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Exploiting the results of the exa
t solution for the ground state of the one-dimensional spinless

quantum gas of Fermions and impenetrable Bosons with the �=x

2

ij

parti
le-parti
le intera
tion,

the Hellmann-Feynman theorem yields mutually 
ompensating divergen
es of both the kineti
 and

the intera
tion energy in the limiting 
ase �! � 1=4. These divergen
es result from the pe
uliar

behavior of both the momentum distribution (for large momenta) and the pair density (for small

inter-parti
le separation). The available analyti
al pair densities for � = �1=4; 0; and 2 allow

to analyze parti
le-number 
u
tuations. They are suppressed by repulsive intera
tion (� > 0),

enhan
ed by attra
tion (� < 0), and may therefore measure the kind and strength of 
orrelation.

Other re
ently proposed purely quantum-kinemati
al measures of the 
orrelation strength arise from

the small-separation behavior of the pair density or | for Fermions | from the non-idempoten
y

of the momentum distribution and its large-momenta behavior. They are 
ompared with ea
h

other and with referen
e-free, short-range 
orrelation-measuring ratios of the kineti
 and potential

energies.

71.10.-w, 05.40.-a, 71.45.Gm, 71.10.Hf, 71.10.Pm

I. INTRODUCTION

In the ground state of ele
tron systems, it has been

shown that ex
hange (X) due to the Pauli `repulsion' and


orrelation (C) due to the Coulomb repulsion suppress

parti
le-number 
u
tuations and 
onsequently redu
e the

energy [1{3℄. This energy redu
tion provides most of the

`glue' that binds atoms together to form mole
ules and

solids [4℄. Parti
le-number 
u
tuations mean that the

parti
le number in a domain (whi
h may be a muÆn-tin

sphere, a Wigner-Seitz 
ell, a Bader basin [5℄, a Daudel

loge [6℄, a bond region between atoms in a mole
ule, et
.)


u
tuates due to zero temperature quantum motion with

a 
ertain probability. Fulde [1℄ takes C

2

H

2

as an example

for su
h 
u
tuations. The number of valen
e ele
trons

in a sphere 
ontaining a C atom 
u
tuates around its

average value 4. Comparison of Hartree-Fo
k (HF) 
al-


ulations for C

2

H

2

with 
al
ulations whi
h in
lude 
or-

relation shows that the probability for �nding 0, 1, 7, 8

valen
e ele
trons goes pra
ti
ally down to zero due to 
or-

relation. A similar 
u
tuation-
orrelation analysis is per-

formed in Ref. [2℄ for several dimers and in Ref. [3℄ for the

uniform ele
tron gas in one, two, and three dimensions

(1D, 2D, 3D). These 
al
ulations for the above mentioned

narrowing of the parti
le-number distribution need the

pair density (PD) n(~r

1

; ~r

2

) and this narrowing is used to

derive from the PD a quantum-kinemati
al measure for

the 
orrelation strength [1℄. Correlation and its strength

is furthermore 
hara
terized by the small-separation (or

on-top) behavior of the PD. The spheri
ally averaged on-

top 
urvature of the spin-parallel PD may serve as a lo
al


orrelation measure [7℄ and from the topologi
al analy-

sis of the intra
ule PD a short-range 
orrelation strength

is de�ned [8℄. In addition to these PD based quantities

the 
on
ept of a 
orrelation `entropy' has been developed

for Fermi systems [9{12℄ (in Ref. [11℄ the term Jaynes

entropy is used). It is based on the 
orrelation indu
ed

non-idempoten
y of the 
orrelated one-parti
le density

matrix (1PDM) 
(~r;~r

0

). All these 
orrelation measures

intend to make the qualitative terms `weak and strong


orrelation' quantitatively pre
ise. For a survey on su
h

measures and on relations between 
orrelation, 
u
tua-

tion, and lo
alization see Ref. [13℄ and referen
es 
ited

therein. Note that strong 
orrelation means extreme

narrowing whi
h is usually des
ribed as ele
tron lo
al-

ization. The re
ent 
u
tuation-
orrelation analysis has

an ante
edent in Ref. [14℄, where 
u
tuation and 
orre-

lation of ele
trons in mole
ules have been studied with

the 
on
lusion that all measures of the spatial lo
aliza-

tion of an ele
tron are determined by the 
orresponding

Fermi hole of the parallel-spin PD. For a summary of

this work we refer the reader to Ref. [5℄. Therein also

the topologi
al analysis of the density �(~r) has been de-

veloped whi
h allows to identify (visualize) lo
al groups

of ele
trons (like atomi
 shells, mole
ular bonds, lone

ele
tron pairs, �-ele
tron subsystems). An alternative

to this density-based analysis is the PD based method

of an `ele
tron lo
alization fun
tion' [15℄. What 
an be

derived when the PD is known is summarized in Ref.

[16℄, where also referen
es are given for the 
omparison

of 
al
ulated PDs with PDs determined from experiment

(X-ray or ele
tron s
attering) via the dynami
 stru
ture

fa
tor.

Correlated 1PDM and 
orrelated PD need 
orrelated
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many-body wave fun
tions (beyond the HF 
ari
ature),

whi
h in quantum 
hemistry [17,18℄ are traditionally

obtained from 
on�guration intera
tion (CI), 
oupled


luster (CC), M�ller-Plesset, quantum Monte Carlo 
al-


ulations or re
ently from the 
ontra
ted-S
hr�odinger-

equation method [19℄ (used in 
onjun
tion with a 
ertain

generation of higher-order redu
ed density matri
es from

the 2PDM via re
onstru
tion and de
oupling) or the in-


remental method [20℄ whi
h su

essfully applies the a
-


urate standard quantum-
hemi
al methods CI and CC

to extended non-metalli
 systems. All these pro
edures

involve 
ertain approximations or have restri
ted appli-


ability. So the existen
e of non-trivial exa
tly solvable

models whi
h 
an provide 1PDM and PD should be of

mu
h interest for the above mentioned 
orrelation, 
u
-

tuation, and lo
alization analysis. The system whi
h is of

paramount importan
e for quantum 
hemistry and solid

state theory but unfortunately 
annot be solved exa
tly is

the 3D ele
tron gas with the Coulomb repulsion �

2

=j~r

12

j

between its parti
les [21℄. All of its properties (like en-

ergy, momentum distribution, quasi-parti
le weight z

F

,

PD, stati
 stru
ture fa
tor, and the more general dy-

nami
 stru
ture fa
tor, whi
h 
ontains the plasmon dis-

persion and damping as well as via the 
u
tuation-

dissipation theorem the dynami
al s
reening) depend on

the dimensionless density parameter r

s

= r

0

=a

B

, where

r

0

is the radius of the Wigner-Seitz sphere 
ontaining in

average one ele
tron and a

B

= ~

2

=m�

2

is the Bohr ra-

dius whi
h is 
hara
teristi
 for all ele
tron systems. In

the ele
tron gas model at 
riti
al values of r

s

the zero-

temperature quantum phase transitions from an unpolar-

ized gas to a polarized 
uid and on to a polarized Wigner

latti
e appear [22℄. In the following the ele
tron gas often

serves as a referen
e system for 
omparison.

In the present paper, we apply the above mentioned


u
tuation-
orrelation analysis to the exa
tly solvable

Calogero-Sutherland (CS) model [23℄. The CS model

is a model of long-range-intera
ting spinless parti
les in

1D and has been solved exa
tly by means of the Bethe-

Ansatz te
hnique [23,24℄. The solution is valid for both

fermioni
 and bosoni
 parti
le symmetry. Here we will

mostly 
on
entrate on the Fermi systems. Furthermore,

the model 
an be shown to be the universal quantum

model underlying the dynami
al interpretation of ran-

dom matrix theory [25,26℄. This latter 
onne
tion has

been used to also 
ompute several 
orrelation fun
tions

exa
tly at three spe
ial values of the intera
tion strength,

among them the 1PDM and the PD [23℄. Thus although

the information is restri
ted to the 1D 
ase, the model

nevertheless is ideally suited for testing the 
u
tuation-


orrelation measures dis
ussed above.

We shall 
onsider the ground state properties of the

CS model [23℄. The intera
tion is pairwise inversely pro-

portional to the distan
e x

ij

= jx

i

� x

j

j of two parti-


les with intera
tion strength �, i.e., �=x

2

ij

. The intera
-

tion strength � � �1=4 is o

asionally parametrized as

� = �(��1) with a parameter � = 1=2+

p

1=4 + � � 1=2.

