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Exploiting the results of the exact solution for the ground state of the one-dimensional spinless
quantum gas of Fermions and impenetrable Bosons with the ,u/:nizj particle-particle interaction,
the Hellmann-Feynman theorem yields mutually compensating divergences of both the kinetic and
the interaction energy in the limiting case uy— — 1/4. These divergences result from the peculiar
behavior of both the momentum distribution (for large momenta) and the pair density (for small
inter-particle separation). The available analytical pair densities for 4 = —1/4, 0, and 2 allow
to analyze particle-number fluctuations. They are suppressed by repulsive interaction (u > 0),
enhanced by attraction (u < 0), and may therefore measure the kind and strength of correlation.
Other recently proposed purely quantum-kinematical measures of the correlation strength arise from
the small-separation behavior of the pair density or — for Fermions — from the non-idempotency
of the momentum distribution and its large-momenta behavior. They are compared with each
other and with reference-free, short-range correlation-measuring ratios of the kinetic and potential
energies.
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I. INTRODUCTION

In the ground state of electron systems, it has been
shown that exchange (X) due to the Pauli ‘repulsion’ and
correlation (C) due to the Coulomb repulsion suppress
particle-number fluctuations and consequently reduce the
energy [1-3]. This energy reduction provides most of the
‘glue’ that binds atoms together to form molecules and
solids [4]. Particle-number fluctuations mean that the
particle number in a domain (which may be a muffin-tin
sphere, a Wigner-Seitz cell, a Bader basin [5], a Daudel
loge [6], a bond region between atoms in a molecule, etc.)
fluctuates due to zero temperature quantum motion with
a certain probability. Fulde [1] takes CoHs as an example
for such fluctuations. The number of valence electrons
in a sphere containing a C atom fluctuates around its
average value 4. Comparison of Hartree-Fock (HF) cal-
culations for CoH, with calculations which include cor-
relation shows that the probability for finding 0, 1, 7, 8
valence electrons goes practically down to zero due to cor-
relation. A similar fluctuation-correlation analysis is per-
formed in Ref. [2] for several dimers and in Ref. [3] for the
uniform electron gas in one, two, and three dimensions
(1D, 2D, 3D). These calculations for the above mentioned
narrowing of the particle-number distribution need the
pair density (PD) n(71,72) and this narrowing is used to
derive from the PD a quantum-kinematical measure for
the correlation strength [1]. Correlation and its strength
is furthermore characterized by the small-separation (or
on-top) behavior of the PD. The spherically averaged on-
top curvature of the spin-parallel PD may serve as a local
correlation measure [7] and from the topological analy-

sis of the intracule PD a short-range correlation strength
is defined [8]. In addition to these PD based quantities
the concept of a correlation ‘entropy’ has been developed
for Fermi systems [9-12] (in Ref. [11] the term Jaynes
entropy is used). It is based on the correlation induced
non-idempotency of the correlated one-particle density
matrix (1IPDM) ~(7;7"). All these correlation measures
intend to make the qualitative terms ‘weak and strong
correlation’ quantitatively precise. For a survey on such
measures and on relations between correlation, fluctua-
tion, and localization see Ref. [13] and references cited
therein. Note that strong correlation means extreme
narrowing which is usually described as electron local-
ization. The recent fluctuation-correlation analysis has
an antecedent in Ref. [14], where fluctuation and corre-
lation of electrons in molecules have been studied with
the conclusion that all measures of the spatial localiza-
tion of an electron are determined by the corresponding
Fermi hole of the parallel-spin PD. For a summary of
this work we refer the reader to Ref. [5]. Therein also
the topological analysis of the density p(7) has been de-
veloped which allows to identify (visualize) local groups
of electrons (like atomic shells, molecular bonds, lone
electron pairs, m-electron subsystems). An alternative
to this density-based analysis is the PD based method
of an ‘electron localization function’ [15]. What can be
derived when the PD is known is summarized in Ref.
[16], where also references are given for the comparison
of calculated PDs with PDs determined from experiment
(X-ray or electron scattering) via the dynamic structure
factor.

Correlated 1PDM and correlated PD need correlated



many-body wave functions (beyond the HF caricature),
which in quantum chemistry [17,18] are traditionally
obtained from configuration interaction (CI), coupled
cluster (CC), Mgller-Plesset, quantum Monte Carlo cal-
culations or recently from the contracted-Schrédinger-
equation method [19] (used in conjunction with a certain
generation of higher-order reduced density matrices from
the 2PDM via reconstruction and decoupling) or the in-
cremental method [20] which successfully applies the ac-
curate standard quantum-chemical methods CI and CC
to extended non-metallic systems. All these procedures
involve certain approximations or have restricted appli-
cability. So the existence of non-trivial exactly solvable
models which can provide 1IPDM and PD should be of
much interest for the above mentioned correlation, fluc-
tuation, and localization analysis. The system which is of
paramount importance for quantum chemistry and solid
state theory but unfortunately cannot be solved exactly is
the 3D electron gas with the Coulomb repulsion €2 /|2
between its particles [21]. All of its properties (like en-
ergy, momentum distribution, quasi-particle weight zp,
PD, static structure factor, and the more general dy-
namic structure factor, which contains the plasmon dis-
persion and damping as well as via the fluctuation-
dissipation theorem the dynamical screening) depend on
the dimensionless density parameter ry = ro/ap, where
ro is the radius of the Wigner-Seitz sphere containing in
average one electron and ag = h?/me? is the Bohr ra-
dius which is characteristic for all electron systems. In
the electron gas model at critical values of rs the zero-
temperature quantum phase transitions from an unpolar-
ized gas to a polarized fluid and on to a polarized Wigner
lattice appear [22]. In the following the electron gas often
serves as a reference system for comparison.

In the present paper, we apply the above mentioned
fluctuation-correlation analysis to the exactly solvable
Calogero-Sutherland (CS) model [23]. The CS model
is a model of long-range-interacting spinless particles in
1D and has been solved exactly by means of the Bethe-
Ansatz technique [23,24]. The solution is valid for both
fermionic and bosonic particle symmetry. Here we will
mostly concentrate on the Fermi systems. Furthermore,
the model can be shown to be the universal quantum
model underlying the dynamical interpretation of ran-
dom matrix theory [25,26]. This latter connection has
been used to also compute several correlation functions
exactly at three special values of the interaction strength,
among them the 1IPDM and the PD [23]. Thus although
the information is restricted to the 1D case, the model
nevertheless is ideally suited for testing the fluctuation-
correlation measures discussed above.

