
Te
hnis
he Universit�at Chemnitz

Sonderfors
hungsberei
h 393

Numeris
he Simulation auf massiv parallelen Re
hnern

Andreas Rathsfeld Reinhold S
hneider

On a Quadrature Algorithm

for the Pie
ewise Linear Wavelet

Collo
ation

Applied to Boundary Integral

Equations

Preprint SFB393/00-15

Author's addresses:

Andreas Rathsfeld

Reinhold S
hneider

TU Chemnitz

Fakult�at f�ur Mathematik

D-09107 Chemnitz

http://www.tu-
hemnitz.de/sfb393/

Preprint-Reihe des Chemnitzer SFB 393

SFB393/00-15 Mar
h 2000



Contents

1 Introdu
tion 1

2 The Pie
ewise Linear Collo
ation Method 3

2.1 The Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Grid and Collo
ation Points . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 The Trial Fun
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 The Collo
ation S
heme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Wavelet Algorithm 10

3.1 The Wavelet Basis of the Trial spa
e . . . . . . . . . . . . . . . . . . . . . 10

3.2 The Wavelet Basis of the Test spa
e . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Wavelet Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Wavelet Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 The Compression Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Approximation of the Parametrization Mappings and Quadrature 19

4.1 Parametrization and Quadrature for the Far Field . . . . . . . . . . . . . . 19

4.2 Parametrization and Quadrature for the First Part of the Near Field . . . 23

4.3 Parametrization and Quadrature for the Se
ond Part of the Near Field . . 24

5 Preliminary Results from the Analysis of the Compression 28

5.1 The Properties of the Three-Point Hierar
hi
al Basis . . . . . . . . . . . . 28

5.2 The Properties of the Wavelet Basis in the Test Spa
e . . . . . . . . . . . . 29

5.3 General Error Estimates for the Numeri
al Solution and Pre
onditioning . 30

6 The Estimation of the Errors due to the Approximate Parametrization

and due to the Quadrature 34

6.1 The Far Field Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 The Estimates for the First Part of the Near Field . . . . . . . . . . . . . . 39

6.3 The Estimates for the Se
ond Part of the Near Field . . . . . . . . . . . . 44



Abstra
t

In this paper we 
onsider a pie
ewise linear 
ollo
ation method for the solu-

tion of a pseudo-di�erential equation of order r = 0;�1 over a 
losed and smooth

boundary manifold. The trial spa
e is the spa
e of all 
ontinuous and pie
ewise lin-

ear fun
tions de�ned over a uniform triangular grid and the 
ollo
ation points are

the grid points. For the wavelet basis in the trial spa
e we 
hoose the three-point

hierar
hi
al basis together with a slight modi�
ation near the boundary points of

the global pat
hes of parametrization. We 
hoose linear 
ombinations of Dira
 delta

fun
tionals as wavelet basis in the spa
e of test fun
tionals. For the 
orrespond-

ing wavelet algorithm, we show that the parametrization 
an be approximated by

low order pie
ewise polynomial interpolation and that the integrals in the sti�ness

matrix 
an be 
omputed by quadrature, where the quadrature rules are 
omposite

rules of simple low order quadratures. The whole algorithm for the assembling of

the matrix requires no more than O(N [logN ℄

3

) arithmeti
 operations, and the er-

ror of the 
ollo
ation approximation, in
luding the 
ompression, the approximative

parametrization, and the quadratures, is less than O(N

�(2�r)=2

). Note that, in 
on-

trast to well-known algorithms by v.Petersdor�, S
hwab, and S
hneider, only a �nite

degree of smoothness is required. In 
ontrast to an algorithm of Ehri
h and Raths-

feld, no multipli
ative splitting of the kernel fun
tion is required. Beside the usual

mapping properties of the integral operator in low order Sobolev spa
es, estimates

of Calder�on-Zygmund type are the only assumptions on the kernel fun
tion.

1 Introdu
tion

It is a well-known fa
t that usual �nite element dis
retizations of linear integral equa-

tions (e.g: of boundary integral equations) lead to systems of linear equations with fully

populated matri
es. Thus, even an iterative solution method requires a huge number of

arithmeti
 operations and a large storage 
apa
ity. In order to improve these �nite ele-

ment approa
hes for integral equations, several algorithms have been developed. One of

these 
onsists in employing wavelet bases of the �nite element spa
es. The basi
 idea goes

ba
k to Beylkin, Coifman, and Rokhlin [3℄, and has been thoroughly investigated by Dah-

men, v.Petersdor�, Pr�o�dorf, S
hneider, and S
hwab [11, 12, 30, 29, 28, 40℄ (
f: also the


ontributions by Alpert, Harten, Yad-Shalom, Ehri
h, and Rathsfeld [1, 21, 36, 18℄). In

the present paper, we shall apply the wavelet te
hnique to the pie
ewise linear 
ollo
ation

of two-dimensional boundary integral equations of order r = 0 and r = �1 
orresponding

to three-dimensional boundary value problems.

First we shall re
all the de�nition of a simple biorthogonal wavelet basis analyzed in

[38℄ (
f: the familiar 
onstru
tions in [22, 42, 24℄ and 
ompare [13, 14, 15, 5, 6, 7, 16℄). The

grids will be supposed to be uniform re�nements of a 
oarse initial triangulation, and the

basis will be the system of three-point hierar
hi
al basis fun
tions, i.e: ea
h basis fun
tion

will be a linear 
ombination of no more than three �nite element fun
tions de�ned over

the 
orresponding level of a grid hierar
hy. In 
omparison to other bases of 
ontinuous

wavelet fun
tions our basis fun
tions will have a rather small support, and we believe that

1



this property is essential for the wavelet algorithm. Indeed, small supports lead to better


ompression rates, espe
ially, for higher levels and to faster quadrature algorithms for the

assembling of the sti�ness matrix.

For the basis in the test spa
e spanned by Dira
 delta fun
tionals, we shall take

the usual test fun
tionals whi
h 
an be 
onsidered at as s
aled versions of di�eren
e

formulas (
f: the wavelet 
ollo
ation methods by Dahmen, Pr�o�dorf, S
hneider, Harten,

Yad-Shalom, and Rathsfeld [12, 21, 36, 35, 37℄). Applying the wavelet basis fun
tions

of the trial and test spa
e, we shall obtain the well-known 
ompression results for trial

wavelets with vanishing moments due to Dahmen, v.Petersdor�, Pr�o�dorf, S
hneider, and

S
hwab [12, 30, 40℄. The 
ompression for trial fun
tions without vanishing moments is

the same as in [35℄ (
f: also the univariate analogue for the Galerkin method treated in

[30, 4℄). Note that we have to assume that the derivatives of the kernel fun
tion up to a

�nite order satisfy the Calder�on-Zygmund estimate. This is the fundamental relation not

only for the wavelet 
ompression but also for the fast assembling of the sti�ness matrix

via quadrature.

