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Abstra
t

The statisti
s of eigenve
tor amplitudes near the band 
enter in random banded matrix ensembles is studied

numeri
ally. The nonlinear � model provides a rigorous des
ription of the statisti
s in these ensembles. We are

interested in the extension of the predi
tions of the � model approa
h to 
omplex quantum systems. We study

the validity range of the perturbation theory beginning from the well-known formulas in random matrix theory.
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1. Introdu
tion

Disordered quantum systems exhibit irregu-

lar 
u
tuations of eigenfun
tions. These deter-

mine the 
u
tuations of the 
ondu
tan
e through

quantum dots and wires. They 
an be studied by

looking at the statisti
s of the lo
al amplitudes of

the eigenfun
tions [1℄.

In the metalli
 regime, 
hara
terized by a large


ondu
tan
e, the eigenfun
tions spread uniformly

throughout the whole system. Their statisti
s is

des
ribed by random matrix theory (RMT) [2℄.

RMT deals with ensembles of Hermitian matri-


es, 
orresponding to physi
al operators, whose

matrix elements are randomly distributed. In

Dyson's ensembles of randommatri
es the matrix

elements are Gaussian distributed. These ensem-

bles are mathemati
ally well-understood, and ex-

pressions for the statisti
al distribution fun
tions


an be derived exa
tly [1℄.

Random banded matrix (RBM) ensembles [3℄


an be regarded as generalization of the Dyson

ensembles in RMT. In the former, the matrix el-

ements are still Gaussian distributed, but their

varian
e de
ays outside a 
ertain range from the

�
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main diagonal. These matrix ensembles 
an

be said to model systems whi
h are 
lassi
ally

strongly 
haoti
 but subje
t to quantum lo
aliza-

tion [4℄. The ki
ked rotator is an example for su
h

systems [3℄.

Due to lo
alization [4℄ the statisti
s of eigen-

fun
tions in RBM ensembles show deviations

from RMT, depending on how mu
h they di�er

from the Dyson ensembles. Here, the supersym-

metri
 � model approa
h 
an be applied [5℄. Par-

ti
ularly, in the weakly lo
alized regime, where

the matri
es are almost full, the deviations are

small, and 
an be treated within perturbation

theory.

In this paper, we present numeri
al results for

the eigenfun
tion statisti
s in RBM ensembles,

and 
ompare these to the expressions obtained

for the � model. We are parti
ularly interested

in the extension of the � model approa
h to 
om-

plex quantum systems, whi
h 
an be no longer

labelled as 
lassi
ally 
haoti
, but are still known

to follow the predi
tions of RMT in the metal-

li
 regime. A well-known example is the Ander-

son model of lo
alization [6℄, for whi
h we shall

present numeri
al results elsewhere [7℄.
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2. Des
ription of the model

In this paper, we 
onsider the simplest version

of the RBM ensembles [3℄, where the matrix el-

ements H

ij

of the Hamiltonians are taken ran-

domly, if ji� jj � B, where B is the band width.

Other matrix elements are zero. In the ensem-

ble of orthogonal matri
es all the nonzero non-

diagonal matrix elements are 
hosen to be real

and Gaussian distributed with varian
e 1 and

mean 0, whereas in the ensemble of unitary ma-

tri
es these elements additionally have equally

distributed imaginary parts. The diagonal ele-

ments in both orthogonal and unitary ensembles

are real and Gaussian distributed with varian
e 2

and mean 0.

Physi
ally, the RBM ensembles 
an be related

to one-dimensional (1D) disordered systems with

long-range hopping, or, alternatively, to quasi-1D

systems withB asso
iated to the number of trans-

verse 
hannels for ele
tron propagation. The or-

thogonal ensemble des
ribes systems, whi
h are

time-reversal symmetri
, whereas in the unitary

ensemble this symmetry is broken. They 
or-

respond to the Dyson ensembles in RMT, if B

equals the rank N of the matri
es.

The RBM ensembles 
an be redu
ed to the non-

linear � model, if B � 1 [5℄. The main properties

of spe
tra and eigenfun
tions in RBM ensembles

have been shown to depend only on the s
aling

parameter � = B

2

=N [3,8℄. The strength of lo
al-

ization of the eigenstates 
an be tuned by adjust-

ing �. For � � 1 the states are highly lo
alized

and for �� 1 they are delo
alized. Here, we are

mainly interested in the delo
alized regime, where

the perturbation theory provides formulas whi
h


an be generalized to other disordered quantum

systems [9℄.

3. Eigenfun
tion statisti
s

Let E

�

and  

�

= ( 

1

�

; : : :  

N

�

) be the eigenval-

ues and eigenve
tors of a Hamiltonian, belonging

to an orthogonal or unitary ensemble des
ribed

above. In this paper, we look at the statis-

ti
s of the eigenve
tor amplitudes fN j 

i

�

j

2

; i =

1; : : : ; Ng, weighted by the dimension N of the

eigenve
tors. We de�ne [10℄

f(t) =

�

N

X

�

X

i

Æ[t� j 

i

�

j

2

N ℄ Æ(E �E

�

) : (1)

Here � is the mean level spa
ing and E is the

energy. In the delo
alized regime, where B is

large and the predi
tions of RMT are valid, f(t)

is given by [1℄

f

(O)

RMT

(t) =

1

p

2�t

exp(�t=2); (2)

f

(U)

RMT

(t) = exp(�t) : (3)

The supers
ripts O and U refer to Dyson's or-

thogonal and unitary ensembles of random matri-


es. Eq. (2) is usually referred to as the Porter-

Thomas distribution [11℄.

