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ON AN AUGMENTED LAGRANGIAN SQP METHOD FOR A CLASS OF
OPTIMAL CONTROL PROBLEMS IN BANACH SPACES

Nadir Arada!, Jean-Pierre Raymond, Fredi Troltzsch 2

Abstract

An augmented Lagrangian SQP method is discussed for a class of nonlinear opti-
mal control problems in Banach spaces with constraints on the control. The conver-
gence of the method is investigated by its equivalence with the generalized Newton
method for the optimality system of the augmented optimal control problem. The
method is shown to be quadratically convergent, if the optimality system of the
standard non-augmented SQP method is strongly regular in the sense of Robinson.
This result is applied to a test problem for the heat equation with Stefan-Boltzmann
boundary condition. The numerical tests confirm the theoretical results.

Keywords: Augmented Lagrangian SQP method in Banach spaces, optimal control, con-
trol constraints, two-norm discrepancy, generalized equation, generalized Newton method,
semilinear parabolic equation.

AMS subject classification: 49K20, 35J25

1 Introduction

We consider an Augmented Lagrangian SQP method (ALSQP method) for the following
class of optimal control problems, which includes some meaningful applications to control
problems for semilinear partial differential equations:

Minimize f(y,u),

(P)

subject to Ay +¢(y) —u=0, ye¥, uecUycCU.

In this setting Y and U are real Banach spaces, f: ¥ x U — R and ¢: Y — U are
differentiable mappings, and U, is a nonempty, closed, convex and bounded subset of U.
The operator A is a continuous linear operator from Y to U. In general, (P) is a non-convex
problem. We will refer to u as the control, and to y as the state.

In the past years, the application of ALSQP methods to optimal control or identification
problems for partial differential equations has made considerable progress. The list of
contributions to this field has already become rather extensive so that we shall mention
only the papers by Bergounioux and Kunish [6], Ito and Kunisch [13], [14], Kauffmann
[15], Kunisch and Volkwein [16], and Volkwein [25], [26].

!Supported by SFB 393 ”Numerical Simulation on Massive Parallel Computers”.
2Parts of this work were done when the third author was visiting professor at the Université Paul
Sabatier in Toulouse.



In this paper, we extend the analysis of the ALSQP method to a Banach space setting.
This generalization is needed, if, for instance, the nonlinearities of the problem cannot be
well defined in Hilbert spaces. In our application, this will concern the nonlinear mapping
¢. A natural consequence of this extension is that, in contrast to the literature about the
ALSQP method, we have to deal with the well known two-norm discrepancy. Another
novelty in our approach is the presence of the control constraints u € U,y in (P) , which
complicates the discussion of the method. To resolve the associated difficulties, we rely
on known results on the convergence of the generalized Newton method for generalized
equations.

One of the main goals of this paper is to reduce the convergence analysis to one main
assumption, which has to be checked for the particular applications — the strong regularity
of the optimality system. In this way, we hope to have shown a general way to perform
the convergence analysis of the ALSQP method.

For (P) we concentrate on a particular type of augmentation, applied only to the
nonlinearity of the state equation. Splitting up the state equation into Ay + 2z —u = 0
and z — ¢(y) = 0 we will augment only the second equation. This type of augmentation
is useful for our application to parabolic boundary control problems. The convergence
analysis is confirmed by numerical tests, which are compared with those performed for the
(non-augmented) SQP method.

We obtain the following main results: If the optimality system of first order necessary
optimality conditions for (P) is strongly regular in the sense of Robinson, then the ALSQP
method will be locally quadratic convergent under natural assumptions. This result is
applied to a boundary control problem for a semilinear parabolic equation. In [23], the
convergence of the (non-augmented) SQP method was shown for this particular problem
by verifying this strong regularity assumption. In this way, our result is immediately
applicable to obtain the convergence of the augmented method in our application.

The paper is organized as follows: In Section 2 we fix the general assumptions and
formulate first order necessary and second order sufficient optimality conditions. Section
3 contains our example, a semilinear parabolic control problem. The ALSQP method is
presented in Section 4, where we show that its iterates are well defined in the associated
Banach spaces. The convergence analysis is developed in Section 5 on the basis of the
Newton method for generalized equations. The last part of our paper reports on our
numerical tests with the ALSQP method.

2 General assumptions and optimality conditions

We first fix the assumptions on the spaces and mappings. The Banach spaces Y and U
mentioned in the introduction stand for the ones where the following holds:

e fis a mapping of class C? from Y x U into R,



e ¢ is a mapping of class C? from Y into U.

For several reasons, among them, the formulation of the SQP method and the sufficient
second order optimality conditions, we have to introduce real Hilbert spaces Y, and U,
such that Y (respectively U) is continuously and densely imbedded in Y3 (respectively Us).
Moreover, we identify Us with its dual U;. Therefore, denoting by U* the dual space of U,
we have the continuous imbeddings

UcU,C U*.
Let us introduce the product space V =Y x U, endowed with the norm ||v||y = ||y||ly +
||u||7, and the space Vo = Yy x Us, endowed with the norm ||v||v, = ||yl|v, + |u]|v,-

Notations: We shall denote the first and second order derivatives of f and ¢ by
(), f"(v), ¢'(y), ¢"(y), respectively. Partial derivatives are indicated by associated
subscripts such as f,(v), fyu(v), etc. Notice that, by their very definition, f'(v) € V*,
f"(v) € L(V,V*), ¢(y) € L(Y,U) and ¢"(y) € L(Y,L(Y,U)). The open ball in V cen-
tered at v, with radius r is denoted by By (v,r). The same notation is used in other
Banach spaces. We will denote the duality pairing between U* and U (resp. Y* and Y)
by (-, )gewr (Tesp. (-, *)y«yy), While (-, -) is reserved in this paper for the scalar product
of UQ.

Below we list our main assumptions:

(A1) A is a linear, continuous, and bijective operator from Y5 to Us. Moreover, its
restriction to Y, still denoted by A, is continuous and bijective from Y to U. In
addition, we assume that U,y is closed in Us.

(A2) (Extension properties) For all r > 0 there is a constant c¢(r) > 0 such that, for
all v, € By(0,7), we have

| (wo)vl + {16 (o)l < c(r)l|v]l,  forallv eV, (2.1)

[f" (wo)or, vo] | + 16" (o) [y, 1]l < e(r) o llvs |02 v, (2.2)

for all vy, ve € V. From (2.1) it follows that f’(v) can be considered as a continuous
linear operator from V5 to R, and ¢'(y) can be considered as a continuous linear
operator from Y5 to Us.

Since ¢"(yo)[y1, y2] belongs to U, and U C U*, the term ||¢" (v,)[y1, yo]||r+ is meaning-
ful. Moreover, f”(v) (respectively ¢”(y)) can be considered as a continuous bilinear
operator from V5 x Vy (respectively Y3 X Ys) into R (respectively U*). In the second
order derivatives we shall write [v,v] = v2.

