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1 Introdu
tion

We 
onsider problems of the form

Ax = b;(1)

with A 2 R

n;n

nonsingular and b 2 R

n

. We fo
us on problems where A is sparse and where

we do not have mu
h information about the system beforehand. These systems might be

highly inde�nite or ill{
onditioned. Sin
e often these systems are very large solving them

is a 
hallenge for numeri
al algorithms. Sometimes it is ex
eedingly diÆ
ult to solve them

by iterative te
hniques and in these 
ases dire
t solvers might be preferred. However, there

are situations in whi
h `general purpose' or `bla
k{box' iterative solvers are required. The

most popular and promising iterative te
hniques so far are pre
onditioned Krylov{subspa
e

solvers, see, e.g., [15, 22, 12℄. Among many te
hniques, pre
onditioners based on in
omplete

LU{fa
torizations, see e.g., [17, 18, 19℄ are known to give ex
ellent results for many im-

portant 
lasses of problems, su
h as those arising from the dis
retization of ellipti
 partial

di�erential equations.

Nevertheless, there are still many situations where in
omplete LU de
omposition give poor

results. One often has to play around with the parameters, e.g., to adapt a drop toleran
e

in the in
omplete LU de
omposition to obtain a su

essful pre
onditioner. This is time{


onsuming sin
e for any problem one has to sele
t the 
orre
t values. This redu
es the


exibility as a `bla
k{box' solver. In addition by de
reasing parameters to obtain a su
-


essful pre
onditioner we might get enormous �ll{in or an una

eptable 
omputational

time. In this 
ase dire
t solvers are the only alternative.

The intention of this paper is to take a 
loser look at in
omplete LU de
ompositions and

espe
ially on how entries are dropped. The main key used here for analyzing dropping in

the in
omplete LU de
omposition is its strong relation [7, 8℄ to fa
tored sparse approximate

inverse methods [3, 4, 2, 16, 21℄. In an earlier paper [8℄ 
omparisons between an in
om-

plete LU de
ompositions with pivoting and a fa
tored approximate inverse with pivoting

have shown several examples where the approximate inverse was superior to the ILU . So

apparently ILUs may gain more stability from approximate inverses by taking a 
lose look

at their relations and espe
ially at the way how entries are dropped.

The main idea is to monitor the growth of the inverse fa
tors of L; U while 
omputing L,

U and to use this information as feedba
k for a re�ned dropping strategy for the entries of

L and U .

2 A simple ILU approa
h

We start with a simple des
ription of a 
lass of in
omplete LU fa
torizations. For the

solution of (1) we 
onstru
t an approximate de
omposition

A � LDU;
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where L; U

>

are lower triangular matri
es with unit diagonal and D is diagonal. One way

to 
onstru
t these de
ompositions is to partition A as

A =

�

B F

E C

�

2 R

n;n

with B 2 R and the other blo
ks have 
orresponding size. Then A is fa
tored as

�

B F

E C

�

=

�

1 0

L

E

I

�

| {z }

L

�

D

B

0

0 S

�

| {z }

D

�

1 U

F

0 I

�

| {z }

U

;(2)

where

S = C � L

E

D

B

U

F

2 R

n�k;n�k

(3)

denotes the so{
alled S
hur{
omplement. The exa
t LU{de
omposition of A (if it exists)


an be obtained by su

essively applying (2) to the S
hur{
omplement S. Even if there

exists a de
omposition (2) for A and for S, there is no need to 
ompute L

E

; U

F

; S exa
tly

when 
onstru
ting a pre
onditioner. A 
ommon approa
h for redu
ing �ll{in 
onsists of

dis
arding entries in L

E

; U

F

of small size and de�ning the approximate S
hur{
omplement

only with these sparsi�ed ve
tors

~

L

E

;

~

U

F

. Here we will 
on
entrate on

~

S = B �

~

L

E

F �

�

E �

~

L

E

B

�

~

U

F

(4)

as one possible de�nition of an approximate S
hur{
omplement. Equation (4) 
an be ob-

tained from the lower right blo
k of

~

L

�1

A

~

U

�1

.

We use the MATLAB notation [1℄ for 
onvenien
e. For two integers k; l, k : l denotes the

sequen
e (k; k + 1; : : : ; l) with the 
onvention that whenever k > l the set is empty. For a

matrix A = (A

ij

)

i=1;:::;m; j=1;:::;n

, we de�ne

A

k:l;q:r

:= (A

ij

)

i=k;:::;l; j=q;:::;r

:

The notation : as a subs
ript indi
ates that all 
olumns/rows entries are taken. Thus, A

:;2

denotes the se
ond 
olumn of A and A

2;:

denotes its se
ond row. Similarly for a nonempty

set s � f1; : : : ; mg we denote by A

s;:

the matrix (A

ij

)

i2s; j=1;:::;n

. With this notation the

asso
iated ILU algorithm is roughly as follows.

Algorithm 1 (In
omplete LU fa
torization (ILU))

Given A = (A

ij

)

ij

2 R

n;n

and a drop toleran
e � 2 [0; 1℄. Compute A � LDU .

L = U = I; S = A;D

11

= S

11

.

for i = 1 : n� 1

p

i+1:n

= S

>

i+1:n;i

=S

ii

, q

i+1:n

= S

i;i+1:n

=S

ii

Drop all entries jp

i

j; jq

i

j if they are less than � .

