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On the blockwise perturbation of nearly uncoupled Markov chains

Jungong Xue
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Abstract

Let P be the transition matrix of a nearly uncoupled Markov chain. The states can

be grouped into aggregates such that P has the block form P = (P

ij

)

k

i;j=1

where P

ii

is square and P

ij

is small for i 6= j: Let �

T

be the stationary distribution partitioned

conformally as �

T

= (�

T

1

; � � � ; �

T

k

): In this paper we present the relative error bounds

for �

T

i

when each block P

ij

gets a small relative perturbation. These bounds show

that although the stationary distribution of a nearly uncoupled Markov chain is very

sensitive to general perturbations, small blockwise relative perturbations of P only

cause small relative errors in each aggregate distribution �

T

i

:

Keywords: nearly uncoupled Markov chains, blockwise perturbation, nonnegative matrices.

AMS Subject Classi�cations: 65F35, 15A42,

1 Introduction

A nearly uncoupled Markov chain is a discrete chain whose states can be ordered such that

the transition matrix assumes the form

P =

2

6

6

6

6

6

6

6

4

P

11

P

12

� � � P

1k

P

12

P

22

� � � P

2k

.

.

.

.

.

.

.

.

.

P

k1

P

k2

� � � P

kk

3

7

7

7

7

7

7

7

5

;(1)

where all the o�-diagonal blocks P

ij

are small. Here each P

ij

is an n

i

� n

j

matrix. We set

� = max

1�i�k

X

j 6=i

kP

ij

k;(2)

where k � k is the 1-norm. Chains of this kind are used to model systems whose states

can be grouped into aggregates that are loosely connected to one another. They have been
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addressed by many authors, see e.g. [1, 2, 3, 4, 8, 9, 10, 12, 13]. One reason why nearly

uncoupled Markov chains receive so much attention is that their stationary distributions are

very sensitive to the perturbations in the transition matrices. Let �

T

and

b

�

T

be stationary

distributions of transition matrices P and

b

P = P + F , respectively; that is, �

T

and

b

�

T

are

row vectors satisfying

�

T

P = �

T

;

b

�

T

b

P =

b

�

T

; �

T

1 =

b

�

T

1 = 1;

where 1 is the vector of all ones. According to the perturbation theory for Markov chains,

see e.g. [5, 7],

k�

T

�

e

�

T

k � kA

#

kkFk;(3)

where A

#

is the group inverse of the matrix A = I � P: Equality in (3) can be attained for

some F: It is shown in [14] that

kA

#

k � O

�

1

�

�

:

This means that small perturbations in the transition matrices of nearly uncoupled Markov

chains can result in large errors in their stationary distributions. The smaller � is, the more

sensitive the stationary distributions are to the perturbations. However, if the perturbation

F has some special structure, the error bound (3) is often an overestimate. One typical

example is that if F is a small entrywise relative perturbation to P , then the entrywise

relative error in �

T

it causes must be small and independent of any condition number, see

[11, 16, 17]. In [19], Zhang studied a class of perturbations for nearly uncoupled Markov

chains to which their stationary distributions are insensitive. To state his result, we partition

F; �

T

and

b

�

T

conformally with P as

F =

2

6

6

6

6

6

6

6

4

F

11

F

12

� � � F

1k

F

12

F

22

� � � F

2k

.

.

.

.

.

.

.

.

.

F

k1

F

k2

� � � F

kk

3

7

7

7

7

7

7

7

5

; �

T

= [�

T

1

; � � � ; �

T

k

];

b

�

T

= [

b

�

T

1

; � � � ;

b

�

T

k

]:

If the blocks of the perturbation F satisfy

kF

ii

k � � and kF

ij

k � �� i 6= j;

then under some regularity conditions, it is proved in [19] that

k�

T

�

b

�

T

k

k�

T

k

� c�:(4)
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The quantity c in (4) is bounded from above as � tends to zero. However, the upper bound for

c is not discussed in [19]. Besides,the error bound (4) is for the whole stationary distribution

�

T

and gives no information about the relative error in each aggregate distribution �

T

i

: In

fact, even under the regularity conditions in [19], some aggregate distributions can be very

small compared to others. A small relative error in �

T

does not guarantee small relative

error in �

T

i

when k�

T

i

k is tiny.