(A3) (Lipschitz properties) For all v; € By (0,7), i = 1,2, there is a ¢(r) > 0 such
that

1f"(01) = ' (w2)]

vi 19 (w1) = &' (v2) oty < e(r)|lor — walv, (2.3)
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(" (01) = f"(02)) 21, 22| + [1(8" (1) = & (42)) 1, 7]

S C(’I“) ||’Ul — v2||V||Zl||V2||Z2||V2 for all Zi = (7717u1,) € V, 1= ]_,2

v (2.4)

(A4) (Remainder terms) Let r!(x,;h) denote the i-th order remainder term for the
Taylor expansion of a mapping F' at the point z, in the direction h. Following Toffe
[11] and Maurer [18] we assume

o, fo(o .
171 (vo; v)| |13 (%;UH 0 as |[v]y — 0, (2.5)
[[0]]v 1v[I3,
Y Al .
||T1 (ymy)“UQ + ||7“2 (y0,2y)||U2 — 0 as ||y||y — 0. (2-6)
vz lyll5

(A5) (Regularity)

e For all y € Y, the operator (A + ¢'(y)) is bijective from Y5 to Us. Its restriction to
Y, still denoted by A + ¢'(y), is bijective from Y to U.

e Forallv € V, f,(v) belongs to Y, where Y is a Banach space continuously imbedded
in Y*. For allv € V| f,(v) belongs to U.

e The restriction of (A 4 ¢/(y)) * to Y is continuous from Y to U.

The first assumption concerns the linearized state equation. The second and third
assumptions are needed to get optimal regularity for the adjoint equation. Indeed, the
adjoint state corresponding to o = (7, @) is defined by p = (A + ¢'(y)) " f,(v) € U*.
To study the convergence of the SQP method we need that p belongs to U. Since by
definition f,(v) belongs to U*, the condition f,(v) € U is a regularity condition on

fu(v).

In the analysis of the Generalized Newton Method, we need the following additional regu-
larity conditions.

(A6) For every y € Y, ¢'(y)* belongs to L(U, Y). The mapping y — ¢'(y)* is locally of
class O from Y into L(U,Y'). For every y1,y2 € Y, [¢"(y1)y2]* belongs to L(U,Y).
The mapping (y1,y2) — [¢" (y1)ys]* is locally of class C*! from Y x Y into L(U,Y).

(A7) The mapping v — f'(v) is locally of class C*! from V into V, where V =Y x U.

3 Example - Control of a semilinear parabolic equa-
tion

Let us consider the following particular case of (P) :
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. 1 K
(B)  Miimize f(y.u) = (T) ~ yrllaoy + Slulas + [ acu— [,y
5 D

subject to
yi—Ay=d in Q=9 x(0,7),
y(0) =a in Q,

hy+y=b+u—p(y) on X =T x(0,T),

e < u(z,t) < up.
Here,  C R” is a bounded domain with boundary I' of class C?, T" > 0,x > 0, yr €
L>(Q), d € L*(Q), a, € L®(X), a, € L*(X), b € L*(X), a € L*(Q), and u, < u, are

given fixed. The function ¢ : R — R is nondecreasing, and locally of class C*'. (The choice
¢ = |y[*y fits into this setting.)

Let us verify that problem (E) satisfies all our assumptions. This problem is related to (P)
as follows:

A = (y — Ay, y(0), 0y + ),

o(y) = (d, a, o(y(-))),

U = I2(Q) x I™(®) x I*(%),

Y ={yeW(0,T) |y — Ay € L*(Q), y(0) € L™(Q), dyy € L™(X)},

Usa = {(0,0,u) € U | ug < u(z,t) <up a.e. on L},

U, = L2(Q) x L*(Q) x L*(%),

Yo={ye W(0,T) |y — Ay € L*(Q), y(0) € L*(Q), d,y € L*(¥)},
where W (0, T) is the Hilbert space defined by

WO.T) = {y € 0.7 ') | 2 e 20,7 (1 (@),

The space Y (respectively Ys) is endowed with the norm |lylly = |lyllwomr + [y —
Ayllre(@) + [[Y(O0)lILoe(@) + 10uyllLoe() (vespectively [lylly, = llyllwo.r) + llye = Ayllz2o) +
1y(0)[Iz2() + 100yl L2(s))- Let us check the assumptions.

e The operator A is obviously continuous from Y5 to Us,, and is bijective from Y5 to U,
(see [17]). Tt is also a bijection from Y to U. (see [8], [20].) Thus (A1) is satisfied.

e Since Y C L*°(Q) with continuous imbedding ([8], [20]), we can verify that ¢ is a map-
ping of class C? from Y into U, and that f is a mapping of class C? from Y x U into R.
Moreover, for all v, = (y,,u,) € Y x U, we have

fo(Yo, uo)y = /(yo(x, T) — yr(x))y(x,T) dz — /ay(x, t)y(z,t)dSdt

ot wo)u = [ (s, 0) + (w0 u(a, 1) dSt,



¢ (Yo)y = (0,0, ¢ (o) y).

Thus, the derivative f,(v,) (respectively f,(v,)) can be identified with the triplet (0, y,(T") —
yr, —ay,) € L®(Q) x L>®(Q) x L>*(X) (respectively (0,0, ku, + a,) € L>®(Q) x L®(Q) x
L>(X)). The assumptions (2.1) and (2.3) can be easily satisfied.

e To verify assumption (A5), let us introduce the space Y = L®(Q) x L™(Q) x L= ().
This space can be identified with the subspace of Y* of all elements having the form

Y /Qdexdt—l-/?)Q y(,T) da:+/g2 y(x, ) dSdt,
Q Q D

where (7gq, i, J2) belongs to Y. ;From the above calculations, it is clear that fy(vo)
belongs to Y. Let y(4,4,.) be the solution to the equation

Yy — Ay =d
y(0)=a (3.1)
Oy +y+ ¢ (Yo)y = u.

The operator (d, a,u) — ¥a,q) is continuous and bijective from Us into Y3 ([17]), and from
U into Y ([8], [20]). The first part of (A5) is satisfied. To prove the second part, let us
consider the adjoint equation

—m — AT =19qg
(T) = Jq (3.2)
Oy + 7 + @' (yo) T = Js.

For all (d,a,u) € U, and all § = (3¢, Ja, Us) € Y, by using a Green formula, we obtain

d / 0 / :/ ] a,u / ] a,u T / ] a,u
/Q7r + Q7r( )a + U= ), Ve Vi )+ | YeYda, W(T) + U= a)
= <@a (A + ¢,(y0))_1(da a, u)>Y*><Y
= <(A + ¢I(y0))_*@7 (da a, u)>U*><U'

Therefore p = (A + ¢'(v,)) *(9) is nothing else than (7, 7(0),7|s). With this identity, we
can easily verify the second part of assumption (A5).
e Let us finally discuss properties of some second order derivatives. The second derivative
?" (y,) is given by

(" (Wo) [y, 2]) = (0,0, 0" (y0) y192)-

For y; € Y and ||y,||ly < r we have

19" (o)1l Lrisy < 1€ (Wo)llzoe(syllvn | p2syllvallpacsy < c(r)lloill 2y llv2ll L2 (s)-

We can interprete ¢”(y,)y1y2 as an element of L' () C L*>°(2)*, and (2.2) can be checked.
The other assumptions on the second order derivatives, precisely (2.4) and (A4), are also
satisfied.



4 Optimality conditions

This section is devoted to the discussion of the first and second order optimality conditions.
Let o = (g, u) be a local solution of (P) . This means that

f(@) < f(v) (4.3)

holds for all v, which belong to a sufficiently small ball By (9,¢) and satisfy all constraints
of (P) .

Theorem 1 Let v = (y,u) be a local solution of (P) and suppose that the assumptions
(A1), (A2), and (A5) are satisfied. Then there exists a unique Lagrange multiplier p € U
such that

fu(g, )y + P, Ay + ¢'(g)y) =0 forally €Y, (4.4)
(fu(g,u) — p,u—u) >0 for all u € U,g. (4.5)

Proof. Since f is Fréchet-differentiable at v = (i, %), ¢ is of class C! from Y to U, and
A+ ¢'(y) is surjective from Y to U, there exists a unique p € U* such that (4.4) and (4.5)
be satisfied (see [12], and also Theorem 2.1 in [1]). The variational equation (4.4) admits a
unique solution p defined by p = (A + ¢'(y)) *f,(v). Due to assumptions (A5), it follows
that p belongs to U. O

We next introduce the Lagrange function L Y x U x U — R,
L(v,p) = L(y,u,p) = f(y. u) + (p, Ay + ¢(y) — u). (4.6)
The system (4.4)-(4.5) is equivalent to
L,(9,p) =0 and L,(0,p)(u—1a) >0 for all w € Uyg.

