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Optimal control of a linear elliptic equation with a
supremum-norm functional

Thomas Grund and Arnd Rosch

Abstract

We consider an optimal control problem of a linear elliptic equation with a func-
tional containing a supremum-norm term. The control acts on the boundary. Neces-
sary first order optimality conditions are derived for problems with pointwise control
and state constraints. For this purpose the original problem is substituted by an
equivalent problem with a differentiable functional. In a second part we discuss a nu-
merical approach to such problems. The control problem is transformed into a linear
(resp. quadratic) programming problem. In a particular situation we can compare
the numerical results with the analytic solutions.

Keywords: Optimal control, supremum norm, minimax, state constraints, numerical so-
lution

AMS subject classification: 49K35, 49K20, 90C90

1 Introduction

In this paper, we consider an optimal control problem with a cost functional of the form

K
H) = lly = il + 5 [ o s

where y; € C(Q), Q@ C R* (n > 2) is a bounded domain with boundary T of class C'!,
and r is a nonnegative real number. The pair (y, u) satisfies the following linear equation

—Ay+y=0 1in , (1)
O,y=u onl,

where 0, y denotes the outward normal derivative of y on I". The admissible sets for the
state and the control variables are given by

U= {u € L'(T) : uy <u(s) <up ae. onl},
Yoa={yeCQ):y1 <ylz) <y inQ},

with ¢ > n and real numbers uy, us,y1,y>. The paper is concerned with the following
control problem

(P) Minimize J(y,u), subject to (1) and (y,u) € Yoq X Ugq.

Functionals including a C-norm are not differentiable. For that reason such problems



are less investigated. The necessary optimality conditions for different classes of optimal
control problems with a supremum-norm functional have been studied by several authors,
see for instance Glashoff and Weck [7], Tréltzsch [13], Li and Yong [9], Arada and Raymond
[1]. Taking advantage of the special structure of our cost functional, and using a standard
technique in the finite optimization, we substitute problem (P) by an equivalent control
problem with a differentiable functional and additional state constraints. More precisely,
by using the equivalence

ly — ?Jd“c@) <§ = —0<y-ya<d inQ, (2)

we can prove that (P) is equivalent (in a sense to specify later) to the control problem

(Pa) Minimize Jy(u,d) =0 + g / u? ds
r
subject to (1), and

Yy — J S Ya in Qa (3)
(yau) € Y:ld X Uad- (5)

This reformulation enables us to establish optimality conditions by applying a classical
Lagrangian multiplier rule, see Troltzsch [14], Casas [4].

In Section 4 we handle the particular case of (P) corresponding to x = 0, in the absence of
control and state constraints. Since the functional is not coercive and U,4 is not bounded
in this case, classical existence results can not be applied. Under some natural assumptions
on Y4, we prove the existence of an optimal control, and give a detailed characterization of
the corresponding state.

Section 5 deals with the numerical solution of (P;). For the numerical treatment of other
elliptic control problems with control and state constraints we refer to Bergounioux and
Kunisch [2], Casas [3], Maurer and Mittelmann [10].

Due to the particular structure of the cost functional we are able to apply methods of
linear (resp. quadratic) programming, such as simplex or interior point methods. In our
paper, particular emphasis is laid on a comparison of different techniques to build up the
programming problem. The control problem is fully discretized in the first case, see also
[10]. In a second case we eliminate the variables corresponding to the state functions by
using the linearity of the state equation. Numerical examples are given in Section 6.

The approach presented in this paper can be applied to more general classes of optimal con-
trol problems. However we confine ourselves to a simplified linear equation to demonstrate
the techniques to handle the supremum-norm functional.



2 Preliminary results

2.1 State and adjoint equation

In this section we recall some results concerning the state equation and the adjoint equation,
see Casas [4] for more general results.

Theorem 1 ([4], Theorem 3.1) For all u € L'(T'), t > n — 1, there exists a unique
solution y, of the state equation (1) belonging to H'(Q) N C(Q2). Moreover, there erists a
constant Cy independent of v such that

19ull @) + lvulle@) < Cr llulloim)-

In the sequel, the unique solution of (1) for a control u € L!(T') is denoted by v,.