We shall consider the ground state properties of the
CS model [23]. The interaction is pairwise inversely pro-
portional to the distance z;; = |z; — ;| of two parti-
cles with interaction strength u, i.e., p/:cfj. The interac-
tion strength p > —1/4 is occasionally parametrized as

1 = A(A—1) with a parameter A = 1/2++/1/4+ pu > 1/2.
We shall mostly use the parameterization v = /1/4 + p,
such that p = v> — 1/4 and A = 1/2 + v. In the ther-
modynamic limit we assume constant density p(z) = n,
so the CS-ground state has only two parameters, v and
n. The 1/ :czzj interaction has the peculiarity not to pos-
sess a natural length such as the Bohr radius ag of the
Coulomb interaction, it has no length scale per construc-
tion. Therefore it is a model showing critical behavior,
which can be discussed in terms of universality classes
and their conformal anomalies [27-30]. This beauty of
the 1/z7; interaction shows up also in the analytical
Bethe-Ansatz solutions [23,31-35] and the explicit knowl-
edge of the correlated many-body wave functions [23,36].
From the Bethe-Ansatz technique the complete energy
spectrum and in particular the ground state energy per
particle as a function of the interaction strength param-
eter v is available [23]. We show that its kinetic and
interaction ‘components’ can be deduced with the help
of a theorem due to Schrédinger, Born, Fock, Giittinger,
but usually referred to as Hellmann-Feynman theorem
[37]. Surprisingly, when the interaction strength param-
eter v approaches its limiting value 0, both the kinetic
and the interaction energy diverge in such a way that
they compensate each other leaving the total energy fi-
nite. As we outline in the following, these divergences
result from the peculiar behavior of the 1IPDM and the
PD for v — 0 and are related to the “fall-into-the-origin”
already mentioned in Ref. [38].

For v = 0,1/2, and 3/2 — corresponding to u =
—1/4,0 and 2 or A =1/2,1, and 2 — it has been shown
[23] that the square of the ground state wave function is
intimately related to the eigenvalue distribution of ran-
dom matrices of the Gaussian orthogonal ensemble, the
Gaussian unitary ensemble, and the Gaussian symplectic
ensemble, respectively. Using this connection, Suther-
land had shown how to construct the 1PDM and the PD
using integral relations of random matrix theory. The re-
sulting formulas reduce the problem, say for the 1PDM,
from the evaluation of a high-dimensional integral to the
computation of a determinant of a matrix [24]. From
the 1IPDM ~(z — z'), the momentum distributions n,
for the three special values of y follow via Fourier trans-
form. Due to correlation the latter quantities are non-
idempotent. They determine the mentioned correlation
‘entropy’ per particle s = — > nslnn,/ Y n,. Also
the PD n(z12) is available from the correlated many-body
wave function. This allows us to calculate the fluctua-
tion ANx of the particle-number around its mean value
Nx =nX in any piece (domain) X of the z-axis. Com-
paring this variance of the particle-number distribution
Px(N) for the cases ‘no correlation’ (v = 1/2 or HF
approximation) and ‘correlation’ shows the above men-
tioned narrowing for repulsion (v > 1/2) in a smaller
ANx. For attraction (v < 1/2) a broadening with a



larger ANy appears.

The availability of exact solutions for certain values
of the interaction strength reminds of a similar situa-
tion for the Hooke’s law model, where two electrons with
Coulomb repulsion are bound by a harmonic oscillator
potential. In this case exact (correlated) wave functions
are known for certain values of the force constant (or
equivalently of the interaction strength) [39]. Within this
spirit also two electrons or an electron-positron pair in a
magnetic field can be treated [40,41].

In Section II, we introduce the CS model, define the
kinematical quantities used throughout the text, and
present the Hellmann-Feynman theorem. Section III is
devoted to the thermodynamic limit. In Section IV, after
presenting the HF approximation, we discuss first qual-
itatively and then analytically the influences of the CS
interaction on 1PDM and PD. In particular, we show
that the above mentioned divergences in kinetic and po-
tential energies are caused by a peculiar behavior of the
PD n(z;;) for small inter-particle separations z;; < k"
and of the momentum distribution n, for large momenta
k> kp or kK = k/kp > 1. In Section V we then apply
the mentioned fluctuation-correlation measures to the CS
model. Section VI is devoted to details of the numerics
and in Section VII we discuss extensions of our approach
to impenetrable bosons and lattice gases. We conclude
in Section VIII with a discussion of our results.

II. THE SYSTEM AND ITS GROUND STATE

A. Hamiltonian, energies, and quantum kinematical
quantities

The Hamiltonian of the CS model is H = T'+ V with

T
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T = i ipf s V:;veXt(xi)_}_;jT s (1)
with p? = —9?/9z2, and N equal to the number of parti-
cles. We assume the system to be confined to the length L
by an external potential vexs(z), e.g., a box or harmonic
oscillator potential. In the following we alternatively as-
sume periodic boundary conditions with vext(z) = 0 and
a density in the k space described by LAk/(2r) = 1. The
average particle density is n = N/L. Furthermore, it fol-
lows from dimensional reasons that all energies for the
Hamiltonian (1) are proportional to n? and all lengths
are measured in units of 1/n and all wave numbers in
units of n (thus kg ~ n) [23].

We denote the ground state energy and its kinetic and
potential ‘components’ by Ex = (H), Ty = (T, and
VN = (V), respectively. Then Ex = Tnx + Vy and
the corresponding energies per particle are ey = Enx /N,
tn = TN/N, VN = VN/N with ey = tn + vn. Let

further ®(xy,...,zy) be the antisymmetric ground state
wave function, normalized according to

dri...dz
[ B e =1, @)

where each N-particle configuration is counted only once.
Then the 1PDM is given as

, drs...dzy
N (z52') = IN—DU X

®(z,r2,...,28)®" (2, 22,...,2N), (3)

and the PD is

ny (21, 22) = /%@(m,xz,mg en) . ()
The PD describes the XC hole, vanishing for zero separa-
tion and approaching the Hartree product pn(z1)pn(z2)
for large separations. This PD is normalized as
[ dz1 [dzs ny(z1,22) = N(N —1). For the XC hole or
cumulant PD wy (z1,2z2) = pn(z1)pn(z2) — nn (21, 22)
this means

f dor / dz> wy (z1,32) = N. (5)

So the cumulant PD wy(z1,2z2) is size-extensively
normalized. We note that the particle density
follows either from pn(z) = qn(z;z) or from
pn(z1) = [dzs wn(z1,z2), of course with the property
[ dz pn(z) = N.

Furthermore with the abbreviation y = kgpz — for
spinless particles in 1D the Fermi wave number is kg =
mn [23], with spin it would be kp = mn/2 — and with the
dimensionless functions fn(y;y') hermitian, gn(y,y’)
non-negative, and hy(y1,92) = fn(y1;591)fn(y2;92) —
9N (Y1,y2), we can write for the IPDM

v (z;2') =n fa(y;y'), (6)
for the PD

nN(fcl,sz) =n? QN(ylay2)v (7)

and for the cumulant PD we have

wn (z1,22) = n® hn(y1,y2).- (8)

The dimensionless cumulant PD is thus hy = 1—gn and
normalized as
L [ dy: dy>

_ -1
N - hN(yl,yz) » (9)

which follows from Eq. (5). With these dimensionless
1PDM and PD and with the Fermi energy er = kZ /2 the
energies ty and vy are given by
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tN—_/iy_ sIn(wy)|  er (10a)
NJ =« 0 =y
and
_ 1 [dyidys J
UN = N TTQN(yl,Zn)y—%ZﬁF (10b)

Therefore tx/er, vn/er and en/ep are functions of u
and N. The latter dependence disappears for the ther-
modynamic limit as shown in Section III.

