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Abstra
t

We investigate the s
aling properties of the two-dimensional (2D) Anderson model of lo
alization with purely o�-

diagonal disorder (random hopping). In parti
ular, we show that for small energies the in�nite-size lo
alization

lengths as 
omputed from transfer-matrix methods together with �nite-size s
aling diverge with a power-law

behavior. The 
orresponding exponents seem to depend on the strength and the type of disorder 
hosen.

Key words: Lo
alization, o�-diagonal disorder, 
riti
al exponents, bipartiteness

1. Introdu
tion

Of paramount importan
e for the theory of dis-

ordered systems and the 
on
ept of Anderson lo-


alization [1{5℄ is the s
aling theory of lo
alization

as proposed in 1979 [6℄. Espe
ially in 2D, this the-

ory predi
ts the absen
e of a disorder-driven MIT

for generi
 situations su
h that all states remain

lo
alized and the system is an insulator [7{9℄. How-

ever, already early [10,11℄ it was suggested that

an Anderson model of lo
alization with purely o�-

diagonal disorder might violate this general state-

ment sin
e non-lo
alized states were found at the

band 
enter [12{14℄. Further numeri
al investiga-
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tions in re
ent years [15{19℄ have un
overed ad-

ditional eviden
e that the lo
alization properties

at E = 0 are spe
ial. In parti
ular, it was found

that the divergen
e in the density of states DOS

is a

ompanied by a divergen
e of the lo
alization

lengths � [15,16℄. This divergen
e does not violate

the s
aling arguments [20℄, sin
e it 
an be shown

that its s
aling properties are 
ompatiblewith 
rit-

i
al states only [16℄, i.e., there are no truly extended

states at E = 0. Of importan
e for the model is a

very spe
ial symmetry around E = 0 whi
h holds

in the bipartite 
ase of an even number of sites

[20,21℄. Then the spe
trum is symmetri
 su
h that

for every eigenenergy E

i

< 0 there is also a state

with energy E

i

> 0. This situation is 
onne
ted

with a so-
alled 
hiral universality 
lass. Further-

more, the model is 
losely 
onne
ted to the random


ux model studied in the quantum-Hall situation
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where the o�-diagonal disorder is due to a random

magneti
 
ux through the 2D plaquettes.

Thus although we do not have a true MIT, we

nevertheless have a transition from lo
alized via

delo
alized to lo
alized behavior as we sweep the

energy through E = 0. We 
onsider a single ele
-

tron on the 2D latti
e with N sites des
ribed by

the Anderson Hamiltonian

H =

N

X

i 6=j

t

ij

jii hjj+

N

X

i

�

i

jii hij (1)

where jii denotes the ele
tron at site i. The onsite

energies �

i

are set to 0 and the o�-diagonal disor-

der is introdu
ed by 
hoosing random hopping el-

ements t

ij

between nearest neighbor sites.

We test three di�erent distributions of t

ij

: (i) a

re
tangular distribution t

ij

2 [
 � w=2; 
 + w=2℄

[15℄, (ii) a Gaussian distribution P (t

ij

) =

exp

�

�(t

ij

� 
)

2

=2�

2

�

=

p

2��

2

, and (iii) a re
t-

angular distribution of the logarithm of t

ij

where P (ln t

ij

=t

0

) = 1=w if jln t

ij

=t

0

j � w=2 or

P (ln t

ij

=t

0

) = 0 otherwise [14℄. The logarithmi


distribution appears more suited to model a
tual

physi
al systems [14℄. We also note that the log-

arithmi
 distribution avoids problems with zero t

elements and thus there is no need to introdu
e

an arti�
ial lower 
uto� as for the box and Gaus-

sian distributions [15℄. Furthermore, the box and

Gaussian distributions will usually have negative

t values whi
h 
orrespond to a rather arti�
ial

phase shift.

In the 
ase of re
tangular and normal distribu-

tions we set the width w and the standard devia-

tion � to 1 and 
hange the 
enter 
 of the distribu-

tion. In the 
ase of the logarithmi
 t distribution

t

0

= 1 sets the energy s
ale and we 
hange the

disorder width w. Values of the parameters were


 = 0, 0:25, 0:5, and 1:0 for the re
tangular distri-

bution; 
 = 0 and 
 = 0:25 for the Gaussian distri-

bution and w = 2, 6, and 10 for the logarithmi
 t

distribution.
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Fig. 1. Redu
ed lo
alization length �=M for various system

sizesM of a box t distribution with 
 = 0. Symbols indi
ate

di�erent energies ranging from 0:025 (Æ), 0:0225 (�) to

2� 10

�5

(�).
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Fig. 2. Redu
ed lo
alization length �=M for various system

sizesM of a Gaussian t distribution with 
 = 0:25. Symbols

indi
ate di�erent energies ranging from 0:03 (�), 0:0275

(�) to 2� 10

�5

(N).

2. Computation of the lo
alization lengths

at E 6= 0

The transfer-matrix method [22,23℄ was used to


ompute the lo
alization lengths for strips of vari-

ous widths M up to M = 100 in the energy inter-

val 2� 10

�5

� E � 0:2048. In Figs. 1, 2, and 3 we
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Fig. 3. Redu
ed lo
alization length �=M for various system

sizesM of a logarithmi
 t distribution with w = 2. Symbols

indi
ate di�erent energies ranging from 0:2048 (Æ), 0:1024

(�) to 2� 10

�4

(�).

show the system size dependen
e for, e.g., spe
ial

values of 
 and w and all three disorder distribu-

tions. The a

ura
y of our results was 0:1�0:3% or

1% depending on the disorder distribution and the

values of parameters, see Table 1 for a
tual param-

eter values. Next, the �nite-size-s
aling analysis of

Ref. [23℄ was applied to the data. The 
al
ulated

lo
alization lengths usually in
rease as the energy

approa
hes 0. Only, for small even width values

(10; 20) it de
reases signi�
antly
lose toE = 0 [19℄

whi
h makes �nite-size s
aling impossible. There-

fore the smallest system sizes were dropped dur-

ing the �nite-size s
aling pro
edure. Results for the

�nite-size s
aling 
urves are shown in Fig. 4 for the

three di�erent distributions.