For shortening, we shall write the adjoint equation (4.4) in the form f, (v)+p(A+¢'(y)) = 0.
Thus the first order optimality system for (P) is

fy(0) + (A + ¢' (7)) = 0,
(fu(0) + p,u—1u)y >0, for all w € U,g,

Ay + ¢(y) —u=0, 49

In what follows, the derivatives in L' and L” refer only to the variable v, but not to the
Lagrange multiplier p. Let us assume that © also satisfies the following:

(SSC) Second order sufficient optimality condition
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There is § > 0 such that
L"(v,p)v* > 6 ||v]|F, (4.8)

holds for all v = (y,u) € Y x U that satisfy the linearized equation
Ay+ ¢ (y)y —u=0. (4.9)

Remark 1 The condition (SSC) is a quite strong assumption, and does not consider
active control constraints, which might occur in U,y;. For instance, this can be useful
for constraints of the type U,q = {u € L®(D) | u, < u(z) < wy, forall x € D}. In
concrete applications, the use of an associated second order assumption is possible (see for
example [23]). However, we intend to shed light on the main steps, which are needed for
a convergence analysis of the augmented Lagrangian SQP method, rather than to present
the difficult technical details connected with weakening (SSC) . We shall adress this issue
again in section 6.

Let us complete this section by some simple results, which follow from the second order
sufficient condition.

Lemma 1 Suppose that the assumptions (A1)-(A5) are satisfied. Suppose in addition
that v satisfies the second order sufficient condition (SSC'). Then there exists p > 0 such
that, for every (y,u,p) given in By v ((y, @, p), p), we have

o )
L"(g, 1, p)v* > 3 V117, (4.10)

for all v = (y,u) € V that satisfy the perturbed linearized equation

Ay+¢'(9)y—u=0. (4.11)

Proof. We briefly explain the main ideas of this quite standard result, to show where
the different assumptions are needed. If (g, ,p) is sufficiently close to (¥, @, p), then the
quadratic form L"(g,u,p) is arbitrarily close to L" (g, u,p). By (SSC), (A2), and (A3)

we derive that o,
LG, > 5 ol (112

provided that Ay+¢'(§) y—u = 0. An analogous estimate has to be shown for the solutions
of the perturbed equation (4.11), where ¢’ is taken at g. Write for short B := L"(y, 4, p)
and define z as the unique solution of Az + ¢'(y) z —u = 0 (we use the first part of (A5)).
Then

My —2)+ W)y —2) = —(¢'(H) — ¢' )y (4.13)

The assumptions (A1), (A3), and (A5) ensure the estimate
ly =zl < cll(@'(@) = ¢'@)yllv, < cllg = vlivllyllv, < cpllyllv, (4.14)

8



(here and below ¢ stands for a generic constant). Therefore,
Bv? = B(z + (y — 2),u)* = B(z,u)* + 2B[(z,u), (y — 2,0)] + B(y — z,0)?
> 7/8 0 |[(z )y, — e ll(z w)ll, — c(e)lly — =I5,
> 6/8 0|z u)ll; — eIyl

follows by (4.12), (4.14) and Young inequality, where ¢ > 0 can be taken arbitrarily small.
Now we re-substitute z by y + (z — y) and arrive by similar estimates at

50 40
Bv* > = [y wllivy = cr’llylly, = 3 ol

provided that p is sufficiently small. Thus (4.10) is proven. O

Although we shall not directly apply the next result, we state it to show why the different
assumptions are needed. Some of them have been assumed to deal with the well known
two-norm discrepancy.

Lemma 2 Let (v,p) = (y,u,p) satisfy the optimality system (4.7) of (P) and the second
order sufficient condition (SSC). Suppose that the assumptions (A1)-(A5) are fulfilled.
Then there are constants € > 0 and o > 0 such that the quadratic growth condition

f) = f(v) = allv =l (4.15)

holds for all admissible v € By (0, ¢).

Proof. The first order optimality system implies
f(v) = f(9) = L(v,p) — L(3.p) > 1/2 L" (3, p)(v = 7)* + 15 (3, ;v — 7). (4.16)
Subtracting the state equations for y and 7, analogously to (4.13) we find that
A+ @)y —7) — (w—1) = {7y~ D).

Define h by (A + ¢'(7))h = 7. Then v, := (y — ¥+ h,u— @) solves the linearized equation
(4.9), and the coercivity estimate of (SSC') can be applied to v,. Moreover, (A5) yields

Iklly, < ellrflle..

We insert vy, in (4.16), write for short B := L" (7, p) and proceed similarly to the estimation
of Bv? in the last proof:

fv)—f(v) >1/2B(v,+v—10— vh)2 —i—r2L
> 6/2Jonll3, — ellvall, — cllv — 7 — vall3, + 75

>6/3 v =Y, —cllv — v —wnllf, + 75

9



_ 2 lv — 7 — wall5, %]
e T T A
In these estimates, the assumptions (A2) and (A3) were used. We have ||[v — v — v, ||y, =
|Ally,, and the estimate of h by the first order remainder term 7{ can be inserted. Let
e — 0. Then (A4) yields [[7¢]|v,/lly — 4llv, — 0 and |rE|/||v — ||}, — 0. Then, the

quadratic growth estimate follows from classical arguments. O

This Lemma shows that the second order condition (SSC) is sufficient for local optimality
of (g, @) in the sense of V', whenever (g, @) solves the first order optimality system. Notice
that we cannot show local optimality in the sense of V5.

5 Augmented Lagrangian method

5.1 Augmented Lagrangian SQP method

In this section we introduce the Augmented Lagrangian SQP method (ALSQP) with some
special type of augmentation. For this, we first represent (P) in the equivalent form

- Minimize f(y,u),

(P)

subject to z — p(y) =0, Ay+2z—u=0, z€ U, u € Uy.

The augmentation takes into account only the nonlinear equation z — ¢(y) = 0. The
ALSQP method is obtained by applying the classical SQP method to the problem

Minimize fo(y,u) = f(y,u) + %Hz —o(W)%,,

subject to z — p(y) =0, Ay+z—u=0, z €U, u € Uy,

(Pa)

where a > 0 is given. We define the Lagrange functional £ for (P), and the corresponding
augmented functional £, on Y x U* as follows:

L(y,u,z,p, ) = f(y,u) + 0. Ay + 2 —u) + (X, 2 — d(y)),
Loy, u,z,p,A) = L(y,u, z,p,\) + 2[|z — ¢(v) |7,

Once again, the derivatives £’ and £” will stand for derivatives with respect to (y,u, 2)
and do not refer to the Lagrange multipliers (p, A). The same remark concerns L,. Let
(Yn, Un, Zn, Pny An) denote the current iterate of the ALSQP method, and consider the linear-
quadratic problem

Minimize  f! (Yn, Un, 20) (Y = Yn, & — Uy, 2 — 2p,)
+%‘Clclv(yna Upy Zny Pns )‘n)(y —Yn, U — Up, 2 — Zn)za
subject to 2z — d(yn) — &' (yn)(y — yn) = 0,

Ay+z—u=0,yeY, z€U, uc€ U,.