The goal of this paper is to analyze the sensitivity of each aggregate distribution �

T

i

to small

relative blockwise perturbations in the transition matrix P . More precisely, we aim to bound

the relative error in the aggregate distributions

k�

T

i

�

f

�

i

T

k

k�

T

i

k

; i = 1; : : : ; k(5)

under the assumption that

kF

ij

k � �kP

ij

k; i; j = 1; : : : ; k:(6)

The error (5) will be bounded in terms of � and some quantities, which we discuss in detail.

The error bounds demonstrate that however small k�

T

i

k is, �

T

i

is very insensitive to the small

relative blockwise perturbation F . This result reveals the fact that if we can obtain infor-

mation with high relative accuracy both in the aggregates and between the aggregates, we

can trust the solution from the measured system. Our result extends entrywise perturbation

theory for general Markov chains to the blockwise case for nearly uncoupled Markov chains.

Also it strengthens the result in [19] for more restrictive perturbations. Blockwise pertur-

bation theory has been studied in [15] and [18] for a class of Markov chains with transition

matrices assuming block p-cyclic form. In this paper, we generalize those results to general

nearly uncoupled Markov chains.

Throughout this paper we always assume that P is a primitive matrix of order n and for

each diagonal block P

ii

; the second largest eigenvalue is bounded away from 1.

This paper is organized as follows. In Section 2 we present some notation and lemmas,

especially we introduce a special decomposition of nonnegative matrices. In Section 3 we

use this decomposition to de�ne some quantities in terms of which we bound the error (5).

There we also analyze these quantities through the spectral analysis of P

ii

: In Section 4 we

investigate the structure of each block of the inverse of the matrix I � P

i

; where P

i

is the

principal submatrix of P with the ith row and column of blocks removed. This structure

will be exploited in Section 5 to bound the error (5).
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2 Notation and lemmas

Throughout this article k � k denotes the 1-norm for matrices and column vectors and the

1-norm for row vectors. Let B be the matrix with entries b

ij

and C be the matrix with

entries c

ij

: We denote by jBj the matrix with entries jb

ij

j and let B � C mean b

ij

� c

ij

for

all i and j. For vectors, jyj and y � x are de�ned in an analogous way. We denote by 1 the

column vector of all ones regardless of its dimension. For transition matrices P as in (1), we

denote by P

i�

the ith block row of P with P

ii

deleted, P

�i

the ith block column of P with P

ii

deleted, and P

i

the principal matrix of P obtained by deleting the ith block row and block

column. We let S

ii

denote the stochastic complement of P

ii

in P , that is,

S

ii

= P

ii

+ P

i�

(I � P

i

)

�1

P

�i

:(7)

It was shown in [10] that S

ii

is stochastic and �

T

i

=k�

T

i

k is its stationary distribution.

Each nonnegative matrix A can be decomposed in the form

A = 1r

T

+R;(8)

where r

T

is a nonnegative row vector and R is a nonnegative matrix with at least one zero

in each column. In other words, the i-th entry of r is the minimun of the entries in the

i-th column of A. The decomposition (8) is called the column parallel decomposition for

nonnegative matrices. Based on (8), we de�ne the column parallel rate of a nonnegative

matrix A as

s(A) =

8

<

:

kRk

r

T

1

r

T

1 6= 0

0 r

T

1 = 0:

Now we present two basic properties of the column parallel rate.

