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ON AN AUGMENTED LAGRANGIAN SQP METHOD FOR A CLASS OF

OPTIMAL CONTROL PROBLEMS IN BANACH SPACES

Nadir Arada

1

, Jean-Pierre Raymond, Fredi Tr�oltzs
h

2

Abstra
t

An augmented Lagrangian SQP method is dis
ussed for a 
lass of nonlinear opti-

mal 
ontrol problems in Bana
h spa
es with 
onstraints on the 
ontrol. The 
onver-

gen
e of the method is investigated by its equivalen
e with the generalized Newton

method for the optimality system of the augmented optimal 
ontrol problem. The

method is shown to be quadrati
ally 
onvergent, if the optimality system of the

standard non-augmented SQP method is strongly regular in the sense of Robinson.

This result is applied to a test problem for the heat equation with Stefan-Boltzmann

boundary 
ondition. The numeri
al tests 
on�rm the theoreti
al results.

Keywords: Augmented Lagrangian SQP method in Bana
h spa
es, optimal 
ontrol, 
on-

trol 
onstraints, two-norm dis
repan
y, generalized equation, generalized Newton method,

semilinear paraboli
 equation.

AMS subje
t 
lassi�
ation: 49K20, 35J25

1 Introdu
tion

We 
onsider an Augmented Lagrangian SQP method (ALSQP method) for the following


lass of optimal 
ontrol problems, whi
h in
ludes some meaningful appli
ations to 
ontrol

problems for semilinear partial di�erential equations:

(P)

Minimize f(y; u);

subje
t to �y + �(y)� u = 0; y 2 Y; u 2 U

ad

� U:

In this setting Y and U are real Bana
h spa
es, f : Y � U ! R and �: Y ! U are

di�erentiable mappings, and U

ad

is a nonempty, 
losed, 
onvex and bounded subset of U .

The operator � is a 
ontinuous linear operator from Y to U . In general, (P) is a non-
onvex

problem. We will refer to u as the 
ontrol, and to y as the state.

In the past years, the appli
ation of ALSQP methods to optimal 
ontrol or identi�
ation

problems for partial di�erential equations has made 
onsiderable progress. The list of


ontributions to this �eld has already be
ome rather extensive so that we shall mention

only the papers by Bergounioux and Kunish [6℄, Ito and Kunis
h [13℄, [14℄, Kau�mann

[15℄, Kunis
h and Volkwein [16℄, and Volkwein [25℄, [26℄.

1
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In this paper, we extend the analysis of the ALSQP method to a Bana
h spa
e setting.

This generalization is needed, if, for instan
e, the nonlinearities of the problem 
annot be

well de�ned in Hilbert spa
es. In our appli
ation, this will 
on
ern the nonlinear mapping

�. A natural 
onsequen
e of this extension is that, in 
ontrast to the literature about the

ALSQP method, we have to deal with the well known two-norm dis
repan
y. Another

novelty in our approa
h is the presen
e of the 
ontrol 
onstraints u 2 U

ad

in (P) , whi
h


ompli
ates the dis
ussion of the method. To resolve the asso
iated diÆ
ulties, we rely

on known results on the 
onvergen
e of the generalized Newton method for generalized

equations.

One of the main goals of this paper is to redu
e the 
onvergen
e analysis to one main

assumption, whi
h has to be 
he
ked for the parti
ular appli
ations { the strong regularity

of the optimality system. In this way, we hope to have shown a general way to perform

the 
onvergen
e analysis of the ALSQP method.

For (P) we 
on
entrate on a parti
ular type of augmentation, applied only to the

nonlinearity of the state equation. Splitting up the state equation into �y + z � u = 0

and z � �(y) = 0 we will augment only the se
ond equation. This type of augmentation

is useful for our appli
ation to paraboli
 boundary 
ontrol problems. The 
onvergen
e

analysis is 
on�rmed by numeri
al tests, whi
h are 
ompared with those performed for the

(non-augmented) SQP method.

We obtain the following main results: If the optimality system of �rst order ne
essary

optimality 
onditions for (P) is strongly regular in the sense of Robinson, then the ALSQP

method will be lo
ally quadrati
 
onvergent under natural assumptions. This result is

applied to a boundary 
ontrol problem for a semilinear paraboli
 equation. In [23℄, the


onvergen
e of the (non-augmented) SQP method was shown for this parti
ular problem

by verifying this strong regularity assumption. In this way, our result is immediately

appli
able to obtain the 
onvergen
e of the augmented method in our appli
ation.

The paper is organized as follows: In Se
tion 2 we �x the general assumptions and

formulate �rst order ne
essary and se
ond order suÆ
ient optimality 
onditions. Se
tion

3 
ontains our example, a semilinear paraboli
 
ontrol problem. The ALSQP method is

presented in Se
tion 4, where we show that its iterates are well de�ned in the asso
iated

Bana
h spa
es. The 
onvergen
e analysis is developed in Se
tion 5 on the basis of the

Newton method for generalized equations. The last part of our paper reports on our

numeri
al tests with the ALSQP method.

2 General assumptions and optimality 
onditions

We �rst �x the assumptions on the spa
es and mappings. The Bana
h spa
es Y and U

mentioned in the introdu
tion stand for the ones where the following holds:

� f is a mapping of 
lass C

2

from Y � U into R,

2



� � is a mapping of 
lass C

2

from Y into U .

For several reasons, among them, the formulation of the SQP method and the suÆ
ient

se
ond order optimality 
onditions, we have to introdu
e real Hilbert spa
es Y

2

and U

2

su
h that Y (respe
tively U) is 
ontinuously and densely imbedded in Y

2

(respe
tively U

2

).

Moreover, we identify U

2

with its dual U

�

2

. Therefore, denoting by U

�

the dual spa
e of U ,

we have the 
ontinuous imbeddings

U � U

2

� U

�

:

Let us introdu
e the produ
t spa
e V = Y � U , endowed with the norm jjvjj

V

= jjyjj

Y

+

jjujj

U

, and the spa
e V

2

= Y

2

� U

2

, endowed with the norm jjvjj

V

2

= jjyjj

Y

2

+ jjujj

U

2

.

Notations: We shall denote the �rst and se
ond order derivatives of f and � by

f

0

(v); f

00

(v), �

0

(y); �

00

(y), respe
tively. Partial derivatives are indi
ated by asso
iated

subs
ripts su
h as f

y

(v), f

yu

(v), et
. Noti
e that, by their very de�nition, f

0

(v) 2 V

�

,

f

00

(v) 2 L(V; V

�

), �

0

(y) 2 L(Y; U) and �

00

(y) 2 L(Y;L(Y; U)). The open ball in V 
en-

tered at v, with radius r is denoted by B

V

(v; r). The same notation is used in other

Bana
h spa
es. We will denote the duality pairing between U

�

and U (resp. Y

�

and Y )

by h� ; �i

U

�

�U

(resp. h� ; �i

Y

�

�Y

), while h� ; �i is reserved in this paper for the s
alar produ
t

of U

2

.

Below we list our main assumptions:

(A1) � is a linear, 
ontinuous, and bije
tive operator from Y

2

to U

2

. Moreover, its

restri
tion to Y , still denoted by �, is 
ontinuous and bije
tive from Y to U . In

addition, we assume that U

ad

is 
losed in U

2

.

(A2) (Extension properties) For all r > 0 there is a 
onstant 
(r) > 0 su
h that, for

all v

o

2 B

V

(0; r), we have

jf

0

(v

o

)vj+ jj�

0

(y

o

)yjj

U

2

� 
(r)jjvjj

V

2

for all v 2 V; (2.1)

jf

00

(v

o

)[v

1

; v

2

℄j+ k�

00

(y

o

)[y

1

; y

2

℄k

U

�

� 
(r)jjv

1

jj

V

2

jjv

2

jj

V

2

(2.2)

for all v

1

; v

2

2 V . From (2.1) it follows that f

0

(v) 
an be 
onsidered as a 
ontinuous

linear operator from V

2

to R, and �

0

(y) 
an be 
onsidered as a 
ontinuous linear

operator from Y

2

to U

2

.

Sin
e �

00

(y

o

)[y

1

; y

2

℄ belongs to U , and U � U

�

, the term k�

00

(y

o

)[y

1

; y

2

℄k

U

�

is meaning-

ful. Moreover, f

00

(v) (respe
tively �

00

(y)) 
an be 
onsidered as a 
ontinuous bilinear

operator from V

2

� V

2

(respe
tively Y

2

� Y

2

) into R (respe
tively U

�

). In the se
ond

order derivatives we shall write [v; v℄ = v

2

.

(A3) (Lips
hitz properties) For all v

i

2 B

V

(0; r), i = 1; 2, there is a 
(r) > 0 su
h

that

kf

0

(v

1

)� f

0

(v

2

)k

V

�

2

+ k�

0

(y

1

)� �

0

(y

2

)k

L(Y

2

;U

2

)

� 
(r)jjv

1

� v

2

jj

V

; (2.3)
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j(f

00

(v

1

)� f

00

(v

2

))[z

1

; z

2

℄j+ k(�

00

(y

1

)� �

00

(y

2

))[�

1

; �

2

℄k

U

�

� 
(r) jjv

1

� v

2

jj

V

jjz

1

jj

V

2

jjz

2

jj

V

2

for all z

i

= (�

i

; u

i

) 2 V; i = 1; 2:

(2.4)

(A4) (Remainder terms) Let r

F

i

(x

o

; h) denote the i-th order remainder term for the

Taylor expansion of a mapping F at the point x

o

in the dire
tion h. Following Io�e

[11℄ and Maurer [18℄ we assume

jr

f

1

(v

o

; v)j

kvk

V

2

+

jr

f

2

(v

o

; v)j

kvk

2

V

2

! 0 as kvk

V

! 0; (2.5)

kr

�

1

(y

o

; y)k

U

2

kyk

Y

2

+

kr

�

2

(y

o

; y)k

U

2

kyk

2

Y

2

! 0 as kyk

Y

! 0: (2.6)

(A5) (Regularity)

� For all y 2 Y , the operator (�+ �

0

(y)) is bije
tive from Y

2

to U

2

. Its restri
tion to

Y , still denoted by � + �

0

(y), is bije
tive from Y to U .