(QP711)

10



The new iterate (Yn11, Uni1, Zni1, Pnits Ans1) is obtained by taking the solution (yn11, Uni1, Zni1)
of (QP;,, ) (if it exists), and the multipliers (p,41, Any1) associated with the constraints
Ay+z—u=0,and z — ¢(yn) — ¢'(yn) (y — yn) = 0, respectively. For o = 0 we recover the
classical SQP method.

Let us also introduce the following problem:
Minimize  f'(v,)(v — v,) + £ " (vs) (v — v,)?

(QP,..1) ~5(0 + alzn = 9(n)), 8" (1) (v — 92)?),
subject to Ay + ¢(yn) + ¢ (yn)(y — yn) —u =0, u € Uyg.

The problems (QP; . ;) and (QTDZH) are equivalent in the sense precised below.

Theorem 2 Let (Y1, Uni1, 2nt1) be a solution of (QP; ) with associated Lagmnge maul-

tipliers (Pps1s Ans1) € U X U. Then (ypi1, tns1) must solve the problem (QF 7H_1) and the
multiplier p,.1 is the solution to the equation

Pn+1 (A + ¢I(yn)) - fy(vn) + fyy(vn)(ynJrl - yn) + fyu(vn)(unJrl - ’U,n)

(5.1)
—(An + alzn = ¢(Yn)))9" (Yn) (Ynt1 = Yn)-
Moreover, z,1 and \,11 must satisfy
/\n+1 = —DPn+1 (52)
Znt1 = O(Yn) + &' (Yn) (Yns1 — Yn)- (5.3)

Conversely, if (Yny1,tni1) is a solution of (QF n-l-l) and (Zpi1, Pni1, Ans1) are defined by
(5.1) = (5.3), then (Ynt1,Unt1, Znt1) @5 a solution to (QP:.,) with associated Lagrange
multipliers (Ppi1, Ant1)-

Proof. Let us first assume that (yn41, Uni1, Znt1) solves (QPy ;). To show that (Y541, uny1)
solves (QPn+1) and that the relations (5.1)—(5.3) are satisfied, we investigate the following:

o Euxplicit form of (QPy, ). We expand all derivatives occuring in the problem (QPs, ;)
. Write for short || - || = || - ||, and introduce for convenience the functional g(y,z) =
5z — é(y)[|*. Then

9 Yns 20) (Y, 2) = alzn — G(Yn), 2 — &' (yn)Y),
9" (Yn 20) (Y, 2)? = a(||z — ¢'( n)y||2 (20— D(yn), " (yn)y™))-
n (QP

Having this, the objective to minimize in

Ty, w, 2) = (Y, wn) (Y = Yo 0 — up) + O‘<zn — OWn), 2 — 20— &' (Yn) (Y — Yn))

1 «
+§f”(yna un)(y —Yn,U — un)2 + 5”2 — Zn — d)l(yn)(y - yn)||2

_%O\n + a(zn - ¢(yn))a ¢”(yn)(y - yn)2>

1) is given by

11



The minimization is subject to the constraints
Ay+z—u=0, u € Uy
2= $(yn) = ' (yn)(y — y) = 0.

o Reduction to (@:H) To reduce the dimension of the problem, we exploit the second
one of the equations (5.4): We insert the expression z — z, — &' (yn)(y — yn) = &(yn) — 2n
in the functional J. Then the second and fourth items in the definition of J are constant
with respect to (y,z,u). They depend only on the current iterate and can be neglected
during the minimization of J. The associated functional to be minimized is

(5.4)

T = )= = 00) 3 1" 0) = 10— 0)?)

1
_§<)‘n +a(zn = d(yn)), ¢" (yn) (y — yn)2>
Moreover, we can delete the second equation of (5.4) by inserting the expression for z in
the first one. This explains why (y,11, %ny1) is a solution of (QP:H).

e Necessary optimality conditions. To derive the necessary conditions for the triplet
(Ynt1, Uni1, Zna1), we work with the Lagrange functional

‘CN =J + <p7 Ay + 2z = U> + </\7 Z - ¢(yn) - ¢,(yn)(y - yn)>
The conditions are /jy =0, L, =0, [ﬁu(u —Upt1) > 0, for all u € U,y. An evaluation yields

0= fy(vn) + fyy(vn)(yn-lrl — Yp) + fyu(vn)(“n-lrl — ) = ¢ (Yn) A1 (5.5)
—(An A+ (20— B(Yn)) D" (Yn) Uns1 — Yn) + Pnial,
0= /\n+1 + Pn+1, (56)

0 S <fu(vn) + fuu(vn)(un-i-l - Un) + fyu(vn)(yn—l—l - yn) — Pn+1, U — Un+1> (57)

for uw € U,q. We mention for later use, that the equations (5.4) belong to the optimality
system of (QPy ), too. The update formulas for p,;1 and A, 4, follow from (5.5), (5.6).

We have shown one direction of the statement. The converse direction can be proved in
a completely analogous manner. If (y,.1,u,41) solves (QP:H), then we substitute z for
A(yn) + &' (yn)(y —yn) and — X, 41 for p,1 in the corresponding positions. Then it is easy to
verify that (y,41, Uni1, 2ne1) minimizes J subject to (5.4), and that A, 1 is the multiplier
associated to the equation z — ¢(y,) — &' (yn) (¥ — yn) = 0. a

Remark 2 The update rules (5.2) — (5.3) imply that the Lagrange multiplier A coincides
with —p during the iteration, while this is not necessarily true for the initial values of A\,
and p,. Therefore, with possible exception of the first step, up to a constant, the objective
functional of (@?ZH) is

- 1
J = fl(yna un)(y — Yn, U — un) + iLu(yna unapn)(y —Yn,U — Un)2

_a

2 (20 — O(Yn), ¢" (yn) (y — yn)2>-

12



This easily follows by calculating L" (yn, un, pn) from the formula (4.6). Moreover, we are
justifed to replace A\, by —py in the variational equation (5.1).

Theorem 2 shows that/il(lle iterates of the ALSQP method can be obtained by solving
the reduced problem (QP, ), provided that solutions of (QP% ;) exist. This question of

existence, can be answered by considering (QP +1) as well:

Theorem 3 Let (y, u, p) satisfy the assumptions of Lemma 1 and let z = ¢(y). If||(y,a,p, Z)—
(Yn, Uns Py 2n) ||y <va 18 sufficiently small, then (QPZH) has a unique solution (Y41, Uni1)-

Moreover, (Ypi1,Uni1, Zni1) (with z,.1 being defined by (5.3)) is the unique solution of
(QP; 1)

Proof. Assume that ||(7, 4, P, Z) — (Yn, Un, Pn, Zn) ||y <t < p, and let us prove the existence
for (QP:H). In view of the remark above, the functional J can be taken instead of J for
the minimization in (QT’ZH) Its quadratic part is

L (v, pn) (0 = 00)? = (2 = $(yn), @ (Yn) (Y — yn)°)

= f”(vn)(v - UTL)Z - <pn + Oé(Zn - ¢(yn))7 ¢”(yn)(y - yn)2>

- L”(Umﬁn)(v - Un)za
where p, := p, + a(z, — ¢(yn)). For p | 0, p, tends to p in U, since z, — ¢(y,) —
Z — ¢(y) = 0. Lemma 1 yields that the objective functional of (QPZH) is coercive on the
set C'={(y,u) € YoxUs | Ay+ &' (yn)y —u = 0}, hence it is strictly convex there. The set
U,q is non-empty, bounded, convex, and closed in U, and in U, as well. We have assumed
in (A5) that (A + ¢'(y)) " is continuous from U, to Yz at all y € Y, in particular at
y = yn. Therefore, C' is non-empty, convex, closed, and bglir}lded in Y5 x U;. Now existence
and uniqueness of a solution (y,,41,un41) € Y2 x Uz to (QP,, ;) are standard conclusions.
Moreover, U,y C U, hence u,.; € U, and the regularity properties of (A + ¢'(y,))*

guarantee that y, .1 € Y. Further, z,.1 € U follows from (5.3). Existence and uniqueness
for (QP; ) are obtained from Theorem 2. 0

The update rules of Theorem 2 show that (p,i1, Apy1) is uniquely determined in Uy X Us.
We get even better regularity:

Corollary 1 If the initial element (Y, Un, Zn, Pn, An) 05 taken from Y x U, then the iterates
{(Yns Uny Zny Pn, An) } generated by the ALSQP method are uniquely determined and belong
toY x Ut.