Lemma 2.1 Let A

1

and A

2

be nonnegative matrices, then

s(A

1

+ A

2

) � maxfs(A

1

); s(A

2

)g:

Proof Let A

1

and A

2

have the column parallel decompositions

A

1

= 1r

T

1

+R

1

; A

2

= 1r

T

2

+R

2

;

respectively. Let u

T

be a nonnegative row vector whose i-th entry is the smallest entry of

the i-th column of R

1

+R

2

: Then A

1

+ A

2

has the column parallel decomposition

A

1

+ A

2

= 1(r

1

+ r

2

+ u)

T

+R

1

+R

2

� 1u

T

;
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from which it is straightforward to get that

s(A

1

+ A

2

) � max(s(A

1

); s(A

2

)):

Lemma 2.2 Let A

1

; A

2

and S be nonnegative matrices of orders m

1

� p

1

; m

2

� p

2

and

p

1

�m

2

; respectively. Let A

1

and A

2

have the column parallel decompositions

A

1

= 1r

T

1

+R

1

; A

2

= 1r

T

2

+R

2

:

Set

� =

r

T

1

S1

r

T

1

1kSk

;

then

s(A

1

SA

2

) �

s(A

1

)(1 + s(A

2

))

�

:

Proof We have

A

1

SA

2

= (r

T

1

S1)1r

T

2

+ 1r

T

1

SR

2

+R

1

S1r

T

2

+R

1

SR

2

:

Let u

T

be the nonnegative row vector whose i-th entry is the minimun of the entries in the

i-th column of matrix R

1

S1r

T

2

+R

1

SR

2

: Then A

1

SA

2

has the column parallel decomposition

A

1

SA

2

= 1r

T

3

+R

3

;

where

r

T

3

= (r

T

1

S1)r

T

2

+ r

T

1

SR

2

+ u

T

and

R

3

= R

1

S1r

T

2

+R

1

SR

2

� 1u

T

:

Using the nonnegativity of matrices and norm inequalities we get

r

T

3

1 � (r

T

1

S1)r

T

2

1 = �(r

T

1

1)(r

T

2

1)kSk(9)

and

kR

3

k � kR

1

S1r

T

2

k+ kR

1

SR

2

k � kSkkR

1

k(r

T

2

1+ kR

2

k):(10)

Combining (9) and (10) completes the proof.
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These two lemmas will be used in Section 4 to investigate the decomposition of each block

of (I �P

i

)

�1

: In the next section, we will bound s((I � P

ii

)

�1

) through the spectral analysis

of P

ii

: To do this, we need the following lemma.

Lemma 2.3 Let A be an m�m nonnegative matrix of the form A = 1v

T

+Q; where v

T

is

a nonnegative row vector and kQk is small compared to kv

T

k: Note that we do not assume

that Q is nonnegative. Let

� =

kQk

kv

T

k

and let A have the column parallel decomposition

A = 1r

T

+R:

If m� < 1; then

s(A) �

(m+ 1)�

1�m�

and

kr

T

� v

T

k

kv

T

k

� m�:

Proof Let u

T

be the row vector whose i-th entry is the minimun of the entries in the i-th

column of Q: Obviously, ju

T

j � kQk1

T

and thus

ku

T

k � mkQk = m�kv

T

k:

We have the column parallel decomposition of A with

r

T

= v

T

+ u

T

and R = Q� 1u

T

:

Thus

kr

T

� v

T

k

kv

T

k

=

ku

T

k

kv

T

k

� m�

and

s(A) =

kRk

kr

T

k

�

kQk+ ku

T

k

kv

T

� u

T

k

�

(m+ 1)�

1�m�

:

3 Spectral analysis

In this section we will de�ne some quantities in terms of which we bound the relative error

(5). These quantities are somewhat complicated at �rst sight. However, we will give insight

into them through spectral analysis of the diagonal blocks P

ii

:

6



Let (I � P

ii

)

�1

have the column parallel decomposition (I � P

ii

)

�1

= 1r

T

i

+R

i

: We de�ne

�

i

= s((I � P

ii

)