To derive optimality conditions we need the so called adjoint equation. As we see below,
the adjoint equation of the optimality conditions for the problem (P) has measures as data
in Q and on I". More precisely, we deal with the following problem

—Ap+p=pq in,

(6)

O,p=pur onl,
where j1 = g + pr is a Radon measure on €2, pq is the restriction of p to 2, pr is the

restriction of ;1 to I'. We denote by M () the space of Radon measures on Q. M (Q) is
the dual space of C(£2). The duality pairing in M(Q) x C(Q) is denoted by (-, )5

Definition 1 A weak solution of (6) is a function p € WHH(Q) such that

/Q (Vp(@) V(@) +pp) do = (. ¢)g  for all p € D(RY).

Theorem 2 ([4], Theorem 4.3) For every p € M(Q), there exists a unique weak solu-
tion p of (6) satisfying

/p (—Ay +y) de + /p 0y ds = (1, y)g for ally € W*"(Q), 7 >n.
Q

r

Moreover, p belongs to Wh#(Q) for every s € [1,n/(n — 1)), and there exists a positive
constant Cy, not depending on ., such that

Ipllwrs) < Collpll -



2.2 Lagrangian multipliers for control problems

In this section, we state a Lagrangian multiplier theorem for an abstract control problem
applicable to (P;). For this, suppose that V and Z are real Banach spaces, and K C V
is a closed convex set. Let P C Z be a convex closed cone, f : K — R be a functional
and G : K — Z be an operator. In Z we have a partial ordering by 2z > 0 & 2z € P. If
P C Z is a convex cone, then its dual cone P* is defined by PT = {z € Z*: (2,p)z+xz >
0 for all p € P}, where Z* denotes the dual space of Z and (-, )z« z the duality pairing.
Consider the abstract control problem (CP),

(CP) Minimize f(v), G(v) <0, wvé€K.
An element vy € K is called regular if
there exists v € K such that G(vg) + G'(vg)(v — vg) € —int P (7)

holds, int P being the interior of P. The following optimality conditions hold.

Theorem 3 ([14], Theorem 1.2.4) Let vy be a reqular solution of (CP). Let us suppose
that

e f is Fréchet-differentiable,
e (G is continuous Fréchet-differentiable.
Then there is a Lagrangian multiplier X at vy, that is a X € P such that
(f"(vo) + G'(vo)* A, v — vo)yexy >0 forall ve K (8)
holds. Moreover, the complementary slackness condition
(A, G(vg))z+xz =0 (9)
15 fulfilled.

3 Study of the optimal control problem (P)

3.1 Existence result

Theorem 4 If there exists a control u € Uyg satisfying y, € Yaq, then (P) has at least one
solution. This solution is unique, if in addition £ > 0 holds.

The proof is standard, see for instance Casas [4]. O]

3.2 Equivalence of (P) and (P,)

Theorem 5 If (
solves (P) then (

) is a solution of (Py), then (yz,u) solves (P). Conversely, if (yz, )

a,0
w,0), with 6 = ||yz — Yallc@), solves (Pa).



Proof. Let (yg,%) be a solution of (P). We prove that (u,8) with 6 = |lyg — Yall o) i

a solution of (Py). Argue by contradiction, suppose that (i, 0) is a solution of (P,) with
Ja(@,0) < Jy(w, d). From (2) it follows that

o=

/a2 ds = Jy(ii, 0),
2 r

N K . A
J(ya, 0) = lya = yall o + 5 / 0% ds <+
r

and therefore J(yg, @) < Jy(ii,0) < J(@,8) = J(yx, @), a contradiction to the optimality

of (yﬂ, ﬂ)
e For the opposite let (@,d) be a solution of (Py) and (ya, @) a solution of (P) with
I (Ya, @) < J(ya,w). With 0 = ||ya — yallcm) it follows that

Jd(ﬁ”g) = J(yﬁaﬂ) < J(yﬂa ﬂ) < Jd(ﬂ7 E))

a contradiction which completes the proof. The last inequality is a consequence of (2). [

3.3 Optimality system for (P,)

Contrary to the problem (P), the problem (P;) possesses some interesting properties
(Frechet-differentiability of the corresponding cost functional). This enables us to establish
the optimality conditions by using the classical Lagrangian multipliers theorem.

