Exponents of the localization lengths
in the bipartite Anderson model with off-diagonal disorder
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Abstract

We investigate the scaling properties of the two-dimensional (2D) Anderson model of localization with purely off-
diagonal disorder (random hopping). In particular, we show that for small energies the infinite-size localization
lengths as computed from transfer-matrix methods together with finite-size scaling diverge with a power-law
behavior. The corresponding exponents seem to depend on the strength and the type of disorder chosen.
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1. Introduction

Of paramount importance for the theory of dis-
ordered systems and the concept of Anderson lo-
calization [1-5] is the scaling theory of localization
as proposed in 1979 [6]. Especially in 2D, this the-
ory predicts the absence of a disorder-driven MIT
for generic situations such that all states remain
localized and the system is an insulator [7-9]. How-
ever, already early [10,11] it was suggested that
an Anderson model of localization with purely off-
diagonal disorder might violate this general state-
ment since non-localized states were found at the
band center [12-14]. Further numerical investiga-
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tions in recent years [15-19] have uncovered ad-
ditional evidence that the localization properties
at E = 0 are special. In particular, it was found
that the divergence in the density of states DOS
is accompanied by a divergence of the localization
lengths X [15,16]. This divergence does not violate
the scaling arguments [20], since it can be shown
that its scaling properties are compatible with crit-
ical states only [16],1.e., there are no truly extended
states at £ = 0. Of importance for the model is a
very special symmetry around £ = 0 which holds
in the bipartite case of an even number of sites
[20,21]. Then the spectrum is symmetric such that
for every eigenenergy F; < 0 there is also a state
with energy E; > 0. This situation is connected
with a so-called chiral universality class. Further-
more, the model is closely connected to the random
flux model studied in the quantum-Hall situation
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where the off-diagonal disorder is due to a random
magnetic flux through the 2D plaquettes.

Thus although we do not have a true MIT, we
nevertheless have a transition from localized via
delocalized to localized behavior as we sweep the
energy through £ = 0. We consider a single elec-
tron on the 2D lattice with N sites described by
the Anderson Hamiltonian

N N
H=2 ti; i) (Gl + ) eli) (il (1)

i#j i

where |7) denotes the electron at site ¢. The onsite
energies ¢; are set to 0 and the off-diagonal disor-
der is introduced by choosing random hopping el-
ements ¢;; between nearest neighbor sites.

We test three different distributions of ¢;;: (i) a
rectangular distribution ¢;; € [c — w/2,c + w/2]
[15], (ii) a Gaussian distribution P(¢;;) =
exp [—(ti; — ¢)*/20?%] /V2ro?, and (iii) a rect-
angular distribution of the logarithm of ¢;;
where P(Int;;/to) = 1/w if [Int;;/to] < w/2 or
P(lnt;;/to) = 0 otherwise [14]. The logarithmic
distribution appears more suited to model actual
physical systems [14]. We also note that the log-
arithmic distribution avoids problems with zero ¢
elements and thus there is no need to introduce
an artificial lower cutoff as for the box and Gaus-
sian distributions [15]. Furthermore, the box and
Gaussian distributions will usually have negative
t values which correspond to a rather artificial
phase shift.

In the case of rectangular and normal distribu-
tions we set the width w and the standard devia-
tion o to 1 and change the center c of the distribu-
tion. In the case of the logarithmic ¢ distribution
to = 1 sets the energy scale and we change the
disorder width w. Values of the parameters were
c=0,0.25, 0.5, and 1.0 for the rectangular distri-
bution; ¢ = 0 and ¢ = 0.25 for the Gaussian distri-
bution and w = 2, 6, and 10 for the logarithmic ¢
distribution.
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Fig. 1. Reduced localization length A\/M for various system
sizes M of a box t distribution with ¢ = 0. Symbols indicate
different energies ranging from 0.025 (o), 0.0225 () to
2 x 1075 (O).
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Fig. 2. Reduced localization length A\/M for various system
sizes M of a Gaussian ¢ distribution with ¢ = 0.25. Symbols
indicate different energies ranging from 0.03 (e), 0.0275
(M) to 2 x 1075 (a).

2. Computation of the localization lengths

at E #0

The transfer-matrix method [22,23] was used to
compute the localization lengths for strips of vari-
ous widths M up to M = 100 in the energy inter-
val 2 x 1075 < E < 0.2048. In Figs. 1, 2, and 3 we
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Fig. 3. Reduced localization length A/M for various system
sizes M of a logarithmic ¢ distribution with w = 2. Symbols
indicate different energies ranging from 0.2048 (o), 0.1024
() to 2 x 10~* (O).

show the system size dependence for, e.g., special
values of ¢ and w and all three disorder distribu-
tions. The accuracy of our results was 0.1 —0.3% or
1% depending on the disorder distribution and the
values of parameters, see Table 1 for actual param-
eter values. Next, the finite-size-scaling analysis of
Ref. [23] was applied to the data. The calculated
localization lengths usually increase as the energy
approaches 0. Only, for small even width values
(10, 20) it decreases significantly close to E = 0[19]
which makes finite-size scaling impossible. There-
fore the smallest system sizes were dropped dur-
ing the finite-size scaling procedure. Results for the
finite-size scaling curves are shown in Fig. 4 for the
three different distributions.