L

i+1:n;i

= p

>

i+1:n

, U

i;i+1:n

= q

i+1:n

.

S

i+1:n;i+1:n

= S

i+1:n;i+1:n

� L

i+1:n;i

D

i;i+1:n

� (S

i+1:n;i

� L

i+1:n;i

S

ii

)U

i;i+1:n

D

i+1;i+1

= S

i+1;i+1

end
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Pra
ti
al versions of in
omplete LU de
ompositions are typi
ally implemented in a slightly

di�erent way. It is usually not advisable to update the whole S

i+1:n;i+1:n

by a rank{one or

rank{two modi�
ation. Instead, typi
ally only the leading row of S

i+1:n;i+1:n

is 
omputed,

and the transformations on the other rows are post{poned. This 
orresponds to the so{


alled I,K,J version of Gaussian elimination[21℄. Besides saving memory, this approa
h is

easier to implement sin
e all updates and modi�
ations are performed only on
e for ea
h

row. Thus one 
an use simple sparse row storage s
hemes, e.g. the Compressed Sparse Row

(CSR) format [21℄.

Algorithm 2 (In
omplete LU fa
torization, I;K; J version)

Given A = (A

ij

)

ij

2 R

n;n

and a drop toleran
e � 2 [0; 1℄. Compute A � LDU .

L = U = I; S = A; C = R = ;.

for i = 1 : n

w = A

i;:

for j = 1; : : : ; i� 1 and when w

k

6= 0

w

j

= w

j

=D

jj

if jw

j

j 6 � , w

j

= 0, else w

j+1:n

:= w

j+1:n

� w

j

U

j;j+1:n

end

for all j > i: if jw

j

=w

i

j 6 � , w

j

= 0

De�ne D

ii

= w

i

; U

i;i:n

= w

i:n

=D

ii

; L

i;1:i�1

= w

1:i�1

end

Mathemati
ally Algorithm 2 
an be read as a spe
ial version of Algorithm 1, if the approx-

imate S
hur{
omplement is repla
ed by

S

i+1:n;i+1:n

= S

i+1:n;i+1:n

� L

i+1:n;i

D

i;i

U

i;i+1:n

:

Clearly this repla
ement would also end up in an exa
t LU de
omposition on
e we do not

drop entries anymore.

3 Stabilized ILU

One problem in dropping entries in Algorithm 1 or Algorithm 2 is that we do not have


ontrol of the 
hanges whi
h are a�e
ted by dropping. One way to get a more reliable

dropping 
riterion is to take the norm of the i{th row of A into a

ount, e.g. repla
e � by

� �kA

i;:

k

1

. This is essentially what the ILUT{Algorithm [19℄ does. A slightly re�ned version

of this strategy, at least if the information on the S
hur{
omplement is available, 
ould be

to 
onsider the norm of the i{th row of the S
hur{
omplement as well. This makes sense

espe
ially when the 
orresponding row of the S
hur{
omplement has signi�
antly smaller

entries. I.e., instead of dropping entries that are less than � or � � kA

i;:

k

1

in absolute value,

we 
ould drop entries that are less than � �minfkA

i;:

k

1

; kS

i;i:n

k

1

g in absolute value. Often

both 
hoi
es are a very good 
ompromise but 
learly there may still be 
ases where we


ould end up in a poor pre
onditioner.
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Algorithm 1, 2 
an be supplemented with pivoting. When 
olumn pivoting is added to Al-

gorithm 2 it essentially 
orresponds to the ILUTP{Algorithm whi
h is part of SPARSKIT,

see e.g. [21, 20℄. So far we have ignored this option to have more 
lear presentation. Later

on, we will return to this point and �nally in
lude pivoting. For simpli
ity let us 
onsider

the algorithms without pivoting at this stage.

Re
ently it has been shown in [7℄ that Algorithm 1 has a strong relation to sparse approx-

imate inverse pre
onditioners. Without going into the details, we will roughly des
ribe the

idea of AINV{type algorithms [3, 4, 2, 8℄. The idea is to dire
tly 
ompute upper triangular

matri
es W;Z su
h that W

>

AZ = D, with a diagonal matrix D. The version whi
h we

will fo
us on is the so{
alled right looking AINV, where W and Z are updated by a rank{1

update. Essentially a biorthogonalization pro
ess forW and Z is performed, in whi
hW

>

A

and Z

>

A

>

are transformed step by step to upper triangular form. Clearly this only holds

if no dropping is applied to W;Z.

Algorithm 3 (Fa
tored Approximate INVerse, rank{1 update version)

Given A = (A

ij

)

ij

2 R

n;n

and a drop toleran
e � 2 [0; 1℄. Compute A

�1

� ZD

�1

W

>

.

p = q = (0; : : : ; 0) 2 R

n

; Z = W = I

n

; C = R = ;.

for i = 1 : n

p

i:n

= Z

>

:;i

A

>

i:n;:

, q

i:n

= W

>

:;i

A

:;i:n

Set p

i+1:n

:= p

i+1:n

=p

i

; q

i+1:n

:= q

i+1:n

=q

i

W

:;i+1:n

= W

:;i+1:n

�W

:;i

p

i+1:n

, Z

:;i+1:n

= Z

:;i+1:n

� Z

:;i

q

i+1:n

Drop entries W

kl

of W

1:i;i+1:n

, if jW

kl

j 6 �

Drop entries Z

kl

of Z

1:i;i+1:n

, if jZ

kl

j 6 �

end

Choose diagonal entries of D as the 
omponents of p (or equivalently of q).

