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ERROR ESTIMATES FOR A SEMILINEAR ELLIPTIC CONTROL

PROBLEM

Nadir Arada

1

, Eduardo Casas

2

, Fredi Tr�oltzs
h.

Abstra
t

We study the numeri
al approximation of distributed nonlinear optimal 
ontrol prob-

lems governed by semilinear ellipti
 partial di�erential equations with pointwise 
on-

straints on the 
ontrol. The analysis of the approximate 
ontrol problems is 
arried

out. In parti
ular, 
hara
terization results for the optimal 
ontrol and the dis
retized

optimal 
ontrols are stated. The uniform 
onvergen
e of dis
retized 
ontrols to op-

timal 
ontrols is proven under natural assumptions. Finally, error estimates are

established.

Keywords: Distributed 
ontrol, semilinear ellipti
 equation, numeri
al approximation,

�nite element method, error estimates.

AMS subje
t 
lassi�
ation: 49J20, 49K20, 49M05, 65K10

1 Introdu
tion

The paper is 
on
erned with the dis
retization of the following optimal 
ontrol problem

(P ) inf J(u) =

Z




L(x; y

u

(x); u(x)) dx;

subje
t to (y

u

; u) 2 (C(
) \H

1

(
))� L

1

(
);

Ay

u

+ f(�; y

u

) = u in 
; y

u

= 0 on �; (1.1)

u 2 U

ad

= fu 2 L

1

(
) j � � u(x) � � for a.a. x 2 
g;

where 
 is a 
onvex bounded domain, � is the boundary of 
; A denotes a se
ond order

ellipti
 operator of the form Ay(x) = �

P

N

i;j=1

D

i

(a

ij

(x)D

j

y(x)) where D

i

denotes the

partial derivative with respe
t to x

i

, and � and � are real numbers. Here u is the 
ontrol

while y

u

is said to be the asso
iated state.

Under some natural assumptions, we prove the existen
e of solutions for the problem (P ).

By using the asso
iated optimality 
onditions, a 
hara
terization of the optimal 
ontrol is

given, and a 
orresponding regularity result is established.

The se
ond part of the paper is 
on
erned with the full dis
retization of the 
ontrol

and the state equation by a �nite element method. The asymptoti
 behavior of the 
or-

responding dis
retized problem (P

h

) is studied, and a stability result established. As for
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the 
ontinuous problem, we give a 
hara
terization result 
on
erning the solutions of (P

h

).

This enables us to prove the uniform 
onvergen
e of these solutions to a solution of (P ).

Finally, the last and main part is devoted to the approximation errors for the optimal


ontrol. Under some natural assumptions, with a se
ond order and a stability 
ondition,

we derive some error estimates. Moreover, we show how the error estimates for the state

equation and the adjoint equation 
an be transferred to asso
iated error estimates for the

optimal 
ontrols.

Let us brie
y 
omment on the relevant literature. There are two early papers on the nu-

meri
al approximation of linear-quadrati
 
ontrol-
onstrained ellipti
 
ontrol problems by

Falk [11℄ and Geve
i [12℄. L

2

-error estimates are obtained whi
h re
e
t the H

1

-regularity

of the optimal 
ontrol and the optimal regularity of the state fun
tion. Falk 
onsidered

distributed 
ontrols, while Geve
i 
on
entrates on Neuman boundary 
ontrols. More re-


ently, Arnautu and Neittaanm�aki [3℄ 
ontributed further errors estimates to this 
lan of

problems. Their te
hnique, however, slightly overestimates the order of the error. More-

over, we refer to Arada and Raymond [2℄, where estimates and 
onvergen
e results are

performed for relaxed optimal 
ontrol problems governed by semilinear ellipti
 equations,

and Casas [6℄, where 
onvergen
e results are proved for optimal 
ontrol problems governed

by linear ellipti
 equations with 
ontrols in the 
oeÆ
ient. We also mention the thesis by

Mateos [20℄, who 
arefully studies error estimates for semilinear ellipti
 equations.

In 
ontrast to the ellipti
 
ase, quite a number of papers was devoted to paraboli


problems, although the asso
iated theory is far from being 
omplete. We refer to Alt and

Ma
kenroth [1℄, Knowles [14℄, Lasie
ka [15℄, [16℄, Ma
kenroth [17℄, [18℄, M
Knight and

Bosarge [21℄, Tiba and Tr�oltzs
h [23℄ and Tr�oltzs
h [24℄, [25℄, [26℄, [27℄. The papers [1℄,

[14℄,[15℄, [16℄, [17℄, [18℄, [24℄ 
onsider linear paraboli
 equations, whi
h are approximated by

a semidis
rete Ritz-Galerkin or �nite element s
heme. Di�erent aspe
ts are investigated.

In parti
ular, the (strong) 
onvergen
e of optimal values and/or optimal 
ontrols is shown.

In [17℄ and [18℄ the �nal state is required to rea
h a 
onvex target set, thus a spe
ial state


onstraint is 
onsidered. [21℄ is 
on
erned with the 
ase of unrestri
ted 
ontrol for a non-

linear paraboli
 state equation. Here, the optimal error estimates for paraboli
 equations

extend dire
tly to asso
iated estimates for the 
ontrols. The assumption made in [21℄ on

Fr�e
het-di�erentiability is only satis�ed in parti
ular 
ases.

In [23℄, a 
onvex problem with 
onstraints on the 
ontrol and the state is studied. The

state equation is approximated by a fairly general assumption on the approximation in

spa
e and an impli
it Euler s
heme in time. Error estimates are derived, whi
h express the

estimate for the optimal 
ontrol by relevant interpolation errors. Moreover, a semilinear

problem without state-
onstraint is dis
ussed. [24℄ deals with 
onvergen
e of swit
hing

points for a linear-quadrati
 paraboli
 problem. The papers [25℄{[27℄ deal with semilinear

equations and 
onstraints on the 
ontrol. Ex
ept [25℄, where the Fourier method is used

to approximate the state equation, the other papers assume a semidis
rete s
heme for the

paraboli
 equation under quite abstra
t assumptions.

Our paper di�ers from the ideas presented in literature in several points. The equation

2



is semilinear. Due to this, we had to derive L

1

error estimates in order to deal 
orre
tly

with the given nonlinearities. We dis
uss the �nite element approximation in more detail

than in the papers mentioned above. In parti
ular, the approximation of the given domain


 by polygonal domains is 
onsidered. Moreover, the following ideas are essentially new:

In the �rst part, the strong 
onvergen
e of subsequen
es of approximate 
ontrols is

proven under a fairly weak assumption. In the se
ond part, error estimates are established

for su
h subsequen
es. Extending an idea due to Malanowski et. al [19℄, whi
h was used

earlier for the 
ase of ordinary di�erential equations, we are able to improve the error

estimates in [3℄ and [6℄. We are not sure that our results express the optimal ones in the

nonlinear 
ase. However, they seem to be optimal in the 
ase of linear equations, where

L

2

-estimates 
an be used.

2 General assumptions and notation

Throughout the sequel, 
 denotes a 
onvex bounded open subset in IR

n

(n = 2 or n = 3)

of 
lass C

1;1

. The 
oeÆ
ients a

ij

of the operator A belong to C

0;1

(
) and satisfy the ellip-

ti
ity 
ondition

m

0

j�j

2

�

N

X

i;j=1

a

ij

(x)�

i

�

j

8 (�; x) 2 IR

N

� 
; m

0

> 0:

Moreover, we require:

A1 - The fun
tion f is a Carath�eodory fun
tion from 
 � IR into IR. For every x 2 
,

f(x; �) is of 
lass C

2

, and D

y

f(x; �) is nonnegative. For allM > 0 there exists C

M

> 0 su
h

that

jf(x; y)j+ jD

y

f(x; y)j+ jD

yy

f(x; y)j � C

M

;

jD

yy

f(x; y

1

)�D

yy

f(x; y

2

)j � C

M

jy

1

� y

2

j

for all (x; y; y

1

; y

2

) 2 
� [�M;+M ℄

3

.