We shall mostly use the parameterization � =

p

1=4 + �,

su
h that � = �

2

� 1=4 and � = 1=2 + �. In the ther-

modynami
 limit we assume 
onstant density �(x) = n,

so the CS-ground state has only two parameters, � and

n. The 1=x

2

ij

intera
tion has the pe
uliarity not to pos-

sess a natural length su
h as the Bohr radius a

B

of the

Coulomb intera
tion, it has no length s
ale per 
onstru
-

tion. Therefore it is a model showing 
riti
al behavior,

whi
h 
an be dis
ussed in terms of universality 
lasses

and their 
onformal anomalies [27{30℄. This beauty of

the 1=x

2

ij

intera
tion shows up also in the analyti
al

Bethe-Ansatz solutions [23,31{35℄ and the expli
it knowl-

edge of the 
orrelated many-body wave fun
tions [23,36℄.

From the Bethe-Ansatz te
hnique the 
omplete energy

spe
trum and in parti
ular the ground state energy per

parti
le as a fun
tion of the intera
tion strength param-

eter � is available [23℄. We show that its kineti
 and

intera
tion `
omponents' 
an be dedu
ed with the help

of a theorem due to S
hr�odinger, Born, Fo
k, G�uttinger,

but usually referred to as Hellmann-Feynman theorem

[37℄. Surprisingly, when the intera
tion strength param-

eter � approa
hes its limiting value 0, both the kineti


and the intera
tion energy diverge in su
h a way that

they 
ompensate ea
h other leaving the total energy �-

nite. As we outline in the following, these divergen
es

result from the pe
uliar behavior of the 1PDM and the

PD for � ! 0 and are related to the \fall-into-the-origin"

already mentioned in Ref. [38℄.

For � = 0; 1=2, and 3=2 | 
orresponding to � =

�1=4; 0 and 2 or � = 1=2; 1, and 2 | it has been shown

[23℄ that the square of the ground state wave fun
tion is

intimately related to the eigenvalue distribution of ran-

dom matri
es of the Gaussian orthogonal ensemble, the

Gaussian unitary ensemble, and the Gaussian symple
ti


ensemble, respe
tively. Using this 
onne
tion, Suther-

land had shown how to 
onstru
t the 1PDM and the PD

using integral relations of random matrix theory. The re-

sulting formulas redu
e the problem, say for the 1PDM,

from the evaluation of a high-dimensional integral to the


omputation of a determinant of a matrix [24℄. From

the 1PDM 
(x � x

0

), the momentum distributions n

�

for the three spe
ial values of � follow via Fourier trans-

form. Due to 
orrelation the latter quantities are non-

idempotent. They determine the mentioned 
orrelation

`entropy' per parti
le s = �

P

�

n

�

lnn

�

=

P

�

n

�

. Also

the PD n(x

12

) is available from the 
orrelatedmany-body

wave fun
tion. This allows us to 
al
ulate the 
u
tua-

tion �N

X

of the parti
le-number around its mean value

N

X

= nX in any pie
e (domain) X of the x-axis. Com-

paring this varian
e of the parti
le-number distribution

P

X

(N) for the 
ases `no 
orrelation' (� = 1=2 or HF

approximation) and `
orrelation' shows the above men-

tioned narrowing for repulsion (� > 1=2) in a smaller

�N

X

. For attra
tion (� < 1=2) a broadening with a

2



larger �N

X

appears.

The availability of exa
t solutions for 
ertain values

of the intera
tion strength reminds of a similar situa-

tion for the Hooke's law model, where two ele
trons with

Coulomb repulsion are bound by a harmoni
 os
illator

potential. In this 
ase exa
t (
orrelated) wave fun
tions

are known for 
ertain values of the for
e 
onstant (or

equivalently of the intera
tion strength) [39℄. Within this

spirit also two ele
trons or an ele
tron-positron pair in a

magneti
 �eld 
an be treated [40,41℄.

In Se
tion II, we introdu
e the CS model, de�ne the

kinemati
al quantities used throughout the text, and

present the Hellmann-Feynman theorem. Se
tion III is

devoted to the thermodynami
 limit. In Se
tion IV, after

presenting the HF approximation, we dis
uss �rst qual-

itatively and then analyti
ally the in
uen
es of the CS

intera
tion on 1PDM and PD. In parti
ular, we show

that the above mentioned divergen
es in kineti
 and po-

tential energies are 
aused by a pe
uliar behavior of the

PD n(x

ij

) for small inter-parti
le separations x

ij

� k

�1

F

and of the momentum distribution n

�

for large momenta

k � k

F

or � � k=k

F

� 1. In Se
tion V we then apply

the mentioned 
u
tuation-
orrelationmeasures to the CS

model. Se
tion VI is devoted to details of the numeri
s

and in Se
tion VII we dis
uss extensions of our approa
h

to impenetrable bosons and latti
e gases. We 
on
lude

in Se
tion VIII with a dis
ussion of our results.

II. THE SYSTEM AND ITS GROUND STATE

A. Hamiltonian, energies, and quantum kinemati
al

quantities

The Hamiltonian of the CS model is

^

H =

^

T +

^

V with

^

T =

N

X

i

1

2

p

2

i

;

^

V =

N

X

i

v

ext

(x

i

) +

N

X

i<j

�

x

2

ij

; (1)

with p

2

i

= ��

2

=�x

2

i

, and N equal to the number of parti-


les. We assume the system to be 
on�ned to the length L

by an external potential v

ext

(x), e.g., a box or harmoni


os
illator potential. In the following we alternatively as-

sume periodi
 boundary 
onditions with v

ext

(x) = 0 and

a density in the k spa
e des
ribed by L�k=(2�) = 1. The

average parti
le density is n = N=L. Furthermore, it fol-

lows from dimensional reasons that all energies for the

Hamiltonian (1) are proportional to n

2

and all lengths

are measured in units of 1=n and all wave numbers in

units of n (thus k

F

� n) [23℄.

We denote the ground state energy and its kineti
 and

potential `
omponents' by E

N

= h

^

Hi, T

N

= h

^

T i, and

V

N

= h

^

V i, respe
tively. Then E

N

= T

N

+ V

N

and

the 
orresponding energies per parti
le are e

N

= E

N

=N ,

t

N

= T

N

=N , v

N

= V

N

=N with e

N

= t

N

+ v

N

. Let

further �(x

1

; : : : ; x

N

) be the antisymmetri
 ground state

wave fun
tion, normalized a

ording to

Z

dx

1

: : : dx

N

N !

j�(x

1

; : : : ; x

N

)j

2

= 1 ; (2)

where ea
hN -parti
le 
on�guration is 
ounted only on
e.

Then the 1PDM is given as




N

(x;x

0

) =

Z

dx

2

: : : dx

N

(N � 1)!

�

�(x; x

2

; : : : ; x

N

)�

�

(x

0

; x

2

; : : : ; x

N

); (3)

and the PD is

n

N

(x

1

; x

2

) =

Z

dx

3

: : : dx

N

(N � 2)!

j�(x

1

; x

2

; x

3

: : : ; x

N

)j

2

: (4)

The PD des
ribes the XC hole, vanishing for zero separa-

tion and approa
hing the Hartree produ
t �

N

(x

1

)�

N

(x

2

)

for large separations. This PD is normalized as

R

dx

1

R

dx

2

n

N

(x

1

; x

2

) = N(N � 1). For the XC hole or


umulant PD w

N

(x

1

; x

2

) � �

N

(x

1

)�

N

(x

2

) � n

N

(x

1

; x

2

)

this means

Z

dx

1

Z

dx

2

w

N

(x

1

; x

2

) = N: (5)

So the 
umulant PD w

N

(x

1

; x

2

) is size-extensively

normalized. We note that the parti
le density

follows either from �

N

(x) = 


N

(x;x) or from

�

N

(x

1

) =

R

dx

2

w

N

(x

1

; x

2

), of 
ourse with the property

R

dx �

N

(x) = N .