In prin
iple we 
ould modify Algorithm 1 su
h that the inverses of its triangular fa
tors L; U

are 
omputed on the 
y. For this purpose we supplement Algorithm 1 with a progressive

inversion of L; U . At step i� 1, U is of the form

U =

�

U

1:i�1;1:i�1

U

1:i�1;i:n

O I

�

and the i-th step will 
ompute the entries U

i;i+1:n

and add them to the 
urrent U to get

U

new

. Let q

>

be the row ve
tor q

>

= U

i;:

� e

>

i

. Note that the 'diagonal' element q

i

of q is

zero. Then,

U

new

= U + e

i

q

>

= (I + e

i

q

>

)U:

It follows that

U

�1

new

= U

�1

(I + e

i

q

>

)

�1

= U

�1

(I � e

i

q

>

) :

Of 
ourse analogous arguments hold for L. This provides a formula for progressively 
om-

puting L

�>

; U

�1

throughout the algorithm.We 
all the inverse fa
tors Z;W as in Algorithm

3. With these additional fa
tors Z;W and a modi�ed S
hur{
omplement it was shown in

[7℄ that the supplemented version of Algorithm 1 is essentially equivalent to Algorithm 3.
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Theorem 4 Suppose that Algorithm 1 is supplemented with a progressive inversion of

L; U . Suppose in addition that in step i of Algorithm 1 an entry L

ji

is dis
arded only if

jL

ji

jmaxf1g [ fjW

ki

j : k < ig 6 � , i = 1; : : : ; n. Suppose that in Algorithm 1 and 3 W

kl

is dropped from W

1:i;i+1:n

if jW

kl

j 6 � . If the (modi�ed) S
hur{
omplement S

i+1:n;i+1:n

is

de�ned via

S

i+1:n;i+1:n

=W

>

:;i+1:n

A

:;i+1:n

;

then we have for any k > l:

j(L

�>

)

kl

�W

kl

j 6 �(2(k � l)� 1)

and the diagonal entries of D are those of p.

Proof. See [7℄. 2

The most interesting point about this relation is that Theorem 4 requires to modify the

dropping strategy for L (and similarly for U). Now typi
ally applying dropping to sparse

approximate inverse fa
tors is less harmful than for in
omplete LU de
ompositions, be
ause

in dropping small entries of size � inW;Z the e�e
tive error inW

>

AZ is only between linear

and quadrati
 with respe
t to � . And W

>

AZ is the matrix whi
h needs to be transformed

to an approximately diagonal matrix D. On the other hand if we apply dropping to the

fa
tors L; U of an ILU the related e�e
t is rational sin
e we do not know in advan
e the

e�e
t for L

�1

AU

�1

. But for pre
onditioning, this is pre
isely what we need to know. So if

we 
an 
onstru
t an ILU that is somehow almost equivalent to an approximate inverse,

then we might hope that dropping is more reliable and the resulting pre
onditioner is mu
h

more eÆ
ient for those situations where dropping has a serious impa
t on the quality of

the pre
onditioner. Numeri
al results in [8℄ illustrate that for some extremely inde�nite

and ill{
onditioned problems the approximate inverse behaves better than an ILU .

To turn the result of Theorem 4 into an algorithm we will 
ertainly not invert L; U in

Algorithm 1. Let us take a look at the 
riterion for dropping entries in L. We need to

know maxf1g [ fjW

ki

j : k < ig, whi
h means we need to know the i{th row of L

�1

, i.e.,

W

1:i�1;i

= (L

�1

)

i;1:i�1

. At least it would be 
onvenient to have an estimate for k(L

�1

)

i;1:i�1

k

1

whi
h 
ould serve as a substitute for fjW

ki

j : k < ig. To do this we use a general 
ondition

estimator for triangular matri
es from [14, 9℄ as a helpful estimate for k(L

�1

)

i;1:i�1

k

1

.

This 
ondition estimator is based on solving a system with an upper triangular matrix U

where the right hand side y only 
onsists of �1 and the signs are 
hosen to su

essively

maximize the solution x of Ux = y. Another look at this 
ondition estimator shows that

the 
omponents of x = U

�1

y pre
isely estimate k(U

�1

)

i;i:i:n

k

1

. To adapt this estimator to

our problem we will 
onsider Lx

L

= y

L

and U

>

x

U

= y

U

to get estimates for k(L

�1

)

i;1:i�1

k

1

and k(U

�1

)

1:i�1;i

k

1

.