A2 - L is a Carath�eodory fun
tion from 
 � IR

2

into IR. For every x 2 
, L(x; �; �) is

of 
lass C

2

. For all M > 0, and all (x; x

1

; x

2

; y; y

1

; y

2

; u; u

1

; u

2

) 2 


3

� [�M;+M ℄

6

, the

following estimates hold

jL(x; y; u)j � L

M

(x); jD

y

L(x; y; u)j � L

1

M

(x)

jD

u

L(x

1

; y; u)�D

u

L(x

2

; y; u)j � C

M

jx

1

� x

2

j

jL

00

(y;u)

(x; y; u)j

IR

2�2

� C

M

jL

00

(y;u)

(x; y

1

; u

1

)� L

00

(y;u)

(x; y

2

; u

2

)j

IR

2�2

� C

M

(jy

1

� y

2

j+ ju

1

� u

2

j);

where L

M

2 L

2

(
), L

1

M

2 L

p

(
), p > n, C

M

> 0, L

00

(y;u)

is the Hessian matrix of L with

3



respe
t to (y; u), and j � j

IR

2�2

is any norm of matri
es. Moreover, there exists a positive


onstant m su
h that the following estimate holds:

D

uu

L(x; y; u) � m 8 (x; y; u) 2 
� IR

2

:

In all the sequel jj � jj

2;


and jj � jj

1;


denote the usual norms in L

2

(
) and L

1

(
), respe
-

tively, and 
 will denote a generi
 
onstant.

Remark 1 In parti
ular, the following simple linear-quadrati
 optimal 
ontrol problem �ts

in this setting. We shall refer to this example to illustrate some of the ideas in the Se
tions

4, 6, and 7.

(E) inf

1

2

(ky � y

d

k

2

2;


+ �kuk

2

2;


);

subje
t to

��y = u in 
; y

u

= 0 on �;

� � u(x) � � for a.a. x 2 
:

Here, y

d

2 L

4

(
) and � > 0 are given, and L(x; y; u) =

1

2

((y�y

d

(x))

2

+�u

2

). It is obvious

that A1 and A2 are satis�ed in the example (E).

3 State equation and Adjoint equation

In this se
tion we derive some useful estimates, whi
h express the Lips
hitz 
ontinuity of

states and adjoint states with respe
t to the 
ontrols.

3.1 State equation

Theorem 1 [4℄ Let u be in L

1

(
) satisfy kuk

1;


� M . Then equation (1:1) admits a

unique solution y

u

2 H

1

0

(
) \W

2;p

(
), for every p > n. Moreover, there exists a positive


onstant C � C(
; n; p;M), independent of u, su
h that

ky

u

k

W

2;p

(
)

� C:

Proposition 1 [4℄ Let a

o

� 0 be a fun
tion in L

1

(
) satisfying jja

o

jj

1;


�M . Then, for

every g 2 L

p

(
), the solution y of

Ay + a

o

y = g in 
; y

j�

= 0;

belongs to H

1

0

(
) \W

2;p

(
) for every p > n. Moreover, there exists a positive 
onstant

C � C(
; n; p;M), independent of a

o

, su
h that

kyk

W

2;p

(
)

� C kgk

p;


; kyk

H

2

(
)

� C kgk

2;


:

4



Proposition 2 Let u

1

, u

2

be in L

1

(
), and let y

1

and y

2

be the asso
iated states, i.e. the


orresponding solutions of (1:1). Then y

1

� y

2

satis�es the estimate

ky

1

� y

2

k

H

2

(
)

� C ku

1

� u

2

k

2;


;

where C > 0 does not depend on u

1

and u

2

.

Proof. The fun
tion y = y

1

� y

2

satis�es

Ay +

~

fy = u

2

� u

1

in 
; y

j�

= 0;

where

~

f =

R

1

0

D

y

f(�; �y

1

+ (1� �)y

2

; u

1

) d� � 0. The 
on
lusion is a dire
t 
onsequen
e of

Proposition 1. 2

3.2 Adjoint equation

Let u be in L

1

(
) and y

u

denote the 
orresponding solution of (1.1). The adjoint equation

asso
iated with the problem we 
onsider, has the following form:

A

�

'+D

y

f(�; y

u

)' = D

y

L(�; y

u

; u) in 
; ' = 0 on �: (3.1)

Here A

�

is the formal adjoint operator of A. The solution ' = '

u

is 
alled the adjoint

state asso
iated to u. The next theorem follows immediately from Proposition 1.

Theorem 2 Let u 2 L

1

(
) satisfy kuk

1;


� M . Then equation (3:1) admits a unique

solution '

u

in H

1

0

(
)\W

2;p

(
) for every p > n. Moreover, there exists a positive 
onstant

C � C(
; n; p;M), independent of u, su
h that

k'

u

k

W

2;p

(
)

� C:

Proposition 3 Let u

1

, u

2

be in L

1

(
) su
h that ku

1

k

1;


+ ku

2

k

1;


� M , and let '

1

and

'

2

be the 
orresponding adjoint states. Then '

1

� '

2

satis�es the estimate

k'

1

� '

2

k

H

2

(
)

� C ku

1

� u

2

k

2;


where C � C(
; n;M) does not depend on u

1

and u

2

.

Proof. The fun
tion ' = '

1

� '

2

satis�es '

j�

= 0 and

A

�

'+ a' = (D

y

f(�; y

2

)�D

y

f(�; y

1

))'

2

+D

y

L(�; y

1

; u

1

)�D

y

L(�; y

2

; u

2

) in 
;

where y

1

and y

2

are the states asso
iated to u

1

and u

2

, respe
tively, and a = D

y

f(�; y

1

).

Due to assumptions A1-A2, Theorem 1, and Proposition 2, we obtain

k'

1

� '

2

k

H

2

(
)

� C(k(D

y

f(�; y

1

)�D

y

f(�; y

2

))'

2

k

2;


+ kD

y

L(�; y

1

; u

1

)�D

y

L(�; y

2

; u

2

)k

2;


)

5



� C(kD

y

f(�; y

1

)�D

y

f(�; y

2

)k

2;


k'

2

k

1;


+kD

y

L(�; y

1

; u

1

)�D

y

L(�; y

2

; u

1

)k

2;


+ kD

y

L(�; y

2

; u

1

)�D

y

L(�; y

2

; u

2

)k

2;


)

� C((1 + k'

2

k

1;


)ky

1

� y

2

k

2;


+ ku

1

� u

2

k

2;


)

� C(ky

1

� y

2

k

2;


+ ku

1

� u

2

k

2;


) � Cku

1

� u

2

k

2;


: 2

Remark 2 Noti
e that sin
e n � 3, Propositions 2, 3, and 
lassi
al imbedding theorems

give

ky

1

� y

2

k

C(
)

+ k'

1

� '

2

k

C(
)

� C ku

1

� u

2

k

2;


:

This estimate will be intensively used in the sequel.

4 Existen
e and 
hara
terisation of solutions of (P )

4.1 Existen
e results

We begin this se
tion by a useful 
ontinuity result.

Proposition 4 Suppose that assumption A1 is satis�ed. Then the operator u 7! y

u

is


ontinuous from L

1

(
), endowed with the weak

�

topology, into C(
).

Proof. Let (u

�

)

�

be a sequen
e in U

ad


onverging to u in the weak

�

-L

1

(
) topology. Let

y

�

and y

u

be the solutions of (1.1) 
orresponding to u

�

and u. We have to show that (y

�

)

�


onverges to y

u

, uniformly on 
. Due to Theorem 1, the sequen
e (y

�

)

�

is bounded in

H

1

0

(
) \W

2;p

(
). Then there exist a subsequen
e (y

�

j

)

j

and y 2 H

1

0

(
) \W

2;p

(
), su
h

that (y

�

j

)

j


onverges to y in the weak topology of H

1

0

(
) \ W

2;p

(
). Sin
e W

2;p

(
) is


ontinuously embedded into C

1

(
), it follows that (y

�

j

)

j


onverges to y uniformly on 
.