Proof. Existence and uniqueness follows from the last theorem and the update rules (5.2)—
(5.3). We also know that (yny1,Uni1,2n41) € Y X U? . The only new result we have to
derive is that (pni1, A\ny1) remains in U x U as well. Since A\, ;1 = —py.1, we have to
verify p,.1 € U. This, however, follows instantly from the equation (5.1): We know that
Fon)s fuy(©2) Wnt1 — Yn), and fuu(00)(Uns1 — uy) belong to ¥ (assumptions (A5), (A6),
(AT7)). Moreover, the same holds for (¢"(yn)(Ynt1 — ¥n)) (P + (2, — d(yn))) by (AG6).
Therefore, (A5) ensures the solution p,,1 of (5.1) to be in U. 0

13



5.2 Newton method for the optimality system of (F,)

The augmented SQP method can be considered as a computational algorithm to solve the
first order optimality system of (P,) by the generalized Newton method. This equivalence
will be our tool in the convergence analysis. The optimality system for (P,) consists of the

equations (ﬁa(w))y —0,
([’a(w))z - 0)
(Lo(w))y(t—u) >0  forall u € Uy, (5.8)
Ay+2z—u=0,

for the unknown variable w = (y, u, z,p, A). The optimality system (5.8) of (P,) is equiv-

alent to a generalized equation. To see this, let us first introduce the following set-valued
mappings:

{meUu%a—mgo forall @ € Uygy  if u € Uy,
N(u) =
@ if u ¢ Uad-
N(w) = {05} x {0v} x N(u) x {0y} x {0},
and consider F: Y x U* =Y x U* defined by
fy(y, u) — alz — ¢(y))¢'(y) + pA — Ad'(y)

a(z = ¢y)) +p+ A

F(w) = [ fuly.u) —p : (5.9)
Ay+z—u
z = (y)

Notice that N(u) has a closed graph in U x U. Tt is the restriction to U of the normal cone
at Uy in the point u. (For the definition of the normal cone, we refer to [5].) In the first
component of F, due to (A6), we identify A@'(y) (resp. (z — &(y))¢'(y)) with the element
(¢'())*X (resp. (¢'(y))*(z — ¢(y))) which belongs to Y. With (A5) and (A6), we can
easily verify that F' takes values in YV x U4

Lemma 3 The optimality system (5.8) of (P,) is equivalent to the generalized equation
0€ F(w)+ N(w). (5.10)
Proof. By calculating the derivatives of £, in (5.8), we easily verify that:
(La(w))y
(La(w)).
Fw) = [ (La(w))u
Ay+z—u
2= d(y)

14



Therefore, by the definition of F', (5.10) is equivalent to

0= (La(w))y

0= (La(w)).

0€ (Lo(w))y + N(u)
0=Ay+z—u
0=2—9¢(y).

The third relation can be rewritten as:
w€ Uy and (Lo(w))y(dt —u) >0 for all @ € U,g.

This is just the variational inequality of (5.8), and the equivalence of (5.8) and (5.10) is
verified. a

Next we recall some facts about generalized equations and related convergence results
for the Generalized Newton Method (GNM). Let W and £ be Banach spaces, and let O
be an open subset of W. Let F be a differentiable mapping from O into £, and T be a
set-valued mapping from O into P(€) with closed graph. Consider the generalized equation

we O, 0€ Flw)+Tw). (5.11)

The generalized Newton method for (5.11) consists in the following algorithm:

e Choose a starting point wy € O,

e For k =0,1,..., compute w1, the solution to the generalized equation:
we O, 0€ Flwp) + F(w—wi)+ T (w). (5.12)

The generalized Newton method is locally convergent under some assumptions stated be-
low.

(C1) Equation (5.11) admits at least one solution @.
(C2) There exist constants 7#(w) and é(w) such that By (@, 7(@)) C O, and

17 (w1) = F'(wa)[[eowie) < E(@)[|lwr — wallw
for all wy, ws € Byy(w, 7(@)).
Definition 1 The generalized equation is said to be strongly reqular at w* € O, if there
exist constants r(w*) and c(w*), such that, for all{ € Be(0,r(w*)), the perturbed generalized
equation

we O, e F(w)+Fllw—w)+T(w), (5.13)
has a unique solution S(w*, &) satisfying

[S(w?, &) = S(w™, &)llw < c(w”)[I& — &llw
for all §1,& € Be(0,7(w")).
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The theorem below is a variant of Robinson’s implicit function theorem ([21], Theorem
2.1).

Theorem 4 ([4], Theorem 2.5) Assume that (5.11) is strongly reqular at some @ € O, and
that (C1) and (C2) are fulfilled. Then there exist p(@) > 0, k(@) > 0, and a mapping Sy
from By(w, p(w)) C O into By(w, p(@)) such that, for every w* € By (w, p(w)), So(w*) is
the unique solution to (5.13), and

1S0(w") = @llw < k(@) l|lw* = @[5y

The following theorem is an extension to the generalized equation (5.11) of the well known
Newton-Kantorovitch theorem. It is a direct consequence of Theorem 4.

Theorem 5 ([4], Theorem 2.6) Assume that the hypotheses of Theorem 4 are fulfilled.
Then there exists p(w) > 0 such that, for any starting point wy € By (w, p(w)), the gener-
alized Newton method generates a unique sequence (wy)y convergent to @, and satisfying

w1 — @llw < k(@) ||lwr — @3, for all k > 1.

We apply these results to set up the generalized Newton method for the generalized equa-
tion (5.10), which is the abstract formulation of the optimality system of (P,).

Lemma 4 The generalized Newton method for solving the optimality system of (P,), de-
fined by (5.12), proceeds as follows: Let wy, = (Yn, Un, Zns Pns An) € Y X U be the current
iterate. Then the next iterate Wy 1 = (Ynt1s Unt1y Znits Pntls Ant1) € Y X U* is the solution
of the following generalized equation for w = (y,u, z,p, \):

0= fy(yna Un) + fyy(yna un)(y - yn) + fyu(yna Un)(u - un) - (514)
— (A + alzn = 0(Yu))d" (Ya) (¥ — yn) +PA = A (y2)

0=A+p (5.15)

0€ fu(yna Un) + fuu(yna “n)(u - un) + fuy(ynv un)(y - yn) —p+ N(u) (5-16)

0=Ay+z—u (5.17)

0=2z-— d)(yn) - d)l(yn)(y - yn)' (518)

Proof. 'This iteration scheme is a conclusion of the iteration rule (5.12) applied to the
concrete choice of (5.9) for F. The computations are straightforward. We should only
mention the following equivalent transformation, which finally leads to (5.14), (5.15): Due
to the concrete expression for F' given in (5.12), the first two relations in 0 € F(w,) +
F'(wy)(w — w,) + N (w) are
0= fy(yna un) + fyy(yna un)(y - yn) + fyu(yna Un)(u - un) - (519)
—a(z = ¢(Yn) — ¢ (W) (¥ — yn)) ¢ (¥n)
— (A + alzn — (Yn)) 0" (Yn) (¥ — yn)
0=a(z = dyn) = & (yn)(y — ) + P+ A. (5.20)
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Inserting (5.18) in (5.19), (5.20) we obtain (5.14), (5.15). O

To apply Theorem 5 to the concrete generalized equation (5.10), we need that (5.10) be
strongly regular at w, and that conditions (C1) and (C2) be satisfied. The assumption
of strong regularity at w must be assumed here. It has to be checked for each particular
application. In general, the verification of strong regularity requires a detailed analysis. In
the case of the optimal control of parabolic partial differential equations, we refer to the
discussion of the SQP method in Troltzsch [23]. The strong regularity of an associated
generalized equation was proved there by means of a result on L*°-Lipschitz stability from
[22]. The associated semilinear elliptic case was studied by Unger [24].