Algorithm 5 (Condition Estimator for (L

�1

) adapted from [14, 9℄ )

Let L = (L

ij

)

ij

2 R

n;n

be unit lower triangular. Compute Lx = y, where y

>

2 (�1; � � � ;�1).

p = p

+

= p

�

= x = (0; : : : ; 0)

>

2 R

n

, and let � = 0 be the asso
iated 1{norm of p

5



for i = 1 : n

x

+

= 1� p

i

, x

�

= �1� p

i

Let s be the set of nonzero 
omponents of L

i+1:n;i

p

+;s

= p

s

+ L

s;i

x

+

, p

�;s

= p

s

+ L

s;i

x

�

�

+

= � � kp

s

k

1

+ kp

+;s

k

1

, �

�

= � � kp

s

k

1

+ kp

�;s

k

1

if jx

+

j+ �

+

> jx

�

j+ �

�

x

i

= x

+

, � = �

+

p

s

= p

+;s

, p

�;s

= p

+;s

else

x

i

= x

�

, � = �

�

p

s

= p

�;s

, p

+;s

= p

�;s

end

end

In prin
iple one 
ould also use di�erent 
ondition estimators, e.g. [5, 6℄. But what we really

need is not an estimate for the norm of L

�1

but an estimate for the norm of ea
h row of

L

�1

. From this point of view to take as right hand side a ve
tor y whi
h only 
onsists of

�1 is reasonable and is more attra
tive for this problem.

Now we 
an supplement Algorithm 1 with the 
ondition estimator Algorithm 5 applied to

the L and U

>

fa
tors of the ILU and the 
omponents of x

L

= L

�1

y

L

; x

U

= U

�1

y

u

are

serving as estimates for (L

�1

)

i;1:i�1

, (U

�1

)

1:i�1;i

. We still have to dis
uss the 
hoi
e of the

approximate S
hur{
omplement. Although Theorem 4 is based on de�ning the approximate

S
hur{
omplement via S

i+1:n;i+1:n

= W

>

:;i+1:n

A

:;i+1:n

, it 
an be seen in the proof of this

Theorem that an analogous relation will hold for the 
ase where p; q of Algorithm 3 are

de�ned via

p

i:n

= Z

>

:;i

A

>

W

i:n;:

; q

i:n

=W

>

:;i

AZ

:;i:n

:(5)

In this 
ase the related S
hur{
omplement for Theorem 4 is

S

i+1:n;i+1:n

=W

>

:;i+1:n

AZ

:;i+1:n

:(6)

In fa
t, when Algorithm 3 is supplemented with pivoting, (5) is used to ensure that p

i

=

q

i

6= 0. Furthermore (6) is related to the 
hoi
e of S in Algorithm 1 sin
e it 
onsists of

taking the lower right blo
k of

~

L

�1

A

~

U

�1

. Clearly the de�nition of the approximate S
hur{


omplement in Algorithm 1 is not pre
isely the same as (6). But a

ording to [7℄, one has

a 
lose 
onne
tion to Algorithm 3 with this 
hoi
e of an approximate S
hur{
omplement

if dropping is applied in slightly di�erent way.

As a next step to de�ne the ILU we introdu
e pivoting. We de�ne permutation ve
tors

�; �, su
h that A(�; �) = LD(�; �)U provided that no dropping is applied. In prin
iple,

applying permutation matri
es �;� to (2), 
hanges this equation to

�

I O

O �

>

��

B F

E C

��

I O

O �

�

=

�

1 0

�

>

L

E

I

� �

D

B

0

0 �

>

S�

� �

1 U

F

�

0 I

�

:

This illustrates how S; L and U have to be adapted. It is 
lear that if we in
lude the


ondition estimator, analogous 
hanges are made. It should also be obvious that in pra
ti
e

6



one will not physi
ally inter
hange rows of L and 
olumns of U but instead one uses index

ve
tors.

In prin
iple we 
an introdu
e a pivoting pro
ess to Algorithm 1 whi
h ensures that in the

permuted matrix jp

i

j > �max

j=i+1;:::;n

jp

j

j and jq

i

j > �max

j=i+1;:::;n

jq

j

j. This guarantees

that after the division by p

i

; q

i

the entries of p

j

=p

i

, q

j

=q

i

are less than 1=� in absolute value.

Here the parameter � 2 [0; 1℄ is 
hosen a priori. The 
hoi
e � = 1 refers to stri
t pivoting,

i.e. the maximum entry in absolute value will be
ome p

i

or q

i

, while any smaller 
hoi
e of

� 
auses only pivoting if the diagonal entry is mu
h smaller than the maximum entry of

jp

i+1:n

j; jq

i+1:n

j. Now we 
an go one step further and use the freedom in the 
hoi
e of pivots

to add a strategy of Markowitz type [10℄, i.e., we 
onsider the set of pivots jp

k

j that are

larger than �max

j=i+1;:::;n

jp

j

j and among these we take the one with the minimum �ll{in.

This is a typi
al strategy to maintain sparsity in the S
hur{
omplement when using dire
t

methods [10℄. To do this, repla
e max

j=i+1;:::;n

jp

j

j by z and de�ne a set piv(p) by

piv(p; z) = fk : jp

k

j > �zg:(7)

For any k, let nnz


i

(k) denote the number of nonzeros of S

i:n;k

and let nnzr

i

(k) denote the

number of nonzeros of S

k;i:n

. As pivot we will 
hoose j 2 piv(p; z) su
h that

nnz


i

(j) = min

k2piv(p;z)

nnz


i

(k):(8)

I.e., among all admissible pivots 
hoose the one whi
h lo
ally minimizes the �ll{in. The

same pro
ess needs to be repeated for q. In theory this pro
ess needs to be alternated

between p and q be
ause we have to make sure the diagonal pivots are not getting smaller.

For this reason we always in
rease z. A lo
al pivoting step 
an then look as follows.

