy(A)

title('Nonzero pattern of A.')

disp('Verifi
ation (test_1, test_2, ... should be small):')

% ---

% Multipli
ation of matrix A with X

% ---

m
 = 'M', % optimize for memory, i.e., pre
onditioners will be

% generated right before any QMR run

max_it_qmr = 50, % maximal number of QMR iteration steps

tol_qmr = 1e-15, % normalized residual norm for stopping the QMR

% iterations

tol_ilu = 1e-2, % dropping toleran
e for generating ILU pre
onditioners

info_qmr = 2, % amount of displayed information on performan
e of

% ILU-QMR iteration

disp('NOTE: The USFs will return a warning message, when they fail to')

disp(' fulfill the stopping
riteria for the ILU-QMR iteration.')

disp(' Also, the attained a

ura
y is displayed, whi
h allows the')

disp(' user to judge, whether the results are still a

eptable or')

disp(' not.')

50 C CASE STUDIES

pause(5)

au_qmr_ilu_m_i(A,m
,max_it_qmr,tol_qmr,tol_ilu,info_qmr);

% initialization and generation of data needed for matrix

% multipli
ations with A

Y = au_qmr_ilu_m('N',X); %
ompute Y = A*X (here, of
ourse, QMR is

% not involved)

T = A*X;

test_1 = norm(Y-T,'fro')

% ---

% Multipli
ation of (transposed) matrix A' with X

% ---

Y = au_qmr_ilu_m('T',X); %
ompute Y = A'*X (here, of
ourse, QMR is

% not involved)

T = A'*X;

test_2 = norm(Y-T,'fro')

% ---

% Solution of system of linear equations with A

% ---

au_l_i; % initialization for solving systems with A and A'

Y = au_qmr_ilu_l('N',X); % solve A*Y = X

test_3 = norm(A*Y-X,'fro')

% ---

% Solution of (transposed) system of linear equations with A'

% ---

Y = au_qmr_ilu_l('T',X); % solve A'*Y = X

test_4 = norm(A'*Y-X,'fro')

% ---

% Solve shifted systems of linear equations, i.e.

% solve (A+p(i)*I)*Y = X.

% ---

disp('Shift parameters:')

C.1 Demo programs for user-supplied fun
tions 51

p = [-1; -2+3*j; -2-3*j ℄

au_qmr_ilu_s_i(p) % initialization for solution of shifted systems of

% linear equations with system matrix A+p(i)*I and

% A'+p(i)*I (i = 1,...,3)

Y = au_qmr_ilu_s('N',X,1);

test_5 = norm(A*Y+p(1)*Y-X,'fro')

Y = au_qmr_ilu_s('N',X,2);

test_6 = norm(A*Y+p(2)*Y-X,'fro')

Y = au_qmr_ilu_s('N',X,3);

test_7 = norm(A*Y+p(3)*Y-X,'fro')

% ---

% Solve (transposed) shifted systems of linear equations, i.e.

% solve (A'+p(i)*I)*Y = X.

% ---

Y = au_qmr_ilu_s('T',X,1);

test_8 = norm(A'*Y+p(1)*Y-X,'fro')

Y = au_qmr_ilu_s('T',X,2);

test_9 = norm(A'*Y+p(2)*Y-X,'fro')

Y = au_qmr_ilu_s('T',X,3);

test_10 = norm(A'*Y+p(3)*Y-X,'fro')

% ---

% Postpro
essing

% ---

%

% There is no postpro
essing.

% ---

% Destroy global data stru
tures (
lear "hidden" global variables)

% ---

au_qmr_ilu_m_d; %
lear global variables initialized by au_qmr_ilu_m_i

au_qmr_ilu_l_d; %
lear global variables initialized by au_qmr_ilu_l_i

au_qmr_ilu_s_d(p); %
lear global variables initialized by

% au_qmr_ilu_s_i

52 C CASE STUDIES

C.1.3 Demo program demo_u3:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'munu_*'

%

%

% This demo program shows how the user-supplied fun
tions 'munu_*' work.

% In this parti
ular
ase, we
onsider a generalized dynami
al system

% with symmetri
 matri
es M and N, but we will use non-real shift

% parameters. For this reason, 'munu_*' is used instead of 'msns_*'.

% ---

% Generate test problem

% ---

%

% As test example, we use an FEM-semidis
retized problem, whi
h leads to

% a generalized system where M (the mass matrix) and N (the negative

% stiffness matrix) are sparse, symmetri
, and definite.

load rail821 % load the matri
es M N

disp('Problem dimensions:')

n = size(M,1) % problem order

t = 3; j = sqrt(-1); % generate
omplex matrix X0, whi
h

X0 = randn(n,t)+j*randn(n,t); %
ontains mu
h fewer
olumns than rows

% ---

% Prepro
essing

% ---

[M0,ML,MU,N0,dummy,dummy,prm,iprm℄ = munu_pre(M,N,[℄,[℄);

% munu_pre realizes a prepro
essing:

% - The
olumns and rows of M and N are

% simultaneously reordered to redu
e the

% bandwidth. The result is M0 and N0. prm and

% iprm are the
orresponding permutation and

% inverse permutation.

% - A Cholesky fa
torization of M is
omputed,

% so that the impli
it system matrix A0 is

% A0 = inv(ML)*N0*inv(MU).

% - Sin
e we
onsider only the matrix A0 but not

% a dynami
al system, we use [℄ as 2nd and 3rd

C.1 Demo programs for user-supplied fun
tions 53

% input parameter. dummy = [℄ is returned.

figure(1), hold off,
lf

spy(M)

title('Before prepro
.: nonzero pattern of M. That of N is the same.')

figure(2), hold off,
lf

spy(M0)

title('After prepro
.: nonzero pattern of M_0. That of N_0 is the same.')

disp('Verifi
ation (test_1, test_2, ... should be small):')

% ---

% Multipli
ation of matrix A0 with X0

% ---

munu_m_i(M0,ML,MU,N0) % initialization and generation of data needed

% for matrix multipli
ations with A0

Y0 = munu_m('N',X0); %
ompute Y0 = A0*X0

T0 = ML\(N0*(MU\X0));

test_1 = norm(Y0-T0,'fro')

% ---

% Solution of system of linear equations with A0

% ---

munu_l_i; % initialization for solving systems solve with A0

Y0 = munu_l('N',X0); % solve A0*Y0 = X0

test_2 = norm(ML\(N0*(MU\Y0))-X0,'fro')

% ---

% Solve shifted systems of linear equations, i.e.