Furthermore with the abbreviation y = k

F

x | for

spinless parti
les in 1D the Fermi wave number is k

F

=

�n [23℄, with spin it would be k

F

= �n=2 | and with the

dimensionless fun
tions f

N

(y; y

0

) hermitian, g

N

(y; y

0

)

non-negative, and h

N

(y

1

; y

2

) � f

N

(y

1

; y

1

)f

N

(y

2

; y

2

) �

g

N

(y

1

; y

2

), we 
an write for the 1PDM




N

(x;x

0

) = n f

N

(y; y

0

); (6)

for the PD

n

N

(x

1

; x

2

) = n

2

g

N

(y

1

; y

2

); (7)

and for the 
umulant PD we have

w

N

(x

1

; x

2

) = n

2

h

N

(y

1

; y

2

): (8)

The dimensionless 
umulant PD is thus h

N

= 1�g

N

and

normalized as

1

N

Z

dy

1

�

dy

2

�

h

N

(y

1

; y

2

) = 1; (9)

whi
h follows from Eq. (5). With these dimensionless

1PDM and PD and with the Fermi energy �

F

= k

2

F

=2 the

energies t

N

and v

N

are given by

3



t

N

=

1

N

Z

dy

�

�

�

�

2

�y

2

f

N

(y; y

0

)

�

y

0

=y

�

F

(10a)

and

v

N

=

1

N

Z

dy

1

�

dy

2

�

g

N

(y

1

; y

2

)

�

y

2

12

�

F

(10b)

Therefore t

N

=�

F

, v

N

=�

F

and e

N

=�

F

are fun
tions of �

and N . The latter dependen
e disappears for the ther-

modynami
 limit as shown in Se
tion III.

B. The Hellmann-Feynman and the virial theorem

If e

N

is known as a fun
tion of �, then t

N

and

v

N


an be obtained from the (S
hr�odinger-Born-Fo
k-

G�uttinger-) Hellmann-Feynman theorem [37℄ without

knowing the quantum-kinemati
al quantities f

N

(y; y

0

)

and g

N

(y

1

; y

2

). This theorem says

�E

N

��

=

�

�

^

H

��

�

(11)

whi
h for (1) gives

v

N

= �

�e

N

��

: (12)

Consequently, we have

t

N

=

�

1� �

�

��

�

e

N

(13)

and also

�

��

t

N

= ��

�

��

�

1

�

v

N

�

: (14)

Thus | with Eq. (10) in mind| the Hellmann-Feynman

relation (11) for the 1=x

2

ij

model establishes an integral

relation between the dimensionless 1PDM f

N

on the l.h.s.

and the dimensionless PD g

N

on the r.h.s. of Eq. (14).

Another interesting property of the 1=x

2

ij

intera
tion

is that the L or n dependen
e of e

N


an be 
on
luded

from the virial theorem

2t

N

+ 2v

N

= �L

�e

N

�L

: (15)

The fa
tors 2 on the l.h.s. result from the powers of p

i

in

^

T and of 1=x

ij

in

^

V . For the 1=x

ij

intera
tion the

l.h.s. would read 2t

N

+ v

N

. Eq. (15) means e

N

� L

�2

or

e

N

� n

2

, as dis
ussed above by dimensional s
aling.

III. THERMODYNAMIC LIMIT

We wish to study the thermodynami
 limit with N !

1 and L!1 su
h that n = N=L = 
onst. The result-

ing extended system has only two parameters, the (di-

mensionless) intera
tion strength parameter � and the

Fermi wave number k

F

. So t=�

F

, v=�

F

, and e=�

F

be-


ome fun
tions of � only. The thermodynami
 limit

makes furthermore the 1PDM and the PD to depend only

on k

F

x

12

= y

12

(homogeneity, isotropy). The dimen-

sionless fun
tions f

N

, g

N

, and h

N

then take the forms

f(y

12

), g(y

12

), and h(y

12

) = 1�g(y

12

), respe
tively, with

f(0) = 1 (uniform density) and g(0) = 0 or equivalently

h(0) = 1. These fun
tions have � as the only parameter.

This di�ers from the ele
tron gas, where the additional

parameter r

s

= r

0

=a

B


ombines for dimensional reasons

the intera
tion strength �

2

with the density n = 3=(4�r

3

0

),

1=(�r

2

0

), and 1=(2r

0

) for 3D, 2D, and 1D models, respe
-

tively.

Due to the homogeneity and isotropy, the eigenfun
-

tions (or natural orbitals) of the 1PDM 
(x�x

0

) = nf(y)

be
ome simply plane waves '

0

k

(x) = e

ikx

=L, su
h that


(x� x

0

) =

X

�

1

L

n

�

e

i�k

F

�(x�x

0

)

= n

Z

1

0

d� n

�


os�y

� n f(y); (16)

where n

�

is the momentum distribution, � = k=k

F

, and

y = k

F

jx� x

0

j.

For � = 1=2 (ideal spinless 1D Fermi gas) the Pauli

prin
iple leads in the re
ipro
al spa
e to the Fermi i
e

blo
k n

0

�

= �(1� j�j) and in the dire
t spa
e to the ideal

X hole g

0

(y) = 1� [f

0

(y)℄

2

with the dimensionless 1PDM

f

0

(y) = (sin y)=y following from Eq. (16) and with its on-

top behavior g

0

(y) ! y

2

=3. The energy per parti
le is

e

0

= �

F

=3 = k

2

F

=6, and be
ause of k

F

� n it obeys the

virial theorem (15).

In general, with 
(0) = n, the momentum distribution

n

�

is normalized as

P

�

n

�

= N or

Z

1

0

d� n

�

= 1 : (17)

The kineti
 energy per parti
le is a

ording to Eq. (10a)

t = 6

Z

1

0

d� n

�

�

2

2

e

0

: (18)

n

�

is a fun
tion of j�j and �, so t=e

0

is a fun
tion of �

only with t = e

0

for � = 1=2.

The 
orresponding expressions for the PD g(y) are a
-


ording to Eq. (9)

2

Z

1

0

dy

�

h(y) = 1; h(y) = 1� g(y) (19)
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and for the intera
tion energy per parti
le a

ording to

Eq. (10b)

v = 6

Z

1

0

dy

�

g(y)

�

y

2

e

0

: (20)

g(y) is a fun
tion of y and �, so v=e

0

is a fun
tion of �

only. With t and v follows the integral relation

1

Z

0

d�

�

2

2

�n

�

��

= �

1

Z

0

dy

�

�

y

2

�g(y)

��

(21)

as a 
onsequen
e of the Hellmann-Feynman theorem ex-

pressed in Eq. (14). Correlation via � 6= 1=2 deforms the

X hole and the Fermi i
e blo
k as shown in Figs. 1 and

2 in su
h a way that Eq. (21) is maintained. A simi-

lar relation for the ele
tron gas model (with k

3

F

= 3�

2

n)

has been used for a qualitative dis
ussion of how n

�

and

g(k

F

r

12

) mutually depend on the parameter r

s

[42℄.

IV. HARTREE-FOCK APPROXIMATION AND

CORRELATION BEYOND IT

A. Hartree-Fo
k approximation

The simplest approximation for the quantities n

�

, g(y),

t, and v is obtained from the HF approa
h. In this 
ase

the ground state wave fun
tion �

HF

(� � �) is a single Slater

determinant of one-parti
le wave fun
tions, whi
h are |

for an extended system | simply plane waves '

0

k

(x) as

for the ideal 1D Fermi gas. Thus the momentum dis-

tribution in Eq. (18) and the PD in Eq. (20) are to be

repla
ed by their `ideal' expressions n

0

�

and g

0

(y), respe
-

tively. Consequently, we �nd t

HF

= e

0

and v

HF

= 2�e

0

and thus e

HF

= (1+2�) e

0

, as shown in Fig. 3. Here the

identity (A5) has been used. The total HF energy e

HF

also obeys the Hellmann-Feynman theorem (13) and the

virial theorem (15).

B. Qualitative dis
ussion of 
orrelation

Due to 
orrelation the true ground state energy per

parti
le, e, is below the HF energy e

HF

and the true

ground state wave fun
tion �(� � �) is no longer a single

Slater determinant. Note that the de�nition of the term

`
orrelation' needs a reasonable referen
e state, whi
h is

�

HF

(� � �) in our 
ase. So, 
orrelation 
auses a negative


orrelation energy e


orr

= e � e

HF

< 0, namely through

redistributions of g

0

(y) and n

0

�

whi
h are shown in Figs.

1 and 2 and des
ribed in the following.