Theorem 6 Let (@,0) be a regqular solution of (Pa). Then there exist elements p €
Whs(Q), for all s € [1,n/(n— 1)), and 1, € M(Q), i =1,... .4, u; > 0, satisfying

e the adjoint equation

—AD+ P =Ty, — Moy + Mz, — Ha, 1,

R (10)
Oy P =iy, — Mo + Mg, — Hg. on I

e complementary slackness conditions

/ (v — 5 — ) i, = 0, / (o — 1) iy = 0, (11)

Q

/(_yﬂ — 0 4 ya) dpiy =0, /(—?JE'F y1) dity = 0; (12)

Q Q

the variational inequality

/(T)—i— ku)(u—u) ds >0 for all uw € Uy, (13)
T

e and

/ d(my +7,) = 1. (14)

Q



Proof. To apply Theorem 3 we set

V = L' xR,
Z = C@)'=C@) xC@) x C@) x C[@Q),

K = {(u,0):u €Uy, 6 €R},
P = {(z1,20,23,24) € Z2:2,>0, i=1,...,4},
fmﬁ):tM%®:6+g/ﬁda
r

G(u,0) = (Y =0~ Ya—Yu — 0+ Ya, ¥ — Y2, =y + ).
The assumptions of Theorem 3 are obviously fulfilled, the set P is given by
P+:{(M1a/~t2a/~t3au4)GM(§)4:M’520) Z:La4}

From Theorem 3 we deduce the existence of measures 7z;, i = 1,... ,4, 1; > 0, satisfying
(11) and (12). Setting v = (u,d) for arbitrary v € LY(T') and § € R, v = (w,9), and
ﬁ = (ﬁ17ﬁ27ﬁ37ﬁ4) we have

(@) + (G @) = 6+ 5 / . ds + / (v — 8) d7iy + / (—yo — ) i,

Q Q
"‘/yu dﬁ3+/(_?/U) dity
Q o
:6(1—/ d(ﬁ1+ﬁ2)> +n/ﬂu ds
Q r
+ /_yu d(fy — o + 115 — 1y),
Q
Following the proof of Theorem 5.3 in Casas [4] we can show that
/?/u d(py — 1o + s — 11y) = /T’U ds
Q r

holds, where p is the unique solution of the adjoint equation (10). Together with (8) it
follows that

(6 —9) (1 —/ d(m, +ﬁ2)> +/(m+;—9) (u—w) ds>0 forall (u,0) € K.
Q r
Because ¢ is free we deduce (14) and finally (13). O

Remark 1 Consider the case of (P;) with absence of state constraints. Then the regularity
condition (7) is fulfilled for each pair (ug, dp) € Usq X R: In this case, (7) is equivalent to
the existence of a pair (u,0) € U,y X R and a real number ¢ > 0 satisfying

yu_d_ydg_g inﬁa
and —y, — 0 +y; < —e in Q,

which is satisfied for ¢ sufficiently large.



4 A particular case
In this section we study the control problem

(Py) Minimize Jy(y,u) = ||y — yd”c(ﬁ),

subject to the state equation (1) and u € LY(T"), t > n,

with y; € W2"(Q). Notice that control and state are unconstrained. Our goal is to prove
the existence of a solution provided that y, satisfies the following inequality

—Ayq+ys <0 in € (15)

In this case we derive a characterization of the state corresponding to this optimal control.

4.1 Auxiliary problem
Let us start by considering the auxiliary optimization problem
(Paua) Minimize F(y) = |y — villc@):
subject to y € W2 () N C(Q) and the equation
—Ay+y=0 in{. (16)

The following lemmas are useful for the sequel.