% solve (A0+p(i)*I)*Y0 = X0.

% ---

disp('Shift parameters:')

p = [-1; -2+3*j; -2-3*j ℄

munu_s_i(p) % initialization for solution of shifted systems of linear

% equations with system matrix A0+p(i)*I (i = 1,...,3)

54 C CASE STUDIES

Y0 = munu_s('N',X0,1);

test_3 = norm(ML\(N0*(MU\Y0))+p(1)*Y0-X0,'fro')

Y0 = munu_s('N',X0,2);

test_4 = norm(ML\(N0*(MU\Y0))+p(2)*Y0-X0,'fro')

Y0 = munu_s('N',X0,3);

test_5 = norm(ML\(N0*(MU\Y0))+p(3)*Y0-X0,'fro')

% ---

% Postpro
essing

% ---

%

% There is no postpro
essing.

% ---

% Destroy global data stru
tures (
lear "hidden" global variables)

% ---

munu_m_d; %
lear global variables initialized by munu_m_i

munu_l_d; %
lear global variables initialized by munu_l_i

munu_s_d(p); %
lear global variables initialized by munu_s_i

C.2 Demo program for LRCF-ADI iteration and algorithm for

omputing ADI parameters

C.2.1 Demo program demo_l1

%

% SOLUTION OF LYAPUNOV EQUATION BY THE LRCF-ADI METHOD (AND GENERATION

% OF ADI PARAMETERS)

%

% This demo program shows how the routines 'lp_para' (
omputation of

% ADI shift parameters) and 'lp_lradi' (LRCF-ADI iteration for the

% solution of the Lyapunov equation F*X+X*F'=-G*G') work. Also, the

% use of user-supplied fun
tions is demonstrated.

% ---

% Generate test problem

% ---

%

% As test example, we use a simple FDM-semidis
retized PDE problem

% (an instationary
onve
tion-diffusion heat equation on the unit square

C.2 Demo program for LRCF-ADI iteration 55

% with homogeneous 1st kind boundary
onditions).

n0 = 20; % n0 = number of grid points in either spa
e dire
tion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

F = fdm_2d_matrix(n0,'10*x','100*y','0');

G = fdm_2d_ve
tor(n0,'.1<x<=.3');

disp('Problem dimensions:')

n = size(G,1) % problem order

m = size(G,2) % number of
olumns in fa
tor of r.h.s. (mostly, the rank

% of the r.h.s.)

% ---

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions and
omputation of ADI shift parameters

% ---

%

% Note that the routines 'au_m_i', 'au_l_i', and 'au_s_i'
reate global

% variables, whi
h
ontain the data that is needed for the effi
ient

% realization of basi
 matrix operations with F (multipli
ations,

% solution of systems of linear equations, solution of shifted systems

% of linear equations).

name = 'au'; % basis name of user-supplied fun
tions applied to the

% problem with nonsymmetri
 F. Note: in this
lass of

% user-supplied fun
tions, sparse LU fa
torizations are

% applied to solve (shifted) systems of linear equations.

f = flops;

[F0,G0,dummy,prm,iprm℄ = au_pre(F,G,[℄); % prepro
essing (reordering

% for bandwidth redu
tion)

% Note the dummy parameter,

% whi
h will be set to [℄ on

% exit.

au_m_i(F0); % initialization for matrix multipli
ations with F0

au_l_i; % initialization for solving systems with F0 (This is needed in

% the Arnoldi algorithm w.r.t. inv(F0). The Arnoldi algorithm

% is part of the algorithm in 'lp_para'.)

disp('Parameters for heuristi
 algorithm whi
h
omputes ADI parameters:')

56 C CASE STUDIES

l0 = 15 % desired number of distin
t shift parameters

kp = 50 % number of steps of Arnoldi pro
ess w.r.t. F0

km = 25 % number of steps of Arnoldi pro
ess w.r.t. inv(F0)

b0 = ones(n,1); % This is just one way to
hoose the Arnoldi start

% ve
tor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); %
omputation of ADI shift

% parameters

disp('A
tual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

au_s_i(p) % initialization for shifted systems of linear equations with

% F0+p(i)*I (i = 1,...,l)

disp('Flops required for a-priori
omputations:')

a_priori_flops = flops-f

% ---

% Solution of Lyapunov equation F*X+X*F' = -G*G' (or, more pre
isely,

% the transformed equation F0*X0+X0*F0' = -G0*G0') by LRCF-ADI iteration

% ---

%

% The approximate solution is given by the low rank Cholesky fa
tor Z0,

% i.e., Z0*Z0' is approximately X0

%

% The stopping
riteria are
hosen, su
h that the iteration is stopped

% shortly after the residual
urve stagnates. This requires the sometimes

% expensive
omputation of the residual norms. (If you want to avoid

% this, you might
hoose max_it = 500 (large value), min_res = 0

% ("avoided"), with_rs = 'N' ("avoided"), min_in = 1e-12 ("a
tivated").)

disp('Parameters for stopping
riteria in LRCF-ADI iteration:')

max_it = 500 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs = 'S' % stopping
riterion "stagnation of the normalized

% residual norms" a
tivated

min_in = 0 % threshold for smallness of values ||V_i||_F (
riterion

% is "avoided")

C.2 Demo program for LRCF-ADI iteration 57

disp('Further input parameters of the routine ''lp_lradi'':');

tp = 'B' % type of Lyapunov equation to be solved

% (here, F0*X0+X0*F0'=-G0*G0')

zk = 'Z' %
ompute Z0 or generate Z0*Z0'*K0 (here, Z0)

r
 = 'C' %
ompute possibly
omplex Z0 or demand for real Z0 (here,

% a
omplex matrix Z0 may be returned)

Kf = [℄, Bf = [℄ % feedba
k matri
es (these parameters are only used

% in the Newton iteration)

info = 3 % information level (here, maximal amount of information is

% provided during the LRCF-ADI iteration)

figure(1), hold off;
lf; % (lp_lradi will plot residual history.)

[Z0,flag,res,flp℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,G0,p,max_it,min_res,...

with_rs,min_in,info);

% Note that in lp_lradi the transformed r.h.s.

% matrix G0 must be used.

disp('Termination flag of the routine ''lp_lradi'':')

flag

disp('Internally
omputed normalized residual norm (of final iterate):');

final_nrn = res(end)

disp('Number of flops required for the whole iteration');

disp('(without a-priori
omputation and
omputation of residual norm):');

lr
f_adi_flops = flp(end)

% ---

% Postpro
essing, destroy global data stru
tures

% ---

%

% NOTE: The matri
es F and G have been reordered in the prepro
essing

% step (''au_pre'') resulting in F0 and G0. This means that the rows of

% the matrix Z0 must be re-reordered in a postpro
essing step to obtain

% the solution to the original Lyapunov equation!

