Numerical study of eigenvector statistics for random banded matrices
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Abstract

The statistics of eigenvector amplitudes near the band center in random banded matrix ensembles is studied
numerically. The nonlinear o model provides a rigorous description of the statistics in these ensembles. We are
interested in the extension of the predictions of the o model approach to complex quantum systems. We study
the validity range of the perturbation theory beginning from the well-known formulas in random matrix theory.
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1. Introduction

Disordered quantum systems exhibit irregu-
lar fluctuations of eigenfunctions. These deter-
mine the fluctuations of the conductance through
quantum dots and wires. They can be studied by
looking at the statistics of the local amplitudes of
the eigenfunctions [1].

In the metallic regime, characterized by a large
conductance, the eigenfunctions spread uniformly
throughout the whole system. Their statistics is
described by random matrix theory (RMT) [2].
RMT deals with ensembles of Hermitian matri-
ces, corresponding to physical operators, whose
matrix elements are randomly distributed. In
Dyson’s ensembles of random matrices the matrix
elements are Gaussian distributed. These ensem-
bles are mathematically well-understood, and ex-
pressions for the statistical distribution functions
can be derived exactly [1].

Random banded matrix (RBM) ensembles [3]
can be regarded as generalization of the Dyson
ensembles in RMT. In the former, the matrix el-
ements are still Gaussian distributed, but their
variance decays outside a certain range from the
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main diagonal. These matrix ensembles can
be said to model systems which are classically
strongly chaotic but subject to quantum localiza-
tion [4]. The kicked rotator is an example for such
systems [3].

Due to localization [4] the statistics of eigen-
functions in RBM ensembles show deviations
from RMT, depending on how much they differ
from the Dyson ensembles. Here, the supersym-
metric o model approach can be applied [5]. Par-
ticularly, in the weakly localized regime, where
the matrices are almost full, the deviations are
small, and can be treated within perturbation
theory.

In this paper, we present numerical results for
the eigenfunction statistics in RBM ensembles,
and compare these to the expressions obtained
for the o model. We are particularly interested
in the extension of the o model approach to com-
plex quantum systems, which can be no longer
labelled as classically chaotic, but are still known
to follow the predictions of RMT in the metal-
lic regime. A well-known example is the Ander-
son model of localization [6], for which we shall
present numerical results elsewhere [7].



2. Description of the model

In this paper, we consider the simplest version
of the RBM ensembles [3], where the matrix el-
ements H;; of the Hamiltonians are taken ran-
domly, if |¢ — j| < B, where B is the band width.
Other matrix elements are zero. In the ensem-
ble of orthogonal matrices all the nonzero non-
diagonal matrix elements are chosen to be real
and Gaussian distributed with variance 1 and
mean 0, whereas in the ensemble of unitary ma-
trices these elements additionally have equally
distributed imaginary parts. The diagonal ele-
ments in both orthogonal and unitary ensembles
are real and Gaussian distributed with variance 2
and mean 0.

Physically, the RBM ensembles can be related
to one-dimensional (1D) disordered systems with
long-range hopping, or, alternatively, to quasi-1D
systems with B associated to the number of trans-
verse channels for electron propagation. The or-
thogonal ensemble describes systems, which are
time-reversal symmetric, whereas in the unitary
ensemble this symmetry is broken. They cor-
respond to the Dyson ensembles in RMT, if B
equals the rank N of the matrices.

The RBM ensembles can be reduced to the non-
linear o model, if B > 1 [5]. The main properties
of spectra and eigenfunctions in RBM ensembles
have been shown to depend only on the scaling
parameter A = B2/N [3,8]. The strength of local-
ization of the eigenstates can be tuned by adjust-
ing A. For A < 1 the states are highly localized
and for A > 1 they are delocalized. Here, we are
mainly interested in the delocalized regime, where
the perturbation theory provides formulas which
can be generalized to other disordered quantum
systems [9].

3. Eigenfunction statistics

Let E, and 1, = (¥},...%Y) be the eigenval-
ues and eigenvectors of a Hamiltonian, belonging
to an orthogonal or unitary ensemble described
above. In this paper, we look at the statis-
tics of the eigenvector amplitudes {N|¢%|?; i =
1,...,N}, weighted by the dimension N of the

eigenvectors. We define [10]
A ,
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Here A is the mean level spacing and F is the
energy. In the delocalized regime, where B is
large and the predictions of RMT are valid, f(¢)
is given by [1]

St = —a=ex(-t/2), @

et = exp(—1). (3)

The superscripts O and U refer to Dyson’s or-
thogonal and unitary ensembles of random matri-
ces. Eq. (2) is usually referred to as the Porter-
Thomas distribution [11].