B. The Hellmann-Feynman and the virial theorem

If ey is known as a function of u, then ¢y and
vy can be obtained from the (Schrédinger-Born-Fock-
Giittinger-) Hellmann-Feynman theorem [37] without
knowing the quantum-kinematical quantities fn(y;y’)
and gn(y1,y2). This theorem says

dEN oH
T =) )
which for (1) gives
(96]\7
= p—". 12
UN = U o ( )
Consequently, we have
0
=(1—-p— 1
in ( u w) ex (13)
and also
0 o (1
ot =43 () )

Thus — with Eq. (10) in mind — the Hellmann-Feynman
relation (11) for the 1/z7; model establishes an integral
relation between the dimensionless IPDM fx on the Lh.s.
and the dimensionless PD gy on the r.h.s. of Eq. (14).

Another interesting property of the 1/ xfj interaction
is that the L or n dependence of exy can be concluded
from the virial theorem

(96]\]

2t 2uy = —L——. 15
N + 2N aL (15)
The factors 2 on the Lh.s. result from the powers of p;
in T' and of 1/z;; in V. For the 1/z;; interaction the
Lh.s. would read 2tx +vx. Eq. (15) means ex ~ L2 or

enx ~ n?, as discussed above by dimensional scaling.

IIT. THERMODYNAMIC LIMIT

We wish to study the thermodynamic limit with N —
oo and L — oo such that n = N/L = const. The result-
ing extended system has only two parameters, the (di-
mensionless) interaction strength parameter v and the
Fermi wave number kr. So t/er, v/er, and e/ep be-
come functions of v only. The thermodynamic limit
makes furthermore the 1IPDM and the PD to depend only
on kpzia = yi12 (homogeneity, isotropy). The dimen-
sionless functions fy, gy, and hy then take the forms
f(y12), 9(y12), and h(y12) = 1—g(y12), respectively, with
f(0) = 1 (uniform density) and g(0) = 0 or equivalently
h(0) = 1. These functions have v as the only parameter.
This differs from the electron gas, where the additional
parameter rs = ro/ap combines for dimensional reasons
the interaction strength € with the density n = 3/(47rd),
1/(mr3), and 1/(2r) for 3D, 2D, and 1D models, respec-
tively.

Due to the homogeneity and isotropy, the eigenfunc-
tions (or natural orbitals) of the IPDM «y(z—z') = nf(y)
become simply plane waves ¢{(z) = e'*® /L, such that

1 ; ,
’Y(CU _ m/) — Z Ennemkp-(z—z )
K

= d K
n /0 K N COS KY
=n f(y), (16)

where n,; is the momentum distribution, x = k/kp, and
y =krlz — 2'|.

For v = 1/2 (ideal spinless 1D Fermi gas) the Pauli
principle leads in the reciprocal space to the Fermi ice
block n? = (1 — |k|) and in the direct space to the ideal
X hole g°(y) = 1—[f%(y)]? with the dimensionless IPDM
f°(y) = (siny)/y following from Eq. (16) and with its on-
top behavior g°(y) — y2/3. The energy per particle is
eo = €r/3 = k& /6, and because of kr ~ n it obeys the
virial theorem (15).

In general, with y(0) = n, the momentum distribution
ny is normalized as Y., n, = N or

/ dk ng=1. (17)
0

The kinetic energy per particle is according to Eq. (10a)

e Fé2
t:6/ dk n—eq . (18)
0 2

n is a function of |k| and v, so t/eg is a function of v
only with ¢t = ey for v =1/2.

The corresponding expressions for the PD g(y) are ac-
cording to Eq. (9)

2 [ W) =1, hy) = 1 g(y) (19)
0

™



and for the interaction energy per particle according to
Eq. (10Db)

> dy 7
= = gly) e . 2
v 6/0 - g(y)y2€0 (20)

9(y) is a function of y and v, so v/eq is a function of v
only. With ¢ and v follows the integral relation

[ K2om, [dy pdg(y)

Al =_ | 2 229 21
/dﬁ28u /wyzau (2
0 0

as a consequence of the Hellmann-Feynman theorem ex-
pressed in Eq. (14). Correlation via v # 1/2 deforms the
X hole and the Fermi ice block as shown in Figs. 1 and
2 in such a way that Eq. (21) is maintained. A simi-
lar relation for the electron gas model (with k3 = 37%n)
has been used for a qualitative discussion of how n, and
9(kpri2) mutually depend on the parameter ry [42].

IV. HARTREE-FOCK APPROXIMATION AND
CORRELATION BEYOND IT

A. Hartree-Fock approximation

The simplest approximation for the quantities n, g(y),
t, and v is obtained from the HF approach. In this case
the ground state wave function ®gp(---) is a single Slater
determinant of one-particle wave functions, which are —
for an extended system — simply plane waves ¢} (z) as
for the ideal 1D Fermi gas. Thus the momentum dis-
tribution in Eq. (18) and the PD in Eq. (20) are to be
replaced by their ‘ideal’ expressions n and ¢°(y), respec-
tively. Consequently, we find tgyp = eg and vgr = 2ueq
and thus egp = (14 2u) eg, as shown in Fig. 3. Here the
identity (A5) has been used. The total HF energy enr
also obeys the Hellmann-Feynman theorem (13) and the
virial theorem (15).

B. Qualitative discussion of correlation

Due to correlation the true ground state energy per
particle, e, is below the HF energy egr and the true
ground state wave function ®(---) is no longer a single
Slater determinant. Note that the definition of the term
‘correlation’ needs a reasonable reference state, which is
Syp(---) in our case. So, correlation causes a negative
correlation energy ecorr = € — egp < 0, namely through
redistributions of g°(y) and n% which are shown in Figs.
1 and 2 and described in the following.

As we show in Fig. 1, correlation modifies the X hole of
the unperturbed PD. Especially the correlation induced
changes for small y are of interest, because the interac-
tion u/y? is there largest. The on-top behavior of the

uncorrelated X hole (v = 1/2 or HF) is described by
¢°(y) = ¥?/3+ .... In its correlated counterpart with a
v-dependent exponent and v-dependent coefficients (see
Appendix B)

9(y) = Ay® (L+ a1y + asy® +--+),

1
a=1+2v, IJZHZ—I-M, (22)

correlation for v # 1/2 shows up in o # 2 and A # 1/3.
More precisely, repulsive particle interaction (v > 1/2)
supports the Pauli ‘repulsion’, so the X hole is broadened
(through increasing o and decreasing A), but attractive
particle interaction (v < 1/2) fights against (or competes
with) the Pauli ‘repulsion’, so the X hole is narrowed
(through decreasing « and increasing A) as shown in Fig.
1 and Table I. This X hole narrowing (for v < 1/2) or
broadening (for v > 1/2) makes

o 1
6] dy 9v) _
0

T y? 2v

(23)

DN | =

22 for vz

The equation follows from Eq. (20) together with the
Hellmann-Feynman theorem (11). Thus v<wvgp = 2uep
for v # 1/2 as shown in Fig. 3. Below in Eq. (39) of Sec-
tion V A, we will see that this PD narrowing/broadening
is accompanied by enhanced particle-number fluctuations
for attraction (v < 1/2) and by suppressed ones for
repulsion (v > 1/2), respectively. Note the difference
against the electron gas model, where only repulsion
is present with suppressed particle-number fluctuations,
where ¢g(0) = g4+,(0) # 0, and the PD for parallel-spin
electrons is zero for vanishing separation and behaves
as gr1(y) = Cipy® + ... for small separation y. This
curvature coefficient Ct+ increases with increasing rs (=
increasing correlation), but the exponent of y does not
change with r;.