Z = au_pst(Z0,iprm);

au_m_d; %
lear global variables initialized by au_m_i

au_l_d; %
lear global variables initialized by au_l_i

au_s_d(p); %
lear global variables initialized by au_s_i

disp('Size of Z:');

size_Z = size(Z)

disp('Is Z real (0 = no, 1 = yes)?')

58 C CASE STUDIES

is_real = ~any(any(imag(Z)))

% ---

% Verify the result

% ---

%

% Note that this is only an "illustrative" way of verifying the a

ura
y

% by
omputing the (normalized) residual norm. A more pra
ti
al (be
ause

% less expensive) way is evaluating the residual norm by means of the

% routine 'lp_nrm' (Must be applied before postpro
essing!), if the

% residual norms have not been generated during the iteration.

disp('The attained residual norm:')

res_norm = norm(F*Z*Z'+Z*Z'*F'+G*G','fro')

disp('The attained normalized residual norm:')

normal_res_norm = res_norm/norm(G*G','fro')

C.2.2 Results and remarks

In demo_l1 the LRCF-ADI iteration is stopped by the stopping
riterion related to the

parameter with_rs (stagnation of the residual norm). The number of iteration steps is 43.

Hen
e, the low rank Cholesky fa
tor Z is a 400� 43 matrix. It is not real. The attained

normalized residual norm is approximately 1:4 � 10

�15

. About 4 � 10

6

�ops were needed for

the
omputations (without
omputing the residual norms). Figure 12 shows the residual

history.

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

N
or

m
al

iz
ed

 re
si

du
al

 n
or

m

Iteration steps

Figure 12: Residual history for the LRCF-ADI iteration in demo_l1.

C.3 Demo programs for model redu
tion algorithms 59

C.3 Demo programs for model redu
tion algorithms

C.3.1 Demo program demo_m1

%

% MODEL REDUCTION BY THE ALGORITHMS LRSRM AND DSPMR. THE GOAL IS TO

% GENERATE A REDUCED SYSTEM OF VERY SMALL ORDER.

%

% This demo program shows how the model redu
tion routines 'lp_lrsrm'

% and 'lp_dspmr' work. Also, the use of 'lp_lradi', supplementary

% routines, and user-supplied fun
tions is demonstrated.

% ---

% Generate test problem

% ---

%

% This is an artifi
ial test problem of a system, whose Bode plot shows

% "spires".

A = sparse(408,408); B = ones(408,1); C = ones(1,408);

A(1:2,1:2) = [-.01 -200; 200 .001℄;

A(3:4,3:4) = [-.2 -300; 300 -.1℄;

A(5:6,5:6) = [-.02 -500; 500 0℄;

A(7:8,7:8) = [-.01 -520; 520 -.01℄;

A(9:408,9:408) = spdiags(-(1:400)',0,400,400);

disp('Problem dimensions:')

n = size(A,1) % problem order (number of states)

m = size(B,2) % number of inputs

q = size(C,1) % number of outputs

% ---

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions and
omputation of ADI shift parameters

% ---

%

% See 'demo_u1', 'demo_u2', 'demo_u3', and 'demo_l1' for more detailed

%
omments.

%

% Note that A is a tridiagonal matrix. No prepro
essing needs to be done.

name = 'au';

au_m_i(A); % initialization for multipli
ation with A

au_l_i; % initialization for solving systems with A

disp('Parameters for heuristi
 algorithm whi
h
omputes ADI parameters:')

60 C CASE STUDIES

l0 = 10 % desired number of distin
t shift parameters

kp = 30 % number of steps of Arnoldi pro
ess w.r.t. A

km = 15 % number of steps of Arnoldi pro
ess w.r.t. inv(A)

b0 = ones(n,1); % This is just one way to
hoose the Arnoldi start

% ve
tor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); %
omputation of ADI shift

% parameters

disp('A
tual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

au_s_i(p) % initialization for shifted systems of linear equations

% with A+p(i)*I (i = 1,...,l)

% ---

% Solution of Lyapunov equations A*X+X*A' = -B*B' and

% A'*X+X*A = -C'*C

% ---

disp('Parameters for stopping
riteria in LRCF-ADI iteration:')

max_it = 20 % (will stop the iteration)

min_res = 1e-100 % (avoided, but the residual history is shown)

with_rs = 'N' % (avoided)

min_in = 0 % (avoided)

zk = 'Z';

r
 = 'C';

Bf = [℄;

Kf = [℄;

info = 3;

disp('... solving A*XB+XB*A'' = - B*B''...');

tp = 'B';

figure(1), hold off;
lf; % (lp_lradi will plot residual history.)

[ZB,flag_B℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,B,p,max_it,min_res,...

with_rs,min_in,info);

%
ompute ZB

C.3 Demo programs for model redu
tion algorithms 61

title('LRCF-ADI for CALE AX_{B}+X_{B}A^T = -BB^T')

disp('Termination flag:')

flag_B

disp('Size of ZB:');

size_ZB = size(ZB)

disp('... solving A''*XC+XC*A = - C''*C...');

tp = 'C';

figure(2), hold off;
lf; % (lp_lradi will plot residual history.)

[ZC,flag_C℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,C,p,max_it,min_res,...

with_rs,min_in,info);

%
ompute ZC

title('LRCF-ADI for CALE A^T X_{C} + X_{C} A_ = -C^TC')

disp('Termination flag:')

flag_C

disp('Size of ZC:');

size_ZC = size(ZC)

% ---

% Plot the transfer fun
tion of the system for a
ertain frequen
y range

% ---

disp('...
omputing transfer fun
tion of original system ...');

freq = lp_lgfrq(100,1000,200); % generate a set of 200 "frequen
y

% sampling points" in the interval

% [100,1000℄.