Lemma 1 ([6], Theorem 9.6) Ify € W' (Q) satisfies —Ay+y < 0 in Q, then y cannot

loc
achieve a nonnegative maximum in 2 unless it is a constant.

The next result is a consequence of Lemma 1.

Lemma 2 (Comparison principle) Let y € W2 (Q) N C(Q) be a function satisfying

loc 7

—Ay+y >0inQ and y(s) > 0 for all s € T. Then y > 0 in €.
With these results we can prove the following theorem.

Theorem 7 If the function y, satisfies inequality (15), then problem (Pg..) admits at least
one solution 3. Moreover, this solution satisfies

U(s) = ya(s) — 6 forall s €T, (17)

where
5 =inf{F(y) : y € W2(Q) N C(Q) satisfies (16)}. (18)



Proof. The infimum in (18) exists because the functional F' is bounded from below by
zero. We have to show that the infimum ¢ is attained.

Since y; € W2™(2), we can prove the existence of a unique solution 7 € W?2"(Q) of the
Dirichlet problem

—Ay+y=0 in, (19)

y=ya—0 onl, (20)
see Grisvard [8], Theorem 2.4.2.5. From (20) it follows

max (ya(s) = Y(s)) = 0. (21)

If we assume max (yq(x) —y(x)) > max (ya(s) —7(s)), then the function y; — 7y admits a
z€Q s€

positiv maximum in €, due to (21) and the continuity of y; — y. From Lemma 1, together
with (15) and (19), it follows that y; — ¥ is constant, a contradiction to our assumption.
Since [' C Q2 it follows that

max (ya(r) = §(r)) = max (ya(s) = ¥(5))- (22)

Combining (21) and (22) leads to ¥ > yq4 — ¢ in Q.
e [t remains to prove the inequality

Let ¢ be a positive real number. By the definition of 4,

8 = inf{lly = yallo) : ¥ € Wier' () 1 C(Q) satisfies — Ay +y = 0},

there exists a function y. € W.2"(Q) N C(Q) satisfying —Ay. + y. = 0 and

loc
Iy = yallo@) <0 +e. (24)
The function v = y. + ¢ — ¥ fulfills
—Av+v=—-Ay.+y. —De+e—Ay+y=e>0 1in(Q,
and, by (20) and (24),
v(s) =y.(8) + e —7(s) =y.(s) + & —wa(s) +0 >0 forallsecT.

From Lemma 2 it follows v > 0 in Q and therefore § < y. + . Finally, (24) yields
Y. +& < yqg+ d + 2¢ in Q. Since ¢ is arbitrary, (23) and the statement of the theorem are
direct conclusions. O



4.2 Result for (Py)

Now we can state the main result of this section.

Corollary 1 Let y; € W2™(Q) be a function satisfying (15). Then there exists an optimal
control @ of the control problem (Py). The corresponding state function yz satisfies equation
(17).

Proof. The solution y, of (1) for u € LY(T') is in C(Q), see Theorem 1. Therefore

Yulp € C(T') and y, € W2™Q) N C(Q), see Gilbarg and Trudinger [6], Corollary 9.18.

loc
From the definition of 4 we conclude

0 < inf{Jy(yu,u) : u € L'(T)}.

Applying Theorem 7, we find a solution 7 for problem (P,,,) which is an element of
W2n(Q2). The function u = 9,7 is an element of L!(T), due to an imbedding theorem.
Therefore % is an optimal control for (Py). O

Remark 2 The corollary remains true if we substitute (15) by —Ays +ys > 0 in ©Q, and
(17) by y(s) = ya(s) + 0 for all s € T.

5 Numerical approach

In this section, we regard different ways to solve (P;) numerically. Thus, we are looking
for functions u, resp. ¥,, which approximate the optimal control function % resp. the
corresponding state function .