� For all v 2 V , f

y

(v) belongs to

b

Y , where

b

Y is a Bana
h spa
e 
ontinuously imbedded

in Y

�

. For all v 2 V , f

u

(v) belongs to U .

� The restri
tion of (� + �

0

(y))

��

to

b

Y is 
ontinuous from

b

Y to U .

The �rst assumption 
on
erns the linearized state equation. The se
ond and third

assumptions are needed to get optimal regularity for the adjoint equation. Indeed, the

adjoint state 
orresponding to �v = (�y; �u) is de�ned by �p = (� + �

0

(�y))

��

f

y

(�v) 2 U

�

.

To study the 
onvergen
e of the SQP method we need that �p belongs to U . Sin
e by

de�nition f

u

(v) belongs to U

�

, the 
ondition f

u

(v) 2 U is a regularity 
ondition on

f

u

(v).

In the analysis of the Generalized Newton Method, we need the following additional regu-

larity 
onditions.

(A6) For every y 2 Y , �

0

(y)

�

belongs to L(U;

^

Y ). The mapping y 7! �

0

(y)

�

is lo
ally of


lass C

1;1

from Y into L(U;

b

Y ). For every y

1

; y

2

2 Y , [�

00

(y

1

)y

2

℄

�

belongs to L(U;

b

Y ).

The mapping (y

1

; y

2

) 7! [�

00

(y

1

)y

2

℄

�

is lo
ally of 
lass C

1;1

from Y �Y into L(U;

b

Y ).

(A7) The mapping v 7! f

0

(v) is lo
ally of 
lass C

1;1

from V into

^

V , where

^

V =

^

Y �U .

3 Example - Control of a semilinear paraboli
 equa-

tion

Let us 
onsider the following parti
ular 
ase of (P) :
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(E) Minimize f(y; u) =

1

2

ky(T )� y

T

k

2

L

2

(
)

+

�

2

kuk

2

L

2

(�)

+

Z

�

a

u

u�

Z

�

a

y

y

subje
t to

y

t

��y = d in Q = 
� (0; T );

y(0) = a in 
;

�

�

y + y = b + u� '(y) on � = �� (0; T );

u

a

� u(x; t) � u

b

:

Here, 
 � R

n

is a bounded domain with boundary � of 
lass C

2

, T > 0; � > 0, y

T

2

L

1

(
); d 2 L

1

(Q); a

u

2 L

1

(�), a

y

2 L

1

(�), b 2 L

1

(�), a 2 L

1

(
), and u

a

< u

b

are

given �xed. The fun
tion ' : R ! R is nonde
reasing, and lo
ally of 
lass C

2;1

. (The 
hoi
e

' = jyj

3

y �ts into this setting.)

Let us verify that problem (E) satis�es all our assumptions. This problem is related to (P)

as follows:

� = (y

t

��y; y(0); �

�

y + y);

�(y) = (d; a; '(y(�)));

U = L

1

(Q)� L

1

(
)� L

1

(�);

Y = fy 2 W (0; T ) j y

t

��y 2 L

1

(Q); y(0) 2 L

1

(
); �

�

y 2 L

1

(�)g;

U

ad

= f(0; 0; u) 2 U j u

a

� u(x; t) � u

b

a.e. on �g;

U

2

= L

2

(Q)� L

2

(
)� L

2

(�);

Y

2

= fy 2 W (0; T ) j y

t

��y 2 L

2

(Q); y(0) 2 L

2

(
); �

�

y 2 L

2

(�)g;

where W (0; T ) is the Hilbert spa
e de�ned by

W (0; T ) = fy 2 L

2

(0; T ;H

1

(
)) j

dy

dt

2 L

2

(0; T ; (H

1

(
))

0

)g:

The spa
e Y (respe
tively Y

2

) is endowed with the norm kyk

Y

= kyk

W (0;T )

+ ky

t

�

�yk

L

1

(Q)

+ ky(0)k

L

1

(
)

+ k�

�

yk

L

1

(�)

(respe
tively kyk

Y

2

= kyk

W (0;T )

+ ky

t

��yk

L

2

(Q)

+

ky(0)k

L

2

(
)

+ k�

�

yk

L

2

(�)

). Let us 
he
k the assumptions.

� The operator � is obviously 
ontinuous from Y

2

to U

2

, and is bije
tive from Y

2

to U

2

(see [17℄). It is also a bije
tion from Y to U . (see [8℄, [20℄.) Thus (A1) is satis�ed.

� Sin
e Y � L

1

(Q) with 
ontinuous imbedding ([8℄, [20℄), we 
an verify that � is a map-

ping of 
lass C

2

from Y into U , and that f is a mapping of 
lass C

2

from Y � U into R.

Moreover, for all v

o

= (y

o

; u

o

) 2 Y � U , we have

f

y

(y

o

; u

o

)y =

Z




(y

o

(x; T )� y

T

(x))y(x; T ) dx�

Z

�

a

y

(x; t)y(x; t) dSdt

f

u

(y

o

; u

o

)u =

Z

�

(�u

o

(x; t) + a

u

(x; t))u(x; t) dSdt;
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�

0

(y

o

)y = (0; 0; '

0

(y

o

)y):

Thus, the derivative f

y

(v

o

) (respe
tively f

u

(v

o

)) 
an be identi�ed with the triplet (0; y

o

(T )�

y

T

;�a

y

) 2 L

1

(Q) � L

1

(
) � L

1

(�) (respe
tively (0; 0; �u

o

+ a

u

) 2 L

1

(Q) � L

1

(
) �

L

1

(�)). The assumptions (2.1) and (2.3) 
an be easily satis�ed.

� To verify assumption (A5), let us introdu
e the spa
e

b

Y = L

1

(Q)� L

1

(
)� L

1

(�).

This spa
e 
an be identi�ed with the subspa
e of Y

�

of all elements having the form

y 7!

Z

Q

ŷ

Q

y dxdt+

Z




ŷ




y(x; T ) dx+

Z

�

ŷ

�

y(x; t) dSdt;

where (ŷ

Q

; ŷ




; ŷ

�

) belongs to

b

Y . >From the above 
al
ulations, it is 
lear that f

y

(v

o

)

belongs to

b

Y . Let y

(d;a;u)

be the solution to the equation

y

t

��y = d

y(0) = a

�

�

y + y + '

0

(y

o

)y = u:

(3.1)

The operator (d; a; u) 7! y

(d;a;u)

is 
ontinuous and bije
tive from U

2

into Y

2

([17℄), and from

U into Y ([8℄, [20℄). The �rst part of (A5) is satis�ed. To prove the se
ond part, let us


onsider the adjoint equation

��

t

��� = ŷ

Q

�(T ) = ŷ




�

�

� + � + '

0

(y

o

)� = ŷ

�

:

(3.2)

For all (d; a; u) 2 U , and all ŷ = (ŷ

Q

; ŷ




; ŷ

�

) 2

b

Y , by using a Green formula, we obtain

Z

Q

�d+

Z




�(0)a+

Z

�

�u =

Z

Q

ŷ

Q

y

(d;a;u)

+

Z




ŷ




y

(d;a;u)

(T ) +

Z

�

ŷ

�

y

(d;a;u)

= hŷ; (� + �

0

(y

o

))

�1

(d; a; u)i

Y

�

�Y

= h(� + �

0

(y

o

))

��

ŷ; (d; a; u)i

U

�

�U

:

Therefore p = (� + �

0

(v

o

))

��

(ŷ) is nothing else than (�; �(0); �j

�

). With this identity, we


an easily verify the se
ond part of assumption (A5).

� Let us �nally dis
uss properties of some se
ond order derivatives. The se
ond derivative

�

00

(y

o

) is given by

(�

00

(y

o

)[y

1

; y

2

℄) = (0; 0; '

00

(y

o

)y

1

y

2

):

For y

i

2 Y and ky

o

k

Y

� r we have

k�

00

(y

o

)y

1

y

2

k

L

1

(�)

� k'

00

(y

o

)k

L

1

(�)

kv

1

k

L

2

(�)

kv

2

k

L

2

(�)

� 
(r)kv

1

k

L

2

(�)

kv

2

k

L

2

(�)

:

We 
an interprete �

00

(y

o

)y

1

y

2

as an element of L

1

(�) � L

1

(�)

�

, and (2.2) 
an be 
he
ked.

The other assumptions on the se
ond order derivatives, pre
isely (2.4) and (A4), are also

satis�ed.
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4 Optimality 
onditions

This se
tion is devoted to the dis
ussion of the �rst and se
ond order optimality 
onditions.

Let �v = (�y; �u) be a lo
al solution of (P) . This means that

f(�v) � f(v) (4.3)

holds for all v, whi
h belong to a suÆ
iently small ball B

V

(�v; ") and satisfy all 
onstraints

of (P) .