G = lp_trfia(freq,A,B,C,[℄,[℄); %
ompute "transfer fun
tion sample"

% for these frequen
y points

nrm_G = lp_gnorm(G,m,q); %
ompute norms of the "transfer fun
tion

% sample" for these frequen
y points

figure(3); hold off;
lf;

loglog(freq,nrm_G,'k:');

xlabel('\omega');

ylabel('Magnitude');

t_text = 'Bode plots: dotted: ||G||';

title(t_text);

pause(1)

% ---

62 C CASE STUDIES

% Generate redu
ed systems

% ---

disp('Parameters for model redu
tion:')

max_ord = 10 % (This parameter determines the redu
ed order.)

tol = 0 % (avoided)

disp('...
omputing redu
ed system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B,C,ZB,ZC,max_ord,tol); % run LRSRM

disp('Redu
ed order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); %
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_Grs = lp_gnorm(Grs,m,q); %
ompute norm transfer fun
tion samples

% of redu
ed system

figure(3); hold on

loglog(freq,nrm_Grs,'r-');

t_text = [t_text, ', solid: ||G_{LRSRM}||'℄;

title(t_text); pause(1)

disp('...
omputing redu
ed system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B,C,ZB,ZC,max_ord,tol); % run DSPMR

disp('Redu
ed order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); %
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_Grd = lp_gnorm(Grd,m,q); %
ompute norm transfer fun
tion samples

% of redu
ed system

figure(3); hold on

loglog(freq,nrm_Grd,'b--');

t_text = [t_text, ', dashed: ||G_{DSPMR}||'℄;

title(t_text); pause(1)

% ---

% Destroy global data stru
tures

% ---

au_m_d;

au_l_d;

C.3 Demo programs for model redu
tion algorithms 63

au_s_d(p);

C.3.2 Results and remarks

In the demo program demo_m1 we use very ina

urate Gramians. The normalized residual

norms are only � 7:8 � 10

�2

. The redu
ed order of the systems delivered by LRSRM and

DSPMR is as low as 10. The result of the demo program is shown in Figure 13. There

simultaneous Bode magnitude plots of the original system and and both redu
ed systems

are shown.

10
2

10
3

10
−1

10
0

10
1

ω

M
ag

ni
tu

de

Figure 13: Simultaneous Bode magnitude plots of original system (dotted), redu
ed system

by LRSRM, and redu
ed system by DSPMR generated by the demo program demo_m1.

Both Bode plots of both redu
ed systems are almost identi
al and shown as solid line.

C.3.3 Demo program demo_m2

%

% MODEL REDUCTION BY THE ALGORITHMS LRSRM AND DSPMR. THE GOAL IS TO

% GENERATE A "NUMERICALLY MINIMAL REALIZATION" OF THE GIVEN SYSTEM

% AS WELL AS A REDUCED SYSTEM OF RELATIVELY SMALL ORDER.

%

% This demo program shows how the model redu
tion routines 'lp_lrsrm'

% and 'lp_dspmr' work. Also, the use of 'lp_lradi', supplementary

% routines, and user-supplied fun
tions is demonstrated.

% ---

% Generate test problem

% ---

%

% As test example, we use an FEM-semidis
retized problem, whi
h leads to

% a generalized system where M (the mass matrix) and N (the negative

64 C CASE STUDIES

% stiffness matrix) are sparse, symmetri
, and definite.

load rail821 % load the matri
es M N Btilde Ctilde of the generalized

% system

%load rail3113 % Un
omment this to get an example of larger order.

disp('Problem dimensions:')

n = size(M,1) % problem order (number of states)

m = size(Btilde,2) % number of inputs

q = size(Ctilde,1) % number of outputs

% ---

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions and
omputation of ADI shift parameters

% ---

%

% See 'demo_u1', 'demo_u2', 'demo_u3', and 'demo_l1' for more detailed

%
omments.

name = 'msns';

[M0,MU,N0,B0,C0,prm,iprm℄ = msns_pre(M,N,Btilde,Ctilde); % prepro
essing

msns_m_i(M0,MU,N0); % initialization for multipli
ation with A0

msns_l_i; % initialization for solving systems with A0

disp('Parameters for heuristi
 algorithm whi
h
omputes ADI parameters:')

l0 = 20 % desired number of distin
t shift parameters

kp = 50 % number of steps of Arnoldi pro
ess w.r.t. A0

km = 25 % number of steps of Arnoldi pro
ess w.r.t. inv(A0)

b0 = ones(n,1); % This is just one way to
hoose the Arnoldi start

% ve
tor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); %
omputation of ADI shift

% parameters

disp('A
tual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

msns_s_i(p) % initialization for shifted systems of linear equations

% with A0+p(i)*I (i = 1,...,l)

C.3 Demo programs for model redu
tion algorithms 65

% ---

% Solution of Lyapunov equations A0*XB0+XB0*A0' = -B0*B0' and

% A0'*XC0+XC0*A0 = -C0'*C0

% ---

disp('Parameters for stopping
riteria in LRCF-ADI iteration:')

max_it = 200 % (large value)

min_res = 0 % (avoided)

with_rs = 'S' % ("a
tivated")

min_in = 0 % (avoided)

zk = 'Z';

r
 = 'C';

Bf = [℄;

Kf = [℄;

info = 3;

disp('... solving A0*XB0+XB0*A0'' = - B0*B0''...');

tp = 'B';

figure(1), hold off;
lf;

[ZB0,flag_B℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,B0,p,max_it,min_res,...

with_rs,min_in,info);

%
ompute ZB0

title('LRCF-ADI for CALE A_0X_{B0}+X_{B0}A_0^T = -B_0B_0^T')

disp('Termination flag:')

flag_B

disp('Size of ZB0:');

size_ZB0 = size(ZB0)

disp('... solving A0''*XC0+XC0*A0 = - C0''*C0...');

tp = 'C';

figure(2), hold off;
lf;

[ZC0,flag_C℄ = lp_lradi(tp,zk,r
,name,Bf,Kf,C0,p,max_it,min_res,...

with_rs,min_in,info);

%
ompute ZC0

title('LRCF-ADI for CALE A_0^T X_{C0} + X_{C0} A_0 = -C_0^TC_0')

disp('Termination flag:')

flag_C

disp('Size of ZC0:');

size_ZC0 = size(ZC0)

% ---

66 C CASE STUDIES

% Plot the transfer fun
tion of the system for a
ertain frequen
y range

% ---

disp('...
omputing transfer fun
tion of original system ...');

freq = lp_lgfrq(1e-10,1e10,200); % generate a set of 200 "frequen
y

% sampling points" in the interval

% [10^-10,10^+10℄.