3. Criti
al exponents

One expe
ts that the s
aling parameters � ob-

tained from �nite-size s
aling diverge 
lose to E =

0 [24℄. However, the pre
ise fun
tional form of this

divergen
e is not yet know. In Ref. [24℄ it has been

suggested that for energies E > E

�

the divergen
e


an be des
ribed by a power law as
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Fig. 4. Finite-size-s
aling plots for box (
 = 0,M 2 [50; 80℄,

large open symbols), Gaussian (
 = 0, M 2 [20; 60℄, �lled

symbols), and logarithmi
 (w = 2, M 2 [30; 100℄, small

open symbols) t distributions.

�(E) /

�

�

�

�

E

0

E

�

�

�

�

�

(2)

with the 
riti
al exponent �. For even smaller

jEj � E

�

, this behavior should then 
hange to

�(E) / exp

r

lnE

0

=E

A

(3)

with 
onstants E

0

and A given by the renormal-

ization group 
ow [24℄. Double-logarithmi
 plots

of � vs. E in Figs. 5, 6 and 7 
on�rm the power-law

behavior with reasonable a

ura
y down to E �

10

�4

. For smaller values it has been shown already

in Ref. [19℄ that a new behavior is to be expe
ted.

Table 1 
olle
ts the values of the 
riti
al expo-

nent obtained for di�erent disorders. In the 
ase

of the logarithmi
 t distribution and w = 10 the

power-law divergen
e fails, therefore the expo-

nent was not 
al
ulated. From Table 1, it 
an be

easily seen that all 
al
ulated values are in the

range 0:2 � � � 0:5. The exponent is apparently

not universal but seems to depend on the kind

of disorder and the a
tual value of parameters;

for stronger disorders � be
omes smaller (for the

logarithmi
 t distribution the disorder strength

in
reases with w [14℄, for the re
tangular distri-

bution the strongest disorder appears at 
 = 0:25

3



Table 1

Estimated values of the exponents of the lo
alization lengths for various disorder strengths and distributions. The error

bars represent the standard deviations from the power-law �t and should be in
reased by at least one order of magnitude

for a reliable representation of the a
tual errors.

disorder parameters a

ura
y sizes used estimated

distribution in % in �nite-size s
aling exponent

box 
 = 0 0:1-0:2 30-80 0:326� 0:002

box 
 = 0 0:1-0:2 25-65 0:325� 0:002

box 
 = 0:25 0:1-0:2 30-70 0:319� 0:001

box 
 = 0:5 0:1-0:2 30-70 0:361� 0:001

box 
 = 1:0 0:1-0:3 30-70 0:444� 0:002

Gaussian 
 = 0 0:1-0:2 30-60 0:314� 0:001

Gaussian 
 = 0:25 1 30-100 0:310� 0:001

Gaussian 
 = 0:25 1 35-95 0:308� 0:001

logarithmi
 w = 2 1 20-100 0:412� 0:007

logarithmi
 w = 6 1 20-100 0:251� 0:004

logarithmi
 w = 10 1 20-100 |
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Fig. 5. Variation of the in�nite-size lo
alization length �

with E for box distributions. The inset shows the t distri-

bution for 
 = 0.

[15℄). This non-universality is in agreement with

the results of Ref. [24℄.

As the lo
alization lengths 
al
ulated for odd

and even strip widths may exhibit di�erent behav-

ior [14,19℄ we repeated the pro
edure also for some

odd-width systems for re
tangular and Gaussian

distributions. The di�eren
e is within error bars,

thus for these disorder strengths the e�e
t is neg-

ligible.
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Fig. 6. Variation of the in�nite-size lo
alization length �

with E for Gaussian distributions. The inset shows the t

distribution for 
 = 0.

4. Con
lusions

Our results suggest that the lo
alization-

delo
alization-lo
alization present in the o�-

diagonal Anderson model of lo
alization in 2D 
an

be des
ribed by a set of exponents that model the

divergen
e of the lo
alization lengths � at E = 0.

Note that these exponents are in reasonable agree-

ment with the exponent 0:5 �rst estimated for

the s
aling of the parti
ipation numbers in Ref.

[15℄. Down to E � 10

�4

the power-law behavior


an model the data reasonably well. Thus we ex-
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Fig. 7. Variation of the in�nite-size lo
alization length �

with E for logarithmi
 distributions. The inset shows the

t distribution for w = 2.

pe
t the 
rossover predi
ted in Ref. [24℄ to appear

at smaller energies. We �nd that the exponents

depend on the strength and distribution of the o�-

diagonal disorder also in agreement with Ref. [24℄.

Currently, we are extending these 
al
ulations to

smaller energies.

We note that it might be interesting to also in-

vestigate the situation in honey
omb latti
es [25℄,

where the van Hove singularity of the square lat-

ti
e atE = 0 does not interfere with the divergen
e

due to the bipartiteness whi
h is of interest here.
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