Algorithm 6 (Lo
al pivoting with respe
t to �ll{in)

Given A = (A

ij

)

ij

2 R

n;n

and a pivoting toleran
e � 2 [0; 1℄.

Let S

i:n;i:n

denote the S
hur{
omplement on entry to step i of Algorithm 1.

z = 0

while pivots not satisfa
tory

p

i:n

= S

i;i:n

, z = maxfz;max

j=i;:::;n

jp

j

jg

Choose � 2 piv(p; z) su
h that nnz


i

(�) is minimal.

Inter
hange 
olumns/
omponents i; � of p; �; S

i:n;:

; U

1:i�1;:

q

i:n

= S

i:n;i

, z = maxfz;max

j=i;:::;n

jq

j

jg

Choose � 2 piv(q; z) su
h that nnzr

i

(�) is minimal.

Inter
hange 
olumns/
omponents i; � of q; �; S

:;i:n

; L

:;1:i�1

end

The while loop only terminates if no more inter
hanges are performed.

Together with the 
ondition estimator in Algorithm 5, Algorithm 6 is used to stabilize the

in
omplete LU de
omposition from Algorithm 1. We summarize these 
hanges to a new

ILU algorithm.
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Algorithm 7 (Stabilized In
omplete LU fa
torization (ILUSTAB))

Given A = (A

ij

)

ij

2 R

n;n

, a drop toleran
e � 2 [0; 1℄ and a pivoting toleran
e � 2 [0; 1℄.

Compute A(�; �) � LDU .

L = U = I; S = A;D

11

= S

11

; � = � = (1; : : : ; n).

x

L

= p

L

= p

+;L

= p

�;L

= x

U

= p

U

= p

+;U

= p

�;U

= (0; : : : ; 0)

>

2 R

n

, �

L

= �

U

= 0.

for i = 1 : n� 1

Apply Algorithm 6.

Whenever p requires pivoting, inter
hange p

U

; p

+;U

; p

�;U

; x

U

as well

Whenever q requires pivoting, inter
hange p

L

; p

+;L

; p

�;L

; x

L

as well

L

i+1:n;i

= p

>

i+1:n

, U

i;i+1:n

= q

i+1:n

.

Apply step i of Algorithm 5 for L with

�; x; p; p

+

; p

�

repla
ed by �

L

; x

L

; p

L

; p

+;L

; p

�;L

Apply step i of Algorithm 5 for U

>

with

�; x; p; p

+

; p

�

repla
ed by �

U

; x

U

; p

U

; p

+;U

; p

�;U

drop all entries jL

ji

j of L

i+1:n;i

, if jL

ji

jmaxf1; jx

L;i

jg 6 � minfkA

i;:

k

1

; kS

i;i:n

k

1

g

drop all entries jU

ji

j of U

i;i+1:n

, if jU

ij

jmaxf1; jx

U;i

jg 6 � minfkA

i;:

k

1

; kS

i;i:n

k

1

g

S

i+1:n;i+1:n

= S

i+1:n;i+1:n

� L

i+1:n;i

S

i;i+1:n

� (S

i+1:n;i

� L

i+1:n;i

S

ii

)U

i;i+1:n

D

i+1;i+1

= S

i+1;i+1

end

The two major di�eren
es between Algorithm 1 and Algorithm 7 are the appli
ation of

pivoting and the in
lusion of a 
ondition estimator. The latter is motivated by the strong

relations between in
omplete LU fa
torizations and fa
tored approximate inverse pre
on-

ditioners.

4 Numeri
al Results

This se
tion presents numeri
al experiments to validate the algorithms. So far, Algorithm

7 is implemented in MATLAB [1℄.

� The matri
es are initially reordered using the symmetri
 minimum degree ordering

[13℄.

� An a priori s
aling is used su
h any row of the given matrix has unit 1{norm.

� For the pivoting pro
ess � = 0:1 is used.

� Di�erent values were used for the drop toleran
e � = 0:1; 0:3.

For the numeri
al experiments several unsymmetri
 matri
es from the Harwell{Boeing

Colle
tion [11℄ were 
hosen.
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The result are 
ompared with

� LU from MATLAB also with pivoting toleran
e � = 0:1

� LUINC from MATLAB with � = 0:1 and drop toleran
es � = 0:1, 0:01, 10

�3

,

10

�4

, 10

�5

� ILUTP from SPARSKIT using the same toleran
e � = 0:1 for pivoting but � = 0:1,

0:01, 10

�3

, 10

�4

, 10

�5

for dropping.

The numeri
al results for ILUTP [21℄ were performed on an SGI workstation with two

190 MHz R10000 (IP25) pro
essors under IRIX 6.2 and 512 MB memory.

As iterative solvers GMRES(30) [22℄ is used. The iteration was stopped after the residual

norm was less than

p

eps times the initial residual norm, where eps � 2:2204 � 10

�16

denotes the ma
hine pre
ision. The iteration was stopped after 500 steps. Every iterative

solution whi
h broke down or did not 
onverge within the number of steps was noted as a

failure.

We brie
y des
ribe the results for several matri
es and then give detailed numeri
al results

for several sele
ted examples.

To give a rough idea on how the method performed on the Harwell{Boeing 
olle
tion we

simply summarize in Table 1 whi
h method su

essfully solved how many problems with

respe
t to the drop toleran
e � . The tests were done on 94 matri
es from the Harwell-Boeing


olle
tion.