Due to this 
onvergen
e results, passing to the limit in the variational equality satis�ed

by y

�

j

, we easily show that y � y

u

. Finally, sin
e any subsequen
e (y

�

j

)

j


ontains a

subsequen
e tending towards the same limit y

u

, the 
onvergen
e of the whole sequen
e

(y

�

)

�

follows from a standard argument. 2

Theorem 3 Suppose that assumptions A1-A2 are satis�ed. Then problem (P ) admits at

least solution.

Proof. Let (u

n

)

n

be a minimizing sequen
e for (P ), and let y

n

be the state asso
iated to

u

n

. Sin
e (u

n

)

n

is bounded in L

1

(
), there exist a subsequen
e, still indexed by n, and a

fun
tion u su
h that (u

n

)

n


onverges to u in the weak

�

- L

1

(
) topology. In addition, u is

the weak limit of u

n

in L

k

(
) (for all k � 1). Sin
e U

ad

is 
onvex and 
losed in L

k

(
), it

is also weakly 
losed and u 2 U

ad

. Due to Proposition 4, the sequen
e (y

n

)

n


onverges to

y

u

uniformly on 
. Therefore, u is admissible for (P ), and

inf(P ) � J(u): (4.1)

6



On the other hand, from A2 and Theorem 2.1, Chapter 8 in [10℄, we 
an prove that

J(u) =

Z




L(x; y

u

; u) dx � lim inf

n!+1

Z




L(x; y

u

; u

n

) dx;

expressing the weak

�

-lower semi
ontinuity with respe
t to u. Moreover, by using A2 and

the mean value theorem, we have

lim

n!1

j

Z




(L(x; y

u

; u

n

)� L(x; y

n

; u

n

)) dxj � lim

n!1

Z




L

M

(x)jy

u

� y

n

j(x) dx = 0:

With these 
ontinuity results, we easily dedu
e that

J(u) � lim inf

n!1

J(u

n

) = inf(P ): (4.2)

The 
on
lusion follows from (4.1) and (4.2). 2

4.2 Chara
terization of the optimal 
ontrol

Let us �rst state for 
onvenien
e the known �rst order optimality 
onditions for problem

(P ). The 
lassi
al proof is omitted.

Theorem 4 If �u is a solution of (P ), then there exists an adjoint state '

�u

2 H

1

0

(
) \

C

0;1

(
) su
h that the following 
onditions hold:

A

�

'

�u

+D

y

f(x; y

�u

)'

�u

�D

y

L(x; y

�u

; �u) = 0 in 
; (4.3)

Z




('

�u

+D

u

L(x; y

�u

; �u))(u� �u) dx � 0 8 u 2 U

ad

: (4.4)

To derive a 
hara
terization of the optimal 
ontrol, we �rst prove two auxiliary results.

Lemma 1 Suppose that assumptions A1-A2 are satis�ed. Then, for all x 2 
, the equa-

tion

'

�u

(x) +D

u

L(x; y

�u

(x); t) = 0; (4.5)

has a unique solution t = �s(x). Moreover, the mapping �s : 
 �! IR is of 
lass C

0;1

(
).

Proof. Let us �rst prove uniqueness of the solution. Suppose that, for x 2 
, equation

(4:5) admits two solutions s

1

(x) and s

2

(x). By Assumption A2, we �nd

0 = jD

u

L(x; y

�u

(x); s

1

(x))�D

u

L(x; y

�u

(x); s

2

(x))j

= j

Z

1

0

D

uu

L(x; y

�u

(x); �s

1

(x) + (1� �)s

2

(x)) d�j js

1

(x)� s

2

(x)j

� m js

1

(x)� s

2

(x)j;

hen
e s

1

(x) = s

2

(x) must hold. To prove existen
e of a solution to (4.5), we 
onsider

7



the fun
tion g de�ned by g(t) = '

�u

(x) + D

u

L(x; y

�u

(x); t). The assumptions on L imply

g 2 C

1

(
) and g

0

(t) � m > 0. It follows that

g(t) = g(0) +

Z

t

0

g

0

(s) ds

8

>

<

>

:

� g(0) +mt for t > 0;

� g(0) +mt for t < 0;

and thus lim

t!�1

g(t) = �1, and lim

t!+1

g(t) = +1. Therefore, due to the 
ontinuity of g,

there exists a solution t = �s

x

� �s(x) of (4.5). Finally, let us prove that �s 2 C

0;1

(
). We

observe that, due to the Lips
hitz 
ontinuity of '

�u

, y

�u

and that of u 7! D

u

L(�; �; u), by A2

and equation (4.5), we have

m j�s(x)� �s(x

o

)j

� j

Z

1

0

D

uu

L(x; y

�u

(x); ��s(x) + (1� �)�s(x

o

)) d� (�s(x)� �s(x

o

))j

= jD

u

L(x; y

�u

(x); �s(x))�D

u

L(x; y

�u

(x); �s(x

o

))j

= j � '

�u

(x) + '

�u

(x

o

) +D

u

L(x

o

; y

�u

(x

o

); �s(x

o

))�D

u

L(x; y

�u

(x); �s(x

o

))j

� j'

�u

(x)� '

�u

(x

o

)j+ C

M

fjx� x

o

j+ jy

�u

(x)� y

�u

(x

o

)jg � Cjx� x

o

j: 2

Remark 3 For the example (E), the variational inequality reads

Z




('

�u

+ ��u)(u� �u) dx � 0 8 u 2 U

ad

:

The equation (4:5) reads '

�u

+ �t = 0, hen
e in this 
ase �s(x) = �

1

�

'

�u

(x).

Lemma 2 Suppose that the assumptions A1-A2 are satis�ed. Let �u be an optimal 
ontrol

for (P ), and let �s be the 
orresponding solution of (4:5). Then

'

�u

(x) +D

u

L(x; y

�u

(x); �) � 0 i� �u(x) = �; (4.6)

'

�u

(x) +D

u

L(x; y

�u

(x); �) � 0 i� �u(x) = �: (4.7)

If '

�u

(x) +D

u

L(x; y

�u

(x); �) < 0 < '

�u

(x) +D

u

L(x; y

�u

(x); �)

then '

�u

(x) +D

u

L(x; y

�u

(x); �u(x)) = 0:

(4.8)

Proof. First, let us noti
e that the optimality 
ondition (4.4) 
an be rewritten as

('

�u

(x) +D

u

L(x; y

�u

(x); �u(x)))(v � �u(x)) � 0 (4.9)

for all v 2 [�; �℄ and all x 2 


o

, where 


o

� 
 and j

�


 n 


o

j = 0.

� Let x 2 


o

be su
h that '

�u

(x) + D

u

L(x; y

�u

(x); �) � '

�u

(x) + D

u

L(x; y

�u

(x); �s(x)) = 0.

8



The monotoni
ity of D

u

L w.r. to u yields �s(x) � �, and

('

�u

(x) +D

u

L(x; y

�u

(x); �))(�� �u(x)) � 0

follows from � � �u(x). Moreover, sin
e the fun
tion t 7! '

�u

(x) + D

u

L(x; y

�u

(x); t) is

in
reasing, by taking v = � in (4.9), we obtain

('

�u

(x) +D

u

L(x; y

�u

(x); �))(�� �u(x))

� ('

�u

(x) +D

u

L(x; y

�u

(x); �u(x)))(�� �u(x)) � 0:

Therefore, ('

�u

(x) +D

u

L(x; y

�u

(x); �))(� � �u(x)) = 0. If '

�u

(x) +D

u

L(x; y

�u

(x); �u(x)) > 0,

the 
on
lusion �u = � is dire
t. If not, from the uniqueness of the solution of (4.5), we

dedu
e that � � �u(x) = �s(x) � �, and thus �u(x) = �.