G = lp_trfia(freq,N,Btilde,Ctilde,[℄,M); %
ompute "transfer fun
tion

% sample" for these frequen
y

% points

nrm_G = lp_gnorm(G,m,q); %
ompute norms of the "transfer fun
tion

% sample" for these frequen
y points

figure(3); hold off;
lf;

loglog(freq,nrm_G,'k:');

xlabel('\omega');

ylabel('Magnitude');

t_text = 'dotted: ||G||';

title(t_text);

pause(1)

% ---

% Generate redu
ed systems of high a

ura
y and possibly high order

% ---

disp(' ')

disp('Generate redu
ed systems of high a

ura
y and possibly high order')

disp('---')

disp('Parameters for model redu
tion:')

max_ord = [℄ % (avoided)

tol = 1e-14 % (This
riterion determines the redu
ed order. The very

% small value is
hosen to generate a "numeri
ally minimal

% realization".)

disp('...
omputing redu
ed system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B0,C0,ZB0,ZC0,max_ord,tol); % run LRSRM

disp('Redu
ed order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); %
ompute "transfer fun
tion

% sample" for redu
ed system

C.3 Demo programs for model redu
tion algorithms 67

nrm_dGrs = lp_gnorm(G-Grs,m,q); %
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrs,'r-');

t_text = [t_text, ', solid: ||G-G_{DSPMR}||'℄;

title(t_text); pause(1)

disp('...
omputing redu
ed system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B0,C0,ZB0,ZC0,max_ord,tol); % run DSPMR

disp('Redu
ed order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); %
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_dGrd = lp_gnorm(G-Grd,m,q); %
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrd,'b--'); pause(1)

t_text = [t_text, ', solid: ||G-G_{LRSRM}||'℄;

title(t_text); pause(1)

% ---

% Generate redu
ed systems of low order

% ---

disp(' ')

disp('Generate redu
ed systems of low order')

disp('-------------------------------------')

disp('Parameters for model redu
tion:')

max_ord = 25 % (This
riterion determines the redu
ed order.)

tol = 0 % (avoided)

disp('...
omputing redu
ed system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B0,C0,ZB0,ZC0,max_ord,tol); % run LRSRM

disp('Redu
ed order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); %
ompute "transfer fun
tion

68 C CASE STUDIES

% sample" for redu
ed system

nrm_dGrs = lp_gnorm(G-Grs,m,q); %
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrs,'r-');

disp('...
omputing redu
ed system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B0,C0,ZB0,ZC0,max_ord,tol); % run DSPMR

disp('Redu
ed order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); %
ompute "transfer fun
tion

% sample" for redu
ed system

nrm_dGrd = lp_gnorm(G-Grd,m,q); %
ompute norm of DIFFERENCE of

% transfer fun
tion samples of original

% and redu
ed system.

figure(3); hold on

loglog(freq,nrm_dGrd,'b--');

% ---

% Destroy global data stru
tures

% ---

msns_m_d;

msns_l_d;

msns_s_d(p);

C.3.4 Results and remarks

In
ontrast to demo_m1, we use very a

urate Gramians in the program demo_m2. The

normalized residual norms for Z

B0

and Z

C0

are � 7:0 �10

�14

and � 1:7 �10

�14

, respe
tively.

Using these low rank Cholesky fa
tors of the Gramians we generate two pairs of redu
ed

systems by LRSRM and DSPMR. In the �rst run we attempt to generate a pair of redu
ed

systems, whi
h are very a

urate. Indeed, Figure 14 shows that the approximation error

kG(|!)�

^

G(|!)k for both redu
ed systems is very small
ompared to the Bode magnitude

fun
tion of the original system. We allow the redu
ed order to be relatively large by

hoosing a very small value for tol. These orders are 118 for LRSRM and 208 for DSPMR.

LRSRM and DSPMR deliver almost identi
al results w.r.t. the approximation error, but

LRSRM delivers a system of lower order. In the se
ond run, we use �xed redu
ed orders

k = 25. We still obtain relatively small approximation errors; see Figure 14. Here, the

result by LRSRM is again better than that by DSPMR. Note that we show approximation

C.4 Demo program for algorithms for Ri

ati equations 69

errors in Figure 14 as opposed to simultaneous Bode plots in Figure 13. The redu
ed

systems generated by demo_m2 are so a

urate that identi
al
urves would be displayed in

simultaneous Bode magnitude plots.

10
−10

10
−5

10
0

10
5

10
10

10
−20

10
−15

10
−10

10
−5

10
0

10
5

ω

M
ag

ni
tu

de

Figure 14: Results of demo_m2. The dotted line is the Bode magnitude plot of the original

system, i.e, the fun
tion kG(|!)k. The solid and dashed lines are the approximation

errors, i.e., the fun
tions kG(|!)�

^

G(|!)k, for LRSRM and DSPMR, respe
tively. The

lower two
urves
orrespond to the �rst run (highly a

urate redu
ed systems, �numeri
ally

minimal realization�) and the upper two to the se
ond run (low redu
ed order).

C.4 Demo program for algorithms for Ri

ati equations and

linear-quadrati
 optimal problems

C.4.1 Demo program demo_r1

%

% SOLUTION OF RICCATI EQUATION BY LRCF-NM AND SOLUTION OF LINEAR-

% QUADRATIC OPTIMAL CONTROL PROBLEM BY LRCF-NM-I

%

% This demo program shows how both modes (i.e., the one for LRCF-NM and

% the one for LRCF-NM-I) work. Also, the use of user-supplied fun
tions

% is demonstrated in this
ontext.

% ---

% Generate test problem

% ---

%

% As test example, we use a simple FDM-semidis
retized PDE problem

% (an instationary heat equation on the unit square with homogeneous 1st

% kind boundary
onditions).

%

% Note that the negative stiffness matrix A is symmetri
.

70 C CASE STUDIES

n0 = 20; % n0 = number of grid points in either spa
e dire
tion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'0','0','0');

B = fdm_2d_ve
tor(n0,'.1<x<=.3');

C = (fdm_2d_ve
tor(n0,'.7<x<=.9'))';

Q0 = 10 % Q = Q0*Q0' = 100

R0 = 1 % R = R0*R0' = 1

K_in = [℄; % Initial feedba
k K is zero (Note that A is stable).

disp('Problem dimensions:')

n = size(A,1) % problem order (number of states)

m = size(B,2) % number of inputs

q = size(C,1) % number of outputs

% ---

% Initialization/generation of data stru
tures used in user-supplied

% fun
tions

% ---

%

% Note that we use routines 'au_*' rather than the routines 'as_*',

% although A is symmetri
. This is be
ause ADI shift parameters w.r.t.