In general, the sti�ness matrix 
annot be 
omputed exa
tly. This is the 
ase, for

instan
e, if the boundary manifold is given by a dis
rete set of points or if no analyti


formula is available to integrate the kernel and trial fun
tions. Therefore, we shall 
onsider

an algorithm for the approximation of the boundary surfa
e and for the quadrature of

the integrals. We emphasize that this is the most time 
onsuming and the most diÆ
ult

part of the wavelet method. To set up the sti�ness matrix, we shall pro
eed as follows.

We shall repla
e the parametrization of the boundary manifold by a low order pie
ewise

polynomial interpolation over the �nest grid. Depending on the test fun
tional and on the

trial fun
tion, we shall de�ne an appropriate partition of the supports of the trial basis

fun
tions. We shall apply a low order 
omposite quadrature rule over this partition. This

way, we shall arrive at a fully dis
retized wavelet algorithm with O(N [logN ℄

3

) arithmeti


operations to 
ompute the O(N [logN ℄) entries of the 
ompressed sti�ness matrix. If

r = �1, then even O(N [logN ℄

2

) arithmeti
 operations are suÆ
ient. Here N stands

for the number of degrees of freedom. Assuming that the 
ollo
ation without wavelet

algorithm is stable, the asymptoti
 error of the exa
t 
ollo
ation solution is known to be

less than O(N

�(2�r)=2

) whi
h is optimal for pie
ewise linear trial spa
es. The fully dis
rete

wavelet algorithm will be shown to be stable and 
onvergent with an optimal error less

than O(N

�(2�r)=2

).

Noti
e that alternative quadrature algorithms have been 
onsidered by Beylkin, Coif-

man, Rokhlin [3℄ for integral operators with smooth kernels and by v.Petersdor�, S
hwab,

and S
hneider [30, 40℄ (
f: also the numeri
al implementation by Lage and S
hwab [23℄) for

boundary integral operators with analyti
 Green kernels over pie
ewise analyti
 bound-

aries. Another quadrature algorithm due to Ehri
h and Rathsfeld [19℄ applies to produ
t

kernels, where one fa
tor has a �nite degree of smoothness and no singularity whereas the

se
ond fa
tor 
an be singular but must be analyti
 outside the singularity. In 
ontrast

to these, the fully dis
rete algorithm of the present paper applies to boundary integral

equations over surfa
es with �nite degree of smoothness and in
luding kernel fun
tions

with �nite degree of smoothness. In fa
t, the required degree of smoothness for the ge-

2



ometry will be equal to 2[2 � r℄ + 1, i.e: to the doubled order of 
onvergen
e in
reased

by one. Moreover, the kernel fun
tion of the integral operator will be assumed to have


ontinuous mixed derivatives up to order 2[2�r℄ outside the diagonal. In the proof of the


orresponding error estimates, we shall show that the te
hniques developed for the 
om-

pression algorithm apply to the analysis of the dis
retization as well. The only thing to do

is to repla
e the de
ay properties in the matrix entries due to the vanishing moments of

the trial fun
tions and the norm estimates due to the smoothness of the solution by error

estimates of the approximate parameter mappings and by estimates of the quadrature

rules, respe
tively.

The plan of the paper is as follows. In Se
t.2 we shall des
ribe the boundary manifold,

the integral equation, and the 
onventional pie
ewise linear 
ollo
ation method. We shall

introdu
e the three-point hierar
hi
al wavelet fun
tions of the pie
ewise linear trial spa
e,

the test wavelet fun
tionals, and the 
orresponding 
ompression algorithm in Se
t.3. Se
t.

4 will be devoted to the des
ription of the interpolation of the parameter mappings and

to the quadrature algorithm. All proofs will be deferred to Se
ts. 5 and 6. In parti
ular,

in Se
t. 5 we shall re
all some te
hni
al results from the 
ompression estimates, and the

dis
retization in
luding the approximation of the parametrizations and of the integration

will be analyzed in Se
t. 6.

Finally, we remark that our algorithm applies in parti
ular to the double layer poten-

tial equation (
f: the examples in Se
t: 2.2). However, though the double layer operator

is a pseudodi�erential operator of order zero, the kernel fun
tion is the kernel of a pseu-

dodi�erential operator of order minus one. Moreover, the 
onstant fun
tions are eigen

fun
tions 
orresponding to the eigen value one. Using these additional properties and

the te
hnique of the present paper, a rate of 
onvergen
e O(N) multiplied by logarithmi


fa
tors 
an be derived for a modi�ed algorithm, whi
h applies to thri
e 
ontinuously dif-

ferentiable manifolds, whi
h repla
es the exa
t parametrization by a pie
ewise quadrati


interpolation, and whi
h is based on 
omposite quadrature rules of 
onvergen
e order two.

2 The Pie
ewise Linear Collo
ation Method

2.1 The Manifold

We suppose that the integral equation to be solved is given on a 
losed boundary manifold

� � IR

3

with �nite degree of smoothness. More exa
tly, we assume that � is the union of

m

�

triangular pat
hes �

m

, i:e:

� = [

m

�

m=1

�

m

; �

m

:= �

m

(T ); (2.1)

T :=

n

(s; t) 2 IR

2

: 0 � s � 1; 0 � t � minfs; 1� sg

o

:

Here the �

m

denote parametrization mappings from the standard triangle T to the man-

ifold �. We assume that the �

m

extend to mappings from the larger triangle

T

e

:=

n

(s; t) 2 IR

2

: �3 � s � 5; �1 � t � minfs+ 2; 4� sg

o

3



to � and that these extensions are d

�

times 
ontinuously di�erentiable. Here d

�

is an

integer whi
h is assumed to be greater or equal to three when dealing with zero order

operators and greater or equal to four when dealing with operators of order r = �1. This

degree of smoothness is suÆ
ient for the usual 
onvergen
e estimates of the linear 
ollo-


ation and for an almost optimal 
ompression algorithm. For the quadrature, however,

we need more smoothness. We assume that d

�

is greater or equal to �ve when dealing

with zero order operators and greater or equal to seven when dealing with operators of

order r = �1.