Conversely, if �u(x) = �, then (4.9) implies that '

�u

(x) + D

u

L(x; y

�u

(x); �) = '

�u

(x) +

D

u

L(x; y

�u

(x); �u(x)) is nonnegative. We have proved (4.6), and assertion (4.7) 
an be

obtained by similar arguments.

� Finally, let us prove (4.8). Let x 2 


o

be su
h that

'

�u

(x) +D

u

L(x; y

�u

(x); �) < 0 < '

�u

(x) +D

u

L(x; y

�u

(x); �):

From (4.6) and (4.7), we get � < �u(x) < �. Setting v = � and v = � in (4.9), we dedu
e

that '

�u

(x) +D

u

L(x; y

�u

(x); �u(x)) = 0. 2

The next result is fundamental for the sequel. It provides a useful 
hara
terization of the

optimal 
ontrol, whi
h is well known for linear-quadrati
 optimal 
ontrol problems.

Theorem 5 Suppose that assumptions A1-A2 are satis�ed. Let �u be an optimal 
ontrol,

and let �s be the asso
iated solution of equation (4:5). Then

�u(x) = Proj

[�;�℄

(�s(x)) = max(�;min(�; �s(x)));

and �u belongs to C

0;1

(
).

Proof. First, suppose that �s(x) � �. Then

0 = '

�u

(x) +D

u

L(x; y

�u

(x); �s(x)) � '

�u

(x) +D

u

L(x; y

�u

(x); �):

From (4:6) we obtain �u(x) = � = Proj

[�;�℄

(�s(x)). In the same way, the statement follows

from (4.7) if �s(x) � �. Finally, if � < �s(x) < �, then

'

�u

(x) +D

u

L(x; y

�u

(x); �) < '

�u

(x) +D

u

L(x; y

�u

(x); �s(x)) = 0

< '

�u

(x) +D

u

L(x; y

�u

(x); �):

Now (4.8) yields '

�u

(x) + D

u

L(x; y

�u

(x); �u(x)) = 0. Sin
e the solution of (4.5) is unique,

it follows that �u(x) = �s(x) = Proj

[�;�℄

(�s(x)). The Lips
hitz 
ontinuity of �u is a dire
t


onsequen
e, sin
e �s is Lips
hitz (see Lemma 1) and the proje
tion operator Proj

[�;�℄

is

Lips
hitz 
ontinuous with 
onstant 1. 2
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Remark 4 In the example (E), the statement of Theorem 5 redu
es to the well known


hara
terization

�u(x) = Proj

[�;�℄

(�

1

�

'

�u

(x)):

Remark 5 The results of Theorem 5 
an be easily extended to the 
ase where � and � are

fun
tions of x. In this 
ase, the Lips
hitz 
ontinuity of the optimal 
ontrol �u is obtained

under the assumption that � and � are Lips
hitz 
ontinuous.

5 Finite-element approximation of (P)

Here we de�ne a �nite-element based approximation of the optimal 
ontrol problem (P ).

To this aim, we 
onsider a family of triangulations (T

h

)

h>0

of 
. With ea
h element T 2 T

h

,

we asso
iate two parameters �(T ) and �(T ), where �(T ) denotes the diameter of the set

T and �(T ) is the diameter of the largest ball 
ontained in T . De�ne the mesh size of

the grid by h = max

T2T

h

�(T ). We suppose that the following regularity assumptions are

satis�ed.

(i) - There exist two positive 
onstants � and � su
h that

�(T )

�(T )

� �;

h

�(T )

� �

hold for all T 2 T

h

and all h > 0.

(ii) - Let us take 


h

= [

T2T

h

T , and let 


h

and �

h

denote its interior and its boundary,

respe
tively. We assume that 


h

is 
onvex and that the verti
es of T

h

pla
ed on the

boundary of �

h

are points of �. From [22℄, estimate (5.2.19), we know

j
 n 


h

j � Ch

2

: (5.1)

Now, to every boundary triangle T of T

h

, we asso
iate another triangle

^

T � 
 with 
urved

boundary as follows: The edge between the two boundary nodes of T is substituted by

the part of � 
onne
ting these nodes and forming a triangle with the remaining interior

sides of T . We denote by

b

T

h

the union of these 
urved boundary triangles with the interior

triangles to 
 of T

h

, so that 
 = [

^

T2

b

T

h

^

T . Let us set

U

h

= fu 2 L

1

(
) j u

j

^

T

is 
onstant on all

^

T 2

b

T

h

g; U

ad

h

= U

h

\ U

ad

;

V

h

= fy

h

2 C(
) j y

h

jT

2 P

1

; for all T 2 T

h

; and y

h

= 0 on 
 n 


h

g;

where P

1

is the spa
e of polynomials of degree less or equal than 1. For ea
h u

h

2 U

h

, we

denote by y

h

(u

h

) the unique element of V

h

that satis�es

a(y

h

(u

h

); �

h

) =

Z




(u

h

� f(x; y

h

(u

h

)))�

h

(x) dx 8 �

h

2 V

h

; (5.2)

10



where a : V

h

� V

h

�! IR is the bilinear form de�ned by

a(y; �) =

Z




(

n

X

i;j=1

a

ij

(x)D

i

y(x)D

j

�(x)) dx:

In other words, y

h

(u

h

) is the approximate state asso
iated with u

h

. Noti
e that y = � = 0

on 
n


h

, hen
e the last integral is equivalent to integration on 


h

. The �nite dimensional

approximation of the optimal 
ontrol problem is de�ned by

(P

h

) inf J

h

(u

h

) =

Z




h

L(x; y

h

(u

h

)(x); u

h

(x)) dx; u

h

2 U

ad

h

:

Existen
e of a solution for (P

h

) follows from the 
ontinuity of J

h

and the 
ompa
tness of

U

ad

h

.

Remark 6 We ta
itly assume that we are able to evaluate the integrals in (5:2) and (P

h

)

exa
tly. In general, numeri
al integration has to be used, whi
h generates another sort of

errors. We do not in
lude them in our analysis.

6 Chara
terization of solutions of (P

h

)

The aim of this se
tion is to 
hara
terize solutions of the problem (P

h

) similarly to the ideas

introdu
ed in Se
tion 4.2 for the 
hara
terization of optimal solutions for the 
ontinuous

problem (P ).

Proposition 5 Suppose that assumptions A1-A2 are satis�ed. If �u

h

is a solution of (P

h

),

then there exists a unique '

h

(�u

h

) 2 H

1

0

(
)\C

0;1

(
) su
h that the following 
onditions hold:

Z




(

n

X

i;j=1

a

ij

D

j

'

h

(�u

h

)D

i

�

h

) dx+

Z




D

y

f(x; y

h

(�u

h

); �u

h

)'

h

(�u

h

)�

h

dx

=

Z




D

y

L(x; y

h

(�u

h

); �u

h

)�

h

dx 8 �

h

2 V

h

; (6.1)

Z




h

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); �u

h

))(u� �u

h

) dx � 0 8 u 2 U

ad

h

: (6.2)

Throughout the sequel, for v �xed in L

1

(
), we denote by y

h

(v) and '

h

(v) respe
tively

the solutions of (5:2) and (6:1) 
orresponding to v.