While in the HF approximation the PD follows from
the 1PDM according to

nur(z12) = n® — |yur(z12)]? (24)

correlation causes not only the change from the idempo-
tent ygr(x12) to the non-idempotent y(z12) but also the
appearance of an additional (non-reducible) term u(z12)
in

n(z12) = n® — |y(z12)|* — u(212) - (25)

This is the first step of the cumulant expansion [43]. Its
non-reducible term u(z12) is normalized as

2 oo
Efo dzis u(zi2) = c(2), (26)

where



)= 1= 2 ["doss e
*d
=1-2 [ L

= 1—foood/1 (ny)?
>0 (27)

is referred to as second-order non-idempotency of the
1PDM. For v = 1/2 or for the HF approximation it is
¢(2) = 0. The correlation induced non-idempotency of
the 1PDM «(z12) or equivalently of the momentum dis-
tribution n, makes ¢(2) > 0 and let ¢(2) increase with
increasing |v — 1/2|.

This correlation induced non-idempotency means
physically: Correlation excites particles and holes. This
is seen in the momentum distribution n, as correlation
tails for particles with n, > 0 for |x| > 1 and for holes
with 1 —n,, > 0 for |k| < 1. In Fig. 2, we show how cor-
relation thaws the Fermi ice block n = 6(1 — |x|). This
increases the kinetic energy independent whether the in-
teraction is attractive (v < 1/2) or repulsive (v > 1/2):
t > tgr as can be seen in Fig. 3. We note that n, has
no discontinuity at || = 1. Its value is 1/2 and near
k = 1 it follows a power law as is typical for all Luttinger
liquids with their zp = 0 [44,45].

This thawing or melting of the Fermi ice block (which
accompanies the above discussed broadening/narrowing
of the PD) we model analytically with the continuous
function

1

nH=§+B(1—n)B [1+07(1— k)P +by(1—k)* +..]
for 0 <k <1, (28a)
1
Ny = §—B(n—1)3 [1+0f(k—1)° +b5 (k- 1) +.. ]
for 1 <k <2, (28b)
_C Cy c4
=g (e
for2< k< o0 (28¢)
with [24,46]
11— 20
=i irw (29)

and v = 3 + 2v (Appendix B). The exponents 3,y and
the coefficients B, C, and bii,ci depend on v. It should
be 8 < 1. Eqns. (28b) and (28c) describe the correlation
tail (k > 1). This n, has to obey the normalization (17)
and the condition

[es) 1 2
3/ dnnnﬁ2zw>l,
0

2v - (30)

which follows from Eq. (18) together with the Hellmann-
Feynman theorem (11). For v = 1/2 (or HF) it is 8 = 0,

B(1+3,; bfc) = 1, and C' = 0. The correlation induced
melting for v # 1/2 shows up in 8 > 0, B(1+3,bF) < L,
and C > 0.

C. Results of the exact solution

With the help of the Bethe-Ansatz technique one ob-
tains [23,24] e = M%ep. e as a function of the inter-
action strength parameter A\ shows no special behavior
for )\i 1/2, but as a function of the interaction strength
n= )‘()‘ - 1)7

1 ? L
e=|-+4+v] e, v=4/~
2 0 g K

the non-analytical behavior for 4 — —1/4 is incorporated
in the variable v. For v — 1/2 it behaves like e —
(1 4 2u)eo.

Eq. (31) yields with the Hellmann-Feynman theorem
(13) the kinetic energy per particle,

Gy’
B 2v

(31)

€0 (32)

which behaves for v ~ 1/2 like t ~ (1 + 5u?)ep in agree-
ment with the above qualitative discussion as shown in
Fig. 3. Eq. (31) yields with Eq. (12) also the interaction
energy per particle

1
v=u<1+$>eo

which behaves for v &~ 1/2 like v = 2 again in agreement

with the above qualitative discussion. From Fig. 3 we see

that both ¢ and v diverge for v—0, while e remains finite.
Eqns. (32) and (33) lead to

o) o) 2
/ dnnnn2:6z/[/ @@] ,
0 o T Y

as another integral relation between the momentum dis-
tribution n, and the dimensionless PD ¢(y) in addition
to Eq. (21). These distribution functions have to change
with v in such a way that these relations (21) and (34)
are obeyed together with the normalization conditions
(17) and (19).

The PD n(z12) = n2g(y) with y = kpzio is known
analytically for the values v = 0, 1/2, and 3/2 [23,24].
For v = 0 it is (with the notation of Appendix A)

. 2 . .
siny . dsiny 7 d siny

gy:l—( >+S1y— - —— , (35

v) p ) g o = G (9)

(33)

(34)

for v = 1/2 (ideal Fermi gas) it is

g@)zl__(ﬁ;y>i

(36)



and for v = 3/2 it is

) +Si(2y)ﬁ%. (37)

The corresponding dimensionless cumulant PDs h(y) =
1 —g(y) are given in Table II together with their Fourier
transforms

Rq) =2 / " dy cos(ay) h(y). (38)

They have via S(g) = 1 — h(q)/7 a simple relation to
the static structure factor (or van Hove correlation func-
tion) S(g) = (pgp})/N, which describes the correlation
of density-density fluctuations. p, = > .exp(—igz;) is
the Fourier transform of the density operator p(z) =
> ;6(x — x;). The three PDs g(y) are shown in Fig. 1
and the three structure factors S(q) in Fig. 4.