As we show in Fig. 1, 
orrelation modi�es the X hole of

the unperturbed PD. Espe
ially the 
orrelation indu
ed


hanges for small y are of interest, be
ause the intera
-

tion �=y

2

is there largest. The on-top behavior of the

un
orrelated X hole (� = 1=2 or HF) is des
ribed by

g

0

(y) = y

2

=3 + : : :. In its 
orrelated 
ounterpart with a

�-dependent exponent and �-dependent 
oeÆ
ients (see

Appendix B)

g(y) = Ay

�

�

1 + a

1

y + a

2

y

2

+ � � �

�

;

� = 1 + 2�; � =

r

1

4

+ �; (22)


orrelation for � 6= 1=2 shows up in � 6= 2 and A 6= 1=3.

More pre
isely, repulsive parti
le intera
tion (� > 1=2)

supports the Pauli `repulsion', so the X hole is broadened

(through in
reasing � and de
reasing A), but attra
tive

parti
le intera
tion (� < 1=2) �ghts against (or 
ompetes

with) the Pauli `repulsion', so the X hole is narrowed

(through de
reasing � and in
reasingA) as shown in Fig.

1 and Table I. This X hole narrowing (for � < 1=2) or

broadening (for � > 1=2) makes

6

Z

1

0

dy

�

g(y)

y

2

= 1 +

1

2�

? 2 for � ?

1

2

: (23)

The equation follows from Eq. (20) together with the

Hellmann-Feynman theorem (11). Thus v<v

HF

= 2�e

0

for � 6= 1=2 as shown in Fig. 3. Below in Eq. (39) of Se
-

tion VA, we will see that this PD narrowing/broadening

is a

ompanied by enhan
ed parti
le-number 
u
tuations

for attra
tion (� < 1=2) and by suppressed ones for

repulsion (� > 1=2), respe
tively. Note the di�eren
e

against the ele
tron gas model, where only repulsion

is present with suppressed parti
le-number 
u
tuations,

where g(0) = g

"#

(0) 6= 0, and the PD for parallel-spin

ele
trons is zero for vanishing separation and behaves

as g

""

(y) = C

""

y

2

+ : : : for small separation y. This


urvature 
oeÆ
ient C

""

in
reases with in
reasing r

s

(=

in
reasing 
orrelation), but the exponent of y does not


hange with r

s

.

While in the HF approximation the PD follows from

the 1PDM a

ording to

n

HF

(x

12

) = n

2

� j


HF

(x

12

)j

2

; (24)


orrelation 
auses not only the 
hange from the idempo-

tent 


HF

(x

12

) to the non-idempotent 
(x

12

) but also the

appearan
e of an additional (non-redu
ible) term u(x

12

)

in

n(x

12

) = n

2

� j
(x

12

)j

2

� u(x

12

) : (25)

This is the �rst step of the 
umulant expansion [43℄. Its

non-redu
ible term u(x

12

) is normalized as

2

n

Z

1

0

dx

12

u(x

12

) = 
(2) ; (26)

where
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(2) = 1�

2

n

Z

1

0

dx

12

j
(x

12

)j

2

= 1� 2

Z

1

0

dy

�

jf(y)j

2

= 1�

Z

1

0

d� (n

�

)

2

� 0 (27)

is referred to as se
ond-order non-idempoten
y of the

1PDM. For � = 1=2 or for the HF approximation it is


(2) = 0. The 
orrelation indu
ed non-idempoten
y of

the 1PDM 
(x

12

) or equivalently of the momentum dis-

tribution n

�

makes 
(2) > 0 and let 
(2) in
rease with

in
reasing j� � 1=2j.

This 
orrelation indu
ed non-idempoten
y means

physi
ally: Correlation ex
ites parti
les and holes. This

is seen in the momentum distribution n

�

as 
orrelation

tails for parti
les with n

�

> 0 for j�j > 1 and for holes

with 1� n

�

> 0 for j�j < 1. In Fig. 2, we show how 
or-

relation thaws the Fermi i
e blo
k n

0

�

= �(1� j�j). This

in
reases the kineti
 energy independent whether the in-

tera
tion is attra
tive (� < 1=2) or repulsive (� > 1=2):

t > t

HF

as 
an be seen in Fig. 3. We note that n

�

has

no dis
ontinuity at j�j = 1. Its value is 1=2 and near

� = 1 it follows a power law as is typi
al for all Luttinger

liquids with their z

F

= 0 [44,45℄.

This thawing or melting of the Fermi i
e blo
k (whi
h

a

ompanies the above dis
ussed broadening/narrowing

of the PD) we model analyti
ally with the 
ontinuous

fun
tion

n

�

=

1

2

+B(1� �)

�

�

1 + b

�

1

(1� �)

�

+ b

�

2

(1� �)

2�

+ : : :

�

for 0 � � � 1; (28a)

n

�

=

1

2

�B(�� 1)

�

�

1 + b

+

1

(�� 1)

�

+ b

+

2

(�� 1)

2�

+ : : :

�

for 1 � � � 2; (28b)

n

�

=

C

�




�

1 +




2

�

2

+




4

�

4

+ : : :

�

for 2 � � �1 (28
)

with [24,46℄

� =

1

4

(1� 2�)

2

1 + 2�

(29)

and 
 = 3 + 2� (Appendix B). The exponents �; 
 and

the 
oeÆ
ients B;C, and b

�

i

; 


i

depend on �. It should

be � < 1. Eqns. (28b) and (28
) des
ribe the 
orrelation

tail (� > 1). This n

�

has to obey the normalization (17)

and the 
ondition

3

Z

1

0

d� n

�

�

2

=

�

1

2

+ �

�

2

2�

� 1 ; (30)

whi
h follows from Eq. (18) together with the Hellmann-

Feynman theorem (11). For � = 1=2 (or HF) it is � = 0,

B(1 +

P

i

b

�

i

) =

1

2

, and C = 0. The 
orrelation indu
ed

melting for � 6= 1=2 shows up in � > 0, B(1+

P

i

b

�

i

) <

1

2

,

and C > 0.

C. Results of the exa
t solution

With the help of the Bethe-Ansatz te
hnique one ob-

tains [23,24℄ e = �

2

e

0

. e as a fun
tion of the inter-

a
tion strength parameter � shows no spe
ial behavior

for �

>

!

1=2, but as a fun
tion of the intera
tion strength

� = �(�� 1),

e =

�

1

2

+ �

�

2

e

0

; � =

r

1

4

+ � (31)

the non-analyti
al behavior for �! �1=4 is in
orporated

in the variable �. For � ! 1=2 it behaves like e !

(1 + 2�)e

0

.

Eq. (31) yields with the Hellmann-Feynman theorem

(13) the kineti
 energy per parti
le,

t =

�

1

2

+ �

�

2

2�

e

0

(32)

whi
h behaves for � � 1=2 like t � (1 + 5�

2

)e

0

in agree-

ment with the above qualitative dis
ussion as shown in

Fig. 3. Eq. (31) yields with Eq. (12) also the intera
tion

energy per parti
le

v = �

�

1 +

1

2�

�

e

0

(33)

whi
h behaves for � � 1=2 like v = 2� again in agreement

with the above qualitative dis
ussion. From Fig. 3 we see

that both t and v diverge for �!0, while e remains �nite.

Eqns. (32) and (33) lead to

Z

1

0

d� n

�

�

2

= 6�

�

Z

1

0

dy

�

g(y)

y

2

�

2

; (34)

as another integral relation between the momentum dis-

tribution n

�

and the dimensionless PD g(y) in addition

to Eq. (21). These distribution fun
tions have to 
hange

with � in su
h a way that these relations (21) and (34)

are obeyed together with the normalization 
onditions

(17) and (19).

The PD n(x

12

) = n

2

g(y) with y = k

F

x

12

is known

analyti
ally for the values � = 0, 1=2, and 3=2 [23,24℄.

For � = 0 it is (with the notation of Appendix A)

g(y) = 1�

�

sin y

y

�

2

+ Si(y)

d

dy

sin y

y

�

�

2

d

dy

sin y

y

; (35)

for � = 1=2 (ideal Fermi gas) it is

g(y) = 1�

�

siny

y

�

2

; (36)
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and for � = 3=2 it is

g(y) = 1�

�

sin 2y

2y

�

2

+ Si(2y)

d

d(2y)

sin 2y

2y

: (37)

The 
orresponding dimensionless 
umulant PDs h(y) =

1� g(y) are given in Table II together with their Fourier

transforms

~

h(q) = 2

Z

1

0

dy 
os(qy) h(y): (38)

They have via S(q) = 1 �

~

h(q)=� a simple relation to

the stati
 stru
ture fa
tor (or van Hove 
orrelation fun
-

tion) S(q) = h�̂

q

�̂

y

q

i=N , whi
h des
ribes the 
orrelation

of density-density 
u
tuations. �̂

q

=

P

i

exp(�iqx

i

) is

the Fourier transform of the density operator �̂(x) =

P

i

Æ(x � x

i

). The three PDs g(y) are shown in Fig. 1

and the three stru
ture fa
tors S(q) in Fig. 4.