Lemma 3 Suppose that assumptions A1-A2 are satis�ed, and that �u

h

is an optimal so-

lution of (P

h

). Then there exists a unique fun
tion �s

h

: 


h

�! IR su
h that �s

h

(x) = s

T

is


onstant on ea
h triangle T 2 T

h

, and the equation

Z

T

('

h

(�u

h

)(x) +D

u

L(x; y

h

(�u

h

); s

T

)) dx = 0 8 T 2 T

h

; (6.3)

is satis�ed.
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Proof. Existen
e of a unique solution of equation

Z

T

('

h

(�u

h

)(x) +D

u

L(x; y

h

(�u

h

); t)) dx = 0;


an be proved upon de�ning g(t) =

R

T

('

h

(�u

h

)(x)+D

u

L(x; y

h

(�u

h

); t)) dx, along the lines of

proof of Lemma 1. 2

Remark 7 In the 
ase of (E), equation 6:3 is obvious again. We obtain

Z

T

('

h

(�u

h

)(x) + �s

T

) dx = 0;

and this equation has the unique solution s

T

= �

1

�jT j

Z

T

'

h

(�u

h

)(x) dx.

Theorem 6 Suppose that A1-A2 are satis�ed. Let �u

h

be an optimal solution of (P

h

), and

let �s

h

be the solution of (6:3) 
orresponding to �u

h

. Then �u

h

is given by

�u

h

(x) = Proj

[�;�℄

(�s

h

(x)) = max(�;min(�; �s

h

(x))) for a.e. x 2 


h

:

Proof. First, let us observe that (6.2) 
an be rewritten as:

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); �u

h

j

T

) dx (t� �u

h

j

T

)) � 0

for all t 2 [�; �℄ and all T 2 T

h

. Following the proof of Lemma 2, we �nd

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

)); �) dx � 0 i� �u

h

j

T

= �;

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); �)) dx � 0 i� �u

h

j

T

= �:

Moreover, if

Z

T

('

h

(�u

h

) +D

u

L(�; y

h

(�u

h

); �)) dx < 0 <

Z

T

('

h

(�u

h

) +D

u

L(�; y

h

(�u

h

); �)) dx;

then

Z

T

('

h

(�u

h

) +D

u

L(�; y

h

(�u

h

); �u

h

j

T

))) dx = 0:

The 
hara
terization of �u

h


an be derived by pro
eeding as in the proof of Theorem 5. 2

Remark 8 Let us 
omplete this dis
ussion by the example (E). Here we get

�u

h

j

T

= Proj

[�;�℄

(�

1

�jT j

Z

T

'

h

(�u

h

)(x) dx) 8 T 2 T

h

:

7 Error-estimates for the state and the adjoint state

In this se
tion, we re
all some results 
on
erning the �nite element approximation of the

state equation (1.1) and its adjoint equation (3.1).
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Theorem 7 Let (v; v

h

) 2 L

1

(
)� U

h

ful�l kvk

1;


+ kv

h

k

1;


� M , and suppose that y

v

and y

h

(v

h

) are the solutions of (1:1) and (5:2) 
orresponding to v and v

h

. Moreover, let

'

w

and '

h

(v

h

) be the solutions of (4:3) and (6:1) 
orresponding to v and v

h

. Then the

following estimates hold

ky

v

� y

h

(v

h

)k

H

1

(
)

+ k'

v

� '

h

(v

h

)k

H

1

(
)

� C(h+ kv � v

h

k

2;


); (7.1)

ky

v

� y

h

(v

h

)k

2;


+ k'

v

� '

h

(v

h

)k

2;


� C(h

2

+ kv � v

h

k

2;


); (7.2)

ky

v

� y

h

(v

h

)k

1;


+ k'

v

� '

h

(v

h

)k

1;


� C(h

�

+ kv � v

h

k

2;


); (7.3)

where C � C(
; n;M) is a positive 
onstant independent of h, and � = 2�n=2. Moreover,

if the triangulation is of nonnegative type, then

ky

v

� y

h

(v

h

)k

1;


h

+ k'

v

� '

h

(v

h

)k

1;


h

� (Ch+ kv � v

h

k

2;


); (7.4)

holds independently of h.

Proof. A

ording to Theorem 8.2.9 in [20℄, the following estimates hold

ky

v

h

� y

h

(v

h

)k

H

1

(
)

+ k'

v

h

� '

h

(v

h

)k

H

1

(
)

� Ch; (7.5)

ky

v

h

� y

h

(v

h

)k

2;


+ k'

v

h

� '

h

(v

h

)k

2;


� Ch

2

; (7.6)

ky

v

h

� y

h

(v

h

)k

1;


+ k'

v

h

� '

h

(v

h

)k

1;


� Ch

2�

n

2

; (7.7)

and if the triangulation is of nonnegative type, then

ky

v

h

� y

h

(v

h

)k

1;


h

+ k'

v

h

� '

h

(v

h

)k

1;


h

� Ch: (7.8)

To prove (7.1), noti
e that due to (7.5), and Propositions 2, 3, we have

ky

v

� y

h

(v

h

)k

H

1

(
)

+ k'

v

� '

h

(v

h

)k

H

1

(
)

� ky

v

� y

v

h

k

H

1

(
)

+ ky

v

h

� y

h

(v

h

)k

H

1

(
)

+k'

v

� '

v

h

k

H

1

(
)

+ k'

v

h

� '

h

(v

h

)k

H

1

(
)

� C(h+ kv � v

h

k

2;


):

The estimates (7.2), (7.3), and (7.4), 
an be obtained by using similar arguments together

with (7.6), (7.7), and (7.8). 2

Remark 9 From Theorems 1, 2, and 7, we 
an easily see that

ky

h

(v

h

)k

1;


+ k'

h

(v

h

)k

1;


� C;

where C � C(
; n;M) is a positive 
onstant independent of h.

Remark 10 In all what follows, let us �x � = 2�n=2 for regular triangulations and � = 1,

if the regular triangulation if of nonnegative type.
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The following proposition will be useful for the sequel.

Proposition 6 Let (v

h

; w

h

) be in U

h

� U

h

satisfy kv

h

k

1;


+ kw

h

k

1;


� M , and let z

v

h

and z

h

(v

h

) be the solutions of the following equations

Az +D

y

f(x; y

w

h

)z = v

h

in 
; z

j�

= 0; (7.9)

a(z

h

(v

h

); �

h

) +

Z




D

y

f(x; y

h

(w

h

)) z

h

(v

h

)�

h

dx =

Z




v

h

�

h

dx (7.10)

for all �

h

2 V

h

, where y

w

h

and y

h

(w

h

) are the solutions of (1:1) and (5:2) 
orresponding to

w

h

. Then the following estimates hold

kz

v

h

� z

h

(v

h

)k

2;


� C h

2

kv

h

k

2;


; (7.11)

kz

v

h

� z

h

(v

h

)k

1;


h

� C h

�

kv

h

k

2;


: (7.12)

Proof. Let ~z

v

h

be the solution of

Az +D

y

f(x; y

h

(w

h

))z = v

h

in 
; z

j�

= 0: (7.13)

Subtra
ting (7.9) from (7.13) we see that z = ~z

v

h

� z

v

h

satis�es

Az +D

y

f(x; y

h

(w

h

))z = (D

y

f(x; y

w

h

)�D

y

f(x; y

h

(w

h

))z

v

h

in 
; z

j�

= 0:

Proposition 1, assumption A1, and Theorem 7 yield

k~z

v

h

� z

v

h

k

1;


� Ck(D

y

f(�; y

w

h

)�D

y

f(�; y

h

(w

h

))z

v

h

k

2;


� Cky

w

h

� y

h

(w

h

)k

2;


kz

v

h

k

1;


� Cky

w

h

� y

h

(w

h

)k

2;


kv

h

k

2;


� Ch

2

kv

h

k

2;


: (7.14)

On the other hand, by arguments similar to those used in the proof of Theorem 7, and due

to Proposition 1, we have

k~z

v

h

� z

h

(v

h

)k

2;


� Ch

2

k~z

v

h

k

H

2

(
)

� Ch

2

kv

h

k

2;


; (7.15)

k~z

v

h

� z

h

(v

h

)k

1;


h

� Ch

�

k~z

v

h

k

H

2

(
)

� Ch

�

kv

h

k

2;


: (7.16)