�1

) =

8

<

:

kR

i

k

kr

T

i

1k

r

T

i

1 6= 0

0 r

T

i

1 = 0

(11)

and for j 6= i

�

ij

=

8

<

:

r

T

i

P

ij

1

(r

T

i

1)kP

ij

k:

kP

ij

k 6= 0

1 kP

ij

k = 0:

(12)

In the following we derive bounds for �

i

and �

ij

:

Let 


i

be the Perron root of P

ii

and let v

T

i

be the corresponding left eigenvector normalized

so that v

T

i

1 = 1: Let the columns of U

i

form an orthonormal basis for the space orthogonal

to v

i

and the columns of J

i

form an orthonormal basis for the space orthogonal to 1. In

other words,

U

T

i

v

i

= 0; U

T

i

U

i

= I; J

T

i

1 = 0; J

T

i

J

i

= I:

Let

V

i

= J

i

(J

T

i

U

i

)

�T

;

then it is proved in [9] that

2

4

v

T

i

V

T

i

3

5

�1

= [1 U

i

]

and

kU

i

k

2

= 1; kV

i

k

2

= k(J

T

i

U

i

)

�1

k

2

�

p

n

i

;

where k � k

2

is Euclidean norm. The following theorem bounds �

i

and �

ij

:

Theorem 3.1 Let P

ii

of order n

i

be the i-th diagonal block of P in (1). Let B

i

= V

T

i

(I �

P

ii

)U

i

, �

i

= kU

i

B

�1

i

V

T

i

k and let � be as in (2). For i 6= j; set

q

ij

=

8

<

:

v

T

i

P

ij

1

kP

ij

k

kP

ij

k 6= 0

1 kP

ij

k = 0

:

If 2n

i

�

i

� < 1; then �

i

in (11) is bounded as

�

i

�

2(n

i

+ 1)�

i

�

1� 2n

i

�

i

�

:(13)

Moreover, if 2n

i

�

i

� � q

ij

; then �

ij

is bounded as

�

ij

�

q

ij

� 2n

i

�

i

�

1 + 2n

i

�

i

�

:(14)
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Proof We have

2

4

v

T

i

V

T

i

3

5

(I � P

ii

)[1 U

i

] =

2

4

1� 


i

V

T

i

(I � P

ii

)1 B

i

3

5

:

Then

(I � P

ii

)

�1

=

1

1� 


i

1v

T

i

+Q

i

;

where

Q

i

=

1

1� 


i

U

i

B

�1

i

V

T

i

C

i

and C

i

= �(I � P

ii

)1v

T

i

+ (1� 


i

)I:

Since (I � P

ii

)1 =

P

j 6=i

P

ij

1 � �1; we have

1� 


i

� � and kC

i

k � 2�:

Therefore

(1� 


i

)kQ

i

k � 2�

i

�:

Applying Lemma 2.3 gives (13) and

jv

T

i

� (1� 


i

)r

T

i

j1 � kv

T

i

� (1� 


i

)r

T

i

k � 2n

i

��:

It follows that

�

ij

=

v

T

i

P

ij

1+ ((1� 


i

)r

T

i

� v

T

i

)P

ij

1

(1� 


i

)r

T

i

1kP

ij

k

�

q

ij

� 2n

i

�

i

�

1 + 2n

i

�

i

�

:

Remark 3.1. The eigenvalues of B

i

are those eigenvalues of I � P

ii

other than 1 � 


i

:

Throughout this article we always assume that the second largest eigenvalue of P

ii

is bounded

away from 1. Thus the eigenvalues of B

i

are bounded away from 0. If B

i

is diagonalizable,

that is, there exists nonsingular matrix T such that T

�1

B

i

T is a diagonal matrix, then

kB

�1

i

k � kTkkT

�1

k=j�j; where � is the smallest eigenvalue (in modulus) of B

i

: Even though

I � P

ii

is nearly singular and k(I � P

ii

)

�1

k must be very large, we can expect that kB

i

k is

of moderate size. Noting that kU

i

k

2

= 1 and kV

i

k

2

�

p

n

i

; we can also expect that �

i

is

of moderate size and so �

i

is very small. The quantities q

ij

may be large if v

i

is not nearly

orthogonal to P

ij

1: In fact, let �

i

be the ratio between the largest and smallest entries of v

T

i

;

8



then we have q

ij

� 1=(n

i

�

i

): Therefore �

ij

can be bounded away from zero as long as �

i

is

not very large.