Using a finite element method, control functions w resp. state functions y are replaced
by finite vectors of real numbers u resp. y, and the state equation by a system of lin-
ear equations Ey = Bu. Since this discretization procedure is standard, the details are
described in the Appendix, see also Remark 3 below.

In a second step the problem (P,) is substituted by a linear (resp. linear-quadratic)
programming problem. We concentrate on two approaches:

Complete discretization: We regard a control function with its corresponding state
function as independent. The discretized form of the state equation is part of the
arising programming problem.

Reduced problem: Exploiting the linearity of the state equation, we eliminate the vari-

ables belonging to the state function. To do so, we calculate the solutions of the
discretized state equation for basis control functions in advance.

9



We shall compare the efficiency and reliability of both methods. The optimality condi-
tions are not used during the numerical approach. We will verify them later numerically.
An error analysis for the numerical solutions is not given, since this would go far beyond
the scope of this paper.

Remark 3 For simplicity we choose 2 to be the two dimensional open unit square €2 =
{(z1,22) € R? : 21,75 € (0,1)}. However, the methods described in this section extend to
other choices of € as well.  in our case does clearly not have a boundary I of class C'!,
but the theory is confirmed by the numerical solutions.

Remark 4 As mentioned above, some of the notation used in the sequel, is introduced in
the Appendix.

5.1 Complete discretization — programming problem (O¢)

The vectors u and y are considered as independent variables. The vector of the unknowns
is x = (u”,y",6)". The linear-quadratic programming problem (O¢) is

(Oc)  Minimize 4+ guTAu

subject to Ey = Bu and

Yij— 0 < ya(zi) (i,7) € 1(), (25)
~Yij — 0 < —ya(wi ) (i,7) € 1(),
Ujj < Uz (,5) € I(I),
—ui; < —uy (1,7) € I(T),
Yij < Yo (i,7) € 1(),
—Yij <~ (i,5) € I(Q).

The size of the optimization problem is given by

Number of unknowns:  O(N?),
Number of inequalities: O(N?),
Number of equations: ~ O(N?),
Number of coefficients:  O(N?),

where the discretization parameter N is defined in the Appendix. For the number of
coefficients, write down all equality and inequality constraints in matrix notation, Qx = q,
Nx < n, with matrices Q, N, and vectors q, n. In this notation the number of coefficients
is defined as the number of nonzero elements in Q and IN.

10



5.2 Reduced problem — programming problem (Op)

Here we regard y as depending on u. To the control basis functions €™/, (i,5) € I(T'), we
calculate the corresponding state functions yZ’j via (32), which are represented by vectors
y®. The elements of a vector y*/ are denoted by y,i’fl', (k,1) € I(Q). Having this basis
solutions, the solution y to (32) for a given vector u can be written as

= D uigyY
(i,5)€I(T)
due to the linearity of our state equation. With this we build up the programming problem

(OR)v

(Or)  Minimize 5+guTAu

subject to
Z u” y — 0 < ya(zr,) (k1) € I(2), (26)
(i,7)eI(T
Z uig Uit — 0 < —yalzrg) (k,1) € I1(90),
(i) EX(T)
Uij < U (z,7) € I(T"),
—Uij < U (i,7) € I(T),
> s v < e (k,0) € T(Q),
(¢,j)eI(T
Z wig Y <~y (k,1) € I(Q).
(i) EX(T)

Number of unknowns: ~ O(N),
Number of inequalities: O(N?),
Number of equations: 0,
Number of coefficients: ~ O(N?).

The number of coefficients highly effects the amount of time and memory which is needed
to solve the programming problem. We expect that (O¢) will be solved much faster then

(Or).

5.3 Optimization codes

There exists a large number of software packages for linear-quadratic programming prob-
lems. Surveys and decision trees for optimization software can be found in [11] and [5].
We utilized three packages, LoQo [15], the MATLAB Optimization Toolbox, and MOSEK
[12].

11



5.4 Verification of the necessary optimality conditions

In order to verify the optimality conditions (see Theorem 6), especially (13), we have to
approximate fi;, ¢ = 1,... ,4, and the adjoint state P.