The conditions (C1) and (C2) can be verified with assumptions (A6) and (AT).
Lemma 5 The mapping w — F(w) is of class C¥' from Y x U* into Y x U*.
Proof. This statement is an immediate consequence of (A6) and (A7). 0

Theorem 6 Let (g, @) be a local solution of (P), and let p be the associated adjoint state.
Assume that the generalized equation: Find (y,u,p) € Y x U? such that

0=pA+pd'(y) + fy(y, u),
0 € fuly,u) + N(u), (5.21)

be strongly reqular at (g,a,p). Then the generalized equation

Findw €Y x U*  such that F(w) € N(w), (5.22)

is strongly reqular at w = (y, 1, Z,p, ), where Z = ¢(y) and X = —p.

Proof. Let e = (e, ey, ey, €, €,) be a perturbation in Y x U*. The linearized generalized
equation for (5.22) at the point w, associated with the perturbation e, is

ep = fy+ Fuy(y =) + frulu — @) — (A +a(2 ~ 9))d"(y — 7)
—a(z—¢—¢'(y—1))¢ +pA— Ay

ex=a(z—¢—¢y—9)+p+A

eu € fu+ fuu(t — @) + fuy(y — 9) — p+ N(u),

ey =Ny + 2z —u,

e:=2—¢—¢(y—17),

(5.23)

where fyy stands for f,, (7, @), and the same notations is used for the other mappings. To
obtain the two first equations of (5.23), we refer to the system (5.19), (5.20), where we
insert w, = w and replace the left hand side by the perturbation.
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Since Z — ¢ = 0 and A = —p, by straightforward calculations, we can easily prove that the
system (5.23) is equivalent to

ey —exd = fy + fuy(y = 9) + fyulu — @) + 56" (y — 7) + p(A + ¢')
ex — e, =p+ A,
eu € fut fuu(t — @) + fuy(y —9) — p+ N(u), (5.24)
ey —e.=Ay+ o+ (y—y) —u,
e.=z—¢— ¢ (y—17).

Now we observe that the first, third, and fourth relation of (5.24) form a subsystem for
(y,u,p), which does not depend on (z,\). Once (y,u,p) is given from this subsystem,
(z,A) is uniquely determined by the remaining two equations. Let us set € = (é,, €y, ¢,),
with

&, =€, — exd, Cu = €u, €y = ey — e,. (5.25)

The subsystem of (5.24) can be rewritten in the form of the generalized equation

ey = Ty (Y —9) + fyulu — @) + pA+ f, + " (y — 9),
€u € fut fuu(u— )+ fuy(y — ) — p + N(u), (5.26)
éy=Ay+o+¢'y—179 —u

The generalized equation (5.26) is the linearization of the generalized equation (5.21) at
(g,u,p), associated with the perturbation €. Since (5.21) was assumed to be strongly
regular at (y,w,p), there exist 7 = r(y,u,p) > 0, ¢ = ¢(y,u,p) > 0, and a mapping S from
Bs. ;(0,7) into V xU, such that S(€) is the unique solution to (5.26) for all & Bs. ;(0,7),
and ||S(e") — S(&) |5, < élle" — e[, - Now, we show that (5.22) is strongly regular at
w. For any e, let € be given by (5.25). Then

1€llg e < el

||§><U — 6||)/>><U4’

and there exists 7 > 0 such that é belongs to By ;(0,7) if e € By _;;4(0,7). Define a

Y xU4

mapping S from By, (0,7) into Y x U4, as follows :

S(e) = (51(8), 52(é), z(e), S5(¢), Ale)),

where

(S1(€), S2(€), Ss(€)) = S(é),
z(e) = e, + ¢+ ¢'(S1(é) — %), Ae) = ey —ce, — S3(€é).

Then S(e) is clearly the unique solution to (5.23). We can easily find ¢ > 0 such that
IS (e!) — S(e?) <cllet —e The proof is complete. O

Theorem 6 shows that once the convergence analysis for the standard non augmented

||}/}><U4 2||)/>><U4'
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Lagrange-Newton-SQP method has been done by proving strong regularity of the associ-
ated generalized equation, this analysis does not have to be repeated for analyzing conver-
gence of the augmented method.

Up to now, we have discussed the Augmented SQP method and the Generalized Newton
method separately. Now we shall show that both methods are equivalent. This equivalence
is used to obtain a convergence theorem for the augmented SQP method.

Theorem 7 Let (y,u) a local solution of (P), which satisfies together with the associ-
ated Lagrange multiplier p the second order sufficient optimality condition (SSC'). Define
zZ=¢@), A\ =—p, w = (§,1,Zp,N\), and suppose that the generalized equation (5.21) is
strongly reqular at w. Then there exists r = r(w) > 0 such that, for any starting point
(Yo, 1o, 20, Po, Ao) in the neighbourhood By (w,r), the ALSQP method defined according to
Theorem 2 and the generalized Newton method defined in Lemma 4 generate the same se-
quence of iterates (wy)n = (Yn, Uns Zn, Py An)n. Moreover, there is a constant cy(w) such
that the estimate

w1 = wllw < cqllwn — [l

15 satisfied for allm =0,1,2,...

Proof. First we should mention the simple but decisive fact that w satisfies the optimal-
ity system of (P,), since (y,u,p) has to satisfy the optimality system for (P). There-
fore, it makes sense to determine w by the generalized Newton method. Let w, =
(Yn, Un, Zn, Pny An) be an arbitrary current iterate, which is identical for the ALSQP method
and the generalized Newton method.

In the GNM, w, 1 € W is found as the unique solution of (5.14)—(5.18). As concerns the
ALSQP method, (y,41,uns1) € Y X U is obtained as the unique solution of (QTD:H), while
(Zni1, Put1s Anp1) € U? are determined by (5.2). Therefore, (Yni1, Uni1s Zni1s Poils Antl)
satisfies the associated optimality system (5.4), (5.5)-(5.7) which is obviously identical with
(5.14)-(5.18). Tt is clear that both the methods deliver the same new iterate w,,; € W.
All remaining statements of the theorem follow from the convergence Theorem 5. O

6 Numerical results

6.1 Test example

We apply the augmented SQP method to the following one-dimensional nonlinear parabolic
control problem with Stefan-Boltzmann boundary condition:
T

(E) Minimize f(y,u z,T) —yr(z ))2d$+E u(t)® dt
2/ T 20/

I —

/ y(0,) + au(t)u(t)) dt,
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subject to

Yt = Yoo =0 in (0,¢) x (0,7)
y(x,0) = a(x) in (0,7)

y2(0,t) =0 in (0,7)

yr (1) +y (6 1) = () + u(t) — ¢(y(4,1)) in (0,T),

g < u(t) < up.