For �

i

as in (11) and �

ij

as in (12), we de�ne

� = max

1�i�k

�

i

and � = max

1�i�k

(max

j 6=i

�

ij

):(15)

We still need two other quantities to bound the error (5). To do this, we de�ne the set of

stochastic matrices

�

i

= fT j T � 0; T1 = 1; kT � P

ii

k � 2� + �g:(16)

and for each set �

i

; we de�ne

�

i

= supfk(I � T )

#

k j T 2 �

i

g

and

 

ij

= inf

(

v

T

P

ij

1

kP

ij

k

�

�

� T 2 �

i

; v

T

= v

T

T; v

T

1 = 1

)

:

Here � is as in (2) and � is as in (6). The quantities �

i

and  

ij

can also be bounded through

the spectral analysis of the diagonal blocks P

ii

: Let v

T

be the stationary distribution of

T 2 �

i

; i.e., v

T

T = v

T

and v

T

1 = 1: According to the perturbation theory for the Perron

vector v

T

i

of P

ii

; see [6], if 2� + � is su�ciently small, then kv

T

� v

T

i

k � s

i

(2� + �): Here s

i

is the condition number for v

T

i

in in�nity norm. It is shown in [6] that the separation of the

Perron root 


i

and other eigenvalues of P

ii

has a bearing upon s

i

: Since the eigenvalues other

than 


i

are bounded away from 1, this separation is not small. We can expect that s

i

is of

moderate size. If s

i

(2� + �) < q

ij

; it is straightforward to get that

 

ij

� q

ij

� s

i

(2� + �):

The following theorem bounds k(I � T )

#

k for T 2 �

i

:

Theorem 3.2 Let �

i

be as in (16), let T 2 �

i

and (I � T )

#

be the group inverse of I � T;

and let, furthermore,

g(�; �) = kU

i

kkV

T

i

k(1 + 2s

i

+ s

i

(2� + �))(2� + �):

If kB

�1

i

kg(�; �) < 1; then

k(I � T )

#

k �

(1 + s

i

(2� + �))kU

i

kkV

T

i

kkB

�1

i

k

1� kB

�1

i

kg(�; �)

9



Proof Let v

T

be the stationary distribution of T and let v

T

i

be the left Perron vector of P

ii

normalized so that v

T

i

1 = 1: Set u

T

= v

T

i

� v

T

: Choosing

F

i

= 1u

T

U

i

and noting that ku

T

k � s

i

(2� + �) and v

T

i

U

i

= 0; we have

v

T

(U

i

+ F

i

) = 0; kF

i

k � s

i

kU

i

k(2� + �):

It follows that

2

4

v

T

V

T

i

3

5

(I � T )[1 U

i

+ F

i

] =

2

4

0

b

B

i

3

5

;

where

b

B

i

= V

T

i

(I � T )(U

i

+ F

i

): The group inverse (I � T )

#

can be expressed as

(I � T )

#

= (U

i

+ F

i

)

b

B

�1

i

V

T

i

:(17)

The di�erence between B

i

and

b

B

i

is

b

B

i

�B

i

= V

i

(P

ii

� T )(U

i

+ F

i

) + V

T

i

(I � P

ii

)F

i

:

Taking norms we obtain

k

b

B

i

� B

i

k � kU

i

kkV

T

i

k(2� + �)(1 + 2s

i

+ s

i

(2� + 3�)) = g(�; �);

which implies that

k

b

B

�1

i

k �

kB

�1

i

k

1� kB

�1

i

kg(�; �)

:(18)

Using (18) and taking norms in (17) completes the proof.