3. Critical exponents

One expects that the scaling parameters £ ob-
tained from finite-size scaling diverge close to £ =
0 [24]. However, the precise functional form of this
divergence is not yet know. In Ref. [24] it has been
suggested that for energies £ > E* the divergence
can be described by a power law as

MM

Fig. 4. Finite-size-scaling plots for box (¢ = 0, M € [50, 80],
large open symbols), Gaussian (¢ = 0, M € [20, 60], filled
symbols), and logarithmic (w = 2, M € [30,100], small
open symbols) ¢ distributions.
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with the critical exponent v. For even smaller
|E| < E*, this behavior should then change to

£(P) oc oxp | 02 Q

with constants Fp and A given by the renormal-
ization group flow [24]. Double-logarithmic plots
of £ vs. F in Figs. 5, 6 and 7 confirm the power-law
behavior with reasonable accuracy down to F =
10~—%. For smaller values it has been shown already
in Ref. [19] that a new behavior is to be expected.
Table 1 collects the values of the critical expo-
nent obtained for different disorders. In the case
of the logarithmic ¢ distribution and w = 10 the
power-law divergence fails, therefore the expo-
nent was not calculated. From Table 1, it can be
easily seen that all calculated values are in the
range 0.2 < v < 0.5. The exponent is apparently
not universal but seems to depend on the kind
of disorder and the actual value of parameters;
for stronger disorders v becomes smaller (for the
logarithmic ¢ distribution the disorder strength
increases with w [14], for the rectangular distri-
bution the strongest disorder appears at ¢ = 0.25



Table 1

Estimated values of the exponents of the localization lengths for various disorder strengths and distributions. The error
bars represent the standard deviations from the power-law fit and should be increased by at least one order of magnitude

for a reliable representation of the actual errors.

disorder parameters accuracy sizes used estimated
distribution in % in finite-size scaling exponent
box c=0 0.1-0.2 30-80 0.326 + 0.002
box c=0 0.1-0.2 25-65 0.325 + 0.002
box c=0.25 0.1-0.2 30-70 0.319 + 0.001
box c=10.5 0.1-0.2 30-70 0.361 4+ 0.001
box c=1.0 0.1-0.3 30-70 0.444 4+ 0.002
Gaussian c=0 0.1-0.2 30-60 0.314 + 0.001
Gaussian c=0.25 1 30-100 0.310 + 0.001
Gaussian c=0.25 1 35-95 0.308 + 0.001
logarithmic w =2 1 20-100 0.412 4+ 0.007
logarithmic w =06 1 20-100 0.251 4+ 0.004
logarithmic w =10 1 20-100 —
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Fig. 5. Variation of the infinite-size localization length £
with F for box distributions. The inset shows the ¢ distri-
bution for ¢ = 0.

[15]). This non-universality is in agreement with
the results of Ref. [24].

As the localization lengths calculated for odd
and even strip widths may exhibit different behav-
ior [14,19] we repeated the procedure also for some
odd-width systems for rectangular and Gaussian
distributions. The difference is within error bars,
thus for these disorder strengths the effect is neg-
ligible.
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Fig. 6. Variation of the infinite-size localization length ¢
with E for Gaussian distributions. The inset shows the ¢
distribution for ¢ = 0.

4. Conclusions

Our results suggest that the localization-
delocalization-localization present in the off-
diagonal Anderson model of localization in 2D can
be described by a set of exponents that model the
divergence of the localization lengths £ at E = 0.
Note that these exponents are in reasonable agree-
ment with the exponent 0.5 first estimated for
the scaling of the participation numbers in Ref.
[15]. Down to E ~ 10~* the power-law behavior
can model the data reasonably well. Thus we ex-
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Fig. 7. Variation of the infinite-size localization length £
with E for logarithmic distributions. The inset shows the
t distribution for w = 2.

pect the crossover predicted in Ref. [24] to appear
at smaller energies. We find that the exponents
depend on the strength and distribution of the off-
diagonal disorder also in agreement with Ref. [24].
Currently, we are extending these calculations to
smaller energies.

We note that it might be interesting to also in-
vestigate the situation in honeycomb lattices [25],
where the van Hove singularity of the square lat-
tice at £ = 0 does not interfere with the divergence
due to the bipartiteness which is of interest here.
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