Theorem 1 Let �v = (�y; �u) be a lo
al solution of (P ) and suppose that the assumptions

(A1), (A2), and (A5) are satis�ed. Then there exists a unique Lagrange multiplier �p 2 U

su
h that

f

y

(�y; �u)y + h�p;�y + �

0

(�y)yi = 0 for all y 2 Y; (4.4)

hf

u

(�y; �u)� �p; u� �ui � 0 for all u 2 U

ad

: (4.5)

Proof. Sin
e f is Fr�e
het-di�erentiable at �v = (�y; �u), � is of 
lass C

1

from Y to U , and

�+ �

0

(�y) is surje
tive from Y to U , there exists a unique �p 2 U

�

su
h that (4.4) and (4.5)

be satis�ed (see [12℄, and also Theorem 2.1 in [1℄). The variational equation (4.4) admits a

unique solution �p de�ned by �p = (� + �

0

(�y))

��

f

y

(�v). Due to assumptions (A5), it follows

that �p belongs to U . 2

We next introdu
e the Lagrange fun
tion L : Y � U � U ! R,

L(v; p) = L(y; u; p) = f(y; u) + hp;�y + �(y)� ui: (4.6)

The system (4.4)-(4.5) is equivalent to

L

y

(�v; �p) = 0 and L

u

(�v; �p)(u� �u) � 0 for all u 2 U

ad

:

For shortening, we shall write the adjoint equation (4.4) in the form f

y

(�v)+�p(�+�

0

(�y)) = 0.

Thus the �rst order optimality system for (P) is

f

y

(�v) + �p(� + �

0

(�y)) = 0;

hf

u

(�v) + �p; u� �ui � 0; for all u 2 U

ad

;

��y + �(�y)� �u = 0;

�u 2 U

ad

:

(4.7)

In what follows, the derivatives in L

0

and L

00

refer only to the variable v, but not to the

Lagrange multiplier p. Let us assume that �v also satis�es the following:

(SSC) Se
ond order suÆ
ient optimality 
ondition

7



There is Æ > 0 su
h that

L

00

(�v; �p)v

2

� Æ kvk

2

V

2

(4.8)

holds for all v = (y; u) 2 Y � U that satisfy the linearized equation

�y + �

0

(�y)y � u = 0: (4.9)

Remark 1 The 
ondition (SSC) is a quite strong assumption, and does not 
onsider

a
tive 
ontrol 
onstraints, whi
h might o

ur in U

ad

. For instan
e, this 
an be useful

for 
onstraints of the type U

ad

= fu 2 L

1

(D) j u

a

� u(x) � u

b

for all x 2 Dg. In


on
rete appli
ations, the use of an asso
iated se
ond order assumption is possible (see for

example [23℄). However, we intend to shed light on the main steps, whi
h are needed for

a 
onvergen
e analysis of the augmented Lagrangian SQP method, rather than to present

the diÆ
ult te
hni
al details 
onne
ted with weakening (SSC) . We shall adress this issue

again in se
tion 6.

Let us 
omplete this se
tion by some simple results, whi
h follow from the se
ond order

suÆ
ient 
ondition.

Lemma 1 Suppose that the assumptions (A1)-(A5) are satis�ed. Suppose in addition

that �v satis�es the se
ond order suÆ
ient 
ondition (SSC). Then there exists � > 0 su
h

that, for every (ŷ; û; p̂) given in B

V�U

((�y; �u; �p); �), we have

L

00

(ŷ; û; p̂)v

2

�

Æ

2

kvk

2

V

2

(4.10)

for all v = (y; u) 2 V that satisfy the perturbed linearized equation

�y + �

0

(ŷ) y � u = 0: (4.11)

Proof. We brie
y explain the main ideas of this quite standard result, to show where

the di�erent assumptions are needed. If (ŷ; û; p̂) is suÆ
iently 
lose to (�y; �u; �p), then the

quadrati
 form L

00

(ŷ; û; p̂) is arbitrarily 
lose to L

00

(�y; �u; �p). By (SSC), (A2), and (A3)

we derive that

L

00

(ŷ; û; p̂)v

2

�

7Æ

8

kvk

2

V

2

(4.12)

provided that �y+�

0

(ŷ) y�u = 0: An analogous estimate has to be shown for the solutions

of the perturbed equation (4.11), where �

0

is taken at ŷ. Write for short B := L

00

(ŷ; û; p̂)

and de�ne z as the unique solution of �z +�

0

(�y) z� u = 0 (we use the �rst part of (A5)).

Then

�(y � z) + �

0

(�y)(y � z) = �(�

0

(ŷ)� �

0

(�y))y: (4.13)

The assumptions (A1), (A3), and (A5) ensure the estimate

ky � zk

Y

2

� 
k(�

0

(ŷ)� �

0

(�y))yk

U

2

� 
kŷ � �yk

Y

kyk

Y

2

� 
 � kyk

Y

2

(4.14)
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(here and below 
 stands for a generi
 
onstant). Therefore,

B v

2

= B(z + (y � z); u)

2

= B(z; u)

2

+ 2B[(z; u); (y � z; 0)℄ +B(y � z; 0)

2

� 7=8 Æ k(z; u)k

2

V

2

� " k(z; u)k

2

V

2

� 
(")ky � zk

2

Y

2

� 6=8 Æ k(z; u)k

2

V

2

� 
�

2

kyk

2

Y

2

follows by (4.12), (4.14) and Young inequality, where " > 0 
an be taken arbitrarily small.

Now we re-substitute z by y + (z � y) and arrive by similar estimates at

B v

2

�

5Æ

8

k(y; u)k

2

V

2

� 
�

2

kyk

2

Y

2

�

4Æ

8

kvk

2

V

2

;

provided that � is suÆ
iently small. Thus (4.10) is proven. 2

Although we shall not dire
tly apply the next result, we state it to show why the di�erent

assumptions are needed. Some of them have been assumed to deal with the well known

two-norm dis
repan
y.

Lemma 2 Let (�v; �p) = (�y; �u; �p) satisfy the optimality system (4:7) of (P ) and the se
ond

order suÆ
ient 
ondition (SSC). Suppose that the assumptions (A1)-(A5) are ful�lled.

Then there are 
onstants " > 0 and � > 0 su
h that the quadrati
 growth 
ondition

f(v)� f(�v) � �kv � �vk

2

V

2

(4.15)

holds for all admissible v 2 B

V

(�v; ").

Proof. The �rst order optimality system implies

f(v)� f(�v) = L(v; �p)� L(�v; �p) � 1=2 L

00

(�v; �p)(v � �v)

2

+ r

L

2

(�v; �p; v � �v): (4.16)

Subtra
ting the state equations for y and �y, analogously to (4.13) we �nd that

(� + �

0

(�y))(y � �y)� (u� �u) = �r

�

1

(�y; y � �y):

De�ne h by (�+�

0

(�y))h = r

�

1

. Then v

h

:= (y� �y+ h; u� �u) solves the linearized equation

(4:9), and the 
oer
ivity estimate of (SSC) 
an be applied to v

h

. Moreover, (A5) yields

khk

Y

2

� 
 kr

�

1

k

U

2

:

We insert v

h

in (4.16), write for short B := L

00

(�v; �p) and pro
eed similarly to the estimation

of Bv

2

in the last proof:

f(v)� f(�v) � 1=2B(v

h

+ v � �v � v

h

)

2

+ r

L

2

� Æ=2 kv

h

k

2

V

2

� �kv

h

k

2

V

2

� 
kv � �v � v

h

k

2

V

2

+ r

L

2

� Æ=3 kv � �vk

2

V

2

� 
kv � �v � v

h

k

2

V

2

+ r

L

2

9



= kv � �vk

2

V

2

fÆ=3� 


kv � �v � v

h

k

2

V

2

kv � �vk

2

V

2

�

jr

L

2

j

kv � �vk

2

V

2

g:

In these estimates, the assumptions (A2) and (A3) were used. We have kv� �v� v

h

k

V

2

=

khk

Y

2

, and the estimate of h by the �rst order remainder term r

�

1


an be inserted. Let

" ! 0. Then (A4) yields kr

�

1

k

U

2

=ky � �yk

Y

2

! 0 and jr

L

2

j=kv � �vk

2

V

2

! 0. Then, the

quadrati
 growth estimate follows from 
lassi
al arguments. 2

This Lemma shows that the se
ond order 
ondition (SSC) is suÆ
ient for lo
al optimality

of (�y; �u) in the sense of V , whenever (�y; �u) solves the �rst order optimality system. Noti
e

that we 
annot show lo
al optimality in the sense of V

2

.

5 Augmented Lagrangian method

5.1 Augmented Lagrangian SQP method

In this se
tion we introdu
e the Augmented Lagrangian SQP method (ALSQP) with some

spe
ial type of augmentation. For this, we �rst represent (P) in the equivalent form

(

e

P)

Minimize f(y; u);

subje
t to z � �(y) = 0; �y + z � u = 0; z 2 U; u 2 U

ad

:

The augmentation takes into a

ount only the nonlinear equation z � �(y) = 0. The

ALSQP method is obtained by applying the 
lassi
al SQP method to the problem

(P

�

)

Minimize f

�

(y; u) = f(y; u) +

�

2

kz � �(y)k

2

U

2

;

subje
t to z � �(y) = 0; �y + z � u = 0; z 2 U; u 2 U

ad

;

where � > 0 is given. We de�ne the Lagrange fun
tional L for (

~

P ), and the 
orresponding

augmented fun
tional L

�

on Y � U

4

as follows:

L(y; u; z; p; �) = f(y; u) + hp;�y + z � ui+ h�; z � �(y)i;

L

�

(y; u; z; p; �) = L(y; u; z; p; �) +

�

2

kz � �(y)k

2

U

2

:

On
e again, the derivatives L

0

and L

00

will stand for derivatives with respe
t to (y; u; z)

and do not refer to the Lagrange multipliers (p; �). The same remark 
on
erns L

�

. Let

(y

n

; u

n

; z

n

; p

n

; �

n

) denote the 
urrent iterate of the ALSQP method, and 
onsider the linear-

quadrati
 problem

(QP

�

n+1

)

Minimize f

0

�

(y

n

; u

n

; z

n

)(y � y

n

; u� u

n

; z � z

n

)

+

1

2

L

00

�

(y

n

; u

n

; z

n

; p

n

; �

n

)(y � y

n

; u� u

n

; z � z

n

)

2

;

subje
t to z � �(y

n

)� �

0

(y

n

)(y � y

n

) = 0;

�y + z � u = 0; y 2 Y; z 2 U; u 2 U

ad

:

10



The new iterate (y

n+1

; u

n+1

; z

n+1

; p

n+1

; �

n+1

) is obtained by taking the solution (y

n+1

; u

n+1

; z

n+1

)

of (QP

�

n+1

) (if it exists), and the multipliers (p

n+1

; �

n+1

) asso
iated with the 
onstraints

�y+ z� u = 0, and z� �(y

n

)� �

0

(y

n

)(y� y

n

) = 0, respe
tively. For � = 0 we re
over the


lassi
al SQP method.