Table 1: Summary of results | Su

essful Computation

Harwell{Boeing Colle
tion (94 test matri
es)

Pre
onditioner Drop toleran
e �

0:3 0:1 0:01 10

�3

10

�4

10

�5

ILUSTAB 89 92

LUINC 31 52 68 79 87

ILUTP 53 69 78 84 90

Note that there were only two matri
es whi
h 
ould not be solved with ILUSTAB for

� 2 f0:3; 0:1g. These are the matri
es fa
simile/fs7603, grenoble/gre216b. These matri
es


ould be solved with � = 0:01. But LUINC 
ould also not solve fa
simile/fs7603 and

for fa
simile/fs7603 ILUTP needed � = 10

�4

. For grenoble/gre216b LUINC and ILUTP

needed � = 10

�5

.

We now 
omment on several matri
es from the Harwell{Boeing{Colle
tion. This 
olle
tion


onsists of many matri
es from di�erent areas. Related matri
es are put together in a group

and 
omments are done with respe
t to these groups. For some sele
ted examples we will

9



show separate tables. In ea
h table (e.g., Table 2) we will present the the 
hoi
e of the

drop toleran
e � and the related �ll{in fa
tor (that is the ratio of the number of nonzeros

of L + U divided by the number of nonzeros of A). Next the number of iteration steps

using GMRES(30) is shown. For the MATLAB algorithms LU, ILUSTAB and LUINC

we use the 
op 
ount as measure for the number of operations. The 
op 
ount is split

into the 
ops required for the de
omposition and the 
ops to solve a linear system using

GMRES(30).

� CHEMWEST: These matri
es are some of those for whi
h LUINC and ILUTP needed

smallest drop toleran
es to be su

essful while ILUSTAB was able to solve all of

them already for � = 0:3. Detailed results for the three biggest WEST{matri
es are

given in Table 2, 3, 4.

Table 2: Matrix CHEMWEST/WEST0989

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 3.2 1 1:2�10

5

9:9�10

4

0:3 1.3 20 1:8�10

5

1:4�10

6

ILUSTAB

0:1 1.5 14 1:7�10

5

8:3�10

5

10

�1

0.7 | 1:1�10

4

|

10

�2

1.0 | 1:4�10

4

|

LUINC 10

�3

1.2 | 2:0�10

4

|

10

�4

1.6 | 3:8�10

4

|

10

�5

1.9 6 4:7�10

4

2:7�10

5

10

�1

1.0 |

10

�2

1.4 |

ILUTP 10

�3

1.9 |

10

�4

2.4 309

10

�5

2.7 10

� FACSIMILE: LUINC from MATLAB 
ould not solve most of these matri
es for

� = 0:1; 0:01. For � = 10

�3

it was able to solve 50% of them and for � = 10

�4

; 10

�5

only fs1836, fs7602, fs7603 
ould not be solved. For those problems that 
ould be

solved, the �ll{in was moderate and the number of iteration steps was small.

In 
ontrast to this ILUSTAB 
ould solve all of these matri
es already for � = 0:3

ex
ept fs7603 whi
h 
ould not be solved. The �ll{in was small as well. The number

of iteration steps was small ex
ept for fs7602 whi
h required 60 steps for � = 0:3 and

31 for � = 0:1.

ILUTP solved most of these problems for � = 0:1. All problems in
luding fs7603 were

solved for � = 10

�4

; 10

�5

.
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Table 3: Matrix CHEMWEST/WEST1505

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 4.2 1 4:0�10

5

1:7�10

5

0:3 1.4 22 3:5�10

5

2:5�10

6

ILUSTAB

0:1 1.7 17 4:0�10

5

1:7�10

6

10

�1

0.7 | 1:7�10

4

|

10

�2

1.0 | 2:2�10

4

|

LUINC 10

�3

1.2 | 3:2�10

4

|

10

�4

1.7 16 6:8�10

4

1:5�10

6

10

�5

2.0 6 8:6�10

4

4:1�10

5

10

�1

1.0 |

10

�2

1.4 |

ILUTP 10

�3

1.9 |

10

�4

2.4 |

10

�5

2.7 |

Table 4: Matrix CHEMWEST/WEST2021

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 5.6 1 1:2�10

6

2:7�10

5

0:3 1.6 20 6:8�10

5

2:9�10

6

ILUSTAB

0:1 1.7 14 6:7�10

5

1:7�10

6

10

�1

0.7 | 2:2�10

4

|

10

�2

0.9 | 3:0�10

4

|

LUINC 10

�3

1.2 | 4:6�10

4

|

10

�4

1.6 | 8:7�10

4

|

10

�5

1.9 6 1:2�10

5

5:5�10

5

10

�1

1.0 |

10

�2

1.4 |

ILUTP 10

�3

1.9 |

10

�4

2.5 |

10

�5

3.1 14
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For those problems that 
ould be solved the �ll{in was small. The largest number of

iterations were 155 for fs7602 and � = 0:1, 62 for fs7602 and � = 10

�3

. For all other

methods it was less, if they 
ould be solved at all.

� GEMAT: ILUSTAB 
ould not solve these matri
es for � = 0:3 but for � = 0:1.

LUINC 
ould solve these matri
es for � = 10

�4

but with roughly four times of the

�ll{in of ILUSTAB.