Approximation of 7,

The Lagrangian multipliers associated with inequalities (25) of (O¢) resp. (26) of (Og)

are denoted by A, j, (i,7) € 1(Q2). We approximate fi; by
=Y Aijdwy,

(i.4)€1(52)
where dx; ; is the Dirac measure concentrated in z; ;. In an analogous way, the measures
Tis, Ti3, and 71, are approximated by measures 1}, 7, and 1i}.
Approximation of p

The function p is approximated by the solution p; of the discretized variational equation,

Find p, € Vj, such that

/Q (V- Vpn + opn) do / o d(T — T+ 7 —71) (27)

holds for every ¢ € V},. For the definition of V}, see the Appendix.

Verification of (13)

et u, = W; ¢ be a numerical solution o ). We can not expect that uy satisfies
Let uw _Jl]b 1 solut f(P;). Wi t t that tisfi

(i-7)eI(T)
(13) in its original form. However, we will see numerically that it fulfills the discretized
variational inequality

Z (Z_)i,j + Iiﬂid)(ui’j - ﬂi,j) 2 0 for all Us, 5 € [Ul, Ug], (ij) € I(F),
(1,5)€I(T)

with p), = Z P;.;n" being the solution of (27). From the last inequality it follows for

(i,))€I(Q)
the case K = 0:

and for the case & > 0:

ﬂi,j = Pr[u1,u2} <_%> ) (29)

for (i,5) € I(I') and Pry,, 4, being the projection from R onto the interval [uy, us].

12



6 Numerical examples

6.1 Comparison of (O¢) and (Og)

Consider

Example 1:
Y = (r1 — 0.5)% + (25 — 0.5)* + 3, —10 < u(s) <10 forall s €T,
k=0, —10 < y(z) <10 forall y € Q.

The numerical solution of (O¢) for N = 50 is shown in Figure 1. The optimal control
agrees on all four edges of I' and is therefore shown only along one edge. This is the case
for all the following examples too.

S XD
YT ORI 7
09 g \ O “‘QQ‘ ""%III;;;;;;;/I/I////
X Yl
""II///’;//I///’/’/ y
So085 N eyl 1171

ALV 717
AL
SRR 777

AT
5 7

0.8

0.7
0

Figure 1: Optimal control and state for Example 1 with N = 50

In Table 1 the results are collected for (O¢) and (Og) and for different mesh sizes.

Problem (O¢) was solved up to N = 120 with the same amount of memory and using
MoOSEK, whereas (Opr) was solved only up to N = 80. Up to N = 50 the solutions of (O¢)
and (Opg) agreed within a small tolerance. For N > 50 the numerical solution of (Oc¢)
became unstable, see Figure 2, while the solution for (Og) remained stable.

In the solution of Example 1 the constraints on the control are not active. Therefore
from (28) it follows that the adjoint state has to be zero on I' in this case. This is true as
one can see in Figure 3. In Figure 4 the measures i and [y are shown.

In the sequel we do not distinguish between the exact and the numerical solutions, that
means we drop the ’h’ in the notation. All solutions are calculated via (O¢) and N = 50.

13



Table 1: Results for different mesh sizes

(<) (Or)

N | timein s | |7, — yd||c(§) time in s | |7, — yd||c(§)
10 1 0.0328879 1 0.0328879
20 2 0.0333261 9 0.0333261
30 7 0.0333989 48 0.0333989
40 20 0.0334234 164 0.0334234
50 46 0.0334345 424 0.0334345
60 121 0.0334406 1019 0.0334404
70 401 0.0334440 1994 0.0334440
80 405 0.0334470 4056 0.0334463
90 653 0.0334479

100 1184 0.0334490

110 1759 0.0334591

120 3509 0.0334504

Figure 2: Optimal control for (O¢) and N = 60

14
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Figure 3: Adjoint state for Example 1
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6.2 Illustration of Corollary 1