Further we suppose that the interse
tion of two pat
hes �

m

and �

m

0

is either empty

or a 
orner point for both pat
hes or a whole side for �

m

and �

m

0

. In the last 
ase we

assume that the representations

�

m

\ �

m

0

=

n

�

m

�




1

+ �(


2

� 


1

)

�

: 0 � � � 1

o

;

�

m

\ �

m

0

=

n

�

m

0

�




0

1

+ �(


0

2

� 


0

1

)

�

: 0 � � � 1

o

satisfy the 
ondition

�

m

�




1

+ �(


2

� 


1

)

�

= �

m

0

�




0

1

+ �(


0

2

� 


0

1

)

�

; 0 � � � 1: (2.2)

Note that, for the numeri
al method, the parameter mappings �

m

need not to be given

for all points of T . We shall use only the values of �

m

at the points of a uniform grid over

the triangle T .

To se
ure stability of the so 
onstru
ted basis (
f: [38℄), we even need two further

assumptions. In 
onne
tion with the numbering we suppose that, if the 
orner P of a

pat
h �

m

is 
ontained in the union [

m�1

m

0

=1

�

m

0

of the pre
eding pat
hes, then at least one

of the sides of �

m

ending at P is 
ontained in [

m�1

m

0

=1

�

m

0

. It is not hard to see that, for a

boundary manifold � homeomorphi
 to the sphere and for any �xed triangulation, there

always exists a numbering of the triangular pat
hes whi
h ful�lls the assumption. Finally,

for the parametrizations, we suppose the following assumption. For anym = 2; : : : ; m

�

�1,

we suppose that, if one of the two \shorter" sides �

m

(f(s; s) : 0 � s � 0:5g) and

�

m

(f(s; 1 � s) : 0:5 � s � 1g) is 
ontained in [

m�1

m

0

=1

�

m

, then the other must also be


ontained in [

m�1

m

0

=1

�

m

. This last assumption 
an always be satis�ed if the parameter

mappings �

m

are repla
ed by a 
omposition of �

m

with a suitable aÆne automorphism of

T .

Sin
e the manifold is at least 
ontinuously di�erentiable, for ea
h Q 2 �, there exists

a unit ve
tor n

Q

normal to � at Q and pointing into the exterior domain bounded by �.

The Sobolev spa
es H

s

(�) over � 
an be de�ned in the usual way. We de�ne the spa
e

H

s

(�

m

) over �

m

as the image of the Sobolev spa
e over T , i:e:

H

s

(�

m

) := ff : f Æ �

m

2 H

s

(T )g :

Consequently, we get

H

s

(�) =

(

(f

m

)

m

�

m=1

2

m

�

M

m=1

H

s

(�

m

) : f

m

j

�

m

\�

m

0

= f

m

0

j

�

m

\�

m

0

)

;

1

2

< s <

3

2

;

4



H

s

(�) =

m

�

M

m=1

H

s

(�

m

); �

1

2

< s <

1

2

; (2.3)

kfk

H

s

(�)

�

v

u

u

t

m

�

X

m=1

kf j

�

m

k

2

H

s

(�

m

)

; f 2 H

s

(�); �

1

2

< s <

3

2

:

2.2 The Integral Equation

Over � we 
onsider a pseudo-di�erential operator A of order r = 0 or r = �1 mapping

H

r=2

into H

�r=2

. We suppose that A is an integral operator of the form A = K for r = �1

and A = aI+K for r = 0, where aI stands for the operator of multipli
ation by a fun
tion

a whi
h may be zero, and the integral operator K is de�ned by

Ku(P ) :=

Z

�

k(P;Q)u(Q) d

Q

�; k(P;Q) := k(P;Q; n

Q

): (2.4)

The fun
tion k depends on the points P;Q 2 �, and k and a are supposed to have a �nite

degree of smoothness, i.e: the fun
tion a and the kernel k are supposed to be d

k

times


ontinuously di�erentiable. More pre
isely, for any d

k

-th order derivative �

�

P

; j�j = d

k

taken with respe
t to variable P 2 � and for any d

k

-th order derivative �

�

Q

; j�j = d

k

taken

with respe
t to the variables Q 2 �, we require that �

�

P

�

�

Q

k(P;Q) is 
ontinuous if P 6= Q.

The degree of smoothness d

k

is supposed to be greater or equal to two for r = 0 and to

three for r = �1. Moreover, we assume the so-
alled Calder�on-Zygmund estimate, i.e: the

existen
e of a 
onstant C > 0 su
h that, for any multiindi
es � and � with j�j; j�j � d

k

,

�

�

��

�

P

�

�

Q

k(P;Q)

�

�

� � C

k;�;�

jP �Qj

�2�r�j�j�j�j

: (2.5)

The fun
tion k need not to be a restri
tion to � � � of a fun
tion de�ned on the spa
e

IR

3

� IR

3

. It may depend for instan
e on the unit normals n

P

and n

Q

pointing into

the exterior or on any di�erent kind of di�erentiable ve
tor �eld over �. To spe
ify the

notation, we assume a spe
ial dependen
e and take k = k(P;Q) = k(P;Q; n

Q

) with k

de�ned on at least a neighbourhood of f(P;Q; n) : P;Q 2 �; n = n

Q

g � � � � � IR

3

.

If r = 0, then the integrand in (2.4) 
an be strongly singular and the integral is to be

understood in the sense of a Cau
hy prin
ipal value. To ensure the existen
e of this

prin
ipal value, we assume the Mikhlin-Gireaud property (parity property)

k

�

P; P + (Q� P )

�

= �k

�

P; P � (Q� P )

�

+ O

�

jQ� P j

�1

�

:

For the operator A in
luding the just de�ned integral operator K, we assume the


ontinuity of the mapping

A : H

s+r

(�) �! H

s

(�) (2.6)

with s = 0 and s = 1:1 (or s = 1:1 repla
ed by a di�erent s with 1 < s < 1:5) and the

invertibility of (2.6) with s = 0. For an operator A whi
h satis�es all these assumptions,

5



we shall solve the operator equation Au = v with known right-hand side v and unknown

u. To get error estimates with optimal order 2 � r, we �nally assume u 2 H

2

(�). Un-

fortunately, the smoothness of the kernel is not suÆ
ient for the quadrature algorithm.