For v = 1/2 the weak oscillations of g(y) and the
(first-order) kink of S(q) arise from the Fermi momen-
tum distribution n, with its sharp discontinuity zp = 1
at k = 1. With increasing repulsion the oscillations of
9(y) are enhanced, what is displayed in the reciprocal
space by the peak of S(q) at ¢ = 2 (and a 3rd-order kink
at ¢ = 4). The first maximum of g(y) runs through a
certain trajectory from (w, 1) to (2.99, 1.24). This is
analog to the electron gas model (where the term Friedel
oscillations is used and) which shows with increasing r;
(i) enhanced oscillations with corresponding trajectories
of the maxima and minima [47] and (ii) the emergence
of an increasing hump in S(q) at ¢ = 2 [48]. This hump
structure is even more marked in the (approximately fre-
quency independent) local field correction G(g) which
appears in the dynamic structure factor S(q,w) [49-52],
from which then follows the static structure factor via
S(g) = [dw/(2r) S(g,w) [21]. One of the differences
between the CS and the electron gas model is that in
the latter case zp continuously decreases with increas-
ing rs starting with zg = 1 for ry = 0, whereas in the
CS model there is no adiabatic continuity [45] and zp
abruptly jumps from 1 to zero when going from v = 1/2
to v # 1/2. Whereas repulsion enhances the Friedel os-
cillations of g(y) and the kink structure of S(g), increas-
ing attraction let them disappear: for v = 0 both g(y)
and S(q) approach the value 1 smoothly (non-oscillatory)
from below. But the kink structure of S(q) at ¢ = 2 has
a relict in this limit: the 2nd derivative is discontinu-
ous (2nd-order kink). For the on-top behavior of g(y)
in terms of g(0), ¢'(0), ¢”(0) the following holds: It is
9(0) = 0, according to the Pauli principle, ¢'(0) = 7/6
for v =0, but 0 for v > 0, and it is g"’(0) = 0 for v = 0,
infinite for 0 < v < 1/2, but 2/3 for v = 1/2, and 0 for
v>1/2.

With the identities (A2)—-(A4) the normalization con-
dition (19) is fulfilled. From Eqns. (35)—(37) follow the
on-top coefficients of Eq. (22); they are shown in Table

I. Note that the last two terms of Eq. (35) do not con-
tribute to the normalization because of Eq. (A3) and that
the last term causes the odd on-top coefficients of Table
I and also the linear behavior for small y. Its oscillations
are exactly canceled by the combined oscillations of the
second and the third term. Simultaneously, these terms
ensure the correct normalization.

The PD (36) for v — 1/2 plugged into Eq. (10b) yields
with the identity (A5) the same as results from Eq. (33),
which follows from the total energy per particle, Eq. (31),
and the Hellmann-Feynman theorem (13), namely v =
2ueg. Similarly the PD (37) for v — 3/2 plugged into
Eq. (20) yields with the identities (A5) and (A6) the same
as results from Eq. (33), namely v = 4ueq/3.

For v = 0 a divergence appears, because from the PD
(35) follows an on-top behavior, which is linear in y as
shown in Fig. 1 and Table I. This linear behavior results
from the last term of Eq. (35), which does not influence
the normalization (19), but it makes the interaction en-
ergy v ~ fooo dy g(y)/y? to diverge logarithmically in
agreement with the divergence of v — —eo/8v for v~ 0
as displayed in Fig. 3.

The divergence of the interaction energy is accompa-
nied and compensated by the corresponding divergence
of the kinetic energy t — eo/8v. This indicates a spe-
cial asymptotic behavior of the momentum distribution
ny for v~ 0, namely Eq. (28¢c) with v~ 3. For v > 3
the integral fooo dk n.k? is convergent, but with fyi?) for
ViO it diverges logarithmically, whereas the normaliza-
tion integral (17) remains convergent. The counterpart
to this asymptotic behavior of n, for Kk — oo is the on-
top behavior of the PD for y — 0 as shown in Fig. 1
and Table I with a smooth transition of the coefficient A
in Eq. (22) from 7/6 via 1/3, to 16/135 for v = 0, 1/2
and 3/2, respectively. With quadratic interpolation of
the coefficients shown in Table I as functions of v, one
may continuously switch the on-top behavior of the PD
g(y) between its form at v = 0 and 3/2. For the PD
exponent o = 1 + 2v we refer to Appendix B, where also
the momentum-distribution exponent is conjectured as
v =34 2v.

These divergences of the kinetic and the interaction
energies indicate that for attractive particle interaction
p/x7; with p— — 1/4 the system becomes unstable (no
ground state with finite kinetic and potential energies).
We remark that it was shown in Ref. [38] that the singular
particle interaction —|u|/|712|> makes already two parti-
cles to fall together (“fall-into-the-origin”) for |u| > 1/4
(ground state with E — —oo) and for || < 1/4 there are
only scattering states with £ > 0 (no bound states with
E <0) [23].

For v = 0 the exact solution of the CS model yields
the momentum-distribution data. In Section VI we will
give the details of the necessary numerical calculation.
The coefficients of Eq. (28a) are fitted to the n, values



for Kk =0...1 and the coefficients of Eq. (28b) are fitted
to the n, values for Kk = 1...2. The coefficients are
chosen to make also n,, at kx = 2 continuous and smooth.
Finally b7 is fine tuned to make the normalization equal
to 1 according to (17). The results are shown in Fig.
2 and the values of the coefficients are given in Table
IV. The case v = 3/2 is similarly treated only with the
difference that also the kinetic energy ¢ = %eo can be
used for the fine tuning in addition to the normalization
condition (17). The results are shown also in Table IV.
Here bj and bj have been used for fine tuning (which
yields the normalization 0.997 and ¢ = 1.34 eg, instead
of 1 and 4ey/3).

V. FLUCTUATION-CORRELATION ANALYSIS
A. Quantities following from the pair density

Particle-number fluctuations: Following Fulde [1] one
may ask to what extent correlation influences particle-
number fluctuations ANx in a domain X, i.e., a certain
interval of the z axis, where in the average there are
Nx = nX particles. These fluctuations are measured
quantitatively by [1,3,13]

(ANx)2 1 f f
VLX) -
N = @A dzy ; dza w(z12)

1 Y Y h(ylz)
=1- = d d 39
Y/o ?Jl/o Y2 . (39)

with Y = kg X = mnX. Following the Appendix A of
Ref. [3] the 2D integral (39) is reduced to a 1D integral
with the help of the Fourier transform (38), namely

(40)

(ANx)* _ 1_3/“@1—0%(@/) h(q)
Nx Y/ 7 q? T

The results are shown in Fig. 5, where also the case y —
oo (‘strict’ or ‘perfect’ correlation [3]) is displayed.

With h(y) = 1 — g(y) and with the expansion of g(y)
according to Eq. (22) — see also the text after Eq. (37)
— the small-X expansion of Eq. (39) is

2
% = ]. -+ dlnX —+ dg(nX)2 -+ dg(nX)S
+dy(nX) +ds(nX)5 +... . (41)

The slope d; at X = 0 does not depend on the interac-
tion strength parameter v as shown in Table III because
of g(0) = 0 and h(0) = 1 not depending on v; but the co-
efficients of the next terms do. Correlation is seen in the
change of the coefficients d; for v = 1/2 to the coefficients
for v # 1/2. Thus the particle-number fluctuations are
suppressed due to repulsive particle interaction, but en-
hanced due to attractive particle interaction: correlation

makes the particle-number distribution Px (N) more nar-
row for repulsion (v > 1/2) and more broad for attrac-
tion (v < 1/2). We remark, that fluctuation enhance-
ment (induced by attractive interaction) generally may
support/cause clusterings (e.g., paramagnons prior the
para-to-ferromagnetic phase transition). In our case this
tendency shows up in the sudden “fall-into-the-origin”
at v = 0. If one considers with X = 1/n a Wigner-Seitz
‘sphere’ (with ‘radius’ X/2 and Nx = 1), then

(ANx)?
Nx

_ x()
x(1/2)’

is a reasonable correlation measure based on particle-
number fluctuations as we show in Fig. 6.