Example 2:
yq = (1 — 0.5)% + (13 — 0.5)% + a, —10 <u(s) <10 forall s €T,
k=0, —10 < y(z) <10 for all y € Q,

with a real number a, a < 3.5 or a > 4. The function y,; satisfies

A <0 ifa<35b
AR P ITIRY
and therefore the assumptions of Corollary 1 hold. The numerical solutions fulfills the
analytically predicted properties, especially (17). As examples we illustrate the functions
Yar Ya, and yg £+ 0 for a = 3 (resp. a = 5) in Figure 5 along 1 = 0.5. The values of the
functional are Jy(%,8) = 0.0335 (resp. J4(%,d) = 0.0389).

335

Figure 5: ¥z, ys and y; + 0 for Example 2 and a = 3 (resp. a = 5) along z; = 0.5

6.3 Further examples

Example 3:
Yq = sin 3wy + sin 37 xo, —1.5<u(s) <1 forall seT,
k= 0.01, —10 < y(x) <10, for all y € Q.

This example is to illustrate relationship (28). The function y, is shown in Figure 6 and
the numerical solution in Figure 7.
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Figure 6: Function y, for Example 3
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Figure 7: w, —B, and y; for Example 3
K
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In addition, Figure 7 shows the function —p/k on one edge of I'. The adjoint state also
agrees on all four edges of I". For the functional we get J;(u,d) = 1.96.

In order to demonstrate relationship (29), consider

Example 4:
Yqg = sin 3wwy + sin 3w, —5<u(s) <5 forallseTl,
k=0, —0.5 <y(z) <05 forallyeQ.

In Figure 8 the optimal control together with the adjoint state on I and the corresponding
state function are illustrated; J,(@,d) = 1.87.

“3:'::::"11
SN
L

0000‘0‘0‘0‘0““‘
IS
i

Figure 8: Optimal control, adjoint state, and state function for Example 4

6.4 Comparison with minimization of the L?>-norm

Example 5: Regard the desired state

110 | (21, 22) — (0.5,0.5)] if (21, 22) — (0.5,0.5)] < 0.1

0 otherwise,

yd($1,$2) = {

which is shown in Figure 9, and

—5<u(s) <5 forall sel. (30)

18



Figure 9: Function y, for Example 5

For this example we want to compare the numerical solution (i, uc) of problem

(Pc) Minimize Je(y,u) = |ly — yd||c(§)
subject to the state equation (1) and (30),
with the solution (yz ,,%z2) of problem
(Pr2)  Minimize Jpa(y,u) = [ly — yall 123

subject to the state equation (1) and (30).

The results are shown in Figure 10 and Figure 11, the functional values are

Je(Yae ue) = 0.518,

Jo (Y, Tr2) = 0.989,
Jr2 (Y., te) = 0.257,
Jr2(ya, ., Tr2) = 0.00516.
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Figure 10: Optimal control %e and state yg., for Example 5
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Figure 11: Optimal control uz> and state Yu,» for Example 5
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A Discretization of control, state function, and state
equation

Choose a discretization parameter N € N. Following Maurer and Mittelmann [10], we
introduce index sets

I(Q) ={(i,j) e N : 1<, j < N~ 1},
I1(Q) = {(i,j) e ¥ : 0 < 4,5 < N},
I(T) = 1(Q) — 1(%),

the mesh size h = 1/N, and grid points

Discretization of control functions u

€r2

UN,0 UN,1 UN,2 UN,N—1 UN,N
1
UN—1,0 UN—1,N
Q
u2,0 U2, N
uy,0 |YL.0 Y1,1 uiN
Y0,0 Yo,1 vo,N
o %00 0,1 uo,2 Uo,N-1 1 a1

Figure 12: Discretization of v and y

The controls v € L!(T') are approximated by continuous, piecewise linear functions
up : ' = R,
up = u; je |
(i.4)€I(T)
with real numbers u; ;, (i,7) € I(I'), see Figure 12, and continuous, piecewise linear func-
tions e : ' — R, satisfying

62-,]-(8) . 1 lf S = xi,j
|0 if s = a3y for some (k,1) € I(T), (i,7) # (k,1).