To get a 
onvergen
e order 2� r even with wavelet 
ompression and adapted quadrature

approximation, we need d

k

= 2[2� r℄. Furthermore, we suppose that Ap is 2[2 + r℄ times


ontinuously di�erentiable for all fun
tions p whi
h are linear polynomials with respe
t to

the parametrization. Note that this higher di�erentiability and this higher d

k

is needed

for the quadrature in the Se
ts: 4.2.2, 4.3.2, and 4.3.3. The 
ompression in Theorem 3.1

and the quadrature in the Se
ts: 4.1, 4.2.1, and 4.3.1 
an easily be modi�ed su
h that a

degree of smoothness d

k

equal to 2�r is suÆ
ient. Of 
ourse, there would arise additional

logarithmi
 fa
tors in the estimates of the modi�ed method.

Let us 
onsider some examples. For instan
e, single and double layer potential equa-

tions belong to our 
lass of operator equations. Indeed, for the single layer 
ase A = A

s


orresponding to Lapla
e's equation, the order r

s

is �1, and

k

s

(P;Q) :=

1

4�

1

jP �Qj

:

In 
ase of the double layer operator A = A

d

we get the order r

d

= 0, and the multipli
ation

fun
tion a

d

� 0:5 is 
onstant. The integral operator K

d

is de�ned by

k

d

(P;Q; n

Q

) = �

1

4�

n

Q

� (P �Q)

jP �Qj

3

:

Note that the operatorK

d

without aI is a pseudo-di�erential operator of order�1. Bound-

ary integral operators for the Stokes system or for Lam�e's system 
an be represented in a

similar fashion (
f: [25℄).

To get a further example, we take the adjoint operator K

�

d

and repla
e the normal

ve
tor �eld n

Q

by an oblique �eld o

Q

. We arrive at a strongly singular boundary integral

operator A = A

o

whi
h 
orresponds to the oblique derivative boundary value problem for

Lapla
e's equation. In this 
ase, a

o

:= �0:5n

P

� o

P

and K

o

is given by

k

o

(P;Q; o

P

) = �

1

4�

o

P

� (P �Q)

jP �Qj

3

:

2.3 Grid and Collo
ation Points

Let us introdu
e a hierar
hy of uniform grids over the standard triangle T . For the step

sizes 2

�l

, l = 0; : : : ; L, we set

4

T

l

:=

1

4

T

l

[

2

4

T

l

;

1

4

T

l

:=

n

(i2

�l

; j2

�l

) : 0 � i � 2

l

; 0 � j � minf2

l

� i; ig

o

;

2

4

T

l

:=

n

(2

�l�1

; 2

�l�1

) + (i2

�l

; j2

�l

) : 0 � i < 2

l

; 0 � j < minf2

l

� i; i+ 1g

o

6
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�

�
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�

(0,0) (1,0)

(0,1)

�� �

�� �

�� �

� �

� �

Figure 1: Grid 4

IR

2

0

.

and denote the grid points by � = (s; t) 2 4

T

l

. The grid 4

T

l

is the restri
tion of the grid

(
f: Figure 1)

4

IR

2

l

:=

n

(i2

�l

; j2

�l

) : i; j 2 ZZ

2

o

[

n

(2

�l�1

; 2

�l�1

) + (i2

�l

; j2

�l

) : i; j 2 ZZ

2

o

to the triangle T . Using the parametrizations, we arrive at a grid hierar
hy on �.

4

�

l

:=

n

�

m

(�) : m = 1; : : : ; m

�

; � 2 4

T

l

o

:

Clearly, a grid point P = �

m

(�) may have more than one representation. If P is in the

interior of a side of the triangular pat
h �

m

whi
h is a 
ommon side with �

m

0

, then there

are exa
tly two representations P = �

m

(�) and P = �

m

0

(�

0

). If P is a 
orner point of a

pat
h, then there exist k > 2 representations P = �

m

1

(�

1

) = �

m

2

(�

2

) = : : : = �

m

k

(�

k

).

We introdu
e

i

4

�

l

as the set of those P 2 4

�

l

whose representation P = �

m

(�) with the

smallest m satis�es � 2

i

4

T

l

, i:e:,

i

4

�

l

:= [

m

�

m=1

n

�

m

(�) : � 2

i

4

T

l

; �

m

(�) 62 [

m�1

m

0

=1

�

m

0

(4

T

l

)

o

;

and arrive at 4

�

l

=

1

4

�

l

[

2

4

�

l

. The points of 4

�

l

will be denoted by upper 
apital letters

like P and Q.

To ea
h grid 4

�

l

there 
orresponds a partition of � into triangular pie
es. Indeed, let

us introdu
e the sets of 
entroids

ut

IR

2

0

:=

��

1

2

;

1

6

�

+ k;

�

1

2

;

5

6

�

+ k;

�

1

6

;

1

2

�

+ k;

�

5

6

;

1

2

�

+ k : k 2 ZZ

2

�

;

ut

IR

2

l

:=

n

2

�l

� : � 2ut

IR

2

0

o

; ut

T

l

:= T \ ut

IR

2

l

;

ut

�

l

:=

n

�

m

(�) : � 2ut

T

l

; m = 1; 2; : : : ; m

�

o

:

For ea
h point � 2 ut

T

l

, there exist three uniquely de�ned neighbour points �

1

, �

2

, and

�

3

su
h that �

1

; �

2

; �

3

2 4

T

l

, that the triangle T

�

spanned by the three 
orners �

1

, �

2

,

7



and �

3

is of square measure 2

�2l

=4, and that � is the 
entroid of T

�

. We arrive at the

triangulation fT

�

: � 2 ut

T

l

g of T . Note that, for l

0

> l, the 
entroids in ut

T

l

are lo
ated

at the boundaries of the smaller triangles T

�

0

with �

0

2 ut

T

l

0

. Hen
e there is a one to one


orresponden
e between the triangles T

�

over several levels and the 
entroids in [

L

l=0

ut

T

l

.

Similarly to the triangulation over T , we de�ne the triangulation fT

�

: � 2ut

IR

2

l

g of IR

2

.

For � and a point Q = �

m

(�) 2 ut

�

l

, we set �

Q

:= f�

m

(�) : � 2 T

�

g and arrive at the

triangulation f�

Q

: Q 2 ut

�

l

g. Further, we denote the level l of the points Q 2 ut

�

l

by

l(Q). Noti
e that ea
h partition triangle �

Q

; Q 2ut

�

l

; of the generation l splits into four

subtriangles of the generation l + 1.