On-top behavior: The exponent o and the coefficients
A,a; of Eq. (22) describe the short-range or dynamical
correlation, i.e., the small-separation behavior of g(y),
see Table I. Cioslowski’s correlation cage [8] is in our case
simply the inter-particle-separation range y = 0. .. Ymax
with yyax being that separation where the PD g(y) has
its first maximum g¢pax = g(Ymax). For v = 0,1/2,3/2
the corresponding values are ymax = o0, m, 2.99 and
gmax= 1, 1, 1.24 [3]. One may ask to what extent the
correlation cage contributes to the interaction energy and
define

Ti(v) =

x(v) = (42)

_ Ty 9w/
1 dy g(y)/y?

(43)

_ Veage (V)
22(1/) =1- ma%age(’/)

as an energetic correlation measure with Veage(0) = 1;
the expression simplifies when using (23). Both ¥; and
Y, vanish for v = 1/2 as shown in Fig. 6.

B. Quantities following from the momentum
distribution

Critical exponent: The critical or correlation expo-
nent 5 of Eq. (29) can be computed from conformal field
theory [24,46]. It describes (together with the coefficient
B) the behavior of n, near k = 1 according to Eqns.
(28a) and (28b). For the three special values v = 0,1/2
and 3/2, this gives 1/4,0, and 1/4, respectively. The
exponent 7 describes the decay of the correlation tail.

Non-idempotency and correlation ‘entropy’: The g-
order non-idempotency is [12] ¢(q) = 1 — fooo dk (n,)9.
The derivative of c(q) at g = 1is s = (1) or

s(v) = —/ dk nglnn, >0 (44)
0

to be referred to as correlation ‘entropy’ [12,13]. It has
been plotted in Fig. 7.



Correlation tail properties: The relative number of
particles (or holes) in the corresponding correlation tail
is [12,13,53]

Neait (v) = floo dk n, = /01 de (1 —ny) < 1.  (45)

The contribution of the correlation tail to s is [13]

Stant (V) = —/ dk nglnn, < s(v). (46)
1

In addition to these quantum-kinematic measures one
may use [13]

floo dk n,Kk>

Tait(v) = e
tal(y) fooo dk n,m2 >~

(47)
as another energetic measure with Ti,;(0) = 1. Also
these correlation measures vanish for v = 1/2 as shown
in Fig. 8.

C. The correlation energy

For ecorr = € — ek follows

1 2
€corr = — (V - 5) €o - (48)

Kinetic and interaction energy contribute teorr =
1 1 :

—s=€corr a0d Vgorr = (1 4 55) €corr , respectively, to ecorr-

Their v-dependence is shown in Fig. 9.

D. Comparison of the correlation measures

When comparing the computed correlation measures
in Figs. 6, 7 and 8 it turns out that for small |v — 1/2]
the PD based measures Y1 » of Eqns. (42) and (43) are
proportional to ¥ — 1/2 (which is —e,,./(2ep)), whereas
the n,, based measures (44)—(47) behave like (v — 1/2)?2
(which is —ecorr/€0). So the latter ones are not so sensi-
tive as the first ones. With s(v) = 0.5828|ecorr/€0| + - - -
the Collins’ conjecture |ecorr| ~ s is confirmed at least
for weak interaction. In this limit also Niaj, Siain and
Tiai are mutually proportional and their derivatives are
proportional to ¥; and X,.

We remark that the quantities x(v), Veage (), Neail(v),
Stail(v), and Tian(v) are reference free, i.e., they are
defined without reference to the non-interacting case
v = 1/2 — which in our case is simultaneously equiv-
alent to the Hartree-Fock approximation. References ap-
pear in X » with x(1/2) and Viage(1/2) and in s(v) with
s(1/2) = 0. Whereas this observation is important for
quantum chemistry — as stressed by J. Cioslowski [8] —
whenever multi configuration appears, it is less important
in our case which is well described by single configura-
tion.

VI. NUMERICAL DETERMINATION OF 1PDM
AND n(x) FOR THE CS MODEL

As has been noted previously in Ref. [23], the square
of the ground state wave function in the periodic CS
model for the special values v = 0, 1/2, and 3/2 may
be recognized as being identical to the joint probabil-
ity density function for the eigenvalues of matrices from
Dyson’s ensemble [26]. The interaction strength param-
eters v = 0,1/2 and 3/2 correspond to orthogonal, uni-
tary, and symplectic ensembles, respectively. Results
from the theory of random matrices then enable the cal-
culation of various correlation functions [23]. In partic-
ular, the 1PDM can be expressed in terms of a determi-
nant of an appropriate matrix Fp(qV ) [24]. The size of this
matrix is specified by the number of particles N to be
(N —1)2 for v =1/2 and 3/2 and (N — 1)2/4 for v = 0.
Each element of F)\" contains simple trigonometric 1D
(v=1/2 and 3/2) or 2D (v = 0) integrals.

For some cases, most notably v = 1/2, the resulting de-
terminant can be computed analytically and correspond-
ing expressions have been given in Ref. [24]. For the
other cases, we have evaluated the determinant numeri-
cally [24], using a subdivision of the system volume (peri-
odicity length) according to L/Ly = 42,402, and 402 for
v =0, 1/2, and 3/2, respectively. The particle number,
odd due to periodicity of the wave function [24], var-
ied from N =1 to 401, corresponding to a variation in
density n from nearly 0 to nearly 1. Taking the Fourier
transform, we next compute the momentum distribution
n, for all densities. In Fig. 10, we show results for one
of the three special v values.

Next, we apply the definitions of correlation measures
and correlation energies as given in Sections III, IV, and
V and study their density dependence. In Fig. 11 we
show results for the entropy s and in Fig. 12 for the vari-
ous energies as the density is varied. As all energies scale
with n?, these measures should be density independent
when normalized with respect to eg. However, we do in
fact see a pronounced density dependence for n > 0.5/ Lg
and also for n < 0.05/Lo. This latter density dependence
is simply due to the small particle numbers, thus a small
size of F,£§ ) and consequently a limited resolution when
computing the 1PDM at fixed L/Lgy. The density depen-
dence at large n values is more intricate to explain. The
computation of the IPDM by the connection with ran-
dom matrix theory works for the periodic model. Thus
there exists a Brioullin zone and the tail of n, for |k
outside this Brioullin zone is folded back into it. The tail
of n, thus tends to be dominated by this effect for large
n values as shown in Fig. 10. However, knowing that
the correlation measures must be independent of density
in the thermodynamic limit, we deduce their values by
restricting us to these density regions where the indepen-
dence holds. Then we apply the fit according to Eq. (28)



as explained in Section IV B. In Fig. 7 we indicate by
error bars the small variation in the correlation entropy
when using instead of n, as in Fig. 2 the n, as in Fig.
10. Similarly, the corresponding variations in N1, Stail,
and Ti,; are within the symbol sizes.