Let us also introdu
e the following problem:

(

d

QP

�

n+1

)

Minimize f

0

(v

n

)(v � v

n

) +

1

2

f

00

(v

n

)(v � v

n

)

2

�

1

2

h�

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i;

subje
t to �y + �(y

n

) + �

0

(y

n

)(y � y

n

)� u = 0; u 2 U

ad

:

The problems (QP

�

n+1

) and (

d

QP

�

n+1

) are equivalent in the sense pre
ised below.

Theorem 2 Let (y

n+1

; u

n+1

; z

n+1

) be a solution of (QP

�

n+1

) with asso
iated Lagrange mul-

tipliers (p

n+1

; �

n+1

) 2 U � U . Then (y

n+1

; u

n+1

) must solve the problem (

d

QP

�

n+1

), and the

multiplier p

n+1

is the solution to the equation

p

n+1

(� + �

0

(y

n

)) = f

y

(v

n

) + f

yy

(v

n

)(y

n+1

� y

n

) + f

yu

(v

n

)(u

n+1

� u

n

)

�(�

n

+ �(z

n

� �(y

n

)))�

00

(y

n

)(y

n+1

� y

n

):

(5.1)

Moreover, z

n+1

and �

n+1

must satisfy

�

n+1

=�p

n+1

(5.2)

z

n+1

= �(y

n

) + �

0

(y

n

)(y

n+1

� y

n

): (5.3)

Conversely, if (y

n+1

; u

n+1

) is a solution of (

d

QP

�

n+1

), and (z

n+1

; p

n+1

; �

n+1

) are de�ned by

(5:1) { (5:3), then (y

n+1

; u

n+1

; z

n+1

) is a solution to (QP

�

n+1

) with asso
iated Lagrange

multipliers (p

n+1

; �

n+1

).

Proof. Let us �rst assume that (y

n+1

; u

n+1

; z

n+1

) solves (QP

�

n+1

). To show that (y

n+1

; u

n+1

)

solves (

d

QP

�

n+1

) and that the relations (5.1){(5.3) are satis�ed, we investigate the following:

� Expli
it form of (QP

�

n+1

). We expand all derivatives o

uring in the problem (QP

�

n+1

)

. Write for short k � k = k � k

U

2

and introdu
e for 
onvenien
e the fun
tional g(y; z) =

�

2

kz � �(y)k

2

. Then

g

0

(y

n

; z

n

)(y; z) = �hz

n

� �(y

n

); z � �

0

(y

n

)yi;

g

00

(y

n

; z

n

)(y; z)

2

= �(kz � �

0

(y

n

)yk

2

� hz

n

� �(y

n

); �

00

(y

n

)y

2

i):

Having this, the obje
tive to minimize in (QP

�

n+1

) is given by

J(y; u; z) = f

0

(y

n

; u

n

)(y � y

n

; u� u

n

) + �hz

n

� �(y

n

); z � z

n

� �

0

(y

n

)(y � y

n

)i

+

1

2

f

00

(y

n

; u

n

)(y � y

n

; u� u

n

)

2

+

�

2

kz � z

n

� �

0

(y

n

)(y � y

n

)k

2

�

1

2

h�

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i:
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The minimization is subje
t to the 
onstraints

� y + z � u = 0; u 2 U

ad

z � �(y

n

)� �

0

(y

n

)(y � y

n

) = 0:

(5.4)

� Redu
tion to (

d

QP

�

n+1

). To redu
e the dimension of the problem, we exploit the se
ond

one of the equations (5.4): We insert the expression z � z

n

� �

0

(y

n

)(y � y

n

) = �(y

n

)� z

n

in the fun
tional J . Then the se
ond and fourth items in the de�nition of J are 
onstant

with respe
t to (y; z; u). They depend only on the 
urrent iterate and 
an be negle
ted

during the minimization of J . The asso
iated fun
tional to be minimized is

~

J(y; u) = f

0

(y

n

; u

n

)(y � y

n

; u� u

n

) +

1

2

f

00

(y

n

; u

n

)(y � y

n

; u� u

n

)

2

i

�

1

2

h�

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i:

Moreover, we 
an delete the se
ond equation of (5.4) by inserting the expression for z in

the �rst one. This explains why (y

n+1

; u

n+1

) is a solution of (

d

QP

�

n+1

).

� Ne
essary optimality 
onditions. To derive the ne
essary 
onditions for the triplet

(y

n+1

; u

n+1

; z

n+1

), we work with the Lagrange fun
tional

~

L = J + hp;�y + z � ui+ h�; z � �(y

n

)� �

0

(y

n

)(y � y

n

)i:

The 
onditions are

~

L

y

= 0;

~

L

z

= 0;

~

L

u

(u�u

n+1

) � 0, for all u 2 U

ad

. An evaluation yields

0 = f

y

(v

n

) + f

yy

(v

n

)(y

n+1

� y

n

) + f

yu

(v

n

)(u

n+1

� u

n

)� �

0

(y

n

)

�

�

n+1

(5.5)

�(�

n

+ �(z

n

� �(y

n

)))�

00

(y

n

)(y

n+1

� y

n

) + p

n+1

�;

0 = �

n+1

+ p

n+1

; (5.6)

0 � hf

u

(v

n

) + f

uu

(v

n

)(u

n+1

� u

n

) + f

yu

(v

n

)(y

n+1

� y

n

)� p

n+1

; u� u

n+1

i (5.7)

for u 2 U

ad

. We mention for later use, that the equations (5.4) belong to the optimality

system of (QP

�

n+1

), too. The update formulas for p

n+1

and �

n+1

follow from (5.5), (5.6).

We have shown one dire
tion of the statement. The 
onverse dire
tion 
an be proved in

a 
ompletely analogous manner. If (y

n+1

; u

n+1

) solves (

d

QP

�

n+1

), then we substitute z for

�(y

n

)+�

0

(y

n

)(y�y

n

) and ��

n+1

for p

n+1

in the 
orresponding positions. Then it is easy to

verify that (y

n+1

; u

n+1

; z

n+1

) minimizes J subje
t to (5.4), and that �

n+1

is the multiplier

asso
iated to the equation z � �(y

n

)� �

0

(y

n

)(y � y

n

) = 0. 2

Remark 2 The update rules (5:2) { (5:3) imply that the Lagrange multiplier � 
oin
ides

with �p during the iteration, while this is not ne
essarily true for the initial values of �

n

and p

n

. Therefore, with possible ex
eption of the �rst step, up to a 
onstant, the obje
tive

fun
tional of (

d

QP

�

n+1

) is

~

J = f

0

(y

n

; u

n

)(y � y

n

; u� u

n

) +

1

2

L

00

(y

n

; u

n

; p

n

)(y � y

n

; u� u

n

)

2

�

�

2

hz

n

� �(y

n

); �

00

(y

n

)(y � y

n

)

2

i:
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This easily follows by 
al
ulating L

00

(y

n

; u

n

; p

n

) from the formula (4:6). Moreover, we are

justifed to repla
e �

n

by �p

n

in the variational equation (5:1).

Theorem 2 shows that the iterates of the ALSQP method 
an be obtained by solving

the redu
ed problem (

d

QP

�

n+1

), provided that solutions of (QP

�

n+1

) exist. This question of

existen
e, 
an be answered by 
onsidering (

d

QP

�

n+1

) as well:

Theorem 3 Let (�y; �u; �p) satisfy the assumptions of Lemma 1 and let �z = �(�y). If k(�y; �u; �p; �z)�

(y

n

; u

n

; p

n

; z

n

)k

Y�U

4

is suÆ
iently small, then (

d

QP

�

n+1

) has a unique solution (y

n+1

; u

n+1

).

Moreover, (y

n+1

; u

n+1

; z

n+1

) (with z

n+1

being de�ned by (5:3)) is the unique solution of

(QP

�

n+1

).

Proof. Assume that k(�y; �u; �p; �z)� (y

n

; u

n

; p

n

; z

n

)k

Y�U

4

< �, and let us prove the existen
e

for (

d

QP

�

n+1

). In view of the remark above, the fun
tional

~

J 
an be taken instead of J for

the minimization in (

d

QP

�

n+1

). Its quadrati
 part is

L

00

(v

n

; p

n

)(v � v

n

)

2

� �hz

n

� �(y

n

); �

00

(y

n

)(y � y

n

)

2

i

= f

00

(v

n

)(v � v

n

)

2

� hp

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i

= L

00

(v

n

; ~p

n

)(v � v

n

)

2

;

where ~p

n

:= p

n

+ �(z

n

� �(y

n

)). For � # 0, ~p

n

tends to �p in U , sin
e z

n

� �(y

n

) !