Small deviations from Eqgs. 2 and 3 due to local-
ization can be written as perturbation expansions

[9]
FOM) = file(®) [1+ a4 (3 — 6t +¢2)/2] (4)
FOM =~ file® 1 +ag@-4t+8)]. (5)

These expansions are valid for small amplitudes

t < agl/ ?, They are parametrized by

A 1
w—ggDQ (6)

which is a sum over the eigenmodes of the diffu-
sion propagator in the system. D is the diffusion
constant.

As indicated, ag generally depends on the di-
mension d of the system. It also depends on
the boundary conditions. The random banded
Hamiltonians correspond to the quasi-1D case
with open boundary conditions, where a; = X/6
[9]. The parameter X = (2/8)L/¢, where § =1
in the orthogonal ensemble, and f = 2 in the
unitary one. L is the length of the quasi-one di-
mensional wire, and ¢ is the localization length.
Without direct connection to a physical system,
L and ¢ are not well defined in the RBM ensem-
bles. Therefore we only consider the ratio L/¢
here.

A non-perturbative solution for f(¢) in the non-
linear 0 model was given in Ref. [12]. The formu-



las in the orthogonal and unitary ensemble con-
sist of rather long integral and differential expres-
sions, parametrized by X. Because of the lack of
space these formulas are not repeated here. They
are valid only in the quasi-1D case, and cannot be
generalized to higher dimensional systems, in con-
trary to the perturbational expressions (4) and
(5) [12].

4. Numerical results

We studied ensembles of RBMs with rank N =
1000. The distributions of eigenvector amplitudes
are in good agreement with Eqs. (4) and (5) for
large B, as can be seen in Fig. 1. Here, we plot
the function 6 f(¢) = f(t)/frmT(t) — 1 to see the
deviations from RMT. For B < 70 or B?/N <
5 the agreement rapidly gets poorer, indicating
that the first order perturbation theory no longer
applies.

The values obtained for the parameter X in
the orthogonal and unitary ensembles for different
values of B are shown in Fig. 2. The values are the
same in the orthogonal and unitary ensembles,
and they are inversely proportional to B2. This
fact lets us extrapolate values of X even for small
B.

The formulas from Ref. [12], compared to our
results, are shown in Fig. 3. We get a very good
agreement for all the values of B we have used.
It is somewhat surprising that the theory ap-
plies even for rather small B. For large B, the
agreement is less good for tails, i.e. for large ¢.
This disagreement may point towards a fallacy of
the formulas in that regime. The tails are, how-
ever, also numerically difficult to compute, be-
cause they represent rarely occurring high ampli-
tudes of weakly localized states.

5. Conclusions

We have analyzed the statistics of eigenvector
amplitudes in RBM ensembles and their devia-
tions from RMT as a function of the band width
B. We found good agreement with the pertur-
bational expressions, based on the nonlinear o
model for large B. Our numerical results can
be fitted by the expressions derived in Ref. [12],
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Figure 1. Deviations of f(¢) from RMT for the
(a) orthogonal and (b) unitary RBMs of order
N = 1000 (symbols). The averages are taken
over the energy interval [—0.1,0.1] and 1000 RBM
realizations. The roughness of the curves show
the degree of inaccuracy due to the finite number
of realizations. The solid lines show the first order
correction term in Eqgs. (4) and (5), respectively.
The values of a; for different band widths B have
been fitted to get the best agreement for small
t. The curves have been multiplied by a constant
for clarity as indicated.
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Figure 2. Parameter X = (2/8)L/¢ for RBMs in
the orthogonal and unitary ensemble. The error-
bars show the standard errors of the average over
RBM realizations.

which are exact in the quasi-1D case, but numer-
ically somewhat difficult to use. The agreement
is less good in the tails of distribution functions,
which may indicate the failure of the ¢ model ap-
proach in this regime. The tails are of specific
interest in two- and three-dimensional disordered
systems, because there are contradictory predic-
tions for them in the literature, based on the o
model [13] or direct optimal fluctuations [14] ap-
proaches. Our numerical studies for such systems
are in progress.
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