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Abstract

Magnetoluminescence of an exciton confined within a semiconductor ring is
studied theoretically. We demonstrate that, despite the net electrical neu-
trality of the exciton, both the spectral position and the intensity of photo-
luminescence peak exhibit periodic oscillations as a function of magnetic flux
threading the ring. The period of oscillations is ®p—the universal flux quan-
tum. The origin of the effect is the finite probability for bound electron and
hole to tunnel in the opposite directions and meet each other on the opposite

side of the ring.
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I. INTRODUCTION

In the past decade much attention was devoted to experimental studies of the optical
properties of objects with reduced dimensionality [1-13]. These studies were enabled by
two recent technological advances. Firstly, the technique for fabrication of nanometer size
quantum dots was developed [14]. These dots represent islands of InGaAs self-assembled
in the course of epitaxial growth in a GaAs matrix. Together with generic quantum dots
formed by inhomogeneities in the width of GaAs quantum wells [1-5,8 9], self-assembled
quantum dots are able to confine photoexcited carriers (electrons and holes) in all directions
making their energies truly discrete. Secondly, a near-field optical technique was developed,
which allowes to detect exciton luminescence from a single quantum dot [1-13], and, thus, to
avoid ambiguity in interpretation of the spectra, resulting from inhomogeneous broadening.

The luminescence spectrum from an isolated dot represents a sequence of very sharp
lines. The widths of these lines are of the order of 0.05meV (or smaller, being limited by
the spectrometer resolution [9]). It was also demonstrated [11] that these widths remain
unchanged with increasing temperature up to 7' = 50K. This indicates that dephasing
processes are ineffective, so that the widths are limited by the radiative lifetimes. The
sharpness of exciton lines opens up the possibility to register very small changes in their
positions and intensities caused by a change in the external parameters (like magnetic field).

Recently, further progress in self-assembly techniques [15-17] allowed to fabricate a very
different type of nanostructures. Namely, modification of the growth process [16,17] led to
a drastic change in the shape of the quantum dots from lens-like to ring-like. By now, the
optical properties of this novel type of nanostructures were studied by means of infrared
spectroscopy [15]. It was demonstrated [15] that the electronic energy levels in nanorings
exhibit sensitivity to a magnetic field perpendicular to the plane of the ring. The charac-
teristic scale of the magnetic field, causing a pronounced effect, corresponds approximately
to one flux quantum, ®,, threading the interior of a ring.

Excitonic luminescence of nanorings has not been studied yet. However, this study and,



in particular, the dependence of positions of emission lines on a perpendicular magnetic field
would be of great conceptual interest. Indeed, unlike free carriers (electrons or holes) which
are coupled to the vector potential of magnetic field via their charge, an exciton being a
neutral entity, should not be sensitive to the flux through the ring. This statement is rigorous
for a point-like neutral particle. Meanwhile, an exciton has a finite size (the Bohr radius
ap). Here we demonstrate [18] that this finite ap gives rise to a periodic dependence of the
exciton energy, as well as of the luminescence intensity, on the flux ® threading the ring.
The period in @ is equal to ®y. In other words, we show that the excitonic luminescence

from a nanoring exhibits the Aharonov-Bohm oscillations [19,20].

II. EXCITONIC MAGNETOLUMINESCENCE: PEAK POSITIONS AND

SPECTRAL INTENSITIES

We adopt a simple model for an exciton on a ring. In particular, we assume that the
thickness of the ring is much smaller than the Bohr radius. We also assume the attraction
potential between electron and hole is short-ranged. Denote with ¢, and ¢, the azimuthal
coordinates of the electron and hole, respectively. In the absence of interaction the wave

functions of electrons and holes are given by
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Here p is the radius of the ring, and m,., m; stand for the effective masses of electron and

hole, respectively. In the presence of an interaction V{R(goe - goh)], where R(pe — ¢n) =
2psin(#5?:) is the distance between electron and hole, we search for the wave function of
the exciton in the form
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The coeflicients Ay ns are to be found from the equation
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where A is the energy of the exciton. It follows from the definition Eq. (3) that the coefficients
An nv satisfy the condition
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Making use of the assumption that V(R) is short-ranged, we set ¢, = @, in the last term of
(4). This allows us to express coefficients Ay _y through the average interaction strength
Vo < 0 defined as Vy = 5= [doV [R((p)] Then the substitution of Ay _y into (5) yields a
closed equation for the exciton energy A

1
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We emphasize that other types of interactions will modify the explicit form of Vj, but not
the functional form of Eq. (6).