�z � �(�y) = 0. Lemma 1 yields that the obje
tive fun
tional of (

d

QP

�

n+1

) is 
oer
ive on the

set

~

C = f(y; u) 2 Y

2

�U

2

j �y+�

0

(y

n

)y�u = 0g, hen
e it is stri
tly 
onvex there. The set

U

ad

is non-empty, bounded, 
onvex, and 
losed in U , and in U

2

as well. We have assumed

in (A5) that (� + �

0

(y))

�1

is 
ontinuous from U

2

to Y

2

at all y 2 Y , in parti
ular at

y = y

n

. Therefore,

~

C is non-empty, 
onvex, 
losed, and bounded in Y

2

�U

2

. Now existen
e

and uniqueness of a solution (y

n+1

; u

n+1

) 2 Y

2

� U

2

to (

d

QP

�

n+1

) are standard 
on
lusions.

Moreover, U

ad

� U , hen
e u

n+1

2 U , and the regularity properties of (� + �

0

(y

n

))

�1

guarantee that y

n+1

2 Y . Further, z

n+1

2 U follows from (5.3). Existen
e and uniqueness

for (QP

�

n+1

) are obtained from Theorem 2. 2

The update rules of Theorem 2 show that (p

n+1

; �

n+1

) is uniquely determined in U

2

� U

2

.

We get even better regularity:

Corollary 1 If the initial element (y

n

; u

n

; z

n

; p

n

; �

n

) is taken from Y �U

4

, then the iterates

f(y

n

; u

n

; z

n

; p

n

; �

n

)g generated by the ALSQP method are uniquely determined and belong

to Y � U

4

.

Proof. Existen
e and uniqueness follows from the last theorem and the update rules (5.2){

(5.3). We also know that (y

n+1

; u

n+1

; z

n+1

) 2 Y � U

2

. The only new result we have to

derive is that (p

n+1

; �

n+1

) remains in U � U as well. Sin
e �

n+1

= �p

n+1

, we have to

verify p

n+1

2 U . This, however, follows instantly from the equation (5.1): We know that

f

y

(v

n

); f

yy

(v

n

)(y

n+1

� y

n

); and f

yu

(v

n

)(u

n+1

� u

n

) belong to

b

Y (assumptions (A5), (A6),

(A7)). Moreover, the same holds for (�

00

(y

n

)(y

n+1

� y

n

))

�

(p

n

+ �(z

n

� �(y

n

))) by (A6).

Therefore, (A5) ensures the solution p

n+1

of (5.1) to be in U . 2

13



5.2 Newton method for the optimality system of (P

�

)

The augmented SQP method 
an be 
onsidered as a 
omputational algorithm to solve the

�rst order optimality system of (P

�

) by the generalized Newton method. This equivalen
e

will be our tool in the 
onvergen
e analysis. The optimality system for (P

�

) 
onsists of the

equations

(L

�

(w))

y

= 0;

(L

�

(w))

z

= 0;

(L

�

(w))

u

(~u� u) � 0 for all u 2 U

ad

;

�y + z � u = 0;

z � �(y) = 0;

(5.8)

for the unknown variable w = (y; u; z; p; �). The optimality system (5.8) of (P

�

) is equiv-

alent to a generalized equation. To see this, let us �rst introdu
e the following set-valued

mappings:

N(u) =

8

<

:

fq 2 U j hq; ~u� ui � 0 for all ~u 2 U

ad

g if u 2 U

ad

;

; if u =2 U

ad

:

N (w) = f0

b

Y

g � f0

U

g �N(u)� f0

U

g � f0

U

g;

and 
onsider F : Y � U

4

!

b

Y � U

4

de�ned by

F (w) =

0

B

B

B

B

B

B

B

B

B

B

�

f

y

(y; u)� �(z � �(y))�

0

(y) + p�� ��

0

(y)

�(z � �(y)) + p+ �

f

u

(y; u)� p

�y + z � u

z � �(y)

1

C

C

C

C

C

C

C

C

C

C

A

: (5.9)

Noti
e that N(u) has a 
losed graph in U �U . It is the restri
tion to U of the normal 
one

at U

ad

in the point u. (For the de�nition of the normal 
one, we refer to [5℄.) In the �rst


omponent of F , due to (A6), we identify ��

0

(y) (resp. (z � �(y))�

0

(y)) with the element

(�

0

(y))

�

� (resp. (�

0

(y))

�

(z � �(y))) whi
h belongs to

^

Y . With (A5) and (A6), we 
an

easily verify that F takes values in

^

Y � U

4

.

Lemma 3 The optimality system (5:8) of (P

�

) is equivalent to the generalized equation

0 2 F (w) +N (w): (5.10)

Proof. By 
al
ulating the derivatives of L

�

in (5.8), we easily verify that:

F (w) =

0

B

B

B

B

B

B

�

(L

�

(w))

y

(L

�

(w))

z

(L

�

(w))

u

�y + z � u

z � �(y)

1

C

C

C

C

C

C

A

:

14



Therefore, by the de�nition of F , (5.10) is equivalent to

0 = (L

�

(w))

y

0 = (L

�

(w))

z

0 2 (L

�

(w))

u

+N(u)

0 = �y + z � u

0 = z � �(y):

The third relation 
an be rewritten as:

u 2 U

ad

and (L

�

(w))

u

(~u� u) � 0 for all ~u 2 U

ad

:

This is just the variational inequality of (5.8), and the equivalen
e of (5.8) and (5.10) is

veri�ed. 2

Next we re
all some fa
ts about generalized equations and related 
onvergen
e results

for the Generalized Newton Method (GNM). Let W and E be Bana
h spa
es, and let O

be an open subset of W. Let F be a di�erentiable mapping from O into E , and T be a

set-valued mapping fromO into P(E) with 
losed graph. Consider the generalized equation

! 2 O; 0 2 F(!) + T (!): (5.11)

The generalized Newton method for (5.11) 
onsists in the following algorithm:

� Choose a starting point !

0

2 O,

� For k = 0; 1; : : :, 
ompute !

k+1

, the solution to the generalized equation:

! 2 O; 0 2 F(!

k

) + F

0

(! � !

k

) + T (!): (5.12)

The generalized Newton method is lo
ally 
onvergent under some assumptions stated be-

low.

(C1) Equation (5.11) admits at least one solution �!.

(C2) There exist 
onstants ~r(�!) and ~
(�!) su
h that B

W

(�!; ~r(�!)) � O, and

kF

0

(!

1

)�F

0

(!

2

)k

L(W;E)

� ~
(�!)k!

1

� !

2

k

W

for all !

1

; !

2

2 B

W

(�!; ~r(�!)).

De�nition 1 The generalized equation is said to be strongly regular at !

�

2 O, if there

exist 
onstants r(!

�

) and 
(!

�

), su
h that, for all � 2 B

E

(0; r(!

�

)), the perturbed generalized

equation

! 2 O; � 2 F(!

�

) + F

0

(! � !

�

) + T (!); (5.13)

has a unique solution S(!

�

; �) satisfying

kS(!

�

; �

1

)� S(!

�

; �

2

)k

W

� 
(!

�

)k�

1

� �

2

k

W

for all �

1

; �

2

2 B

E

(0; r(!

�

)).
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The theorem below is a variant of Robinson's impli
it fun
tion theorem ([21℄, Theorem

2.1).

Theorem 4 ([4℄, Theorem 2:5) Assume that (5.11) is strongly regular at some �! 2 O, and

that (C1) and (C2) are ful�lled. Then there exist �(�!) > 0, k(�!) > 0, and a mapping S

0

from B

W

(�!; �(�!)) � O into B

W

(�!; �(�!)) su
h that, for every !

�

2 B

W

(�!; �(�!)), S

0

(!

�

) is

the unique solution to (5:13), and

kS

0

(!

�

)� �!k

W

� k(�!)k!

�

� �!k

2

W

:

The following theorem is an extension to the generalized equation (5.11) of the well known

Newton-Kantorovit
h theorem. It is a dire
t 
onsequen
e of Theorem 4.

Theorem 5 ([4℄, Theorem 2:6) Assume that the hypotheses of Theorem 4 are ful�lled.

Then there exists ~�(�!) > 0 su
h that, for any starting point !

0

2 B

W

( �w; ~�(�!)), the gener-

alized Newton method generates a unique sequen
e (!

k

)

k


onvergent to �!, and satisfying

k!

k+1

� �!k

W

� k(�!)k!

k

� �!k

2

W

for all k � 1:

We apply these results to set up the generalized Newton method for the generalized equa-

tion (5.10), whi
h is the abstra
t formulation of the optimality system of (P

�

).