For � = 1=2 the weak os
illations of g(y) and the

(�rst-order) kink of S(q) arise from the Fermi momen-

tum distribution n

�

with its sharp dis
ontinuity z

F

= 1

at � = 1. With in
reasing repulsion the os
illations of

g(y) are enhan
ed, what is displayed in the re
ipro
al

spa
e by the peak of S(q) at q = 2 (and a 3rd-order kink

at q = 4). The �rst maximum of g(y) runs through a


ertain traje
tory from (�, 1) to (2:99, 1:24). This is

analog to the ele
tron gas model (where the term Friedel

os
illations is used and) whi
h shows with in
reasing r

s

(i) enhan
ed os
illations with 
orresponding traje
tories

of the maxima and minima [47℄ and (ii) the emergen
e

of an in
reasing hump in S(q) at q = 2 [48℄. This hump

stru
ture is even more marked in the (approximately fre-

quen
y independent) lo
al �eld 
orre
tion G(q) whi
h

appears in the dynami
 stru
ture fa
tor S(q; !) [49{52℄,

from whi
h then follows the stati
 stru
ture fa
tor via

S(q) =

R

d!=(2�) S(q; !) [21℄. One of the di�eren
es

between the CS and the ele
tron gas model is that in

the latter 
ase z

F


ontinuously de
reases with in
reas-

ing r

s

starting with z

F

= 1 for r

s

= 0, whereas in the

CS model there is no adiabati
 
ontinuity [45℄ and z

F

abruptly jumps from 1 to zero when going from � = 1=2

to � 6= 1=2. Whereas repulsion enhan
es the Friedel os-


illations of g(y) and the kink stru
ture of S(q), in
reas-

ing attra
tion let them disappear: for � = 0 both g(y)

and S(q) approa
h the value 1 smoothly (non-os
illatory)

from below. But the kink stru
ture of S(q) at q = 2 has

a reli
t in this limit: the 2nd derivative is dis
ontinu-

ous (2nd-order kink). For the on-top behavior of g(y)

in terms of g(0), g

0

(0), g

00

(0) the following holds: It is

g(0) = 0, a

ording to the Pauli prin
iple, g

0

(0) = �=6

for � = 0, but 0 for � > 0, and it is g

00

(0) = 0 for � = 0,

in�nite for 0 < � < 1=2, but 2=3 for � = 1=2, and 0 for

� > 1=2.

With the identities (A2){(A4) the normalization 
on-

dition (19) is ful�lled. From Eqns. (35){(37) follow the

on-top 
oeÆ
ients of Eq. (22); they are shown in Table

I. Note that the last two terms of Eq. (35) do not 
on-

tribute to the normalization be
ause of Eq. (A3) and that

the last term 
auses the odd on-top 
oeÆ
ients of Table

I and also the linear behavior for small y. Its os
illations

are exa
tly 
an
eled by the 
ombined os
illations of the

se
ond and the third term. Simultaneously, these terms

ensure the 
orre
t normalization.

The PD (36) for � ! 1=2 plugged into Eq. (10b) yields

with the identity (A5) the same as results from Eq. (33),

whi
h follows from the total energy per parti
le, Eq. (31),

and the Hellmann-Feynman theorem (13), namely v =

2�e

0

. Similarly the PD (37) for � ! 3=2 plugged into

Eq. (20) yields with the identities (A5) and (A6) the same

as results from Eq. (33), namely v = 4�e

0

=3.

For � = 0 a divergen
e appears, be
ause from the PD

(35) follows an on-top behavior, whi
h is linear in y as

shown in Fig. 1 and Table I. This linear behavior results

from the last term of Eq. (35), whi
h does not in
uen
e

the normalization (19), but it makes the intera
tion en-

ergy v �

R

1

0

dy g(y)=y

2

to diverge logarithmi
ally in

agreement with the divergen
e of v ! �e

0

=8� for �

>

!

0

as displayed in Fig. 3.

The divergen
e of the intera
tion energy is a

ompa-

nied and 
ompensated by the 
orresponding divergen
e

of the kineti
 energy t ! e

0

=8�. This indi
ates a spe-


ial asymptoti
 behavior of the momentum distribution

n

�

for �

>

!

0, namely Eq. (28
) with 


>

!

3. For 
 > 3

the integral

R

1

0

d� n

�

�

2

is 
onvergent, but with 


>

!

3 for

�

>

!

0 it diverges logarithmi
ally, whereas the normaliza-

tion integral (17) remains 
onvergent. The 
ounterpart

to this asymptoti
 behavior of n

�

for � ! 1 is the on-

top behavior of the PD for y ! 0 as shown in Fig. 1

and Table I with a smooth transition of the 
oeÆ
ient A

in Eq. (22) from �=6 via 1=3, to 16=135 for � = 0; 1=2

and 3=2, respe
tively. With quadrati
 interpolation of

the 
oeÆ
ients shown in Table I as fun
tions of �, one

may 
ontinuously swit
h the on-top behavior of the PD

g(y) between its form at � = 0 and 3=2. For the PD

exponent � = 1+2� we refer to Appendix B, where also

the momentum-distribution exponent is 
onje
tured as


 = 3 + 2�.

These divergen
es of the kineti
 and the intera
tion

energies indi
ate that for attra
tive parti
le intera
tion

�=x

2

ij

with �!� 1=4 the system be
omes unstable (no

ground state with �nite kineti
 and potential energies).

We remark that it was shown in Ref. [38℄ that the singular

parti
le intera
tion �j�j=j~r

12

j

2

makes already two parti-


les to fall together (\fall-into-the-origin") for j�j > 1=4

(ground state with E ! �1) and for j�j < 1=4 there are

only s
attering states with E � 0 (no bound states with

E < 0) [23℄.

For � = 0 the exa
t solution of the CS model yields

the momentum-distribution data. In Se
tion VI we will

give the details of the ne
essary numeri
al 
al
ulation.

The 
oeÆ
ients of Eq. (28a) are �tted to the n

�

values
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for � = 0 : : : 1 and the 
oeÆ
ients of Eq. (28b) are �tted

to the n

�

values for � = 1 : : : 2. The 
oeÆ
ients are


hosen to make also n

�

at � = 2 
ontinuous and smooth.

Finally b

+

3

is �ne tuned to make the normalization equal

to 1 a

ording to (17). The results are shown in Fig.

2 and the values of the 
oeÆ
ients are given in Table

IV. The 
ase � = 3=2 is similarly treated only with the

di�eren
e that also the kineti
 energy t =

4

3

e

0


an be

used for the �ne tuning in addition to the normalization


ondition (17). The results are shown also in Table IV.

Here b

+

3

and b

+

4

have been used for �ne tuning (whi
h

yields the normalization 0:997 and t = 1:34 e

0

, instead

of 1 and 4e

0

=3).

V. FLUCTUATION-CORRELATION ANALYSIS

A. Quantities following from the pair density

Parti
le-number 
u
tuations: Following Fulde [1℄ one

may ask to what extent 
orrelation in
uen
es parti
le-

number 
u
tuations �N

X

in a domain X , i.e., a 
ertain

interval of the x axis, where in the average there are

N

X

= nX parti
les. These 
u
tuations are measured

quantitatively by [1,3,13℄

(�N

X

)

2

N

X

= 1�

1

nX

Z

X

0

dx

1

Z

X

0

dx

2

w(x

12

)

= 1�

1

Y

Z

Y

0

dy

1

Z

Y

0

dy

2

h(y

12

)

�

; (39)

with Y = k

F

X = �nX . Following the Appendix A of

Ref. [3℄ the 2D integral (39) is redu
ed to a 1D integral

with the help of the Fourier transform (38), namely

(�N

X

)

2

N

X

= 1�

2

Y

Z

1

0

dq

�

1� 
os(qY )

q

2

~

h(q)

�

: (40)

The results are shown in Fig. 5, where also the 
ase �!