Beside the grids 4

�

l

we introdu
e the di�eren
e grids

r

�

l

:=

(

4

�

0

if l = �1

4

�

l+1

n 4

�

l

if l = 0; : : : ; L� 1;

and obtain 4

�

L

=

S

L�1

l=�1

r

�

l

. For P 2 4

�

L

, we denote the unique level l for whi
h P 2 r

�

l

by l(P ). Analogously to r

�

l

, we de�ne the di�eren
e grids and the point levels over T

and IR

2

and get 4

T

L

=

S

L�1

l=�1

r

T

l

as well as 4

IR

2

L

=

S

L�1

l=�1

r

IR

2

l

. Finally, in a

ordan
e

to the splitting 4

T

l

=

1

4

T

l

[

2

4

T

l

, we introdu
e

i

r

T

l

= r

T

l

\

i

4

T

l+1

for i = 1; 2 and get

r

T

l

=

1

r

T

l

[

2

r

T

l

as well as

2

r

T

l

=

2

4

T

l+1

. Similarly, we de�ne

i

r

IR

2

l

and

i

r

�

l

.

Now the set of 
ollo
ation points will be the grid 4

�

L

, i.e: the test fun
tionals of the


ollo
ation s
heme are the Dira
 delta fun
tionals Æ

P

with P 2 4

�

L

. The test spa
e Dir

�

L

is the span of all these Æ

P

.

2.4 The Trial Fun
tions

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

s

t

'

(0,0,0) (1,0,0)

(0,1,0)

(0,0,1)

Figure 2: Hat fun
tion (s; t) 7!

1

'(s; t).
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To prepare the introdu
tion of linear spa
es, we �rst de�ne two-dimensional hat fun
-

tions for the grid 4

IR

2

0

.

1

' (s; t) := max

n

0; 1�maxfjs� tj; js+ tjg

o

;

2

' (s; t) := max

n

0; 1� 2maxfjsj; jtjg

o

:

Clearly, the fun
tion

1

' and the fun
tion

2

' shifted to the point (0:5; 0:5) are pie
ewise

linear fun
tions subordinate to the triangulation fT

�

: � 2 ut

IR

2

0

g (
f: the grid in Figure

1, the graph of

1

' in Figure 2, and the graph of

2

' shifted to the point (0:5; 0:5) in Figure

3).

Now we get pie
ewise linear basis fun
tions by dilating and shifting

1

' and

2

' to ea
h

grid point. More pre
isely, for ea
h grid point on T , we set

'

l

�

(�) :=

i

'

�

2

l

(� � �)

�

; � 2

i

4

T

l

:

With the help of the parametrizations we introdu
e the pie
ewise linear (with respe
t to

the parametrization) hat fun
tions over �. For ea
h grid point P 2 4

�

l

, we set

'

l

P

(Q) :=

(

'

l

�

(�) if there exist m; �; � s.t. Q = �

m

(�); P = �

m

(�)

0 else.

(2.7)

Due to the assumptions on the parametrizations (
f: (2.2)) the basis fun
tions are well

de�ned. Note that if P 2 4

�

l

is in the interior of the parametrization pat
h �

m

, then the

support supp'

l

P

of '

l

P

is 
ontained in �

m

. If P = �

m

(�) = �

m

0

(�) is in the interior of a

side, then supp'

l

P

� �

m

[ �

m

0

. For 
orner points P = �

m

1

(�

1

) = �

m

2

(�

2

) = : : : = �

m

k

(�

k

)

of the triangular parametrization pat
hes we get supp'

l

P

� [

k

n=1

�

m

n

. We denote the span

of the fun
tions '

l

P

; P 2 4

�

l

by Lin

�

l

. Obviously, this is the spa
e of all 
ontinuous and

pie
ewise linear fun
tions over the partition f�

Q

: Q 2 ut

�

l

g 
orresponding to the grid

4

�

l

. Here linearity is understood with respe
t to the parametrization. The spa
e Lin

�

L

will be the set of trial fun
tions for the 
ollo
ation.

2.5 The Collo
ation S
heme

Now the 
ollo
ation method seeks an approximate solution u

L

for the exa
t solution u of

Au = v. This is sought in the trial spa
e Lin

�

L

by solving

Au

L

(P ) = v(P ); P 2 4

�

L

: (2.8)

Using the representation u

L

=

P

P24

�

L

�

P

'

L

P

, the 
ollo
ation equation 
an be written in

form of a matrix equation A

L

� = �, where we set

� := (�

P

)

P24

�

L

; � := (�

P

)

P24

�

L

; �

P

:= v(P ):

The matrix of the linear system is the so 
alled sti�ness matrix given by

A

L

:= (a

P

0

;P

)

P

0

;P24

�

L

; a

P

0

;P

:= (A'

L

P

)(P

0

):

9
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�

�

�

�

s

t

'

(0,0,0) (1,0,0)

(0,1,0)

(0,0,1)

�

Figure 3: Hat fun
tion (s; t) 7!

2

'(s� 0:5; t� 0:5).

Moreover, using the interpolation proje
tion R

L

de�ned by R

L

f :=

P

P24

�

L

f(P )'

L

P

, the


ollo
ation 
an be treated as a proje
tion equation of the form R

L

Au

L

= R

L

v.

Throughout this paper we shall assume that the 
ollo
ation method applied to the

operator equation Au = v is stable. For the exa
t de�nition of stability and some remarks

we refer to Se
t. 5.3. If the 
ollo
ation is stable, if the exa
t solution u is in H

2

(�), and

if h � 2

�L

denotes the step size of the dis
retization, then the approximate solution u

L

satis�es the well-known optimal 
onvergen
e estimates

ku� u

L

k

L

2

(�)

� Ch

2

; r = 0;�1; (2.9)

ku� u

L

k

H

�1

(�)

� Ch

3

; r = �1: (2.10)

3 The Wavelet Algorithm

3.1 The Wavelet Basis of the Trial spa
e

Now we introdu
e a simple wavelet basis for the pie
ewise linear spa
e. These fun
tions

have been 
onsidered �rst for the 
ase of di�erent grids in the plane IR

2

(
f: [22, 42, 24℄)

and are 
alled three-point hierar
hi
al basis fun
tions. More pre
isely, for the plane and

for any point � 2 4

IR

2

L

, we set (
f: Figure 5 for the supports of su
h fun
tions)

 

�

:=

8

>

>

<

>

>

:

'

0

�

if � 2 r

IR

2

�1

'

l+1

�

�

1

2

n

'

l+1

�

1

+ '

l+1

�

2

o

if � 2

1

r

IR

2

l

with l = l(�) 2 f0; : : : ; L� 1g

'

l+1

�

�

1

4

n

'

l+1

�

1

+ '

l+1

�

2

o

if � 2

2

r

IR

2

l

with l = l(�) 2 f0; : : : ; L� 1g:

(3.1)

Here �

1

and �

2

denote the uniquely de�ned neighbours of � on 4

IR

2

l+1

(
f: Figure 4). Indeed

any di�eren
e grid point � 2

2

r

IR

2

l

� 4

IR

2

l+1

has exa
tly two neighbour points �

1

and �

2

at
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Figure 4: Neighbours �

1

and �

2

.
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�
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Figure 5: Supports of wavelets  

�

and  

�

0

.

minimal distan
e whi
h belong to 4

IR

2

l

� 4

IR

2

l+1

. Any di�eren
e grid point �

0

2

1

r

IR

2

l

�

4

IR

2

l+1

has exa
tly two neighbour points �

0

1

and �

0

2

at minimal distan
e whi
h belong to

1

4

IR

2

l

� 4

IR

2

l+1

. The fun
tions  

�

with � 2 r

IR

2

l

; l = 0; : : : ; L � 1 have two vanishing

moments, i.e: they are orthogonal to all 
onstant and linear fun
tions.

The wavelet fun
tions  

�

on the manifold � are slight modi�
ations of (3.1). The

de�nition is not very diÆ
ult. However, to motivate this de�nition, we shortly explain

the 
onstru
tion:

� We start with the �rst parametrization pat
h �

1

and the de�nition of fun
tions  

P

su
h that P 2 4

�

L

\ �

1

. First we restri
t the fun
tions  

�

from (3.1) to T . If these

restri
tions interse
t the boundary of T , then we modify them adding restri
tions

of three-point basis fun
tions  

�

0

with �

0

outside of T . The resulting basis fun
tions

 

&

�

are restri
tions of fun
tions whi
h are symmetri
 (even) with respe
t to the

boundary of T . For P = �

1

(�), we take the 
omposition  

P

=  

&

�

Æ �

�1

1

to arrive at

fun
tions over the parametrization pat
h �

1

. To get 
ontinuous trial fun
tions over

11



�, we extend the  

P

with P 2 r

�

l

\ �

1

; l = �1; 0; : : : ; L� 1 from �

1

to � su
h that

the extensions are pie
ewise linear on the partition f�

Q

: Q 2 ut

�

l+1

g 
orresponding

to the grid 4

�

l+1

and vanish at all grid points from 4

�

l+1

n �

1

.

� Next we de�ne the fun
tions  

P

su
h that P 2 4

�

L

\ f�

2

n �

1

g. We start again

with the restri
tions of (3.1) to T . Sin
e we have already basis fun
tions over the

boundary �

1

\ �

2

, we need basis fun
tions on �

2

vanishing over �

1

\ �

2

, i.e: basis

fun
tions on T vanishing on the side S

0

for whi
h �

2

(S

0

) = �

2

\ �

1

. Therefore, we

modify the fun
tions on T su
h that they are restri
tions of fun
tions antisymmetri


(odd) with respe
t to the side S

0

and symmetri
 (even) with respe
t to the sides

S of T with �

2

(S) 6� �

1

. Clearly all these fun
tions vanish on S

0

. We take the


omposition with �

�1

2

to arrive at fun
tions over the parametrization pat
h �

2

whi
h

vanish over �

2

\�

1

. To get 
ontinuous trial fun
tions, we extend these fun
tions  

P

with P 2 r

�

l

\f�

2

n�

1

g; l = �1; 0; : : : ; L� 1 from �

2

to � su
h that the extensions

are pie
ewise linear on the partition f�

Q

: Q 2 ut

�

l+1

g 
orresponding to the grid

4

�

l+1

and vanish at all grid points from 4

�

l+1

n �

2

.

� Analogously to the previous step, we de�ne the fun
tions  

P

su
h that the point

P is in 4

�

L

\ f�

3

n (�

1

[ �

2

)g. Then we 
onstru
t the fun
tions  

P

with point P

in 4

�

L

\ f�

4

n (�

1

[ �

2

[ �

3

)g and so on. Finally, we de�ne  

P

with point P in

4

�

L

\ f�

m

�

n [

m

�

�1

m=1

�

m

g.

For more details and the properties of the basis we refer to [38℄ and Se
t. 5.1. The �nal

de�nition of the three-point hierar
hi
al wavelet fun
tions over the manifold � is

 

P

:=

8

>

>

<

>

>

:

'

0

P

if P 2 r

�

�1

'

l+1

P

�

1

2

n

"

P;P

1

'

l+1

P

1

+ "

P;P

2

'

l+1

P

2

o

if P 2

1

r

�

l

with l 2 f0; : : : ; L� 1g

'

l+1

P

�

1

4

n

"

P;P

1

'

l+1

P

1

+ "

P;P

2

'

l+1

P

2

o

if P 2

2

r

�

l

with l 2 f0; : : : ; L� 1g;

(3.2)

where P

1

and P

2

are the uniquely de�ned neighbours on 4

�

l+1

of P 2 r

�

l

, i.e. P

1

= �

m

(�

1

)

and P

2

= �

m

(�

2

) if P = �

m

(�) is the representation with the minimal m 2 f1; : : : ; m

�

g

and if �

1

; �

2

are the neighbours of � . The 
oeÆ
ients "

P;P

0

are equal to one in almost all


ases. Only if the point P

0

= P

1

; P

2

is at the boundary of a parametrization pat
h, then

a value "

P;P

0

di�erent from one is needed. More pre
isely, the 
oeÆ
ients "

P;P

0

are given

12



by (
f: Se
t. 2.3 for the de�nition of

i

4

�

L

)

"

P;P

0

:=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if there is a parametrization pat
h �

m

su
h that P and P

0

belong

to the interior of the triangle �

m

or there exists a side �

m

\ �

m

0

of a parametrization pat
h su
h

that P and P

0

belong to the interior of the side �

m

\ �

m

0

2 if there exists a side �

m

\ �

m

0

of a parametrization pat
h su
h

that m < m

0

; that P is an interior point of �

m

; and that P

0

belongs to the interior of the side �

m

\ �

m

0

or P

0

= \

k

i=1

�

m

i

is a 
orner of a parametrization pat
h, P

0

2

2

4

�

0

;

the point P is an interior point of a side �

m

1

\ �

m

2

; and

m

1

< m

i

; i = 2; : : : ; k

4 if P

0

= \

k

i=1

�

m

i

is a 
orner of a parametrization pat
h, P

0

2

1

4

�

0

;

the point P is an interior point of a side �

m

1

\ �

m

2

; and

m

1

< m

i

; i = 2; : : : ; k

orP

0

= \

k

i=1

�

m

i

is a 
orner of a parametrization pat
h, P

0

2

2

4

�

0

;

the point P is an interior point of the fa
e �

m

1

; and

m

1

< m

i

; i = 2; : : : ; k

0 else:

(3.3)

Clearly, the support of  

P

is 
ontained in the union of all those �

m

in whi
h P or at least

one of the neighbour points P

1

or P

2

is lo
ated. The basis f 

P

: P 2 4

�

L

g spans the trial

spa
e Lin

�

L

sin
e the system is linearly independent (
f: (5.1)). Moreover, it represents a

hierar
hi
al basis, i.e.

n

 

P

: P 2 4

�

L

o

=

L�1

[

l=�1

n

 

P

: P 2 r

�

l

o

;

Lin

�

0

� Lin

�

1

� : : : � Lin

�

L

;

Lin

�

l

0

= span

l

0

�1

[

l=�1

n

 

P

: P 2 r

�

l

o

:

The fun
tion  

P

with P 2 r

�

l

; l = 0; : : : ; L�1 and with supp 

P


ontained in the interior

of only one parametrization pat
h has two vanishing moments, i.e: it is orthogonal to

the set of all fun
tions that are 
onstant or linear with respe
t to the parametrization.

Orthogonality means here orthogonality with respe
t to the L

2

s
alar produ
t in the

parameter domain.

3.2 The Wavelet Basis of the Test spa
e

Let us retain the de�nition of neighbour points P

1

; P

2

2 4

�

l

of P 2 r

�

l

; l = 0; : : : ; L� 1

from the last subse
tion, and re
all that Æ

P

stands for the Dira
 delta fun
tional at point

P . With this notation, we introdu
e the fun
tionals

#

P

:=

(

Æ

P

if P 2 r

�

�1

Æ

P

�

1

2

fÆ

P

1

+ Æ

P

2

g if P 2 r

�

l

with l = l(P ) 2 f0; : : : ; L� 1g:

(3.4)
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Figure 6: Interpolation points for m

#

= 3.

Clearly, the support supp #

P

is 
ontained in �

m

if P belongs to �

m

. In parti
ular, supp #

P

is on the side of a parametrization pat
h if P is on this side. If P is a 
orner of a

parametrization pat
h, then supp#

P

= fPg. The set f#

P

: P 2 4

�

L

g is a hierar
hi
al

basis of the test spa
e Dir

�

L

(
f: the Se
ts.2.3 and 5.2 ). For any P 2 r

�

l

; l = 0; : : : ; L�1,

the fun
tional #

P

has two vanishing moments, i.e: it vanishes over the set of all fun
tions

that are 
onstant or linear with respe
t to the parametrization. To simplify the notation,

some times we shall write f(#

P

) for #

P

(f).

The basis f#

P

g will be suitable for the 
ompression applied to operators of order r = 0.

For r = �1 and for the quadrature estimates, a basis with more vanishing moments is

needed (
f: [12, 40℄). Thus we have to generalize the 
onstru
tion of the test fun
tional

basis to get a system f#

P

g with m

#

vanishing moments, where m

#

� 2 is an arbitrarily

pres
ribed positive integer. To this end we follow the ideas of Harten and Yad-Shalom

[21℄. We 
hoose the integer l

#

su
h that 2

l

#

�2

< m

#

� 1 � 2

l

#

�1

. Moreover, for ea
h

�

Q

= �

m

(T

�

) 2 ut

�

l

with the three 
orner points �

m

(�

1

), �

m

(�

1

), and �

m

(�

1

), we introdu
e

a system fP

Q;i

: i = 1; 2; : : : ; m

#

(m

#

+ 1)=2g of interpolation points on �

Q

su
h that the

�rst three points are the 
orner points, su
h that ea
h side of �

Q


ontains exa
tly m

#

of

the points, and su
h that all points are from the grid �

Q

\4

�

l+l

#

�1

. If m

#

= 2, then fP

Q;i

g

is exa
tly the set of 
orner points. For m

#

= 3, m

#

= 4, and m

#

= 5, we 
hoose the

points P

Q;i

= �

m

(�

i

) a

ording to the �gures 6, 7, and 8. By l

Q;i

; i = 1; : : : ; m

#

(m

#

+1)=2

we denote the interpolation basis (Lagrange basis) of the spa
e of polynomials with total

degree less than m

#

de�ned by

l

Q;i

(P

Q;j

) = Æ

i;j

; i; j = 1; 2; : : : ;

m

#

(m

#

+ 1)

2

:

14
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Figure 7: Interpolation points for m

#

= 4.

Finally, the generalized test fun
tional #

P

is given by

#

P

(f) :=

8

>

<

>

:

f(P ) if P 2 r

�

l

; l = 1; : : : ; l

#

� 2

f(P )�

P

m

#

(m

#

+1)=2

i=1

l

Q;i

(P ) f (P

Q;i

) if P 2 r

�

l+l

#

�1

l = 0; : : : ; L� l

#

;

P 2 �

Q

; Q 2 ut

�

l

:

(3.5)

Note that this de�nition is independent of the 
hoi
e of �

Q

if P is 
ontained in more than

one triangle �

Q

, i.e: for P 2 �

Q

\ �

Q

0

; Q;Q

0

2 ut

�

l

and P 2 r

�

l+l

#

�1

, we get

#

P

(f) := f(P )�

X

i=1;:::;m

#

(m

#

+1)=2

P

Q;i

2�

Q

\�

Q

0

l

Q;i

(P ) f (P

Q;j

) :

Clearly, if f is a polynomial of degree less than m

#

with respe
t to the parametrization

�

m

, then the interpolation polynomial R 7!

P

l

Q;i

(R)f(P

Q;i

) 
oin
ides with f , and we get

#

P

(f) = 0. In other words, #

P

has m

#

vanishing moments if l(P ) � l

#

� 1. If m

#

= 3 and

P 2 �

Q

= �

m

(T

�

) with T

�

as in �gure 9, then we get

#

�

m

(�

1

)

(f) = f

�

�

m

(�

1

)

�

�

3

4

f

�

�

m

(�

4

)

�

�

3

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

2

)

�

;

#

�

m

(�

2

)

(f) = f

�

�

m

(�

2

)

�

�

3

4

f

�

�

m

(�

4

)

�

�

3

8

f

�

�

m

(�

2

)

�

+

1

8

f

�

�

m

(�

1

)

�

;

#

�

m

(�

3

)

(f) = f

�

�

m

(�

3

)

�

�

3

4

f

�

�

m

(�

6

)

�

�

3

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

3

)

�

;

#

�

m

(�

8

)

(f) = f

�

�

m

(�

8

)

�

�

3

4

f

�

�

m

(�

6

)

�

�

3

8

f

�

�

m

(�

3

)

�

+

1

8

f

�

�

m

(�

1

)

�

;
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Figure 8: Interpolation points for m

#

= 5.