Furthermore, each function e/, (i,5) € I(T), is differentiable in all non-grid-points of T".
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Discretization of state functions y

We approximate the state functions y € H(Q2) N C(Q) by continuous functions y, : Q@ — R,

Yn = Z yign™,

(i,4)€1($2)

with real numbers y; ;, (i,7) € (), and continuous functions 7™/ : Q — R, satisfying

iyj(x) - 1 ifzx= T j
T =20 it = 2y for some (k1) € 1(Q), (4, §) # (kD).

Restricted to one of the squares of size h (see Figure 12), each function 5™’ admits the
form

0" (1, T3) = az17y + bry + €1y + d,
with real numbers a, b, ¢, d.

Discretization of the constraints

These are the inequality constraints (3), (4), and (5). The discrete counterparts of these
constraints are given by

Yij — 0 < ya(wi;) (i,9) € 1(Q),
—Yij — 0 < —ya(zi) (i,9) € 1(Q),
w5 < U (4,5) € I(T),
—Uj; < —Uy (4,5) € I(I),
Yij < Yo (i,5) € 1(),

—Yij <~ (i,7) € I(Q).

Discretization of the state equation

We use a finite element method. Let V}, be the real vector space V}, :span{ni’j}(iyj)el(g),
where the 1™/ have been defined above. Instead of solving (1) we solve the discretized
variational equation

Find y; € V}, such that

/(Vw - Vyn + oyp) do = / ouyp, ds (31)
Q T

holds for every ¢ € V},. Introducing the vectors
- T
u = (UO,Oa Uo, 15+ yUO,Ny- -+ yUNNy--- , UNO, - - - ,Ulﬁo) s
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y = (yo,o,yo,l, -5 Yo,N> Y105 - - 7yN,N)T,
and evaluating equation (31) for ¢ = 5™, (i, j) € I(Q), we get a system of linear equations,
Ey = Bu. (32)

Defining constants ¢; = h?/9+2/3, co = h?/36 —1/3, c3 = h?/18 — 1/6, this system reads
as

deryig + 2e3(Yictj + Yisrj + Yij—1 + Yij1) + 2(Yiz1j-1 + Yit1j-1 + Yic1j+1 + Yit1j+1) =
0 (i,5) €1(Q)

2¢1Yi0 + ¢3(Yi—1,0 + Yivr0 +2¥i1) + c2(Yic11 + Yir1,1)
= h/6(ui_1,0 + 4ui,0 + Ui+1,0) 1 S 7 § N —1

2¢1Y0.5 + ¢3(Yoj—1 + Yoj+1 + 2y1,5) + c2(Y1j—1 + Y1 j+1)
= h/6(ugj—1 + dugj + o 1) 1<3<N-1

2¢1yin + (Y1, N + Yigrn + 20in-1) + 2 (Yicin-1 + Yigrn-1)
= h/6(u;—1 § + 4u; N + Uit1N) 1<e<N-—-1

2c1yn,j + c3(Ynj—1 + Y1 + 2unv—15) + c2(Yn—1,j-1 + Yn—1,541)
:h/G(UN,j_1+4UN,j+UN7j+1) 1 g] SN—I

c1Y0,0 + c3(Y1,0 + Yo1) + c2y11 = h/6(u10 + dugo + uo 1)

cryno + cs(Yng +yn—1,0) + c2yn—11 = h/6(un1 +4uno + un_1,)

c1yo,n + c3(yi,n + Yo,n—1) + C2y1,n—1 = h/6(u1,n + dug n + uon_1)

cyn,y + cs(Yyv—1,n + ynv-1) + c2yn—1,nv—1 = h/6(un_1,n + dunn + un,n_1).

The matrices E and B are not written down explicitly but can be extracted.

Discretization of the functional

Evaluating the integral expression in the functional of (P;) at u = uy,, we get /u,zl ds =
r
u? Au, with the matrix A,

>~
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