1 (`stri
t' or `perfe
t' 
orrelation [3℄) is displayed.

With h(y) = 1 � g(y) and with the expansion of g(y)

a

ording to Eq. (22) | see also the text after Eq. (37)

| the small-X expansion of Eq. (39) is

(�N

X

)

2

N

X

= 1 + d

1

nX + d

2

(nX)

2

+ d

3

(nX)

3

+ d

4

(nX)

4

+ d

5

(nX)

5

+ : : : : (41)

The slope d

1

at X = 0 does not depend on the intera
-

tion strength parameter � as shown in Table III be
ause

of g(0) = 0 and h(0) = 1 not depending on �; but the 
o-

eÆ
ients of the next terms do. Correlation is seen in the


hange of the 
oeÆ
ients d

i

for � = 1=2 to the 
oeÆ
ients

for � 6= 1=2. Thus the parti
le-number 
u
tuations are

suppressed due to repulsive parti
le intera
tion, but en-

han
ed due to attra
tive parti
le intera
tion: 
orrelation

makes the parti
le-number distribution P

X

(N) more nar-

row for repulsion (� > 1=2) and more broad for attra
-

tion (� < 1=2). We remark, that 
u
tuation enhan
e-

ment (indu
ed by attra
tive intera
tion) generally may

support/
ause 
lusterings (e.g., paramagnons prior the

para-to-ferromagneti
 phase transition). In our 
ase this

tenden
y shows up in the sudden \fall-into-the-origin"

at � = 0. If one 
onsiders with X = 1=n a Wigner-Seitz

`sphere' (with `radius' X=2 and N

X

= 1), then

�

1

(�) = 1�

�(�)

�(1=2)

; �(�) =

(�N

X

)

2

N

X

(42)

is a reasonable 
orrelation measure based on parti
le-

number 
u
tuations as we show in Fig. 6.

On-top behavior: The exponent � and the 
oeÆ
ients

A; a

i

of Eq. (22) des
ribe the short-range or dynami
al


orrelation, i.e., the small-separation behavior of g(y),

see Table I. Cioslowski's 
orrelation 
age [8℄ is in our 
ase

simply the inter-parti
le-separation range y = 0 : : : y

max

with y

max

being that separation where the PD g(y) has

its �rst maximum g

max

= g(y

max

). For � = 0; 1=2; 3=2

the 
orresponding values are y

max

= 1, �, 2:99 and

g

max

= 1, 1, 1:24 [3℄. One may ask to what extent the


orrelation 
age 
ontributes to the intera
tion energy and

de�ne

�

2

(�) = 1�

V


age

(�)

V


age

(1=2)

; V


age

(�) =

R

y

max

0

dy g(y)=y

2

R

1

0

dy g(y)=y

2

� 1

(43)

as an energeti
 
orrelation measure with V


age

(0) = 1;

the expression simpli�es when using (23). Both �

1

and

�

2

vanish for � = 1=2 as shown in Fig. 6.

B. Quantities following from the momentum

distribution

Criti
al exponent: The 
riti
al or 
orrelation expo-

nent � of Eq. (29) 
an be 
omputed from 
onformal �eld

theory [24,46℄. It des
ribes (together with the 
oeÆ
ient

B) the behavior of n

�

near � = 1 a

ording to Eqns.

(28a) and (28b). For the three spe
ial values � = 0; 1=2

and 3=2, this gives 1=4; 0, and 1=4, respe
tively. The

exponent 
 des
ribes the de
ay of the 
orrelation tail.

Non-idempoten
y and 
orrelation `entropy': The q-

order non-idempoten
y is [12℄ 
(q) = 1 �

R

1

0

d� (n

�

)

q

.

The derivative of 
(q) at q = 1 is s � 


0

(1) or

s(�) = �

Z

1

0

d� n

�

lnn

�

� 0 (44)

to be referred to as 
orrelation `entropy' [12,13℄. It has

been plotted in Fig. 7.
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Correlation tail properties: The relative number of

parti
les (or holes) in the 
orresponding 
orrelation tail

is [12,13,53℄

N

tail

(�) =

Z

1

1

d� n

�

=

Z

1

0

d� (1� n

�

) < 1: (45)

The 
ontribution of the 
orrelation tail to s is [13℄

S

tail

(�) = �

Z

1

1

d� n

�

lnn

�

< s(�): (46)

In addition to these quantum-kinemati
 measures one

may use [13℄

T

tail

(�) =

R

1

1

d� n

�

�

2

R

1

0

d� n

�

�

2

� 1 (47)

as another energeti
 measure with T

tail

(0) = 1. Also

these 
orrelation measures vanish for � = 1=2 as shown

in Fig. 8.

C. The 
orrelation energy

For e


orr

= e� e

HF

follows

e


orr

= �

�

� �

1

2

�

2

e

0

: (48)

Kineti
 and intera
tion energy 
ontribute t


orr

=

�

1

2�

e


orr

and v


orr

=

�

1 +

1

2�

�

e


orr

, respe
tively, to e


orr

.

Their �-dependen
e is shown in Fig. 9.

D. Comparison of the 
orrelation measures

When 
omparing the 
omputed 
orrelation measures

in Figs. 6, 7 and 8 it turns out that for small j� � 1=2j

the PD based measures �

1;2

of Eqns. (42) and (43) are

proportional to � � 1=2 (whi
h is �e

0


orr

=(2e

0

)), whereas

the n

�

based measures (44){(47) behave like (� � 1=2)

2

(whi
h is �e


orr

=e

0

). So the latter ones are not so sensi-

tive as the �rst ones. With s(�) = 0:5828je


orr

=e

0

j+ : : :

the Collins' 
onje
ture je


orr

j � s is 
on�rmed at least

for weak intera
tion. In this limit also N

tail

, S

tail

and

T

tail

are mutually proportional and their derivatives are

proportional to �

1

and �

2

.

We remark that the quantities �(�), V


age

(�), N

tail

(�),

S

tail

(�), and T

tail

(�) are referen
e free, i.e., they are

de�ned without referen
e to the non-intera
ting 
ase

� = 1=2 | whi
h in our 
ase is simultaneously equiv-

alent to the Hartree-Fo
k approximation. Referen
es ap-

pear in �

1;2

with �(1=2) and V


age

(1=2) and in s(�) with

s(1=2) = 0. Whereas this observation is important for

quantum 
hemistry | as stressed by J. Cioslowski [8℄ |

whenever multi 
on�guration appears, it is less important

in our 
ase whi
h is well des
ribed by single 
on�gura-

tion.

VI. NUMERICAL DETERMINATION OF 1PDM

AND n(�) FOR THE CS MODEL

As has been noted previously in Ref. [23℄, the square

of the ground state wave fun
tion in the periodi
 CS

model for the spe
ial values � = 0; 1=2, and 3=2 may

be re
ognized as being identi
al to the joint probabil-

ity density fun
tion for the eigenvalues of matri
es from

Dyson's ensemble [26℄. The intera
tion strength param-

eters � = 0; 1=2 and 3=2 
orrespond to orthogonal, uni-

tary, and symple
ti
 ensembles, respe
tively. Results

from the theory of random matri
es then enable the 
al-


ulation of various 
orrelation fun
tions [23℄. In parti
-

ular, the 1PDM 
an be expressed in terms of a determi-

nant of an appropriate matrix F

(�)

pq

[24℄. The size of this

matrix is spe
i�ed by the number of parti
les N to be

(N � 1)

2

for � = 1=2 and 3=2 and (N � 1)

2

=4 for � = 0.

Ea
h element of F

(�)

pq


ontains simple trigonometri
 1D

(� = 1=2 and 3=2) or 2D (� = 0) integrals.

For some 
ases, most notably � = 1=2, the resulting de-

terminant 
an be 
omputed analyti
ally and 
orrespond-

ing expressions have been given in Ref. [24℄. For the

other 
ases, we have evaluated the determinant numeri-


ally [24℄, using a subdivision of the system volume (peri-

odi
ity length) a

ording to L=L

0

= 42; 402, and 402 for

� = 0, 1=2, and 3=2, respe
tively. The parti
le number,

odd due to periodi
ity of the wave fun
tion [24℄, var-

ied from N = 1 to 401, 
orresponding to a variation in

density n from nearly 0 to nearly 1. Taking the Fourier

transform, we next 
ompute the momentum distribution

n

�

for all densities. In Fig. 10, we show results for one

of the three spe
ial � values.