% the nonsymmetri

losed loop matrix A-B*K' (generated in the routine

% lp_lrnm) might be not real. The routines 'as_*' are restri
ted to

% problems, where the shift parameters are real.

name = 'au';

[A0,B0,C0,prm,iprm℄ = au_pre(A,B,C); % prepro
essing (reordering for

% bandwidth redu
tion)

% Note that K_in is zero. Otherwise it needs not be transformed as well.

au_m_i(A0); % initialization for matrix multipli
ations with A0

au_l_i; % initialization for solving systems with A0 (This is needed in

% the Arnoldi algorithm w.r.t. inv(A0). The Arnoldi algorithm

% is part of the algorithm in 'lp_para', whi
h in turn will

% be invoked in ea
h Newton step in the routine 'lp_lrnm'.)

% Note that 'au_s_i' will be invoked repeatedly in 'lp_lrnm'.

C.4 Demo program for algorithms for Ri

ati equations 71

disp('Parameters for heuristi
 algorithm whi
h
omputes ADI parameters:')

l0 = 15 % desired number of distin
t shift parameters

kp = 50 % number of steps of Arnoldi pro
ess w.r.t. A0-B0*K0'

km = 25 % number of steps of Arnoldi pro
ess w.r.t. inv(A0-B0*K0')

% ---

% Compute LRCF Z0 by LRCF-NM

% ---

%

% The approximate solution is given by the low rank Cholesky fa
tor Z0,

% i.e., Z0*Z0' is approximately X0, where X0 is the solution of the

% transformed Ri

ati equation

%

% C0'*Q0*Q0'*C0+A0'*X0+X0*A0-X0*B0*inv(R0*R0')*B0'*X0 = 0.

%

% The stopping
riteria for both the (outer) Newton iteration and the

% (inner) LRCF-ADI iteration are
hosen, su
h that the iterations are

% stopped shortly after the residual
urves stagnate. This requires

% the sometimes expensive
omputation of the Lyapunov equation

% and Ri

ati equation residual norms.

disp('Parameters for stopping the (outer) Newton iteration:')

max_it_r = 20 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_r = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_r = 'S' % stopping
riterion "stagnation of the normalized

% residual norms" a
tivated

min_
k_r = 0 % stopping
riterion "smallness of the RCF" ("avoided")

% (RCF = relative
hange of the feedba
k matrix)

with_ks_r = 'N' % stopping
riterion "stagnation of the RCF"

% (
riterion is "avoided")

disp('Parameters for stopping the (inner) LRCF-ADI iterations:')

max_it_l = 500 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_l = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_l = 'S' % stopping
riterion "stagnation of the normalized

% residual norms" a
tivated

min_in_l = 0 % threshold for smallness of values ||V_i||_F

% (
riterion is "avoided")

disp('Further input parameters of the routine ''lp_lrnm'':');

72 C CASE STUDIES

zk = 'Z' %
ompute Z0 by LRCF-NM or generate dire
tly

% K_out = Z0*Z0'*K_in (here, Z0 is
omputed)

r
 = 'C' %
ompute possibly
omplex Z0 or demand for real Z0 (here,

% a
omplex matrix Z0 may be returned)

info_r = 3; % information level for the Newton iteration (here,

% maximal amount of information is provided)

info_l = 3; % information level for LRCF-ADI iterations (here,

% maximal amount of information is provided)

randn('state',0); % (This measure is taken to make the test results

% repeatable. Note that a random ve
tor is involved

% into the
omputation of ADI parameters inside

% 'lp_lrnm'.)

[Z0, flag_r, res_r, flp_r, flag_l, its_l, res_l, flp_l℄ = lp_lrnm(...

zk, r
, name, B0, C0, Q0, R0, K_in, max_it_r, min_res_r, with_rs_r,...

min_
k_r, with_ks_r, info_r, kp, km, l0, max_it_l, min_res_l,...

with_rs_l, min_in_l, info_l);

disp('Results for (outer) Newton iteration in LRCF-NM:')

disp('Termination flag:')

flag_r

disp('Internally
omputed normalized residual norm of final iterate:');

final_nrn_r = res_r(end)

disp('Results for (inner) LRCF-ADI iterations in LRCF-NM:')

disp('Termination flags:')

flag_l

disp('Number of LRCF-ADI iteration steps:')

its_l

disp('Internally
omputed normalized residual norms of final iterates:');

final_nrn_l = [℄;

for i = 1:length(its_l)

final_nrn_l = [final_nrn_l; res_l(its_l(i)+1,i)℄;

end

final_nrn_l

% ---

C.4 Demo program for algorithms for Ri

ati equations 73

% Compute (approximately) optimal feedba
k K0 by LRCF-NM-I

% ---

%

% Here, the matrix K0 that solves the (transformed) linear-quadrati

% optimal
ontrol problem is
omputed by LRCF-NM-I.

%

% The stopping
riteria for both the (outer) Newton iteration and the

% (inner) LRCF-ADI iteration are
hosen by inexpensive heuristi

%
riteria.

disp('Parameters for stopping the (outer) Newton iteration:')

max_it_r = 20 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_r = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_r = 'N' % stopping
riterion "stagnation of the normalized

% residual norms" (
riterion is "avoided")

min_
k_r = 1e-12 % stopping
riterion "smallness of the RCF"

% ("a
tivated")

with_ks_r = 'L' % stopping
riterion "stagnation of the RCF"

% ("a
tivated")

disp('Parameters for stopping the (inner) LRCF-ADI iterations:')

max_it_l = 500 % max. number of iteration steps (here, a very large

% value, whi
h will probably not stop the iteration)

min_res_l = 0 % toleran
e for normalized residual norm (
riterion

% is "avoided")

with_rs_l = 'N' % stopping
riterion "stagnation of the normalized

% residual norms" (
riterion is "avoided")

min_in_l = 1e-12 % threshold for smallness of values in ||V_i||_F

% (
riterion is "a
tivated")

disp('Further input parameters of the routine ''lp_lradi'':');

zk = 'K'

r
 = 'C'

info_r = 3

info_l = 3

randn('state',0);

[K0, flag_r, flp_r, flag_l, its_l, flp_l℄ = ...

lp_lrnm(zk, name, B0, C0, Q0, R0, K_in, max_it_r, min_
k_r, ...

with_ks_r, info_r, kp, km, l0, max_it_l, min_in_l, info_l);

disp('Results for (outer) Newton iteration in LRCF-NM-I:')

74 C CASE STUDIES

disp('Termination flag:')

flag_r

disp('Results for (inner) LRCF-ADI iterations in LRCF-NM-I:')

disp('Termination flags:')

flag_l

disp('Number of LRCF-ADI iteration steps:')

its_l

% ---

% Postpro
essing, destroy global data stru
tures

% ---

%

% Note that both the LRCF Z0 and the state feedba
k K0 must be

% postpro
essed in order to attain the results for the original problems.