The 
on
lusion follows from (7.14), (7.15) and (7.16). 2

8 Convergen
e results

Lemma 4 Suppose that assumptions A1-A2 are satis�ed, and let v 2 L

1

(
) and v

h

2 U

h

satisfy kv

h

k

1;


+ kvk

1;


�M . If lim

h!0

kv

h

� vk

2;


= 0, then

lim

h!0

J

h

(v

h

) = J(v):

14



Proof. With assumptions on L, Remark 9, (7.2) and (5.1) we have

jJ(v)� J

h

(v

h

)j = j

Z




L(x; y

v

; v) dx�

Z




h

L(x; y

h

(v

h

); v

h

) dxj

�

Z




jL(x; y

v

; v)� L(x; y

v

; v

h

)j dx

+

Z




jL(x; y

v

; v

h

)� L(x; y

h

(v

h

); v

h

)j dx+

Z


n


h

jL(x; y

h

(v

h

); v

h

)j dx

� C(kv � v

h

k

2;


+ ky

v

� y

h

(v

h

)k

2;


+ j
 n 


h

j

1

2

) � C(kv � v

h

k

2;


+ h):

The last expression tends to zero when h! 0. 2

Lemma 5 Suppose that assumptions A1-A2 are satis�ed, and let the sequen
e (v

h

)

h

�

U

ad

h


onverge weakly

�

to v. Then v 2 U

ad

and

J(v) � lim inf

h!0

J

h

(v

h

):

Proof. Obviously, v is also the weak limit of (v

h

)

h>0

in L

k

(
) (for all k � 1). Sin
e

U

ad

h

� U

ad

and U

ad

is 
onvex and 
losed in L

k

(
), it is weakly 
losed and v 2 U

ad

. On the

other hand, noti
e that

J

h

(v

h

) =

Z




h

(L(x; y

h

(v

h

); v

h

)� L(x; y

v

; v

h

)) dx+

Z




h

L(x; y

v

; v

h

) dx

=

Z




h

(L(x; y

h

(v

h

); v

h

)� L(x; y

v

; v

h

)) dx+

Z




L(x; y

v

; v

h

) dx

�

Z


n


h

L(x; y

v

; v

h

) dx: (8.1)

With A2, we follow the proof of Theorem 3 to show

Z




L(x; y

v

; v) dx � lim inf

h!0

Z




h

L(x; y

v

; v

h

) dx: (8.2)

Moreover, with assumptions on L and (5.1), we easily see that

�

�

�

Z


n


h

L(x; y

v

; v

h

) dx

�

�

� � Ch �! 0 as h! 0: (8.3)

Finally, A2, (7.2), (7.3) and Proposition 4, give

�

�

�

Z




h

(L(x; y

h

(v

h

); v

h

)� L(x; y

v

; v

h

)) dx

�

�

�

� Cky

h

(v

h

)� y

v

k

2;


h

� C(ky

h

(v

h

)� y

v

h

k

2;


h

+ ky

v

h

� y

v

k

2;


)

� C(ky

h

(v

h

)� y

v

h

k

2;


+ ky

v

h

� y

v

k

1;


) �! 0 if h! 0: (8.4)

The 
on
lusion follows from (8.1), (8.2), (8.3), and (8.4). 2
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Proposition 7 Suppose that A1-A2 are satis�ed, and let (�u

h

)

h>0

be any sequen
e of so-

lutions to (P

h

). Then there exist weakly

�

-
onverging subsequen
es (still indexed by h). If

the subsequen
e (�u

h

)

h>0

is 
onverging weakly

�

to �u, then �u is a solution of (P ). Moreover,

lim

h!0

J

h

(�u

h

) = J(�u) = inf(P ): (8.5)

Proof. The sequen
e (�u

h

)

h>0

is bounded in L

1

(
). Then there exists a subsequen
e, still

indexed by h, whi
h 
onverges to some element �u in the weak-� toplogy of L

1

(
). Lemma

5 implies �u 2 U

ad

and

J(�u) � lim inf

h!0

J

h

(�u

h

): (8.6)

On the other hand, let �w be a solution of (P ), and let �

h

be the interpolation operator

de�ned by

�

h

v

jT

=

1

jT j

Z

T

v(x) dx for all T 2 T

h

:

Put

w

h

j

^

T

= �

h

�w

jT

8

^

T 2

b

T

h

;

where T 2 T

h

is the triangle asso
iated with

^

T . Sin
e �w 2 W

1;1

(


h

), due to Theorem 16.1

in [9℄, we have

k �w � w

h

k

1;


h

� Chk �wk

W

1;1

(


h

)

:

Therefore,

k �w � w

h

k

2;


� C(k �w � w

h

k

1;


h

+ j
 n 


h

j) � Ch:

From Lemma 4, we dedu
e that

lim

h!0

J

h

(w

h

) = J( �w) = inf(P ):

Moreover, w

h

is obviously admissible for (P

h

), and thus

J

h

(�u

h

) � J

h

(w

h

):

Passing to the limit in the last inequality, we obtain

lim inf

h!0

J

h

(�u

h

) � lim sup

h!0

J

h

(�u

h

) � lim sup

h!0

J

h

(w

h

) = J( �w): (8.7)

By (8.6) and (8.7), we arrive at

lim

h!0

J

h

(�u

h

) = lim

h!0

inf(P

h

) = J(�u) = inf(P ): 2

Remark 11 Throughout the sequel, we �x su
h a subsequen
e, still indexed for simpli
ity

by h, and we denote by �u its limit, solution of (P ).

Now, we state the main result of this se
tion.
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Theorem 8 If the assumptions A1-A2 are satis�ed, then

lim

h!0

k�u

h

� �uk

1;


= 0: (8.8)

Proof. The proof is split into two steps.

Step 1. Let us �rst prove the 
onvergen
e result in the L

2

-norm:

lim

h!0

k�u

h

� �uk

2;


= 0: (8.9)

Due to assumptions A2, Proposition 4, (7.2), (8.5), and the weak-� 
onvergen
e of (�u

h

)

h

to �u, we have

m

2

k�u

h

� �uk

2

2;


�

1

2

Z




Z

1

0

D

uu

L(x; y

�u

; ��u

h

+ (1� �)�u) d� (�u

h

� �u)

2

dx

=

Z




(L(x; y

�u

; �u

h

)� L(x; y

�u

; �u)) dx+

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx

=

Z




(L(x; y

�u

; �u

h

)� L(x; y

h

(�u

h

); �u

h

)) dx

+

Z




(L(x; y

h

(�u

h

); �u

h

)� L(x; y

�u

; �u)) dx+

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx

� Cky

�u

� y

h

(�u

h

)k

2;


+ J

h

(�u

h

)� J(�u) + Ch +

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx

� C(ky

�u

� y

�u

h

k

2;


+ ky

�u

h

� y

h

(�u

h

)k

2;


+ h) + J

h

(�u

h

)� J(�u)

+

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx �! 0

when h! 0. Thus, we have shown (8.9).