Small deviations from Eqs. 2 and 3 due to lo
al-

ization 
an be written as perturbation expansions

[9℄

f

(O)

(t) ' f

(O)

RMT

(t)

�

1 + a

d

(3� 6t+ t

2

)=2

�

;(4)

f

(U)

(t) ' f

(U)

RMT

(t)

�

1 + a

d

(2� 4t+ t

2

)

�

: (5)

These expansions are valid for small amplitudes

t < a

�1=2

d

. They are parametrized by

a

d

=

�

2�

X

q

1

Dq

2

: (6)

whi
h is a sum over the eigenmodes of the di�u-

sion propagator in the system. D is the di�usion


onstant.

As indi
ated, a

d

generally depends on the di-

mension d of the system. It also depends on

the boundary 
onditions. The random banded

Hamiltonians 
orrespond to the quasi-1D 
ase

with open boundary 
onditions, where a

1

= X=6

[9℄. The parameter X = (2=�)L=�, where � = 1

in the orthogonal ensemble, and � = 2 in the

unitary one. L is the length of the quasi-one di-

mensional wire, and � is the lo
alization length.

Without dire
t 
onne
tion to a physi
al system,

L and � are not well de�ned in the RBM ensem-

bles. Therefore we only 
onsider the ratio L=�

here.

A non-perturbative solution for f(t) in the non-

linear � model was given in Ref. [12℄. The formu-
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las in the orthogonal and unitary ensemble 
on-

sist of rather long integral and di�erential expres-

sions, parametrized by X . Be
ause of the la
k of

spa
e these formulas are not repeated here. They

are valid only in the quasi-1D 
ase, and 
annot be

generalized to higher dimensional systems, in 
on-

trary to the perturbational expressions (4) and

(5) [12℄.

4. Numeri
al results

We studied ensembles of RBMs with rank N =

1000. The distributions of eigenve
tor amplitudes

are in good agreement with Eqs. (4) and (5) for

large B, as 
an be seen in Fig. 1. Here, we plot

the fun
tion Æf(t) = f(t)=f

RMT

(t)� 1 to see the

deviations from RMT. For B < 70 or B

2

=N <

5 the agreement rapidly gets poorer, indi
ating

that the �rst order perturbation theory no longer

applies.

The values obtained for the parameter X in

the orthogonal and unitary ensembles for di�erent

values ofB are shown in Fig. 2. The values are the

same in the orthogonal and unitary ensembles,

and they are inversely proportional to B

2

. This

fa
t lets us extrapolate values of X even for small

B.

The formulas from Ref. [12℄, 
ompared to our

results, are shown in Fig. 3. We get a very good

agreement for all the values of B we have used.

It is somewhat surprising that the theory ap-

plies even for rather small B. For large B, the

agreement is less good for tails, i.e. for large t.

This disagreement may point towards a falla
y of

the formulas in that regime. The tails are, how-

ever, also numeri
ally diÆ
ult to 
ompute, be-


ause they represent rarely o

urring high ampli-

tudes of weakly lo
alized states.

5. Con
lusions

We have analyzed the statisti
s of eigenve
tor

amplitudes in RBM ensembles and their devia-

tions from RMT as a fun
tion of the band width

B. We found good agreement with the pertur-

bational expressions, based on the nonlinear �

model for large B. Our numeri
al results 
an

be �tted by the expressions derived in Ref. [12℄,
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Figure 1. Deviations of f(t) from RMT for the

(a) orthogonal and (b) unitary RBMs of order

N = 1000 (symbols). The averages are taken

over the energy interval [�0:1; 0:1℄ and 1000 RBM

realizations. The roughness of the 
urves show

the degree of ina

ura
y due to the �nite number

of realizations. The solid lines show the �rst order


orre
tion term in Eqs. (4) and (5), respe
tively.

The values of a

1

for di�erent band widths B have

been �tted to get the best agreement for small

t. The 
urves have been multiplied by a 
onstant

for 
larity as indi
ated.
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Figure 2. Parameter X = (2=�)L=� for RBMs in

the orthogonal and unitary ensemble. The error-

bars show the standard errors of the average over

RBM realizations.

whi
h are exa
t in the quasi-1D 
ase, but numer-

i
ally somewhat diÆ
ult to use. The agreement

is less good in the tails of distribution fun
tions,

whi
h may indi
ate the failure of the � model ap-

proa
h in this regime. The tails are of spe
i�


interest in two- and three-dimensional disordered

systems, be
ause there are 
ontradi
tory predi
-

tions for them in the literature, based on the �

model [13℄ or dire
t optimal 
u
tuations [14℄ ap-

proa
hes. Our numeri
al studies for su
h systems

are in progress.
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