With energies EZ(\‘;), EE’R, given by (2), the summation over N can be performed explicitly.

Then Eq. (6) takes the concise form

o) ()

where £ = h?/2up? is the size quantization energy of an exciton; pu = memy/(m. + my)
denotes the reduced mass of electron and hole. It is seen from Eq. (7) that the structure of
the excitonic spectrum is determined by a dimensionless ratio |Vy|/eo. From the definition
of Vj it follows that it falls off as 1/p with increasing p. Thus, |Vj|/eo is proportional to the
radius of the ring. In the limit of large p, when |V5| > ¢¢, Eq. (7) can be solved analytically.

For the ground state energy we get

8o = ~Ba[1+ deos( ) exp(~ 7). ®
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where Ep = m2V} /2o and ap = 7|Vj| (2/,L/h 50) are, correspondingly, the binding energy

and the Bohr radius of the one-dimensional exciton in the limit p — oo.
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The second term in the brackets of Eq. (8) describes the sought Aharonov-Bohm oscil-
lations in the position of the exciton luminescence line. These oscillations also show up in
the intensity, Fy(®), of the line. The easiest way to demonstrate it, is to note that Fy and

Ag are connected through the relation Fy(®) oc 0Aq/0Vp, which is straightforward to check.

III. NUMERICAL RESULTS

In Fig. 1 we show the numerical solution of Eq. (7) together with the asymptotic solution
(8), valid in the limit of large p, for the variation of the exciton energy with ®. As expected,
the Aharonov-Bohm oscillations are close to sinusoidal for large values of 27p/ap, whereas
for 2mp/ap = 1, unharmonicity is already quite pronounced. The increase of the exciton
energy as the flux is switched on has a simple physical interpretation. The flux tends
to move electron and hole in opposite directions, thus, suppressing their binding. Fig. 1
illustrates how the amplitudes of the Aharonov-Bohm oscillations decrease with increasing
the ring perimeter as described by Eq. (8). The oscillations in the line intensity with @
are plotted in Fig. 2. As expected, the shift is most pronounced for ® = ®,/2, and the
relative magnitude is nearly 80% for the smallest value 2wp/ap = 1. For larger values
of 2mp/ap, the oscillations in Fy(®) become increasingly sinusoidal. Excited states of the
exciton according to Eq. (7) do also exhibit oscillations as shown in Fig. 3. Note that in this

case the oscillations do not decay exponentially with 2mp/ap as shown in Ref. [18].

IV. DISCUSSION

Equation (8) illuminates the physical origin of the Aharonov-Bohm effect for an exciton.
Indeed, the factor exp(—27p/ag) which determines the magnitude of the effect represents
the amplitude for bound electron and hole to tunnel in the opposite directions and meet
each other “on the opposite side of the ring” (opposite with respect to the point where they
were created by a photon). The fact that electron and hole tunnel in the opposite directions

in combination with the fact that coupling constants to magnetic flux for electron and hole



have the opposite signs, results in a certain compensation effect. That is, regardless of the
point on the ring where the meeting takes place, the net phase acquired by the wave function
of the exciton at the moment of the meeting is always the same, and is equal to 27®/®,.

This mechanism of “catching the tails” is illustrated in Fig. 4.
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FIG. 1. The Aharonov-Bohm oscillations of the exciton energy is shown for three values of the
dimensionless ring perimeter 27wp/ap = 1 (solid lines), 2 (dashed lines) and 3 (dot-dashed lines).

The thick and thin lines are drawn from Eq. (7) and Eq. (8), respectively.



[Fo(cD)_Fo(O)]/Fo(O)

FIG. 2. The Aharonov-Bohm oscillations of the exciton line intensity for the three values of

the dimensionless ring perimeter 2mp/ap = 1 (solid line), 2 (dashed line) and 3 (dot-dashed line).
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FIG. 3. The Aharonov-Bohm oscillations of the first 3 excited states of an exciton for dimen-
sionless ring perimeter 2wp/ap = 2. Also shown (dashed line) is the corresponding ground state

as in Fig. 1.
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Exciton wave function II

Nano-ring

FIG. 4. Schematic illustration of the origin of the Aharonov-Bohm effect for an exciton. The
thin line marks the point where the exciton is created, the thick gray line atop the ring presents

the decay of the envelope of the excitonic wave function.
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