By the de�nition of �

i

; it is easy to get that

�

i

�

(1 + s

i

(2� + �))kU

i

kkV

T

i

kkB

�1

i

k

1� kB

�1

i

kg(�; �)

:

Just as pointed out Remark 3.1, we can expect that �

i

is small and  

ij

is bounded away

from zero.

We then de�ne

� = max

i

�

i

and  = min

i

(min

j 6=i

 

ij

):(19)
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4 Decomposition of blocks of the inverse

Because the transition matrix P is irreducible, the matrix I �P

i

is a nonsingular M-matrix.

In this section we will show that (I � P

i

)

�1

has a special structure. To be precise, we

partition (I � P

i

)

�1

conformally with P

i

: We will show that the columns of each block are

nearly parallel to 1: This property will be used to bound the error (5) in the following section.

Theorem 4.1 Let P

i

be the principal submatrix of P in (1) obtained by deleting the i-th block

row and block column. Let � and � be as in (15). Let (I � P

i

)

�1

be partitioned conformally

with P

i

in the block form (I � P

i

)

�1

= [G

lm

]: If � < �; then for all l and m, the column

parallel rate of G

lm

is bounded as

s(G

lm

) �

�

�� �

:(20)

Proof We only prove this theorem for i = 1: For i 6= 1; it can be proved in a similar way.

Writing I � P

i

in the form I � P

i

= D � E; where

D =

2

6

6

6

6

6

6

6

4

I � P

11

I � P

22

.

.

.

I � P

k�1;k�1

3

7

7

7

7

7

7

7

5

E =

2

6

6

6

6

6

6

6

4

0 P

12

� � � P

1;k�1

P

21

0 � � � P

2;k�1

.

.

.

.

.

.

.

.

.

P

k�1;1

P

k�1;2

� � � 0

3

7

7

7

7

7

7

7

5

;

we have

(I � P

i

)

�1

= (I �D

�1

E)

�1

D

�1

=

1

X

j=0

(D

�1

E)

j

D

�1

:

Let (D

�1

E)

j

D

�1

be partitioned conformally with P

i

in the block form

(D

�1

E)

j

D

�1

= [G

(j)

lm

]:

Obviously

G

lm

=

1

X

j=0

G

(j)

lm

(21)

and the relation between G

(j)

lm

and G

(j+1)

lm

can be described via

G

(j+1)

lm

=

X

p6=l

(I � P

ll

)

�1

P

lp

G

(j)

pm

:

11



To prove that for all l, m and j; we have

s(G

(j)

lm

) �

�

�� �

;(22)

we proceed by induction on j: Obviously, (22) holds for j = 0; since G

(0)

ll

= (I � P

ll

)

�1

and

G

(0)

lm

= 0 for l 6= m: Suppose it holds for j: Setting

H

(j)

lpm

= (I � P

ll

)

�1

P

lp

G

(j)

pm

and applying Lemma 2.2, we have

s(H

(j)

lpm

) �

�

�

1 +

�

���

�

�

=

�

�� �

:

>From Lemma 2.1, it follows that

s(G

(j+1)

lm

) �

�

�� �

:

Using (21) and Lemma 2.1 completes the proof.

One interesting consequence of this structure of G

ij

is that for a nonnegative matrix B,

kBG

ij

k is near to kBkkG

ij

k: To prove this, we let G

ij

have the column parallel decomposition

G

ij

= 1r

T

+R: We have

kr

T

k �

�� �

�

kG

ij

k

and

kBG

ij

k = kB1r

T

+BRk � kBkkr

T

k �

�� �

�

kBkkG

ij

k:(23)

5 Main result

In this section we will bound the relative errors (5). First we bound them in the case that

only one row of blocks of P is perturbed.