Next, we apply the de�nitions of 
orrelation measures

and 
orrelation energies as given in Se
tions III, IV, and

V and study their density dependen
e. In Fig. 11 we

show results for the entropy s and in Fig. 12 for the vari-

ous energies as the density is varied. As all energies s
ale

with n

2

, these measures should be density independent

when normalized with respe
t to e

0

. However, we do in

fa
t see a pronoun
ed density dependen
e for n & 0:5=L

0

and also for n . 0:05=L

0

. This latter density dependen
e

is simply due to the small parti
le numbers, thus a small

size of F

(�)

pq

and 
onsequently a limited resolution when


omputing the 1PDM at �xed L=L

0

. The density depen-

den
e at large n values is more intri
ate to explain. The


omputation of the 1PDM by the 
onne
tion with ran-

dom matrix theory works for the periodi
 model. Thus

there exists a Brioullin zone and the tail of n

�

for j�j

outside this Brioullin zone is folded ba
k into it. The tail

of n

�

thus tends to be dominated by this e�e
t for large

n values as shown in Fig. 10. However, knowing that

the 
orrelation measures must be independent of density

in the thermodynami
 limit, we dedu
e their values by

restri
ting us to these density regions where the indepen-

den
e holds. Then we apply the �t a

ording to Eq. (28)
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as explained in Se
tion IVB. In Fig. 7 we indi
ate by

error bars the small variation in the 
orrelation entropy

when using instead of n

�

as in Fig. 2 the n

�

as in Fig.

10. Similarly, the 
orresponding variations in N

tail

, S

tail

,

and T

tail

are within the symbol sizes.

VII. EXTENSION TO IMPENETRABLE BOSONS

AND LATTICE GASES

As mentioned in the introdu
tion, the CS model is also

solvable for bosoni
 parti
le symmetry. The bosoni
 wave

fun
tions have to obey an additional boundary 
ondition,

namely they have to vanish for inter-parti
le separations

x

ij

! 0 su
h that the resulting system 
onsists of impen-

etrable or hard-
ore parti
les [23℄ with additional �=x

2

ij

intera
tion. Both PD and 1PDM may be 
al
ulated as

before. The PD is independent of statisti
s [23℄, thus the

fermioni
 ex
hange hole agrees with the bosoni
 impen-

etrability hole and all quantities 
omputed before based

on the PD are the same in the bosoni
 and the fermioni



ase. For the 1PDM this is di�erent, the momentum dis-

tribution of bosons is quite di�erent from the fermioni


n

�

as shown in Fig. 13. However, energeti
 quantities and


orrelation measures based upon those are nevertheless

independent of the statisti
s and should thus be the same

for bosons and fermions. In Fig. 12 we show that this is

indeed the 
ase. Thus besides the density independen
e

we have another 
riteria that allows us to extra
t the 
or-

re
t values of the 
orrelation measures from these plots.

We note that the abovementioned unwanted density de-

penden
e is also present in the bosoni
 n

�

and visible

in Figs. 11 and 12. Also present is the aliasing e�e
t as

shown in Fig. 14.

In Refs. [23,24℄, it had been shown to be useful to re-

stri
t the family of wave fun
tions of the CS model for

both bosoni
 and fermioni
 symmetry to a latti
e su
h

that the 
oordinates are integers x

j

= 1; 2; : : :L [54{56℄.

Only the normalization 
onstants of the wave fun
tions


hange and the 1PDM 
an be 
omputed mu
h as before

[23℄, repla
ing the integrals in F

(�)

pq

by appropriate sums

[24℄. Furthermore, the stru
ture fa
tor S(q) is known

exa
tly and therefore also the PD [24℄. The resulting lat-

ti
e gas has a parti
le-hole symmetry and thus we need

to 
onsider n � 1=2L

0

only. However, the density N=L

now enters all expressions in a non-trivial way and the

very useful density independen
e of the 
ontinuummodel

for the quantities 
onsidered here is no longer appli
able.

Nevertheless, the 
ontinuum model 
orresponds to the

low-density limit of the dis
rete model. In Fig. 11, we

show that this is indeed the 
ase for, e.g., the 
orrelation

entropy.

VIII. DISCUSSION AND CONCLUSIONS

Both the PD based and the n

�

based 
orrelation mea-

sures (42){(47) vanish for � = 1=2 (no intera
tion). But

the �rst ones are more sensitive be
ause of �

1;2

� ��1=2

near to the no-intera
tion point as shown in Fig. 6, while

the se
ond ones are � (� � 1=2)

2

like e


orr

of Eq. (48)

as shown in Figs. 7 and 8 and therefore 
annot distin-

guish between attra
tive and repulsive intera
tions. In

1D the PD based measures (42) and (43) are identi
al

for fermioni
 and (hard 
ore) bosoni
 parti
les. The n

�

based measures (44){(47) do not apply for bosoni
 parti-


les, they are designed for fermioni
 parti
les only. Thus

for 
orrelation measures of bosoni
 parti
les, the mea-

sures 
onsidered in this work are either inappli
able or

identi
al to their fermioni
 
ounterparts as for the PD

based measures and e


orr

.

Whereas for repulsive parti
le intera
tion results well-

known from other extended many-body systems are 
on-

�rmed again | enhan
ement of the Friedel os
illations

with maxima/minima traje
tories, humps/peaks of the

stati
 stru
ture fa
tor developing from its non-intera
ting

kink, suppression of parti
le-number 
u
tuations | we

have found in the present work that for swit
hing on at-

tra
tion parti
le-number 
u
tuations are 
ontrarily en-

han
ed and that this is a

ompanied by a smoothening

of the PD (the os
illations disappear) and of the stati


stru
ture fa
tor (the kink disappears) as well as by the

appearan
e of a linear on-top behavior of the PD. The

latter behavior results in a diverging intera
tion energy

in the strong attra
tion limit although the total energy

remains �nite. In momentum spa
e the Fermi i
e blo
k

thaws for both 
ases and 
orrelation tails develop. In

the strong attra
tion limit the 
orrelation tail be
omes

so long ranged that the kineti
 energy diverges, thereby

exa
tly 
ompensating the divergen
e of the intera
tion

energy. We have shown that these divergen
es 
an be

derived from the exa
tly known energy as a fun
tion of

the intera
tion strength with the help of the Hellmann-

Feynman theorem (11). This theorem allows to 
al
ulate

t(�) and v(�) from e(�) and gives | in addition to their

normalizations (17) and (19) | exa
t relations for n

�

and the PD as shown in Eqns. (18) and (20).

In summary, we have applied the Hellmann-Feynman

theorem to the 1D quantum system of 1=x

2

ij

intera
t-

ing parti
les making extensive use of the exa
t solution

available for the CS model. We have analyzed parti
le-

number 
u
tuations and studied measures for the 
or-

relation strength based on the pair density and on the

momentum distribution. Our results show that the qual-

itative terms `weak and strong 
orrelation' 
an not be


aptured quantitatively in a single index, but rather a

variety of quantities must be employed [13℄.
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APPENDIX A: CERTAIN INTEGRALS

The following identities are valid with Si(x) =

R

x

0

dy[sin(y)=y℄:

Z

1

0

dx

�

sinx

x

=

Si(1)

�

=

1

2

; (A1)

Z

1

0

dx

�

�

sinx

x

�

2

=

1

2

; (A2)

Z

1

0

dx

�

[Si(1)� Si(x)℄

d

dx

sinx

x

= 0 ; (A3)

Z

1

0

dx

�

Si(x)

d

dx

sinx

x

= �

1

2

; (A4)

Z

1

0

dx

�

1

x

2

"

1�

�

sinx

x

�

2

#

=

1

3

; (A5)

Z

1

0

dx

�

1

x

2

Si(x)

d

dx

sinx

x

= �

2

9

: (A6)

Eqns. (A2) { (A4) determine the normalization of the

PD's (35) { (37). Eqns. (A5) and (A6) determine the

intera
tion energy v for the HF approximation and for

� = 3=2. For the 
u
tuation analysis with Eqns. (39)

and (40)

2

�

Z

1

0

dy 
os(qy)

�

sin y

y

�

2

=

�

1�

q

2

�

�(2� q) ; (A7)