Z = au_pst(Z0,iprm);

K = au_pst(K0,iprm);

% Note that 'au_s_d' has already been invoked in 'lp_lrnm'.

au_l_d; %
lear global variables initialized by au_l_i

au_m_d; %
lear global variables initialized by au_m_i

disp('Size of Z:');

size_Z = size(Z)

disp('Is Z real (0 = no, 1 = yes)?')

Z_is_real = ~any(any(imag(Z)))

disp('Is K real (0 = no, 1 = yes)?')

K_is_real = ~any(any(imag(K)))

% ---

% Verify the result

% ---

%

% Note that this is only an "illustrative" way of verifying the a

ura
y

% by
omputing the (normalized) residual norm of the Ri

ati equation.

% A more pra
ti
al (be
ause less expensive) way is evaluating the residual

% norm by means of the routine 'lp_r
nrm' (Must be applied before

% postpro
essing!), if the residual norms have not been generated during

C.4 Demo program for algorithms for Ri

ati equations 75

% the iteration.

%

% In general the result for LRCF-NM-I
annot be verified. However, we

% will
ompare the delivered feedba
k K with the feedba
k matrix
omputed

% by use of the LRCF Z.

disp('The attained CARE residual norm:')

res_norm = norm(C'*Q0*Q0'*C+A'*Z*Z'+Z*Z'*A-Z*Z'*B*((R0*R0')\B')*Z*Z',...

'fro')

disp('The attained normalized CARE residual norm:')

normal_res_norm = res_norm/norm(C'*Q0*Q0'*C,'fro')

disp('The normalized deviation of the feedba
k matri
es
omputed by')

disp('LRCF-NM and LRCF-NM-I (small value --> high a

ura
y):');

KE = Z*Z'*(B/(R0*R0'));

norm_dev = norm(K-KE,'fro')/max([norm(K,'fro'),norm(KE,'fro')℄)

C.4.2 Results and remarks

In demo_r1 both LRCF-NM and LRCF-NM-I are applied to the same problem. In the �rst

run, the low rank Cholesky fa
tor Z for the solution of the Ri

ati equation is
omputed.

Residual based stopping
riteria are used. See Figure 15 for the normalized residual norm

history. The (approximate) optimal state feedba
k K

(E)

(variable KE) for the solution of

the optimal
ontrol problem is
omputed �expli
itely� by K

(E)

= ZZ

H

BR

�1

. In the se
ond

run, the optimal
ontrol problem is solved dire
tly by LRCF-NM-I, whi
h delivers the

approximate optimal state feedba
k K. Heuristi
 stopping
riteria are used. The results

of both runs are
ompared by the normalized deviation of the state feedba
k matri
es:

kK �K

(E)

k

F

maxfkKk

F

; kK

(E)

k

F

g

� 5:9 � 10

�16

:

76 REFERENCES

0 1 2 3 4 5 6 7 8
10

−15

10
−10

10
−5

10
0

10
5

N
or

m
al

iz
ed

 re
si

du
al

 n
or

m

Iteration steps

Figure 15: normalized residual norm history of the LRCF-NM in demo_r1.

Referen
es

[1℄ F. Aliev and V. Larin, Constru
tion of square root fa
tor for solution of the

Lyapunov matrix equation, Sys. Control Lett., 20 (1993), pp. 109�112.

[2℄ A. Antoulas, D. Sorensen, and S.Gu
er
in, A survey of model redu
tion meth-

ods for large-s
ale systems, preprint, Dept. of Ele
tr. and Comp. Engineering, Ri
e

University, Houston, Texas 77251-1892, USA, 2000.

[3℄ R. Bartels and G. Stewart, Solution of the matrix equation AX + XB = C:

Algorithm 432, Comm. ACM, 15 (1972), pp. 820�826.

[4℄ P. Benner and R. Byers, An exa
t line sear
h method for solving general-

ized
ontinuous-time algebrai
 Ri

ati equations, IEEE Trans. Automat. Control, 43

(1998), pp. 101�107.

[5℄ P. Benner, J. Claver, and E. Quintana-Ortí, Parallel distributed solvers for

large stable generalized Lyapunov equations, Parallel Pro
essing Letters, 9 (1999),

pp. 147�158.

[6℄ P. Benner, J. Li, and T. Penzl, Numeri
al solution of large lyapunov equations,

ri

ati equations, and linear-quadrati
 optimal
ontrol problems, in preparation, Zen-

trum f. Te
hnomathematik, Fb. Mathematik und Informatik, Univ. Bremen, 28334

Bremen, Germany, 2000.

[7℄ P. Benner, V. Mehrmann, V. Sima, S. V. Huffel, and A. Varga, SLICOT - a

subroutine library in systems and
ontrol theory, Applied and Computational Control,

Signals, and Cir
uits, 1 (1999), pp. 505�546.

[8℄ P. Benner and E. Quintana-Orti, Solving stable generalized Lyapunov equations

with the matrix sign fun
tion, Numer. Alg., 20 (1999), pp. 75�100.

REFERENCES 77

[9℄ P. Benner, E. Quintana-Orti, and G. Quintana-Orti, Balan
ed trun
ation

model redu
tion of large-s
ale dense systems on parallel
omputers. Submitted for

publi
ation, 1999.

[10℄ R. Byers, Solving the algebrai
 Ri

ati equation with the matrix sign fun
tion, Linear

Algebra Appl., 85 (1987), pp. 267�279.

[11℄ E. Davison, A method for simplifying linear dynami
 systems, IEEE Trans. Automat.

Control, 11 (1966), pp. 93�101.

[12℄ P. Feldmann and R. Freund, E�
ient linear
ir
uit analysis by Padé approx-

imation via the Lan
zos pro
ess, IEEE Trans. Computer-Aided Design, 14 (1995),

pp. 639�649.

[13℄ R. Freund, Redu
ed-order modeling te
hniques based on Krylov subspa
es and their

use in
ir
uit simulation. Numeri
al Analysis Manus
ript No. 98-3-02, Bell Labora-

tories, Murray Hill, New Jersey, 1998.

[14℄ R. Freund and N. Na
htigal, QMR: a quasi-minimal residual method for non-

Hermitian linear systems, Numer. Math., 60 (1991), pp. 315�339.

[15℄ K. Gallivan, E. Grimme, and P. V. Dooren, Asymptoti
 waveform evaluation

via a Lan
zos method, Appl. Math. Lett., 7 (1994), pp. 75�80.

[16℄ , A rational Lan
zos algorithm for model redu
tion, Numer. Alg., 12 (1996),

pp. 33�63.