Step 2. Let us now 
on�rm (8.8). Due to Lemma 1 and Lemma 3, there exist �s 2 C

0;1

(
)

and �s

h

2 L

1

(


h

) su
h that

'

�u

(x) +D

u

L(x; y

�u

(x); �s(x)) = 0 8 x 2

^

T and 8

^

T 2

b

T

h

; (8.10)

�s

h

jT

= s

T

;

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); s

T

)) dx = 0 8 T 2 T

h

: (8.11)

From (8.11), we dedu
e that for every T 2 T

h

, there exists x

T

2 T su
h that

'

h

(�u

h

)(x

T

) +D

u

L(x

T

; y

h

(�u

h

)(x

T

); s

T

) = 0: (8.12)

Suppose that T 2 T

h

is given �xed, and sele
t an arbitrary x 2 T . By making the di�eren
e

between (8.10) and (8.12), and due to the assumptions on D

uu

L along with hypothesis A2,

it follows that

m j�u(x)� �u

h

(x)j = m jProj

[�;�℄

(�s(x))� Proj

[�;�℄

(�s

h

(x))j

17



� m j�s(x)� �s

h

(x)j = m j�s(x)� s

T

j

� jD

u

L(x; y

�u

(x); �s(x))�D

u

L(x; y

�u

(x); s

T

)j

= j('

�u

(x)� '

h

(�u

h

)(x

T

)) + (D

u

L(x; y

�u

(x); s

T

)�D

u

L(x

T

; y

h

(�u

h

)(x

T

); s

T

))j

� j'

�u

(x)� '

h

(�u

h

)(x

T

)j+ Cfjx� x

T

j+ jy

�u

(x)� y

h

(�u

h

)(x

T

)jg:

We know from Theorem 1 and 2 that y

�u

and '

�u

are Lips
hitz, hen
e

m j�u(x)� �u

h

(x)j � C(jx� x

T

j+ k'

�u

� '

h

(�u

h

)k

1;T

+ ky

�u

� y

h

(�u

h

)k

1;T

)

� C(h + k'

�u

� '

h

(�u

h

)k

1;T

+ ky

�u

� y

h

(�u

h

)k

1;T

):

Invoking Theorem 7, we get

k�u� �u

h

k

1;


h

= sup

T2T

h

k�u� �u

h

k

1;T

� C(h+ k'

�u

�'

h

(�u

h

)k

1;


h

+ ky

�u

� y

h

(�u

h

)k

1;


h

) � C(h+ k�u� �u

h

k

2;


+h

�

): (8.13)

Regard now any

^

T 2 �

b

T

h

, and let T 2 �T

h

be the 
orresponding boundary triangle (here

�

b

T

h

and �T

h

denote the sets of boundary triangles in

b

T

h

and T

h

). For x̂ 2

^

T n T , let x be

its proje
tion on the boundary �

h

of 


h

. Taking into a

ount the Lips
hitz 
ontinuity of

�u, we obtain

j�u(x̂)� �u

h

(x̂)j � j�u(x̂)� �u(x)j + j�u(x)� �u

h

(x̂)j = j�u(x̂)� �u(x)j+ j�u(x)� �u

h

(x)j

� Cjx̂� xj + k�u� �u

h

k

1;


h

� Ch + k�u� �u

h

k

1;


h

:

Hen
e k�u� �u

h

k

1;

^

TnT

� Ch + k�u� �u

h

k

1;


h

, and

k�u� �u

h

k

1;
n


h

= sup

^

T2�

b

T

h

k�u� �u

h

k

1;

^

TnT

� Ch + k�u� �u

h

k

1;


h

: (8.14)

Therefore, (8.13) and (8.14) ensure

k�u� �u

h

k

1;


� C(h+ k�u� �u

h

k

2;


+ h

�

) �! 0 when h! 0: 2

9 Error-estimates for the optimal 
ontrol

We start our investigations with a sequen
e (�u

h

)

h>0

of solutions of (P

h

), h > 0, 
onverging

to a solution �u of (P ). Given this a priori information, we shall establish error estimates

for k�u � �u

h

k

2;


and k�u � �u

h

k

1;


. These estimations are performed under the following

se
ond order suÆ
ient optimality 
ondition:

(SSC) There is Æ > 0 su
h that

J

00

(�u)v

2

� Æ kvk

2

2;


(9.1)
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holds for all v 2 L

1

(
) satisfying

v(x)

8

>

>

>

>

>

<

>

>

>

>

>

:

� 0 if �u(x) = �;

� 0 if �u(x) = �;

= 0 if j'

�u

(x) +D

u

L(x; y

�u

(x); �u(x))j � � > 0:

(9.2)

Remark 12 It 
an be shown that (SSC) is equivalent to the 
ondition

J

00

(�u)v

2

> 0

for all v 2 L

1

(
) satisfying the two �rst relations in (9:1) together with v(x) = 0 if

j'

�u

(x)+D

u

L(x; y

�u

(x); �u(x))j > 0. Noti
e that this 
ondition leaves no gap to the ne
essary


onditions, whi
h require J

00

(�u)v

2

� 0 for the same set of fun
tions (
f. [20℄).

In our analysis, we need an element u

h

admissible for (P

h

) (so that it 
an serve as a "test

fun
tion" in the variational inequality), 
lose to �u, and su
h that �u

h

� u

h

belongs to the


one where our se
ond order suÆ
ient 
ondition applies. A natural 
hoi
e is given by

u

h

2 U

h

; u

h

j

^

T

= Proj

[�;�℄

(�

h

�s)

jT

8

^

T 2

b

T

h

;

where T 2 T

h

is the triangle asso
iated with

^

T 2

b

T

h

, and �s is the solution of (4.5) asso
iated

with �u. This element is admissible and 
lose to �u, but �u

h

�u

h

does not belong to the 
riti
al


one. To over
ome this diÆ
ulty, we introdu
e a perturbation ~u

h

of u

h

de�ned by

~u

h

(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�u

h

(x) if x 2 
 n 


h

;

�u(x) if x 2 


h

and (�u(x) = � or �u(x) = �);

u

h

(x) if x 2 


h

and � < �u(x) < �:

Before we derive some auxiliary results, and to simplify the reda
tion of this se
tion, let

us introdu
e the following notation:

�

d = '

�u

+D

u

L(�; y

�u

; �u); d

h

(u) = '

h

(u) +D

u

L(�; y

h

(u); u);

�

d

h

= d

h

(�u

h

);

D

��

L(w) = D

��

L(�; y

w

; w); D

��

L

h

(w) = D

��

L(�; y

h

(w); w) �; � 2 fy; ug;

D

yy

f(w) = D

yy

f(�; y

w

); D

yy

f

h

(w) = D

yy

f(�; y

h

(w)):

Lemma 6 Suppose that assumptions A1-A2 are satis�ed and that �u satis�es the se
ond

order suÆ
ient 
ondition (SSC). Then there exists h

o

> 0, su
h that for all h � h

o

J

00

(�u)(�u

h

� ~u

h

)

2

� Æ k�u

h

� ~u

h

k

2

2;


:

Proof. We have to show that v = �u

h

� ~u

h

satis�es the relations (9.2). Then the se
ond

order 
ondition yields the statement.

19



� On 
 n 


h

, it is 
lear that v = �u

h

� ~u

h

= 0 satis�es (9.2).

� Let x 2 


h

. If �u(x) = �, then ~u

h

(x) = �. Therefore, v(x) = �u

h

(x) � ~u

h

(x) � 0.

Analogously, �u(x) = � implies v(x) � 0.

� Finally, we prove

v(x) = �u

h

(x)� ~u

h

(x) = 0 on 


�

h

= fx 2 
 j j

�

d(x)j � � > 0g \ 


h

;

for all suÆ
iently small h > 0. From (7.3) and Corollary 8, we 
on
lude that lim

h!0

k

�

d�

�

d

h

k

1;


= 0. Therefore, there exists h

o

> 0 su
h that for all h � h

o

, we have k

�

d�

�

d

h

k

1;


�

�=2, and hen
e

j

�

d

h

(x)j � j

�

d(x)j � j

�

d�

�

d

h

(x)j �

�

2

8 x 2 


�

h

:

It is easy to verify that the fun
tions

�

d and d

h

have the same sign on 


�

h

. Let x 2 


�

h

, and

suppose that

�

d(x) > 0. Then, for all h � h

o

, j

�

d

h

(x)j =

�

d

h

(x) �

�

2

> 0. From Lemma 2

and Theorem 6, it follows that �u(x) = �u

h

(x) = u

h

(x) = �, and thus ~u

h

(x) = �. Therefore,

�u

h

(x)�~u

h

(x) = 0. If

�

d(x) < 0, we prove in the same way that �u
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Lemma 7 Suppose that A1-A2 are satis�ed, and let w 2 U
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where C � C(
; n;M) is a positive 
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where '
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(w) are the solutions of (4:3) and (6:1) 
orresponding to w, z

v
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(v) are the

solutions of (7.9) and (7.10) 
orresponding to (v; w), respe
tively. It follows that
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= I