ILUTP 
ould solve these matri
es for � = 10

�3

but with more than twi
e as mu
h

�ll{in as ILUSTAB. For these matri
es the LU de
omposition needed more than 70

times of �ll than the initial matrix.

For gemat12 see Table 5. The results for gemat11 are similar.

Table 5: Matrix GEMAT/GEMAT12

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 73.5 1 1:7�10

9

1:0�10

7

0:3 1.0 | 1:4�10

6

|

ILUSTAB

0:1 1.3 67 2:0�10

6

3:5�10

7

10

�1

0.6 | 1:8�10

5

|

10

�2

1.4 | 1:6�10

5

|

LUINC 10

�3

2.7 | 1:3�10

7

|

10

�4

5.2 10 5:4�10

7

5:7�10

6

10

�5

9.2 5 1:3�10

8

3:9�10

6

10

�1

1.0 |

10

�2

2.0 |

ILUTP 10

�3

3.4 17

10

�4

5.2 7

10

�5

7.4 4

� GRENOBLE: for � = 0:1 LUINC 
ould only solve gre115, gre216a, gre343, gre512.

But even for some of those the �ll{in fa
tor was already enormous ( e.g. 5:9 for

gre216a, 7:7 for gre343, 11:3 for gre512). The same problem o

urred for the other

matri
es that 
ould only be solved for smaller � . All matri
es 
ould �nally be solved

with � = 10

�5

.

ILUSTAB solved all matri
es ex
ept gre216b, gre1107 for � = 0:3. The �ll{in was

slightly better (e.g. i.e. 3:8 for gre216a, 4:9 for gre343, 7:8 for gre512). gre1107 
ould

be solved with � = 0:1 but with a �ll{in fa
tor 7:4. This was still better than LUINC,

whi
h needed � = 10

�3

and produ
ed a �ll{in fa
tor 23:0!

For � = 0:1, ILUTP 
ould solve gre115, gre185, gre216a. But even then the �ll{in

fa
tor was sometimes large ( i.e. 7:0 for gre216a, 12:6 for gre512). The same problem

12



o

urred for the other matri
es that 
ould only be solved for smaller � . For example

gre1107 
ould be solved with � = 10

�3

and a �ll{in fa
tor 21:3. All matri
es 
ould

�nally be solved with � = 10

�5

.

The problem with the �ll{in also extremely a�e
ts the sparse LU de
omposition. For

example gre1107 required a �ll{in fa
tor 44:1!

For those problems that 
ould be solved by one of these methods the number of

iteration steps was moderate.

� LNS: ILUSTAB solved them all for � = 0:3. The �ll{in was moderate (3:6 for lns3937

was already maximum) an so was the number of iteration steps (at most 29).

LUINC 
ould not solve any of these matri
es for � = 0:1; 0:01 but lns511, lnsp511,

lns3937, lnsp3937 for � = 10

�3

. The biggest matri
es required twi
e as mu
h �ll{in

as ILUSTAB.

ILUTP 
ould solve the two smallest matri
es for � = 0:1 and the medium size matri
es

for � = 10

�3

.

The two biggest matri
es 
ould only be solved for � = 10

�5

. For lns3937 see Table

6. The results for lnsp3937 were quite similar.

Table 6: Matrix LNS/LNS3937

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 46.1 1 2:9�10

8

4:9�10

6

0:3 3.6 28 2:3�10

7

1:4�10

7

ILUSTAB

0:1 4.9 16 4:1�10

7

7:7�10

6

10

�1

1.0 | 6:4�10

5

|

10

�2

3.7 | 1:0�10

7

|

LUINC 10

�3

7.4 29 3:2�10

7

2:0�10

7

10

�4

12.3 9 6:6�10

7

7:1�10

6

10

�5

17.0 9 1:0�10

8

5:0�10

6

10

�1

0.8 |

10

�2

1.4 |

ILUTP 10

�3

2.5 |

10

�4

3.5 |

10

�5

4.4 |

� NUCL: ILUSTAB 
ould solve all matri
es for � = 0:3 but the �ll{in was poor, e.g.,

28.6 for nn
1374. The number of iteration steps was at most 28.

LUINC did not solve any of these matri
es for � = 10

�1

; : : : ; 10

�5

.

ILUTP 
ould solve all the problem for � = 10

�3

and a better �ll{in fa
tor than

ILUSTAB (e.g. 6.6 for nn
1374 but 463 iteration steps).
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Here the dire
t solver produ
ed signi�
antly less �ll{in for nn
1374 (fa
tor 14.6) than

ILUSTAB.

� PORES: PORES1, PORES3 
ould be solved by ILUSTAB for � = 0:3 and ILUTP

for � = 0:1. LUINC needed � = 0:01 for PORES3. The number of iteration steps

was small ex
ept for PORES3, � = 0:1 and ILUTP whi
h needed 248 steps, but for

� = 0:01 the number of steps were small while the �ll{in was still below the �ll{in of

the original matrix. For matrix PORES2 see Table 7.