Lemma 4 The generalized Newton method for solving the optimality system of (P

�

), de-

�ned by (5:12), pro
eeds as follows: Let w

n

= (y

n

; u

n

; z

n

; p

n

; �

n

) 2 Y � U

4

be the 
urrent

iterate. Then the next iterate w

n+1

= (y

n+1

; u

n+1

; z

n+1

; p

n+1

; �

n+1

) 2 Y �U

4

is the solution

of the following generalized equation for w = (y; u; z; p; �):

0 = f

y

(y

n

; u

n

) + f

yy

(y

n

; u

n

)(y � y

n

) + f

yu

(y

n

; u

n

)(u� u

n

)� (5.14)

�(�

n

+ �(z

n

� �(y

n

))�

00

(y

n

)(y � y

n

) + p�� ��

0

(y

n

)

0 = �+ p (5.15)

0 2 f

u

(y

n

; u

n

) + f

uu

(y

n

; u

n

)(u� u

n

) + f

uy

(y

n

; u

n

)(y � y

n

)� p+N(u) (5.16)

0 = �y + z � u (5.17)

0 = z � �(y

n

)� �

0

(y

n

)(y � y

n

): (5.18)

Proof. This iteration s
heme is a 
on
lusion of the iteration rule (5.12) applied to the


on
rete 
hoi
e of (5.9) for F . The 
omputations are straightforward. We should only

mention the following equivalent transformation, whi
h �nally leads to (5.14), (5.15): Due

to the 
on
rete expression for F given in (5.12), the �rst two relations in 0 2 F (w

n

) +

F

0

(w

n

)(w � w

n

) +N (w) are

0 = f

y

(y

n

; u

n

) + f

yy

(y

n

; u

n

)(y � y

n

) + f

yu

(y

n

; u

n

)(u� u

n

)� (5.19)

��(z � �(y

n

)� �

0

(y

n

)(y � y

n

))�

0

(y

n

)

�(�

n

+ �(z

n

� �(y

n

))�

00

(y

n

)(y � y

n

)

0 = �(z � �(y

n

)� �

0

(y

n

)(y � y

n

)) + p+ �: (5.20)
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Inserting (5.18) in (5.19), (5.20) we obtain (5.14), (5.15). 2

To apply Theorem 5 to the 
on
rete generalized equation (5.10), we need that (5.10) be

strongly regular at �w, and that 
onditions (C1) and (C2) be satis�ed. The assumption

of strong regularity at �w must be assumed here. It has to be 
he
ked for ea
h parti
ular

appli
ation. In general, the veri�
ation of strong regularity requires a detailed analysis. In

the 
ase of the optimal 
ontrol of paraboli
 partial di�erential equations, we refer to the

dis
ussion of the SQP method in Tr�oltzs
h [23℄. The strong regularity of an asso
iated

generalized equation was proved there by means of a result on L

1

-Lips
hitz stability from

[22℄. The asso
iated semilinear ellipti
 
ase was studied by Unger [24℄.

The 
onditions (C1) and (C2) 
an be veri�ed with assumptions (A6) and (A7).

Lemma 5 The mapping w 7! F (w) is of 
lass C

1;1

from Y � U

4

into

b

Y � U

4

.

Proof. This statement is an immediate 
onsequen
e of (A6) and (A7). 2

Theorem 6 Let (�y; �u) be a lo
al solution of (P ), and let �p be the asso
iated adjoint state.

Assume that the generalized equation: Find (y; u; p) 2 Y � U

2

su
h that

0 = p� + p�

0

(y) + f

y

(y; u);

0 2 f

u

(y; u) +N(u);

0 = �y + �(y)� u;

(5.21)

be strongly regular at (�y; �u; �p). Then the generalized equation

Find w 2 Y � U

4

su
h that F (w) 2 N (w); (5.22)

is strongly regular at �w = (�y; �u; �z; �p;

�

�), where �z = �(�y) and

�

� = ��p.

Proof. Let e = (e

p

; e

�

; e

u

; e

y

; e

z

) be a perturbation in

b

Y � U

4

. The linearized generalized

equation for (5.22) at the point �w, asso
iated with the perturbation e, is

e

p

=

�

f

y

+

�

f

yy

(y � �y) +

�

f

yu

(u� �u)� (

�

�+ �(�z �

�

�))

�

�

00

(y � �y)

��(z �

�

��

�

�

0

(y � �y))

�

�

0

+ p�� �

�

�

0

e

�

= �(z �

�

��

�

�

0

(y � �y)) + p+ �;

e

u

2

�

f

u

+

�

f

uu

(u� �u) +

�

f

uy

(y � �y)� p+N(u);

e

y

= �y + z � u;

e

z

= z �

�

��

�

�

0

(y � �y);

(5.23)

where

�

f

yy

stands for f

yy

(�y; �u), and the same notations is used for the other mappings. To

obtain the two �rst equations of (5.23), we refer to the system (5.19), (5.20), where we

insert w

n

= �w and repla
e the left hand side by the perturbation.
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Sin
e �z �

�

� = 0 and

�

� = ��p, by straightforward 
al
ulations, we 
an easily prove that the

system (5.23) is equivalent to

e

p

� e

�

�

�

0

=

�

f

y

+

�

f

yy

(y � �y) +

�

f

yu

(u� �u) + �p

�

�

00

(y � �y) + p(� +

�

�

0

)

e

�

� �e

z

= p+ �;

e

u

2

�

f

u

+

�

f

uu

(u� �u) +

�

f

uy

(y � �y)� p+N(u);

e

y

� e

z

= �y +

�

�+

�

�

0

(y � �y)� u;

e

z

= z �

�

��

�

�

0

(y � �y):

(5.24)

Now we observe that the �rst, third, and fourth relation of (5.24) form a subsystem for

(y; u; p), whi
h does not depend on (z; �). On
e (y; u; p) is given from this subsystem,

(z; �) is uniquely determined by the remaining two equations. Let us set ~e = (~e

p

; ~e

u

; ~e

y

),

with

~e

p

= e

p

� e

�

�

�

0

; ~e

u

= e

u

; ~e

y

= e

y

� e

z

: (5.25)

The subsystem of (5.24) 
an be rewritten in the form of the generalized equation

~e

p

=

�

f

yy

(y � �y) +

�

f

yu

(u� �u) + p� +

�

f

y

+ �p

�

�

00

(y � �y);

~e

u

2

�

f

u

+

�

f

uu

(u� �u) +

�

f

uy

(y � �y)� p+N(u);

~e

y

= �y +

�

�+

�

�

0

(y � �y)� u:

(5.26)

The generalized equation (5.26) is the linearization of the generalized equation (5.21) at

(�y; �u; �p), asso
iated with the perturbation ~e. Sin
e (5.21) was assumed to be strongly

regular at (�y; �u; �p), there exist ~r � r(�y; �u; �p) > 0, ~
 � 
(�y; �u; �p) > 0, and a mapping S from

B

b

V
�U

(0; ~r) into

b

V �U , su
h that S(~e) is the unique solution to (5.26) for all ~e 2 B

b

V
�U

(0; ~r),

and kS(~e

1

)�S(~e

2

)k

b

V�U

� ~
k~e

1

� ~e

2

k

b

V�U

. Now, we show that (5.22) is strongly regular at

�w. For any e, let ~e be given by (5.25). Then

k~ek

b

V�U

� 
 kek

b

Y�U

4

;

and there exists �r > 0 su
h that ~e belongs to B

b

V
�U

(0; ~r) if e 2 B

b

Y
�U

4

(0; �r). De�ne a

mapping

�

S from B

b

Y�U

4

(0; �r) into

b

Y � U

4

, as follows :

�

S(e) = (S

1

(~e); S

2

(~e); z(e); S

3

(~e); �(e));

where

(S

1

(~e); S

2

(~e); S

3

(~e)) = S(~e);

z(e) = e

z

+

�

�+

�

�

0

(S

1

(~e)� �y); �(e) = e

�

� 
e

z

� S

3

(~e):

Then

�

S(e) is 
learly the unique solution to (5.23). We 
an easily �nd �
 > 0 su
h that

k

�

S(e

1

)�

�

S(e

2

)k

b

Y�U

4

� �
k�e

1

� �e

2

k

b

Y�U

4

. The proof is 
omplete. 2

Theorem 6 shows that on
e the 
onvergen
e analysis for the standard non augmented

18



Lagrange-Newton-SQP method has been done by proving strong regularity of the asso
i-

ated generalized equation, this analysis does not have to be repeated for analyzing 
onver-

gen
e of the augmented method.

Up to now, we have dis
ussed the Augmented SQP method and the Generalized Newton

method separately. Now we shall show that both methods are equivalent. This equivalen
e

is used to obtain a 
onvergen
e theorem for the augmented SQP method.

Theorem 7 Let (�y; �u) a lo
al solution of (P ), whi
h satis�es together with the asso
i-

ated Lagrange multiplier �p the se
ond order suÆ
ient optimality 
ondition (SSC). De�ne

�z = �(�y);

�

� = ��p, �w = (�y; �u; �z; �p;

�

�), and suppose that the generalized equation (5:21) is

strongly regular at �w. Then there exists r = r( �w) > 0 su
h that, for any starting point

(y

0

; u

0

; z

0

; p

0

; �

0

) in the neighbourhood B

W

( �w; r), the ALSQP method de�ned a

ording to

Theorem 2 and the generalized Newton method de�ned in Lemma 4 generate the same se-

quen
e of iterates (w

n

)

n

= (y

n

; u

n

; z

n

; p

n

; �

n

)

n

. Moreover, there is a 
onstant 


q

( �w) su
h

that the estimate

kw

n+1

� �wk

W

� 


q

kw

n

� �wk

2

W

is satis�ed for all n = 0; 1; 2; : : :

Proof. First we should mention the simple but de
isive fa
t that �w satis�es the optimal-

ity system of (P

�

), sin
e (�y; �u; �p) has to satisfy the optimality system for (P). There-

fore, it makes sense to determine �w by the generalized Newton method. Let w

n

=

(y

n

; u

n

; z

n

; p

n

; �

n

) be an arbitrary 
urrent iterate, whi
h is identi
al for the ALSQP method

and the generalized Newton method.