VII. EXTENSION TO IMPENETRABLE BOSONS
AND LATTICE GASES

As mentioned in the introduction, the CS model is also
solvable for bosonic particle symmetry. The bosonic wave
functions have to obey an additional boundary condition,
namely they have to vanish for inter-particle separations
z;; — 0 such that the resulting system consists of impen-
etrable or hard-core particles [23] with additional u/z3;
interaction. Both PD and 1PDM may be calculated as
before. The PD is independent of statistics [23], thus the
fermionic exchange hole agrees with the bosonic impen-
etrability hole and all quantities computed before based
on the PD are the same in the bosonic and the fermionic
case. For the 1PDM this is different, the momentum dis-
tribution of bosons is quite different from the fermionic
n, as shown in Fig. 13. However, energetic quantities and
correlation measures based upon those are nevertheless
independent of the statistics and should thus be the same
for bosons and fermions. In Fig. 12 we show that this is
indeed the case. Thus besides the density independence
we have another criteria that allows us to extract the cor-
rect values of the correlation measures from these plots.
We note that the abovementioned unwanted density de-
pendence is also present in the bosonic n, and visible
in Figs. 11 and 12. Also present is the aliasing effect as
shown in Fig. 14.

In Refs. [23,24], it had been shown to be useful to re-
strict the family of wave functions of the CS model for
both bosonic and fermionic symmetry to a lattice such
that the coordinates are integers z; = 1,2,...L [54-56].
Only the normalization constants of the wave functions
change and the 1PDM can be computed much as before
[23], replacing the integrals in Fp(qV ) by appropriate sums
[24]. Furthermore, the structure factor S(g) is known
exactly and therefore also the PD [24]. The resulting lat-
tice gas has a particle-hole symmetry and thus we need
to consider n < 1/2Lg only. However, the density N/L
now enters all expressions in a non-trivial way and the
very useful density independence of the continuum model
for the quantities considered here is no longer applicable.
Nevertheless, the continuum model corresponds to the
low-density limit of the discrete model. In Fig. 11, we
show that this is indeed the case for, e.g., the correlation
entropy.
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VIII. DISCUSSION AND CONCLUSIONS

Both the PD based and the n,, based correlation mea-
sures (42)—(47) vanish for v = 1/2 (no interaction). But
the first ones are more sensitive because of ¥ o ~ v—1/2
near to the no-interaction point as shown in Fig. 6, while
the second ones are ~ (v — 1/2)? like ecorr of Eq. (48)
as shown in Figs. 7 and 8 and therefore cannot distin-
guish between attractive and repulsive interactions. In
1D the PD based measures (42) and (43) are identical
for fermionic and (hard core) bosonic particles. The n,
based measures (44)—(47) do not apply for bosonic parti-
cles, they are designed for fermionic particles only. Thus
for correlation measures of bosonic particles, the mea-
sures considered in this work are either inapplicable or
identical to their fermionic counterparts as for the PD
based measures and ecqr.

Whereas for repulsive particle interaction results well-
known from other extended many-body systems are con-
firmed again — enhancement of the Friedel oscillations
with maxima/minima trajectories, humps/peaks of the
static structure factor developing from its non-interacting
kink, suppression of particle-number fluctuations — we
have found in the present work that for switching on at-
traction particle-number fluctuations are contrarily en-
hanced and that this is accompanied by a smoothening
of the PD (the oscillations disappear) and of the static
structure factor (the kink disappears) as well as by the
appearance of a linear on-top behavior of the PD. The
latter behavior results in a diverging interaction energy
in the strong attraction limit although the total energy
remains finite. In momentum space the Fermi ice block
thaws for both cases and correlation tails develop. In
the strong attraction limit the correlation tail becomes
so long ranged that the kinetic energy diverges, thereby
exactly compensating the divergence of the interaction
energy. We have shown that these divergences can be
derived from the exactly known energy as a function of
the interaction strength with the help of the Hellmann-
Feynman theorem (11). This theorem allows to calculate
t(v) and v(v) from e(v) and gives — in addition to their
normalizations (17) and (19) — exact relations for n,
and the PD as shown in Eqns. (18) and (20).

In summary, we have applied the Hellmann-Feynman
theorem to the 1D quantum system of l/x%j interact-
ing particles making extensive use of the exact solution
available for the CS model. We have analyzed particle-
number fluctuations and studied measures for the cor-
relation strength based on the pair density and on the
momentum distribution. Our results show that the qual-
itative terms ‘weak and strong correlation’ can not be
captured quantitatively in a single index, but rather a
variety of quantities must be employed [13].



ACKNOWLEDGMENTS

RAR gratefully acknowledges support by the Deutsche
Forschungsgemeinschaft (SFB393) and the hospitality of
the Max-Planck-Institut fiir Physik komplexer Systeme
(Dresden) for an extended stay where much of this work
was started. PZ thanks the Max-Planck-Institut fiir
Physik komplexer Systeme and P. Fulde for supporting
this work.

APPENDIX A: CERTAIN INTEGRALS

The following identities are valid with Si(z)

fo dylsin(y)/y):

/ d_a:sm:c_Sl(oo):l ’ (A1)
o T I T 2
00 . 2
/ d_a:(sma:) :1 ’ (A2)
0 ™ xr 2
dx d sinx
hted = A
| Esito -si@n L= -0, (a3
dx d sinzg 1
= —— A4
[0 Lsim 2T~ 2 (ag)
®dz 1 sinz \ 1
— |1 = = — A
/0 v 502[ ( z )] 37 (45)
Xdz 1 d sinzx 2

Eqns. (A2) — (A4) determine the normalization of the
PD’s (35) — (37). Eqns. (A5) and (A6) determine the
interaction energy v for the HF approximation and for
v = 3/2. For the fluctuation analysis with Eqns. (39)
and (40)

2 [ siny >
= f dy cos(qy) ( )
™ Jo )

(1-3)oe-a (A7)
2 [ aysin(a sicn) =22 -

—Shll-gez-q) (A8)
%/Ooo dy cos(qy) Si(y )di/ iy _

-1-2+2mpn-gloe-q , (A9)
/ N dy COS(qy) dsiny _

[1——1 HJ_FZ] (A10)
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1
sa-2(@—g+1)02-0q) , (A11)
. 2
27r/ dy1/ dys (7sm|y1 —y2|> =
ly1 — ya
1 —cosqY q,
2/0 dq 7 (1- 2) =
1—cos2Y —2YSi(2Y) +
2y _
iy 16087 (A12)
0 Z