This example is a particular case of problem (E) considered in Section 3, where we take Q) =
(0, £) and make an associated modification of the boundary condition. In an early phase of
this work, we studied the numerical behaviour of the SQP method without augmentation.
Here, we compare both methods. We performed our numerical tests for the following
particular data:

2
t=m/4, T =1, mz%(ew?’—el/?’)
uazoa Ub:]_,

yr(r) = (e +e 1) cos(x),

2
o) =%, a,(0) = Lo,

a(x) = cos(x), b(t) = %e‘“ — min(uy, max(u,, —(61/3 — ")),

oy) =ylyl.

Lemma 6 The pair (y,u) defined by

ot _ pl/3
Uq, m))v
is a locally optimal solution for (6.27) in C([0, €] x[0,T])x L>(0,T). The associated adjoint
state (Lagrange multiplier) is given by p(x,t) = —e'cos(x). The triplet (7,1, p) satisfies
the second order sufficient optimality condition (SSC).

u(t) = min(uy, max( y(z,t) = e 'cos(x),

Proof. The proof is split into four steps.
Step 1. State equation. It is easy to see that §; — U, = 0, §(z,0) = cos(x), and 7,(0,t) = 0.
Now regard the boundary condition at © = £: The left hand side is

U (0, 1) + 5(C,t) = —e 'sin(n/4) + e Tcos(m/4) = 0.
The same holds for the right hand side, since

_ _ 1

b(t) +u(t) — p(5(L,1)) = e

Step 2. Adjoint equation. Again, the equations —p; — Py = 0, P,(0,¢)) =0, and p(z,T) =

S at) +a(t) — (e feos(m/4))* = 0.
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y(z,T) — yr(z) are easy to check. It remains to verify the boundary condition at = = ¢:

P t) +p(l,t) = —(ay(t) + " (G(¢,1))p(L, 1))

It is obvious that p, +p = 0 at x = £. The right hand side of the boundary condition has
the same value, since

ay(t) + @' (y(,0))p(L, t) = e 2 — dy(L, t)*e'cos(¢)
= e — 4e73tcos(m/4)3etcos(n /4)
= e 2(—14+4(32)) = 0.

Step 3. Variational inequality. We must verify that « € U,y — which is trivial — and that
T

/(mz(t) +an(t) + (6 0)) (u(t) —a(t))dt >0 for all u € Uy,

0
It is well known that this holds if and only if

ot _ ol/3

(t) = Pluyuy){ — %(au(t) + (L t))} = P[o,u{m}’

where Py ) denotes projection onto [0,1]. This is obviously verified.
Step 4. Second order sufficient condition. The Lagrange function is given by
L= f = Jo(ue = yau)p dudt + [3(y(2.0) — a(x))p(z. 0)dz
+Jo 42(0,6)p(0, 8) dt + J (42 (€, 8) + (€, 8) = b(t) — u(t))p(C. ) dt

— I (y(e,1)p(L,t) dt.
Therefore,

T
ﬁl’(ga ﬂaﬁ)(ya U)2 = ||y(T)||%2(0,Z) + ||u||%2(0,T) - 12A g(& t)Z]j(Ev t)y(& t)Zdt

Since p is negative, L"(y,u,p) is coercive on the whole space Y x U, hence (SSC) is
satisfied. O

Theorem 8 The pair (y,u) is a global solution of (E).

Proof. Let (y,u) be any other admissible pair for (F). Due to the first order necessary
condition, we have

flysw) = f(g,0) + L(5,8,P)(y — §,u — @)

%/ (L) / O" (G0, 1) + Ty (L) — 5L 0)) (y(Lt) — G(L. 1)) dr dt
> f(7.q)
%/ /90 y(£,t) + 7(y (0, t) — 5, 0))) (y(L, 1) — G4, 1)) dr dt.
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;From the positivity of —p and of ¢"(y + s(y — 3)) (independently of s and y), it follows
that f(y,u) > f(5,1). 0
Next we discuss the strong regularity of the optimality system at (g, u, D).

Theorem 9 The optimality system of (E) is strongly reqular at (g, a,p).

Proof. The triplet (g, u,p) satisfies (SSC). Moreover, (F) fits into a more general class
of optimal control problems for semilinear parabolic equations, which was considered in
[23]. It follows from Theorem 5.2 in [22], and Theorem 5.3 in [23] that (SSC) ensures
the strong regularity of the generalized equation being the abstract formulation of the
associated optimality system. We only have to apply this result to problem (6.27). O

Remark 3 A study of [25] reveals that convergence of the standard SQP method can be
proved for arbitrary dimension of Q assuming a weaker form of (SSC). It requires coer-
civity of L" only on a smaller subspace that considers strongly active control constraints.
This weaker assumption should be helpful for proving the convergence of the augmented
SQP method as well. We shall not discuss this, since the technical effort will increase
considerably.

Now we obtain from Theorem 7 the following result:

Corollary 2 The Augmented Lagrangian SQP method for (E) is locally quadratically con-
vergent towards (i, @, p).

6.2 Algorithm

For the convenience of the reader, let us consider the problem (@: +1) corresponding to
our test example. After simplifying we get

l T T l
1
/y(.,T)2dx+g/u2 dt + 5/% y(é,-)zdt—/y(-,T) yrde (6.27)
0 0 0 0

Minimize

NN

[ (= (g g€ ) y(l ) + agu) dt

subject to
Yt — Yoo = 0 in (0,¢), x(0,7)
y(x,0) = a(x) in (0,),
y2(0,8) = 0 in (0,7), (6.28)
Yo (£,1) + cpy(€,t) = bo(t) +u(t) in (0,T),
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e < u(t) < up, (6.29)
with
an = 12yn(£)2 ( - pn(e) + O-”(Zn - yn(€)4))a =1+ 4yn(€)3a
b, = b+ 3y, (0)*.
One specific difficulty for solving problem (6.27)-(6.29) is partially related to the control
constraints. But the main difficulty appears also in the unconstrained case where a (large)
linear system has to be solved. Let us consider for a moment the unconstrained case. If

(tn+1,Yns1) is a solution of problem (6.27)-(6.28), then the optimal triplet (w11, Ynt1, Pri1)
satisfies (6.28), the adjoint equation

Pt + Paz =0 in (0,¢) x (0,7,
p(@,T) =yn(z,T) — yr(z) in (0, £),
pa(0,8) = 0 in (0,7), (6.30)
Pe(l,t) + cnp(l,t) = @ (t)yns1 (6, t) — qu(t)yn (L, t) — ay, in (0,7,

and )
Upi1 = —E(au + ppsa(l,-)). (6.31)

In practice, we solve (QT’Z) by discretization of its optimality system. The result is taken to
solve (QT’ZH) The discretized version of equation (6.31) corresponds to a large-scale linear
system. To solve this system, we need the solutions corresponding to the discretization
of two coupled parabolic equations (the state and the adjoint equations). It is clear that
the accuracy of the Augmented Lagrangian SQP-method depends on the one for solving
the linear system, and consequently on the numerical methods for the partial differential
equations. In our example, the state and adjoint equations are solved by using a second-
order finite difference scheme (Cranck-Nicholson scheme) appropriately modified at the
boundary to maintain second order approximation. The linear system is solved by using
the CGM (conjugate gradient method), with a step length given by the Polak-Ribiere
formula.