In the GNM, w

n+1

2 W is found as the unique solution of (5.14){(5.18). As 
on
erns the

ALSQP method, (y

n+1

; u

n+1

) 2 Y �U is obtained as the unique solution of (

d

QP

�

n+1

), while

(z

n+1

; p

n+1

; �

n+1

) 2 U

3

are determined by (5.2). Therefore, (y

n+1

; u

n+1

; z

n+1

; p

n+1

; �

n+1

)

satis�es the asso
iated optimality system (5.4), (5.5)-(5.7) whi
h is obviously identi
al with

(5.14)-(5.18). It is 
lear that both the methods deliver the same new iterate w

n+1

2 W .

All remaining statements of the theorem follow from the 
onvergen
e Theorem 5. 2

6 Numeri
al results

6.1 Test example

We apply the augmented SQP method to the following one-dimensional nonlinear paraboli



ontrol problem with Stefan-Boltzmann boundary 
ondition:

(E) Minimize f(y; u) =

1

2

`

Z

0

(y(x; T )� y

T

(x))

2

dx +

�

2

T

Z

0

u(t)

2

dt

+

T

Z

0

(�a

y

(t) y(`; t) + a

u

(t)u(t)) dt;
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subje
t to

y

t

� y

xx

= 0 in (0; `)� (0; T )

y(x; 0) = a(x) in (0; `)

y

x

(0; t) = 0 in (0; T )

y

x

(`; t) + y(`; t) = b(t) + u(t)� '(y(`; t)) in (0; T );

u

a

� u(t) � u

b

:

This example is a parti
ular 
ase of problem (E) 
onsidered in Se
tion 3, where we take 
 =

(0; `) and make an asso
iated modi�
ation of the boundary 
ondition. In an early phase of

this work, we studied the numeri
al behaviour of the SQP method without augmentation.

Here, we 
ompare both methods. We performed our numeri
al tests for the following

parti
ular data:

` = �=4; T = 1; � =

p

2

2

(e

2=3

� e

1=3

)

u

a

= 0; u

b

= 1;

y

T

(x) = (e + e

�1

) 
os(x);

a

y

(t) = e

�2t

; a

u

(t) =

p

2

2

e

1=3

;

a(x) = 
os(x); b(t) =

1

4

e

�4t

�min(u

b

;max(u

a

;�(e

1=3

� e

t

)));

'(y) = y jyj

3

:

Lemma 6 The pair (�y; �u) de�ned by

�u(t) = min(u

b

;max(u

a

;

e

t

� e

1=3

e

2=3

� e

1=3

)); �y(x; t) = e

�t


os(x);

is a lo
ally optimal solution for (6:27) in C([0; `℄�[0; T ℄)�L

1

(0; T ). The asso
iated adjoint

state (Lagrange multiplier) is given by �p(x; t) = �e

t


os(x). The triplet (�y; �u; �p) satis�es

the se
ond order suÆ
ient optimality 
ondition (SSC).

Proof. The proof is split into four steps.

Step 1. State equation. It is easy to see that �y

t

��y

xx

= 0; �y(x; 0) = 
os(x), and �y

x

(0; t) = 0.

Now regard the boundary 
ondition at x = `: The left hand side is

�y

x

(`; t) + �y(`; t) = �e

�t

sin(�=4) + e

�t


os(�=4) = 0:

The same holds for the right hand side, sin
e

b(t) + �u(t)� '(�y(`; t)) =

1

4

e

�4t

� �u(t) + �u(t)� (e

�t


os(�=4))

4

= 0:

Step 2. Adjoint equation. Again, the equations ��p

t

� �p

xx

= 0; �p

x

(0; t)) = 0, and �p(x; T ) =

20



�y(x; T )� y

T

(x) are easy to 
he
k. It remains to verify the boundary 
ondition at x = `:

p

x

(`; t) + p(`; t) = �(a

y

(t) + '

0

(�y(`; t))p(`; t)):

It is obvious that �p

x

+ �p = 0 at x = `. The right hand side of the boundary 
ondition has

the same value, sin
e

a

y

(t) + '

0

(�y(`; t))�p(`; t) = e

�2t

� 4�y(`; t)

3

e

t


os(`)

= e

�2t

� 4e

�3t


os(�=4)

3

e

t


os(�=4)

= e

�2t

(�1 + 4(

p

2

2

)

4

) = 0:

Step 3. Variational inequality. We must verify that �u 2 U

ad

{ whi
h is trivial { and that

T

Z

0

(��u(t) + a

u

(t) + �p(`; t))(u(t)� �u(t)) dt � 0 for all u 2 U

ad

:

It is well known that this holds if and only if

�u(t) = P

[u

a

;u

b

℄

n

�

1

�

(a

u

(t) + �p(`; t))

o

= P

[0;1℄

n

e

t

� e

1=3

e

2=3

� e

1=3

o

;

where P

[0;1℄

denotes proje
tion onto [0; 1℄. This is obviously veri�ed.

Step 4. Se
ond order suÆ
ient 
ondition. The Lagrange fun
tion is given by

L = f �

R

Q

(y

t

� y

xx

)p dxdt+

R

l

0

(y(x; 0)� a(x))p(x; 0)dx

+

R

T

0

y

x

(0; t)p(0; t) dt+

R

T

0

(y

x

(`; t) + y(`; t)� b(t)� u(t))p(`; t) dt

�

R

T

0

'(y(`; t))p(`; t) dt:

Therefore,

L

00

(�y; �u; �p)(y; u)

2

= ky(T )k

2

L

2

(0;`)

+ kuk

2

L

2

(0;T )

� 12

Z

T

0

�y(`; t)

2

�p(`; t)y(`; t)

2

dt:

Sin
e �p is negative, L

00

(�y; �u; �p) is 
oer
ive on the whole spa
e Y � U , hen
e (SSC) is

satis�ed. 2

Theorem 8 The pair (�y; �u) is a global solution of (E).

Proof. Let (y; u) be any other admissible pair for (E). Due to the �rst order ne
essary


ondition, we have

f(y; u) � f(�y; �u) + L(�y; �u; �p)(y � �y; u� �u)

�

1

2

T

Z

0

�p(`; t)

1

Z

0

'

00

(�y(`; t) + �(y(`; t)� �y(`; t)))(y(`; t)� �y(`; t))

2

d� dt

� f(�y; �u)

�

1

2

T

Z

0

�p(`; t)

1

Z

0

'

00

(�y(`; t) + �(y(`; t)� �y(`; t)))(y(`; t)� �y(`; t))

2

d� dt:
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>From the positivity of ��p and of '

00

(�y + s(y � �y)) (independently of s and y), it follows

that f(y; u) � f(�y; �u). 2

Next we dis
uss the strong regularity of the optimality system at (�y; �u; �p).

Theorem 9 The optimality system of (E) is strongly regular at (�y; �u; �p).

Proof. The triplet (�y; �u; �p) satis�es (SSC). Moreover, (E) �ts into a more general 
lass

of optimal 
ontrol problems for semilinear paraboli
 equations, whi
h was 
onsidered in

[23℄. It follows from Theorem 5.2 in [22℄, and Theorem 5.3 in [23℄ that (SSC) ensures

the strong regularity of the generalized equation being the abstra
t formulation of the

asso
iated optimality system. We only have to apply this result to problem (6.27). 2

Remark 3 A study of [23℄ reveals that 
onvergen
e of the standard SQP method 
an be

proved for arbitrary dimension of 
 assuming a weaker form of (SSC). It requires 
oer-


ivity of L

00

only on a smaller subspa
e that 
onsiders strongly a
tive 
ontrol 
onstraints.

This weaker assumption should be helpful for proving the 
onvergen
e of the augmented

SQP method as well. We shall not dis
uss this, sin
e the te
hni
al e�ort will in
rease


onsiderably.

Now we obtain from Theorem 7 the following result:

Corollary 2 The Augmented Lagrangian SQP method for (E) is lo
ally quadrati
ally 
on-

vergent towards (�y; �u; �p).

6.2 Algorithm

For the 
onvenien
e of the reader, let us 
onsider the problem (

d

QP

�

n+1

) 
orresponding to

our test example. After simplifying we get

Minimize

1

2

`

Z

0

y(�; T )

2

dx+

�

2

T

Z

0

u

2

dt+

1

2

T

Z

0

q

n

y(`; �)

2

dt�

`

Z

0

y(�; T ) y

T

dx (6.27)

+

T

Z

0

(� (a

y

+ q

n

y

n

(`; �)) y(`; �) + a

u

u) dt;

subje
t to

y

t

� y

xx

= 0 in (0; `);�(0; T )

y(x; 0) = a(x) in (0; `);

y

x

(0; t) = 0 in (0; T );

y

x

(`; t) + 


n

y(`; t) = b

n

(t) + u(t) in (0; T );

(6.28)
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u

a

� u(t) � u

b

; (6.29)

with

q

n

= 12y

n

(`)

2

(� p

n

(`) + �(z

n

� y

n

(`)

4

)); 


n

= 1 + 4y

n

(`)

3

;

b

n

= b + 3y

n

(`)

4

:

One spe
i�
 diÆ
ulty for solving problem (6:27)-(6:29) is partially related to the 
ontrol


onstraints. But the main diÆ
ulty appears also in the un
onstrained 
ase where a (large)

linear system has to be solved. Let us 
onsider for a moment the un
onstrained 
ase. If

(u

n+1

; y

n+1

) is a solution of problem (6:27)-(6:28), then the optimal triplet (u

n+1

; y

n+1

; p

n+1

)

satis�es (6:28), the adjoint equation

p

t

+ p

xx

= 0 in (0; `)� (0; T );

p(x; T ) = y

n

(x; T )� y

T

(x) in (0; `);

p

x

(0; t) = 0 in (0; T );

p

x

(`; t) + 


n

p(`; t) = q

n

(t)y

n+1

(`; t)� q

n

(t)y

n

(`; t)� a

y

in (0; T );

(6.30)

and

u

n+1

= �

1

�

(a

u

+ p

n+1

(`; �)): (6.31)

In pra
ti
e, we solve (

d

QP

�

n

) by dis
retization of its optimality system. The result is taken to

solve (

d

QP

�

n+1

). The dis
retized version of equation (6.31) 
orresponds to a large-s
ale linear

system. To solve this system, we need the solutions 
orresponding to the dis
retization

of two 
oupled paraboli
 equations (the state and the adjoint equations). It is 
lear that

the a

ura
y of the Augmented Lagrangian SQP-method depends on the one for solving

the linear system, and 
onsequently on the numeri
al methods for the partial di�erential

equations. In our example, the state and adjoint equations are solved by using a se
ond-

order �nite di�eren
e s
heme (Cran
k-Ni
holson s
heme) appropriately modi�ed at the

boundary to maintain se
ond order approximation. The linear system is solved by using

the CGM (
onjugate gradient method), with a step length given by the Polak-Ribiere

formula.