Lemma 5.1 Let P be a transition matrix of a nearly uncoupled Markov chain of the form

(1). Let each block P

l;i

in the l-th block row of P be perturbed by a small perturbation F

li

with

kF

li

k � �kP

li

k and let the blocks in other block rows be unperturbed. Let

b

P be the perturbed

stochastic matrix with stationary distribution

b

�

T

= (

b

�

T

1

; � � � ;

b

�

T

k

): Set

f(�; �) =

(1 + � + ��)�

 (�� �)

;

12



where � and � are de�ned as in (15), � and  are de�ned as in (19). Then for su�ciently

small � and for all i;

k�

T

i

�

b

�

T

i

k

k�

T

i

k

� 2f(�; �)� +O(�

2

):(24)

Proof We only prove this lemma for l = k: If l 6= k; then the proof is similar.

Set F

k�

= (F

k1

; � � � ; F

kk�1

): The stochastic complement of

b

P

kk

in

b

P is

b

S

kk

= S

kk

+ F

kk

+ F

k�

(I � P

k

)

�1

P

�k

:

Since (I � P

k

)

�1

P

�k

1 = 1;

kF

k�

(I � P

k

)

�1

P

�k

k � kjF

k�

j1k �

X

1�i�k�1

kF

ki

k � ��;

and then kS

kk

�

b

S

kk

k � �(1 + �): Let

v

T

k

=

�

T

k

k�

T

k

k

and

b

v

T

k

=

b

�

T

k

k

b

�

T

k

k

:

The vectors v

T

k

and

b

v

T

k

are stationary distributions of S

kk

and

b

S

kk

; respectively. With � as

in (19), we have

kv

T

k

�

b

v

T

k

k � k(I � S

kk

)

#

kkS

kk

�

b

S

kk

k � ��(1 + �):

Let

v

T

= (v

T

k

P

k�

(I � P

k

)

�1

; v

T

k

) and

b

v

T

= (

b

v

T

k

(P

k�

+ F

k�

)(I � P

k

)

�1

;

b

v

T

k

)

be partitioned conformally with P as

v

T

= (v

T

1

; � � � ; v

T

k

) and

b

v

T

= (

b

v

T

1

; � � � ;

b

v

T

k

):

It was proved in [10] that

�

T

=

v

T

kv

T

k

and

b

�

T

=

b

v

T

k

b

v

T

k

:

Now we bound the relative errors between v

T

j

and

b

v

T

j

for 1 � j � k � 1: Letting (I � P

i

)

�1

be partitioned conformally with P

i

as (I � P

i

)

�1

= [G

lm

]; then

v

T

j

=

X

1�l�k�1

v

T

k

P

kl

G

lj

and

b

v

T

j

=

X

1�l�k�1

b

v

T

k

(P

kl

+ F

k1

)G

lj

:

13



Using (23) implies that

kv

T

j

k =

X

1�l�k�1

kv

T

k

P

kl

G

lj

k �

�� �

�

X

1�l�k�1

kv

T

k

P

kl

kkG

lj

k �

(�� �) 

�

X

1�l�k�1

kv

T

k

kkP

kl

kkG

lj

k:

Thus

kv

T

j

�

b

v

T

j

k �

X

1�l�k�1

k(v

T

k

�

b

v

T

k

)P

kl

G

lj

k+

X

1�l�k�1

k

b

v

T

k

F

kl

G

lj

k

� (��(1 + �)(1 + �) + �)

X

1�l�k�1

kv

T

k

kkP

kl

kkG

lj

k

� (f(�; �)� +O(�

2

))kv

T

j

k:

Normalizing v

T

and

b

v

T

to �

T

and

b

�

T

; respectively, leads to (24).

Based on Lemma 5.1, we can bound the relative error (5) as follows. We change the block

rows of P into that of

e

P one row at a time. Each time with Lemma 5.1 we bound the relative

errors of aggregate distributions of two subsequently changed transition matrices, since they

di�er only in one row of blocks. By proper permutation, we assume that the perturbation

at each time is added to the last row of blocks. Except for the �rst time, some blocks P

ij

in

P

k

and P

�k

have been changed to P

ij

+ F

ij

when we apply Lemma 5.1. This may perturb

the quantities �; �; � and  : It can be easily veri�ed that

b

S

kk

is always in �

k

; which means

that the quantities � and  can be used in the whole process. Now we show that the other

two quantities � and � are only slightly perturbed.