Let us now take into account the constraints (6.29). The optimality condition (6.31) is
replaced by

. 1
Un+1 = Pro‘][umub]( - E(au + Pnt1 (K’ ))) (6'32)
U, if Kug + ay + pns1(l,-) > 0,
_ ) if Kup + ay + payi(4,-) <0,
1

—E(au +pn+1(£7 )) if Uy < —%(au +pn+1(£, )) < Up.

The management of these restrictions is based on (6.32) and on an projection method
by Bertsekas [7]. (See also [9] and [10] where this method is successfully applied.) More
precisely, we have the following algorithm:
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1 - Let w, = (w},---,w™)T be the vector representing the iterate corresponding to

no

uy, for some fixed grid. Let e and o be fixed positive numbers, and let I = {1,---,m}
be the index set associated to w,. (m is the dimension of the vector w, and depends
on the discretization of w,)

2 - Solve (6.28), (6.30), (5.3), and denote by d,, = (dL,---,d™)T the vector repre-
senting the iterate corresponding to the solution of (6.30).

3 - Define the sets of strongly active inequalities
I°={ieI|w =u, and kw! +d. + AJ > o},
I ={iel|w =uand kw! +d’ + Al < —0o},

where A, = (AL ... A™T is the vector representing a,.
4 - Set @/ = w) for all j € ITUIY.

5 - Solve the unconstrained problem (6.27)-(6.28) for w, 5 € I\ (I U I7). (The
remaining components are fixed due to 4.) Denote by v,, the vector representation of
the solution.

6 - Set wy 1 = Pry, u,]Vn, Where Py, o,1 denotes the projection onto [u,, us]™.

7 - If ||wypy1 — wy|| > € then put w, := w,41, n :=n+1 and go to 2. Otherwise stop
the iteration.

6.3 Numerical tests

In the numerical tests, we focused our interest on the aspects concerning the convergence
for different values of initial data and penalty parameters «, and on the rate of convergence.
The programs were written in MATLAB.

Let us first summarize some general observations.

e In our example, the augmented Lagrangian algorithm performed well. In particular, the
graphs of the exact solution and that of the numerical solution are (almost) identical.

e When compared with the SQP method (corresponding to a = 0), the augmented La-
grangian SQP has the advantage of a more global behavior. Moreover, it is less sensitive
to the start-up values, and is significantly faster than the SQP method for some points.

e Graphical correction of the computed controls and precisionof optimal value (up to five
digits) are obtained by taking the discretization parameters with respect to the time and
the space equal to 200.

e For fixed data, the number of iterations for the CGM and the Augmented SQP turned
out to be independent of the mesh size.

In all the sequel, we set
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ny = u—dlls, ny=\g=9ll2s np=Ilp=pll2, n.=1z—- 2,
“ﬂ — un“? + ||g - yn||2 + ||ﬁ - pn||2 + a“f - Zn“2
1t = wpall3 + 19 = Yn1ll3 + 1P = Paa 3 + |2 — 25|37
where (@, 9, p, Z), (4,9, p, 2) and (wn, Yn, Pn, 2n) are the vectors respectiveely corresponding
to the exact solution of (E), the numerical solution of (E), and the solution of (QP.).

Moreover, we denote by n; and n, the discretization parameters with respect to the time

and the space. Optimal controls were determined for the following pairs (n,, n;): (100,100),
(200,200, (400,400).

Run 1. (SQP method.) The first test corresponds to (g, yo,po) = (0.5,0.5,0.5), and
a = 0. The rates for e,, n,, n,, and n, are given in Table 1.

€np =

Table 1:

‘ nx ‘ Ny ‘ ny ‘ np ‘ el ‘ es €3 ey

100| 1.7782e-06 | 2.5347e-06 | 1.6610e-06| 0.2372 | 0.3653 | 1.0575 | 1.3886
200| 1.3725e-06 | 2.9337e-06 | 1.0724e-06| 0.2472 | 0.3663 | 1.0585 | 0.9980
400 | 3.4363e-06 | 1.2385e-06 | 1.2702e-06 | 0.2439 | 0.3636 | 1.0583 | 1.1952

The SQP method shows a good convergence for this initial point. 4 iterations were needed
to get the result.

Run 2. (ALSQP method.) The second test corresponds to the point (u, Yo, po)=
(0.5,0.5,0.5), with 2o = y5 + 2, and a = 1.

Table 2:

ne| m | omy | my | m | e | e | es |
100 | 1.5391e-06 | 2.6824e-06 |1.5013e-06 | 1.4459e-06 | 0.0150 | 1.0004 |2.2378
200 1.2318e-06 | 3.8783e-07 |5.2251e-07 | 5.5521e-07 | 0.0149 | 0.9256 |1.0015
400 | 1.5223e-06 | 5.3737e-06 |6.0455e-06 | 3.5205e-07 | 0.0149 | 0.8879 |1.2290

The ALSQP method has a very good convergence for this choice. Convergence could always
be achieved by fixing (ug, yo, po), and using other values of zy and . However, the number
of iterations and the speed of the method depend on these choices. As shown in Table 3,
three iterations for the ALSQP method were needed, instead of four for the SQP method.
The number of iterations for the CGM, the SQP and the ALSQP methods is independent
of the mesh-size. The exact value for the cost functional is f = 2.7198. In Table 3, we give
the values of the cost functional corresponding to the different steps for nz = nt = 200.
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Table 3:

‘ SQP method

ALSQP method

Iter fn CGM iter Iter fn CGM iter
1 | 2.6870 2 1 | 2.6878 3

2 | 2.7104 3 2 | 2.7194 6

3 | 2.7195 6 3 | 2.7198 11

4 | 2.7198 10

uuuuu

Figure 1: Controls for Run 1 and Run 2

07
06
o

o

Figure 2: States y(¢,t) for Run 1 and Run 2
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Figure 3: Adjoint states p(¢,¢) for Run 1 and Run 2

In Figures 1, 2, and 3, we compare the behavior of the control, the state, and the ad-
joint state obtained by taking o = 0, and o = 1. It is clear that in the case of the
ALSQP method, the second iteration gives a good approximation to the optimal control,
the optimal state, and the optimal adjoint state.

Run 3. The last test corresponds to the initial point given by (ug, yo, po) = (0.5, 1,2).

Table 4:

‘ nT ‘ Ny, ‘ ny ‘ ny n,
100 | 9.9421e-06 | 2.7989e-06 | 4.0979e-06 | 3.0853e-06
200 | 1.1864e-05 | 4.7523e-06 | 5.0999e-06 | 2.3842e-06
400| 1.2167e-05 | 5.2817e-06 | 5.3307e-06 | 2.2146e-06

(nz| eo | eo [ es | es |

100| 0.0402 | 0.4017 | 1.3412 | 0.9260

200| 0.0404 | 0.3975 | 1.3537 | 1.1471

400| 0.0405 | 0.3956 | 1.3591 | 1.2052

For this initial point, the SQP method (corresponding to a = 0) does not converge, while
the ALSQP method converges for many choices of zy. In our tests, the point which gives
the best result is given by zy = y5 + 3 with a = 1. For this choice, 4 iterations are needed
with 2, 5, 6 and 9 CG steps. The differents rates are given in Table 4, and the behavior of
the solution is shown is Figure 4.

Remark 4 The numerical results stated in Table 1, 2, and reft3 were obtained for a fixed
mesh-size (fized grid). However, we also implemented the ALSQP method with adaptative
mesh size, i.e. we started with a coarse grid and used the obtained results as startup values
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Figure 4: Controls, states, and adjoint states for Run 3

for the next finer grid. This method is significantly faster, and delivers essentially the same
results.
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