Table 7: Matrix PORES/PORES2

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 5.1 1 2:5�10

6

2:9�10

5

0:3 1.0 54 6:8�10

5

6:9�10

6

ILUSTAB

0:1 1.2 15 9:6�10

5

1:5�10

6

10

�1

0.5 | 4:4�10

4

|

10

�2

0.6 113 6:0�10

4

1:4�10

7

LUINC 10

�3

1.1 26 1:6�10

5

3:1�10

6

10

�4

1.8 9 4:1�10

5

8:3�10

5

10

�5

2.4 5 6:7�10

5

4:7�10

5

10

�1

0.4 |

10

�2

0.8 |

ILUTP 10

�3

1.7 30

10

�4

3.2 13

10

�5

4.6 9

� SAYLOR: SAYLR1/SAYLR3 were solved by ILUSTAB for � = 0:3 and ILUTP for

� = 0:1. For SAYLR3, LUINC failed for all � . For SAYLR4 see Table 8.

� SHERMAN: ILUSTAB solved all the matri
es for � = 0:3, but for sherman3 it

needed 138 iteration steps. For the other matri
es the iteration 
ount was less than

half as mu
h. The �ll{in was less than twi
e as mu
h as the initial �ll. The number of

iterations was mu
h lower for � = 0:1 but with more �ll{in. LUINC 
ould only solve

sherman4, sherman5 for � = 0:1 and it needed 123 iteration steps for sherman5. For

� = 0:01 it needed only a moderate number of iteration steps, but sherman1 still


ould not be solved for � = 10

�2

. ILUTP 
ould solve all matri
es but for sherman2

it needed � = 10

�5

(see Table 9). For sherman4 and � = 0:1 the number of iteration

steps (449) was still big. This 
hanged when using � = 0:01.
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Table 8: Matrix SAYLOR/SAYLR4

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 14.7 1 3:7�10

7

1:5�10

6

0:3 2.6 44 1:6�10

7

1:8�10

7

ILUSTAB

0:1 3.1 15 2:0�10

7

5:2�10

6

10

�1

0.6 | 1:1�10

5

|

10

�2

0.6 | 1:1�10

5

|

LUINC 10

�3

0.6 | 1:1�10

5

|

10

�4

1.6 33 9:5�10

5

1:2�10

7

10

�5

2.7 11 3:5�10

6

3:1�10

6

10

�1

0.6 352

10

�2

0.6 155

ILUTP 10

�3

0.6 153

10

�4

2.4 18

10

�5

3.5 8

Table 9: Matrix SHERMAN/SHERMAN2

Method / � �ll{in # it. 
ops

fa
tor steps de
. solve

sparse LU 14.0 1 8:1�10

7

1:4�10

6

0:3 0.4 30 1:6�10

6

4:4�10

6

ILUSTAB

0:1 0.6 14 2:6�10

6

1:7�10

6

10

�1

0.2 | 9:7�10

4

|

10

�2

0.4 21 2:6�10

5

2:6�10

6

LUINC 10

�3

0.7 7 7:7�10

5

7:5�10

5

10

�4

1.1 5 2:4�10

6

6:2�10

5

10

�5

1.7 4 5:1�10

6

5:9�10

5

10

�1

0.3 |

10

�2

0.6 |

ILUTP 10

�3

1.0 |

10

�4

1.6 |

10

�5

2.1 61
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The numeri
al examples have illustrated the robustness of taking the growth of the in-

verse triangular fa
tors into a

ount when 
omputing an in
omplete LU de
omposition.

Of 
ourse ILUSTAB is neither always the most eÆ
ient nor always the fastest (with respe
t

to the 
ops ) nor always the ILU with the smallest amount of �ll{in. But in many 
ases

it is a pretty good 
ompromise between standard in
omplete LU de
ompositions and the

full sparse LU de
omposition. In many examples it is not ne
essary to use a trial{and{

error strategy for 
hoosing the drop toleran
e. The drop toleran
e is automati
ally adapted

with respe
t to the growth of the inverse fa
tors. In several 
ases where a dire
t solver is

superior to iterative method (
f.Table 2), 3, 4 with respe
t to the number of 
ops, the

�ll{in for ILUSTAB is still moderate and often even less less than that for LUINC, ILUTP.

Conversely on some problems whi
h 
ause trouble to dire
t solvers (
f. Table 5) ILUSTAB

gains from its sparsity and being used as iterative solver.

The drawba
k of this algorithm is of 
ourse that it is more 
omparable with sparse dire
t

solvers be
ause it requires expli
it knowledge of the S
hur{
omplement. Clearly there are

several problems where standard in
omplete LU de
ompositions used as pre
onditioners

give powerful iterative solvers. In these 
ases apparently ILUSTAB will be slower be
ause

one has a 
ertain time 
onsuming overhead for 
omputing and administrating the approx-

imate S
hur{
omplement.

5 Con
lusions

A version of an in
omplete LU de
omposition has been presented that performs dropping

with respe
t to the growth of the inverses of the triangular fa
tors. We have illustrated that

the resulting pre
onditioner is very robust. Often one 
an avoid adapting the parameters

to a spe
i�
 matrix and still get a pre
onditioner that is 
omputed in a sensible time with

moderate �ll{in. For many examples this has turned out to be a good 
ompromise between

sparse dire
t solvers and standard in
omplete LU de
ompositions. Sin
e this pre
onditioner

shares several properties with sparse dire
t solvers, an implementation based on modi�ed

dire
t solvers seems to be reasonable. Currently 
odes from dire
t solvers like the Harwell{

Subroutine{Library are under investigation to build this kind of pre
onditioner. Real{time

results for bigger problems will be presented in a forth
oming paper.
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