Let us now take into a

ount the 
onstraints (6.29). The optimality 
ondition (6.31) is

repla
ed by

u

n+1

= Proj

[u

a

;u

b

℄

(�

1

�

(a

u

+ p

n+1

(`; �))) (6.32)

=

8

>

>

>

>

>

<

>

>

>

>

>

:

u

a

if �u

a

+ a

u

+ p

n+1

(`; �) > 0;

u

b

if �u

b

+ a

u

+ p

n+1

(`; �) < 0;

�

1

�

(a

u

+ p

n+1

(`; �)) if u

a

< �

1

�

(a

u

+ p

n+1

(`; �)) < u

b

:

The management of these restri
tions is based on (6.32) and on an proje
tion method

by Bertsekas [7℄. (See also [9℄ and [10℄ where this method is su

essfully applied.) More

pre
isely, we have the following algorithm:
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1 - Let w

n

= (w

1

n

; � � � ; w

m

n

)

T

be the ve
tor representing the iterate 
orresponding to

u

n

for some �xed grid. Let " and � be �xed positive numbers, and let I = f1; � � � ; mg

be the index set asso
iated to w

n

. (m is the dimension of the ve
tor w

n

and depends

on the dis
retization of u

n

)

2 - Solve (6.28), (6.30), (5.3), and denote by d

n

= (d

1

n

; � � � ; d

m

n

)

T

the ve
tor repre-

senting the iterate 
orresponding to the solution of (6.30).

3 - De�ne the sets of strongly a
tive inequalities

I

�

a

= fi 2 I j w

j

n

= u

a

and �w

j

n

+ d

j

n

+ A

j

u

> �g;

I

�

b

= fi 2 I j w

j

n

= u

b

and �w

j

n

+ d

j

n

+ A

j

u

< ��g;

where A

u

= (A

1

u

; � � � ; A

m

u

)

T

is the ve
tor representing a

u

.

4 - Set û

j

= w

j

n

for all j 2 I

�

a

[ I

�

b

.

5 - Solve the un
onstrained problem (6.27)-(6.28) for w

j

n

, j 2 I n (I

�

a

[ I

�

b

). (The

remaining 
omponents are �xed due to 4.) Denote by v

n

the ve
tor representation of

the solution.

6 - Set w

n+1

= P

[u

a

;u

b

℄

v

n

, where P

[u

a

;u

b

℄

denotes the proje
tion onto [u

a

; u

b

℄

m

:

7 - If kw

n+1

�w

n

k � " then put w

n

:= w

n+1

, n := n+1 and go to 2. Otherwise stop

the iteration.

6.3 Numeri
al tests

In the numeri
al tests, we fo
used our interest on the aspe
ts 
on
erning the 
onvergen
e

for di�erent values of initial data and penalty parameters �, and on the rate of 
onvergen
e.

The programs were written in MATLAB.

Let us �rst summarize some general observations.

� In our example, the augmented Lagrangian algorithm performed well. In parti
ular, the

graphs of the exa
t solution and that of the numeri
al solution are (almost) identi
al.

� When 
ompared with the SQP method (
orresponding to � = 0), the augmented La-

grangian SQP has the advantage of a more global behavior. Moreover, it is less sensitive

to the start-up values, and is signi�
antly faster than the SQP method for some points.

� Graphi
al 
orre
tion of the 
omputed 
ontrols and pre
isionof optimal value (up to �ve

digits) are obtained by taking the dis
retization parameters with respe
t to the time and

the spa
e equal to 200.

� For �xed data, the number of iterations for the CGM and the Augmented SQP turned

out to be independent of the mesh size.

In all the sequel, we set
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n

u

= k�u� ûk

2

; n

y

= k�y � ŷk

2

; n

p

= k�p� p̂k

2

; n

z

= k�z � ẑk

2

;

e

n

=

k�u� u

n

k

2

+ k�y � y

n

k

2

+ k�p� p

n

k

2

+ �k�z � z

n

k

2

k�u� u

n�1

k

2

2

+ k�y � y

n�1

k

2

2

+ k�p� p

n�1

k

2

2

+ �k�z � z

n�1

k

2

2

;

where (�u; �y; �p; �z), (û; ŷ; p̂; ẑ) and (u

n

; y

n

; p

n

; z

n

) are the ve
tors respe
tiveely 
orresponding

to the exa
t solution of (E), the numeri
al solution of (E), and the solution of (

d

QP

�

n

).

Moreover, we denote by n

t

and n

x

the dis
retization parameters with respe
t to the time

and the spa
e. Optimal 
ontrols were determined for the following pairs (n

x

; n

t

): (100,100),

(200,200), (400,400).

Run 1. (SQP method.) The �rst test 
orresponds to (u

0

; y

0

; p

0

) = (0:5; 0:5; 0:5), and

� = 0. The rates for e

n

, n

u

, n

p

, and n

z

are given in Table 1.

Table 1:

nx n

u

n

y

n

p

e

1

e

2

e

3

e

4

100 1.7782e-06 2.5347e-06 1.6610e-06 0.2372 0.3653 1.0575 1.3886

200 1.3725e-06 2.9337e-06 1.0724e-06 0.2472 0.3663 1.0585 0.9980

400 3.4363e-06 1.2385e-06 1.2702e-06 0.2439 0.3636 1.0583 1.1952

The SQP method shows a good 
onvergen
e for this initial point. 4 iterations were needed

to get the result.

Run 2. (ALSQP method.) The se
ond test 
orresponds to the point (u

0

; y

0

; p

0

)=

(0:5; 0:5; 0:5), with z

0

= y

4

0

+ 2, and � = 1.

Table 2:

nx n

u

n

y

n

p

n

z

e

1

e

2

e

3

100 1.5391e-06 2.6824e-06 1.5013e-06 1.4459e-06 0.0150 1.0004 2.2378

200 1.2318e-06 3.8783e-07 5.2251e-07 5.5521e-07 0.0149 0.9256 1.0015

400 1.5223e-06 5.3737e-06 6.0455e-06 3.5205e-07 0.0149 0.8879 1.2290

The ALSQP method has a very good 
onvergen
e for this 
hoi
e. Convergen
e 
ould always

be a
hieved by �xing (u

0

; y

0

; p

0

), and using other values of z

0

and �. However, the number

of iterations and the speed of the method depend on these 
hoi
es. As shown in Table 3,

three iterations for the ALSQP method were needed, instead of four for the SQP method.

The number of iterations for the CGM, the SQP and the ALSQP methods is independent

of the mesh-size. The exa
t value for the 
ost fun
tional is

�

f = 2:7198. In Table 3, we give

the values of the 
ost fun
tional 
orresponding to the di�erent steps for nx = nt = 200.
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Table 3:

SQP method

Iter f

n

CGM iter

1 2.6870 2

2 2.7104 3

3 2.7195 6

4 2.7198 10

ALSQP method

Iter f

n

CGM iter

1 2.6878 3

2 2.7194 6

3 2.7198 11
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Figure 1: Controls for Run 1 and Run 2
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Figure 2: States y(`; t) for Run 1 and Run 2
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Figure 3: Adjoint states p(`; t) for Run 1 and Run 2

In Figures 1, 2, and 3, we 
ompare the behavior of the 
ontrol, the state, and the ad-

joint state obtained by taking � = 0, and � = 1. It is 
lear that in the 
ase of the

ALSQP method, the se
ond iteration gives a good approximation to the optimal 
ontrol,

the optimal state, and the optimal adjoint state.

Run 3. The last test 
orresponds to the initial point given by (u

0

; y

0

; p

0

) = (0:5; 1; 2).

Table 4:

nx n

u

n

y

n

p

n

z

100 9.9421e-06 2.7989e-06 4.0979e-06 3.0853e-06

200 1.1864e-05 4.7523e-06 5.0999e-06 2.3842e-06

400 1.2167e-05 5.2817e-06 5.3307e-06 2.2146e-06

nx e

1

e

2

e

3

e

4

100 0.0402 0.4017 1.3412 0.9260

200 0.0404 0.3975 1.3537 1.1471

400 0.0405 0.3956 1.3591 1.2052

For this initial point, the SQP method (
orresponding to � = 0) does not 
onverge, while

the ALSQP method 
onverges for many 
hoi
es of z

0

. In our tests, the point whi
h gives

the best result is given by z

0

= y

4

0

+ 3 with � = 1. For this 
hoi
e, 4 iterations are needed

with 2, 5, 6 and 9 CG steps. The di�erents rates are given in Table 4, and the behavior of

the solution is shown is Figure 4.

Remark 4 The numeri
al results stated in Table 1, 2, and reft3 were obtained for a �xed

mesh-size (�xed grid). However, we also implemented the ALSQP method with adaptative

mesh size, i.e. we started with a 
oarse grid and used the obtained results as startup values
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Figure 4: Controls, states, and adjoint states for Run 3

for the next �ner grid. This method is signi�
antly faster, and delivers essentially the same

results.
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