2

�

Z

1

0

dy sin(qy) Si(y)

sin y

y

=

�

1

2

ln j1� qj �(2� q) ; (A8)

2

�

Z

1

0

dy 
os(qy) Si(y)

d

dy

sin y

y

=

�

h

1�

q

2

+

q

2

ln j1� qj

i

�(2� q) ; (A9)

Z

1

0

dy 
os(qy)

d

dy

sin y

y

=

�

�

1�

q

2

ln

�

�

�

�

1 + q

1� q

�

�

�

�

�

; (A10)

2

�

Z

1

0

dy 
os(qy)

sin y

y

d

2

dy

2

siny

y

=

1

6

(q � 2)

�

q

2

� q + 1

�

�(2� q) ; (A11)

2�

Z

Y

0

dy

1

Z

Y

0

dy

2

�

sin jy

1

� y

2

j

jy

1

� y

2

j

�

2

=

2

Z

2

0

dq

1� 
os qY

q

2

(1�

q

2

) =

1� 
os 2Y � 2Y Si(2Y ) +

Z

2Y

0

dz

1� 
os z

z

: (A12)

APPENDIX B: KIMBALL LIKE THEOREMS

FOR n(x

12

) AND n

�

The small separation or on-top behavior of the PD

n(x

12

) is derived here similarly as Kimball found the


usp relation dg(k

F

r)=drj

r=0

= g(0)=a

B

[or g

0

(0) =

�r

s

g(0); � = (4=9�)

1=3

℄ for the pair 
orrelation of the 3D

uniform ele
tron gas [57℄. We remark that the general 
o-

ales
ing 
usp theorem is due to Kato [58℄. Let us 
onsider

two adja
ent ele
trons with the 
enter-of-mass and rela-

tive 
oordinates,X = (x

1

+x

2

)=2 and x = x

1

�x

2

, respe
-

tively. Fo
using on the x dependen
e the S
hr�odinger

equation 
an be written as

�

�

d

2

dx

2

+

�(�� 1)

x

2

�

'(x)

~

�(X; x

3

; : : :) =

(E �H

0

)'(x)

~

�(X; x

3

; : : :); (B1)

where H

0


ontains the remaining terms in the Hamilto-

nian. Note the missing fa
tor 1=2 in the kineti
 energy

term be
ause the mass there has to be repla
ed by the

redu
ed mass of the ele
tron pair (m ! m=2). Be
ause

E �H

0

is non-singular as x approa
hes zero, it is unim-

portant for small x. To lowest order in x we therefore

have '(x) = x

�

+ : : :, from whi
h immediately follows

n(x) � x

2�

for the PD, see Eq. (22). This 
an be 
on-


luded for � 6= 1 also dire
tly from the many-body wave

fun
tion � � �

i<j

x

�

ij

[23℄ and for � = 1 from Eq. (36).

A similar treatment of the asymptoti
 large � behav-

ior of the momentum distribution n

�

seems to lead in

Eq. (28
) to the 
on
lusion 
 = 2� + 2. This 
orre-

sponds to n

�!1

� g(0)=�

8

for the 3D uniform ele
tron

gas [53,57,59℄. Note that in this 
ase the exponent of

1=� (like the powers of y in the small-separation PD

g(y) = g(0) + �r

s

g(0)y + Cy

2

+ : : :) does not depend

on the intera
tion strength �

2

, only the 
oeÆ
ients g(0)

and C depend on r

s

� �

2

. Unlike that, in the CS model

also the exponents � and 
 are intera
tion strength de-

pendent.
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TABLE I. On-top exponent and 
oeÆ
ients of the PD a
-


ording to Eq. (22).
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TABLE II. Dimensionless 
umulant PD h(y) and the stru
-

ture fa
tor S(q) used for the 
omputation of �N

X

and �

1

(�)

as in Eqns. (40) and (42).

� h(y) S(q) = 1�

~
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sin y

y

�

2

�

�

Si(y)�

�

2

�

d

dy

sin y

y

�

q �

q

2

ln(1 + q)

�

�(2� q)

+

h

2�

q

2

ln

q+1

q�1

i

�(q � 2)

1

2

�

sin y

y

�

2

q

2

�(2� q) + �(q � 2)

3

2

�

sin 2y

2y

�

2

� Si(2y)

d

d2y

sin 2y

2y

�

q

4

�

q

8

ln j1�

q

2

j

�

�(4� q)

+�(q � 4)

TABLE III. CoeÆ
ients of the small-X expansion of

(�N

X
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X

as in Eq. (41).
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TABLE IV. CoeÆ
ients as in Eq. (28) 
al
ulated from the

numeri
ally determined momentum distribution n

�

for � = 0

and 3=2 (at n = 1=2L

0

).
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FIG. 1. Dimensionless PD g(y) = n(x

12

)=n

2

as a fun
tion

of the dimensionless inter-parti
le separation y = k

F

x

12

for

� = 0 (dashed), 1=2 (solid), and 3=2 (dotted). The thin line

is a guide to the eye only.

0 1 2 3
κ

0.0

0.2

0.4

0.6

0.8

1.0

n κ

FIG. 2. Fermioni
 momentum distributions n

�

vs.

� = k=k

F

with � = 0 (dashed), 1=2 (solid), and 3=2 (dot-

ted).
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FIG. 3. Bulk energy e (solid), kineti
 energy t (dashed),

and potential energy v (dotted) plotted as fun
tions of inter-

a
tion strength parameter �. Thin lines denote the results of

the Hartree-Fo
k approximation, thi
k lines are exa
t. The

thin dashed-dotted line indi
ates the \fall-into-the-origin" at

� = 0.
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FIG. 4. Stati
 stru
ture fa
tor S(q) = 1�

~

h(q)=� for � = 0

(dashed), 1=2 (solid), and 3=2 (dotted). Inset: The three


urves do not 
oin
ide at a single point 
lose to q � 1:72.
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FIG. 5. Parti
le-number 
u
tuation (�N

X

)

2

=N

X

in do-

mains X of the CS model after Eq. (40) for � = 0 (dashed),

1=2 (solid), and 3=2 (dotted). The dashed-dotted line 
orre-

sponds to (�N

X

)

2

=N

X

for stri
t 
orrelation [3℄.
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FIG. 6. PD based 
orrelation measures �

1;2

a

ording

to (42) and (43) as fun
tions of the intera
tion strength

parameter �. The thin dashed-dotted line indi
ates the

\fall-into-the-origin" at � = 0. The other lines are guides

to the eye only.
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FIG. 7. Correlation `entropy' s vs. � as estimated from

the fermioni
 momentum distributions a

ording to Eq. (44)


ompared with je


orr

(�)=e

0

j of Eq. (48). The solid lines are

guides to the eye only. The thin dashed-dotted line is as in

Fig. 6.
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FIG. 8. Correlation measures based on the 
orrelation tail

of the momentum distribution a

ording to (45) { (47) as

fun
tions of �. The thin dashed-dotted line is as in Fig. 6.

The other lines are guides to the eye only.
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FIG. 9. Bulk (solid), kineti
 (dashed), and potential (dot-

ted) 
orrelation energies as a fun
tion of �. The thin

dashed-dotted line is as in Fig. 3.
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FIG. 10. Fermioni
 momentum distributions n

�

for

� = 3=2 
omputed for N = 21, 41, 81, 121, 161, 201, 241, 281,

321, 361, and 401. The data for N = 21(Æ) , 41(�), 81(�),

and 121(�) do not show any density dependen
e whereas the

larger density data (lines) do.
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FIG. 11. Correlation `entropy' (44) for fermions (solid line)

as a fun
tion of density at � = 3=2. The dashed-dotted line


orresponds to s obtained for the dis
rete CS model.
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FIG. 12. Kineti
 energy t as 
omputed from the Hell-

man-Feynman theorem (11) (dashed line), and t from Eq.

(13) (solid lines) for fermions (thi
k line) and bosons (thin

line) as a fun
tion of density at � = 3=2.
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FIG. 13. Bosoni
 momentum distributions n

�

vs. � = k=k

F

with � = 0 (dashed), 1=2 (solid), and 3=2 (dotted).
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FIG. 14. Bosoni
 momentum distributions n

�

for � = 3=2


omputed for parti
le numbers identi
al to Fig. 10. The data

for N = 21(Æ) , 41(�), 81(�), 121(�), 161(+), and 201(�) do

not show any density-dependen
e e�e
ts.
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