[17℄ J. Gardiner and A. Laub, Parallel algorithms for the algebrai
 Ri

ati equations,

Internat. J. Control, 54 (1991), pp. 1317�1333.

[18℄ K. Glover, All optimal Hankel norm approximations of linear multivariable systems

and their L

1

-error bounds, Internat. J. Control, 39 (1984), pp. 1115�1193.

[19℄ G. Golub and C. V. Loan, Matrix Computations, The Johns Hopkins University

Press, Baltimore, 3rd ed., 1996.

[20℄ S. Hammarling, Numeri
al solution of the stable, non�negative de�nite Lyapunov

equation, IMA J. Numer. Anal., 2 (1982), pp. 303�323.

[21℄ C. He and V. Mehrmann, Stabilization of large linear systems, in Preprints of the

European IEEE Workshop CMP'94, Prague, September 1994, L. Kulhavá, M. Kárný,

and K. Warwi
k, eds., 1994, pp. 91�100.

[22℄ D. Hu and L. Rei
hel, Krylov-subspa
e methods for the Sylvester equation, Linear

Algebra Appl., 172 (1992), pp. 283�313.

[23℄ I. Jaimoukha, A general minimal residual Krylov subspa
e method for large s
ale

model redu
tion, IEEE Trans. Automat. Control, 42 (1997), pp. 1422�1427.

[24℄ I. Jaimoukha and E. Kasenally, Krylov subspa
e methods for solving large Lya-

punov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227�251.

78 REFERENCES

[25℄ , Oblique proje
tion methods for large s
ale model redu
tion, SIAM J. Matrix

Anal. Appl., 16 (1995), pp. 602�627.

[26℄ , Impli
itly restarted Krylov subspa
e methods for stable partial realizations, SIAM

J. Matrix Anal. Appl., 18 (1997), pp. 633�652.

[27℄ C. Kenney and A. Laub, The matrix sign fun
tion, IEEE Trans. Automat. Control,

40 (1995), pp. 1330�1348.

[28℄ D. Kleinman, On an iterative te
hnique for Ri

ati equation
omputations, IEEE

Trans. Automat. Control, 13 (1968), pp. 114�115.

[29℄ P. Lan
aster and L. Rodman, Algebrai
 Ri

ati Equations, Clarendon Press,

Oxford, 1995.

[30℄ A. Laub, A S
hur method for solving algebrai
 Ri

ati equations, IEEE Trans. Au-

tomat. Control, 24 (1979), pp. 913�921.

[31℄ J. Li, F. Wang, and J. White, An e�
ient Lyapunov equation-based approa
h for

generating redu
ed-order models of inter
onne
t, in Pro
. 36th IEEE/ACM Design

Automation Conferen
e, New Orleans, LA, 1999.

[32℄ J. Li and J. White, E�
ient model redu
tion of inter
onne
t via approximate sys-

tem Grammians, in Pro
. IEEE/ACM International Conferen
e on Computer Aided

Design, San Jose, CA, 1999.

[33℄ P. Li and T. Penzl, Approximate balan
ed trun
ation of large generalized state-spa
e

systems, in preparation, Fak. f. Mathematik, TU Chemnitz, D-09107 Chemnitz, 2000.

[34℄ V. Mehrmann, The Autonomous Linear Quadrati
 Control Problem, Theory and

Numeri
al Solution, vol. 163 of Le
ture Notes in Control and Information S
ien
es,

Springer-Verlag, Heidelberg, 1991.

[35℄ B. C. Moore, Prin
ipal
omponent analysis in linear systems: Controllability, ob-

servability, and model redu
tion, IEEE Trans. Automat. Control, 26 (1981), pp. 17�31.

[36℄ D. Pea
eman and H. Ra
hford, The numeri
al solution of ellipti
 and paraboli

di�erential equations, J. So
. Indust. Appl. Math., 3 (1955), pp. 28�41.

[37℄ T. Penzl, A
y
li
 low rank Smith method for large sparse Lyapunov equations. to

appear in SIAM J. S
i. Comput.

[38℄ , Numeri
al solution of generalized Lyapunov equations, Advan
es in Comp.

Math., 8 (1998), pp. 33�48.

[39℄ , Algorithms for model redu
tion of large dynami
al systems. Submitted for pub-

li
ation., 1999.

[40℄ , Eigenvalue de
ay bounds for solutions of Lyapunov equations: the symmetri

ase. Submitted for publi
ation., 1999.

REFERENCES 79

[41℄ L. Pillage and R. Rohrer, Asymptoti
 waveform evaluation for timing analysis,

IEEE Trans. Computer-Aided Design, 9 (1990), pp. 352�366.

[42℄ J. Roberts, Linear model redu
tion and solution of the algebrai
 Ri

ati equation by

use of the sign fun
tion, Internat. J. Control, 32 (1980), pp. 677�687.

[43℄ Y. Saad, Numeri
al solution of large Lyapunov equations, in Signal Pro
essing, S
at-

tering, Operator Theory and Numeri
al Methods, M. Kaashoek, J. V. S
huppen, and

A. Ran, eds., Birkhäuser, Boston, MA, 1990, pp. 503�511.

[44℄ M. Safonov and R. Chiang, A S
hur method for balan
ed-trun
ation model re-

du
tion, IEEE Trans. Automat. Control, 34 (1989), pp. 729�733.

[45℄ R. Smith, Matrix equation XA +BX = C, SIAM J. Appl. Math., 16 (1968).

[46℄ G. Starke, Optimal alternating dire
tion impli
it parameters for nonsymmetri
 sys-

tems of linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431�1445.

[47℄ M. Tombs and I. Postlethwaite, Trun
ated balan
ed realization of stable, non-

minimal state-spa
e systems, Internat. J. Control, 46 (1987), pp. 1319�1330.

[48℄ A. Varga, E�
ient minimal realization pro
edure based on balan
ing, in Prepr. of

IMACS Symp. on Modelling and Control of Te
hnologi
al Systems, A. E. Moudni,

P. Borne, and S. Tzafestas, eds., vol. 2, 1991, pp. 42�49.

[49℄ E. Wa
hspress, Iterative Solution of Ellipti
 Systems, Prenti
e-Hall, 1966.

[50℄ , Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988),

pp. 87�90.

[51℄ , The ADI minimax problem for
omplex spe
tra, in Iterative Methods for Large

Linear Systems, D. Kin
aid and L. Hayes, eds., A
ademi
 Press, San Diego, 1990,

pp. 251�271.