1

+ I

2

+ I

3

: (9.3)

� First we 
onsider I

1

. Due to the assumptions on L and f , and thanks to Proposition 1

we have
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Propositions 1 and 6 permit to estimate
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Moreover, due to A1, A2, (7.3), (7.4), and Remark 9, we have

k(D

yy

L(w)� '

w

D

yy

f(w))� (D

yy

L

h

(w)� '

h

(w)D

yy

f

h

(w))k

1;


� kD

yy

L(w)�D

yy

L

h

(w)k

1;


+ k'

w

k

1;


kD

yy

f(w)�D

yy

f

h

(w)k

1;


+kD

yy

f

h

(w)k

1;


k'

w

� '

h

(w)k

1;


� C(ky

w

� y

h

(w)k

1;


+ k'

w

� '

h

(w)k

1;


) � C h

�

; (9.7)

kD

yy

L

h

(w)� '

h

(w)D

yy

f

h

(w)k

1;


� C: (9.8)

Therefore, from (9.4), (9.5), (9.6), (9.7), and (9.8), we dedu
e that
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The statement follows from (9.3), (9.9), (9.10) and (9.11). 2

Proposition 8 Suppose that assumptions A1-A2 are satis�ed together with the se
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order 
ondition (SSC). Then there exists h
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Proof. This is a dire
t 
onsequen
e of Lemma 6 and Lemma 7. 2

Lemma 8 Suppose that A1- A2 are satis�ed. Let w

1

and w
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(9.12)

for all v 2 U

h

, where C � C(
; n;M) is a 
onstant independent of v and h.

Proof. By simple 
al
ulations, and using the estimates of the last proof, we 
an see that
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:

The proof is 
omplete, sin
e � � 1 holds in all 
ases. 2

By (6.2) and the de�nition of

�

d

h

, the approximate optimal 
ontrol �u

h

satis�es
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d

h

(v � �u
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)(x) dx � 0 8 v 2 U
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:

The auxiliary 
ontrol u

h

will not ful�l the analogous inequality
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ad

h

:

Instead of this, we are able to show that u

h

satis�es an asso
iated perturbed variational

inequality with perturbation �

h

. To this aim, we introdu
e �

h
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h

�! IR by

�

h
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f �
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.

Lemma 9 The auxiliary 
ontrol u

h

satis�es the variational inequality
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Proof. First, observe that (9.13) 
an be equivalently rewritten as
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h

and all t 2 [�; �℄. Let T 2 T
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We 
on�rm again that (9.14) is true. Sin
e all possible 
ases have been 
onsidered, the

proof is 
omplete. 2

Lemma 10 Suppose that A1- A2 are satis�ed. Then, there exists a positive 
onstant C,

independent of h, su
h that
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Along the lines of the �rst part we prove (9.17) in this 
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Repeating the same arguments, we show (9.17) again. Summarizing up, we have veri�ed

(9.17) in all possible 
ases.

� Summing up the inequality (9.17) over all triangles T yields
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h

� �uk

1;


h

= kProj

[�;�℄

(�

h

�s)� Proj

[�;�℄

(�s)k

1;


h

� k�

h

�s� �sk

1;


h

� Ch k�sk

W

1;1

(


h

)

: (9.20)

The 
on
lusion follows from (9.19) and (9.20). 2
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Remark 13 In the next proof we shall use the variational inequality (9:13). The fun
tion

�

h

is 
onstru
ted su
h that the auxiliary fun
tion u

h

satis�es the �rst order ne
essary op-

timality 
ondition of the following problem:

(Q

h

) inf

e

J

h

(v) =

Z




h

(L(x; y

h

(v); v) + �

h

v) dx; v 2 U

ad

h

:

Theorem 9 Suppose that assumptions A1-A2 are satis�ed, and that �u satis�es the se
ond

order suÆ
ient 
ondition (SSC). Then for all suÆ
iently small h > 0

k�u� �u

h

k

2;


� Ch;

where C is a positive 
onstant independent of h.

Proof. From the optimality 
onditions for the problem (P

h

) and Remark 13 above, we

dedu
e that

J

0

h

(�u

h

)(u

h

� �u

h

) � 0 and J

0

h

(u

h

)(�u

h

� u

h

) +

Z




h

�

h

(x)(�u

h

� u

h

) dx � 0:

Therefore,

(J

0

h

(�u

h

)� J

0

h

(u

h

))(�u

h

� u

h

)

�

Z




h

�

h

(x)(u

h

� �u

h

)(x) dx � k�

h

k

2;


h

ku

h

� �u

h

k

2;


h

: (9.21)

On the other hand, with Proposition 8, Lemma 8 and the Young inequality, we have for

suÆ
iently small h

(J

0

h

(�u

h

)� J

0

h

(u

h

))(�u

h

� u
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00
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00
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2

+ (J
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h

+ �u

h

)� J

00

h

(�u))(�u

h

� u

h

)

2

= J

00

h

(�u)(�u

h

� ~u

h

)

2
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00

h

(�u)(~u

h

� u
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)
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h

(�u)(�u

h
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h

)(~u
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)

+(J
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h
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h
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h
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h
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h

)

2

�

Æ

2
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h
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h
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2
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1
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h
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h

k

2
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2

k�u
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h

k
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h
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h
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2

�

Æ

4
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4
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� u
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�
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4
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� u
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2
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�

Æ

8
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� u

h
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with � 2 [0; 1℄. The last estimate follows by 
onsidering that ku

h

��uk

1;


h

and k�u

h

��uk

1;


h

)
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tend to zero as h& 0. After rewriting �u

h

� u

h

= �u

h

� ~u

h

+ ~u

h

� u

h

, we get

(J

0

h

(�u

h

)� J

0

h

(u
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))(�u
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� u
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: (9.22)

From (9.21) and (9.22), we obtain

Æ
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k
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h

by the Young inequality. Therefore,

k�u

h

� ~u

h

k

2

2;


� C(k~u

h

� u

h

k

2

2;


h

+ k�

h

k

2;


h

k~u

h

� u

h

k

2;


h

+ k�

h

k

2

2;


h

)

� C(k~u

h

� u

h

k

2

2;


h

+ k�

h

k

2

2;


h

) � C(k�u� u

h

k

2

2;


h

+ k�

h

k

2

2;


h

);

sin
e k~u

h

� u

h

k

2;


h

� k�u� u

h

k

2;


h

as one 
an easily verify. Consequently,
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): (9.23)

By (9.20), (9.23), (7.2), and Lemma 10, we obtain
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(
)

+ h) � C h:

This proves the assertion of the lemma. 2

Theorem 10 Suppose that the assumptions of Theorem 9 are satis�ed. Then for all suf-

�
iently small h, we have

k�u� �u

h

k

1;


� Ch

�

;

where C is a positive 
onstant independent of h.

Proof. With arguments similar to those used in the proof of Theorem 8, we obtain

k�u� �u

h

k

1;


� C(h + k�u� �u

h

k
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+ k'

�u

h

� '
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(�u

h

)k

1;


h
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�u

h

� y

h

(�u

h

)k

1;


h

):

The 
on
lusion follows from Theorem 9, and (7.3). 2

Remark 14 We should underline that the error estimates of the Theorems 9 and 10 are

derived under the a priori assumption that (�u

h

)

h

is 
onverging weakly

�

to �u. By Theorem

27



8, (�u

h

)

h


onverges strongly to �u. Therefore, these estimates have a lo
al 
hara
ter. This

is important to be noti
ed, sin
e the approximate problem (P

h

) may have multiple global

solutions �u

h

.
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