>From the column parallel decomposition (I � P

ii

)

�1

= 1r

T

i

+R

i

; we obtain

k(I � P

ii

)1r

T

i

k = (r

T

i

1)k

X

j 6=i

P

ij

1k = kI � R

i

(I � P

ii

)k � 2kR

i

k+ 1:

It follows from

kF

ii

1k = k

X

j 6=i

F

ij

1k �

X

j 6=i

kF

ij

k � kk

X

j 6=i

P

ij

1k

that

kF

ii

(I � P

ii

)

�1

k = kF

ii

1r

T

i

+ F

ii

R

i

k � (r

T

i

1)kF

ii

k+ �kR

i

k � ((2k + 1)kR

i

k+ k)�:

It is pointed out in [18] that we can expect that kR

i

k is of moderate size. Thus we can

expect that the norm kF

ii

(I � P

ii

)

�1

k is small compared to 1. Then

(I � P

ii

� F

ii

)

�1

= (I � P

ii

)

�1

(I � F

ii

(I � P

ii

)

�1

)

�1

= 1r

T

i

+R

i

+ C

i

;

14



where

kC

i

k

k1r

T

i

+R

i

k

�

kF

ii

(I � P

ii

)

�1

k

1� kF

ii

(I � P

ii

)

�1

k

= ((2k + 1)kRk+ k)� +O(�

2

):

Let (I�P

ii

�F

ii

)

�1

have the decomposition (I�P

ii

�F

ii

)

�1

= 1

e

r

T

i

+

e

R

i

: A detailed calculation

shows that

e

�

i

=

k

e

R

i

k

e

r

T

i

1

� (1 +O(�))�

i

+O(��)

and

e

�

ij

=

e

r

T

i

(P

ij

+ F

ij

)1

(

e

r

T

i

1kP

ij

+ F

ij

k)

� (1� O(�))�

ij

�O(��):

Let

��

i

= maxf�

i

;

e

�

i

g

�

�

ij

= minf�

ij

;

e

�

ij

g:

We de�ne

�� = max

i

�

i

and

�

� = min

i

(min

j 6=i

�

ij

):(25)

Obviously, �� and

�

� are very near to � and �; respectively.

The following theorem is the main result of this paper.

Theorem 5.2 Let P be the transition matrix of a nearly uncoupled Markov chain of the

form (1). Let

e

P = P + F be a perturbed transition matrix of P with kF

ij

k � �kP

ij

k for all

i and j. Let

�

T

= (�

T

1

; � � ��

T

k

) and

b

�

T

= (

b

�

T

1

; � � � ;

b

�

T

k

)

be stationary distributions of P and

b

P ; respectively. Set

�

f(�; �) =

(1 + � + ��)

�

�

 (

�

�� �� )

;

where � and  are as in (19), �� and

�

� are as in (25). If � is su�ciently small, then for

1 � i � k

k�

T

i

�

b

�

T

i

k

k�

T

i

k

� 2k

�

f(�; �)� +O(�

2

):(26)

Proof We change the block rows of P to those of

e

P in k steps, one block row at each step.

From Lemma 5.1 and �� and

�

� in (25), the relative error between the aggregate distributions

of two subsequently changed transition matrices is no more than 2

�

f(�; �)�+O(�

2

): Applying

Lemma 5.1 k times gives (26).
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This theorem demonstrates that the sensitivity

�

f(�; �) of the aggregate distributions �

T

i

to

blockwise perturbation F depends on four quantities �� ;

�

�; � and  : We can expect that

�� is small, � is of moderate size and

�

� and  are bounded away from 0 and so

�

f(�; �) is

of moderate size, which implies that the aggregate distributions �

T

i

are insensitive to small

blockwise perturbation F .
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