APPENDIX B: KIMBALL LIKE THEOREMS
FOR n(z12) AND n,

The small separation or on-top behavior of the PD
n(z12) is derived here similarly as Kimball found the
cusp relation dg(kgr)/dr|r—o = g¢(0)/ap [or ¢'(0)
arsg(0), a = (4/97)'/3] for the pair correlation of the 3D
uniform electron gas [57]. We remark that the general co-
alescing cusp theorem is due to Kato [58]. Let us consider
two adjacent electrons with the center-of-mass and rela-
tive coordinates, X = (z1+x2)/2 and z = z1 —z3, respec-
tively. Focusing on the z dependence the Schrodinger
equation can be written as

_dd_; % p(2)®(X, z3,...) =
(B — H)p(x)(X, z3,...), (B1)

where H' contains the remaining terms in the Hamilto-
nian. Note the missing factor 1/2 in the kinetic energy
term because the mass there has to be replaced by the
reduced mass of the electron pair (m — m/2). Because
E — H' is non-singular as = approaches zero, it is unim-
portant for small z. To lowest order in x we therefore
have p(z) = z* + ..., from which immediately follows
n(z) ~ z?* for the PD, see Eq. (22). This can be con-
cluded for A #1 also directly from the many-body wave
function @ ~ Tl;;z}; [23] and for A = 1 from Eq. (36).

A similar treatment of the asymptotic large x behav-
ior of the momentum distribution n, seems to lead in
Eq. (28c) to the conclusion ¥y = 2X + 2. This corre-
sponds to ny_ ~ g(0)/k8 for the 3D uniform electron
gas [53,57,59]. Note that in this case the exponent of
1/k (like the powers of y in the small-separation PD
g(y) = g(0) + arsg(0)y + Cy2 +...) does not depend
on the interaction strength €2, only the coefficients g(0)
and C depend on ry ~ €2 Unhke that, in the CS model
also the exponents « and v are interaction strength de-
pendent.
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TABLE I. On-top exponent and coefficients of the PD ac-
cording to Eq. (22).

v 0 1/2 3/2
«a 1 2 4
[ 1 16
A 6 3 135
ai 0 0 0
1 2 8
az 10 15 35
as 5T 0 0
o i 1 32
4 280 105 1225
as —— 0 0
1
o _ 1s7pm 2 21786
6 15120 4725 1091475
a S 0
7 551257
o i 2 125696
8 1330560 155925 1092566475
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TABLE II. Dimensionless cumulant PD h(y) and the struc-
ture factor S(q) used for the computation of ANx and ¥1(v)

as in Eqns. (40) and (42).

v| hy) S(g) =1—h(g)/n

of (22) —[Si(y) - 3] £22| [¢- $In(1+0)] 62— q)
+[2—%lngf—i]9(q—2)

3 (e=e)” 162~ q) + (¢~ 2)

3 (Si;;y)z_Si(Qy)ﬁSi;‘% [2—21n|1— &[] 64— q)
+6(q —4)

TABLE III. Coefficients of the small-X expansion of
2

% as in Eq. (41).

v 0 1/2 3/2

dy -1 -1 -1
7‘_2

ds D 9 0

ds 0 18 0
,”4

o - oo 2 ‘9 16 ‘9

ds 0 — 578 3028

TABLE IV. Coefficients as in Eq. (28) calculated from the
numerically determined momentum distribution n, for v =0

and 3/2 (at n = 1/2Ly).

v=20
K €[0,1] Kk € [1,2] K € [2,00]
B 0.863355] B 0.863355] C 0.017788
by —0.746775| by —0.750439 | c2 5.972791
by 0.731357 | by 0.747380
by —0.420828 | by —0.433779
bF 0.009552
v=3/2
K €[0,1] Kk € [1,2] K € [2,00]
B 0.552286] B 0.552286] C 1.46369
by 0.434380| b} 1.467126 | c2 2.053966
by —0.570516 | by —4.156361
b 4.180551
b —1.606130
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FIG. 1. Dimensionless PD g(y) = n(z12)/n? as a function
of the dimensionless inter-particle separation y = krz12 for
v = 0 (dashed), 1/2 (solid), and 3/2 (dotted). The thin line
is a guide to the eye only.
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FIG. 2. Fermionic momentum distributions n, vs.
k = k/kr with v = 0 (dashed), 1/2 (solid), and 3/2 (dot-
ted).
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FIG. 3. Bulk energy e (solid), kinetic energy t (dashed),
and potential energy v (dotted) plotted as functions of inter-
action strength parameter v. Thin lines denote the results of
the Hartree-Fock approximation, thick lines are exact. The
thin dashed-dotted line indicates the “fall-into-the-origin” at
v=0.
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FIG. 4. Static structure factor S(¢) =1—h(g)/m forv =0
(dashed), 1/2 (solid), and 3/2 (dotted). Inset: The three
curves do not coincide at a single point close to ¢ = 1.72.



Correlation measures

FIG. 5. Particle-number fluctuation (ANx)? /Nx in do-
mains X of the CS model after Eq. (40) for v = 0 (dashed),
1/2 (solid), and 3/2 (dotted). The dashed-dotted line corre-
sponds to (ANx)? /Nx for strict correlation [3].
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FIG. 6. PD based correlation measures 12 according
to (42) and (43) as functions of the interaction strength
parameter v. The thin dashed-dotted line indicates the
“fall-into-the-origin” at v = 0. The other lines are guides
to the eye only.
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FIG. 7. Correlation ‘entropy’ s vs. v as estimated from
the fermionic momentum distributions according to Eq. (44)
compared with |ecorr(v)/eo| of Eq. (48). The solid lines are
guides to the eye only. The thin dashed-dotted line is as in
Fig. 6.
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FIG. 8. Correlation measures based on the correlation tail
of the momentum distribution according to (45) — (47) as
functions of v. The thin dashed-dotted line is as in Fig. 6.
The other lines are guides to the eye only.
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FIG. 9. Bulk (solid), kinetic (dashed), and potential (dot- FIG. 11. Correlation ‘entropy’ (44) for fermions (solid line)
ted) correlation energies as a function of v. The thin  as a function of density at v = 3/2. The dashed-dotted line
dashed-dotted line is as in Fig. 3. corresponds to s obtained for the discrete CS model.
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FIG. 10. Fermionic momentum distributions n, for
v = 3/2 computed for N = 21, 41, 81, 121, 161, 201, 241, 281,
321, 361, and 401. The data for N = 21(o) , 41(0), 81(¢),
and 121(x) do not show any density dependence whereas the
larger density data (lines) do.

FIG. 12. Kinetic energy ¢t as computed from the Hell-
man-Feynman theorem (11) (dashed line), and ¢ from Eq.
(13) (solid lines) for fermions (thick line) and bosons (thin
line) as a function of density at v = 3/2.
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FIG. 13. Bosonic momentum distributions n, vs. k = k/kr
with v = 0 (dashed), 1/2 (solid), and 3/2 (dotted).
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FIG. 14. Bosonic momentum distributions n, for v = 3/2
computed for particle numbers identical to Fig. 10. The data
for N = 21(0) , 41(0O), 81(¢), 121(x), 161(+), and 201(x) do
not show any density-dependence effects.
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