#

�

m

(�

6

)

(f) = f

�

�

m

(�

6

)

�

�

3

4

f

�

�

m

(�

5

)

�

�

3

8

f

�

�

m

(�

2

)

�

+

1

8

f

�

�

m

(�

3

)

�

;

#

�

m

(�

9

)

(f) = f

�

�

m

(�

9

)

�

�

3

4

f

�

�

m

(�

5

)

�

�

3

8

f

�

�

m

(�

3

)

�

+

1

8

f

�

�

m

(�

2

)

�

;

#

�

m

(�

4

)

(f) = f

�

�

m

(�

4

)

�

+

1

8

f

�

�

m

(�

2

)

�

+

1

8

f

�

�

m

(�

3

)

�

�

1

4

f

�

�

m

(�

5

)

�

�

1

2

f

�

�

m

(�

6

)

�

�

1

2

f

�

�

m

(�

4

)

�

;

#

�

m

(�

5

)

(f) = f

�

�

m

(�

5

)

�

+

1

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

3

)

�

�

1

4

f

�

�

m

(�

6

)

�

�

1

2

f

�

�

m

(�

5

)

�

�

1

2

f

�

�

m

(�

4

)

�

;

#

�

m

(�

7

)

(f) = f

�

�

m

(�

7

)

�

+

1

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

2

)

�

�

1

4

f

�

�

m

(�

4

)

�

�

1

2

f

�

�

m

(�

5

)

�

�

1

2

f

�

�

m

(�

6

)

�

:

3.3 Wavelet Transforms

For the trial spa
e Lin

�

L

we have two di�erent systems of basis fun
tions f'

L

P

g and

f 

P

g at our disposal. We denote the basis transform by T

A

(lower index A stands for

ansatz), i.e: the matrix T

A

maps the 
oeÆ
ient ve
tor �

L

:= (�

L

P

)

P24

�

L

of the represen-

tation u

L

=

P

P24

�

L

�

L

P

'

L

P

into the 
oeÆ
ient ve
tor � := (�

P

)

P24

�

L

of the representation

u

L

=

P

P24

�

L

�

P

 

P

. This transform 
an be determined by a pyramid type algorithmwhi
h
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Figure 9: Points for test fun
tional if m

#

= 3.

is 
alled fast wavelet transform (
f: e.g: [17℄). Similarly, the inverse transform T

�1

A


an be

realized by su
h a pyramid s
heme. Analogously to the trial spa
e, we have two di�erent

bases in the test spa
e. By T

T

(lower index T stands for test spa
e) we denote the linear

transform whi
h maps the ve
tor 
 = (


P

)

P24

�

L

:= (#

P

(f))

P24

�

L

of fun
tionals applied to a

fun
tion f into the ve
tor of fun
tion values � = (�

P

)

P24

�

L

:= (Æ

P

(f))

P24

�

L

= (f(P ))

P24

�

L

.

Again, the transform 
an be realized by a fast wavelet algorithm. The inverse T

�1

T

is sim-

ply a multipli
ation by a sparse matrix.

3.4 Wavelet Algorithm

Analogously to the sti�ness matrix A

L

in Se
t. 2.5 we 
an set up a matrix with respe
t to

the wavelet basis. We introdu
e A

w

L

by

A

w

L

:=

�

a

w

P

0

;P

�

P

0

;P24

�

L

; a

w

P

0

;P

:= #

P

0

(A 

P

): (3.6)

Note that A

L

= T

T

A

w

L

T

A

. It will turn out that most of the entries a

w

P

0

;P

are so small that

they 
an be negle
ted. Thus in the next subse
tion we will give an a priori matrix pattern

P � 4

�

L

� 4

�

L

with no more than O(2

2L

L) elements. We will repla
e A

w

L

by the sparse

matrix obtained by the 
ompression

A

w;


L

:=

�

a

w;


P

0

;P

�

P

0

;P24

�

L

; a

w;


P

0

;P

:= #

P

0

(a 

P

) +

(

#

P

0

(K 

P

) if (P

0

; P ) 2 P

0 else.

(3.7)

In the numeri
al 
omputation the entries have to be 
omputed by approximating the

parametrization and by quadrature. We denote the approximate value for a

w;


P

0

;P

by a

w;
;q

P

0

;P

17



and set

A

w;
;q

L

:=

�

a

w;
;q

P

0

;P

�

P

0

;P24

�

L

; A




L

:= T

T

A

w;


L

T

A

; A


;q

L

:= T

T

A

w;
;q

L

T

A

: (3.8)

With this notation we 
an des
ribe two variants of the wavelet algorithm whi
h di�er in

the iterative solution of the dis
retized linear systems. The �rst is designed for integral

operators of arbitrary order r and requires the appli
ation of one transform T

�1

A

and one

transform T

�1

T

during the whole algorithm.

First Wavelet Algorithm

i) 
ompute the right-hand side 
 := (#

P

(v))

P

= T

�1

T

(v(P ))

P

ii) 
ompute the sparsity pattern P

iii) assemble A

w;
;q

L

by a quadrature algorithm

iv) solve A

w;
;q

L

� = 
 iteratively; e.g. by the diagonally pre
onditioned

GMRes method

v) 
ompute � = T

�1

A

�

vi) post pro
essing of the values u(P ) � �

P

; e.g. 
omputation

of linear fun
tionals of the solution u

(3.9)

The se
ond is designed for operators of order r = 0. Though an appli
ation of the two

wavelet transforms T

A

and T

T

is required in ea
h iteration, the 
orresponding number of

all iterations is often mu
h smaller, and the se
ond algorithm is faster.

Se
ond Wavelet Algorithm

i) 
ompute the right-hand side � := (v(P ))

P

ii) 
ompute the sparsity pattern P

iii) assemble A

w;
;q

L

by a quadrature algorithm

iv) solve A

L

� = � iteratively; e.g. by the GMRes method;

whenever a multipli
ation by matrix A

L

is required, then

multiply by T

A

; by A

w;
;q

L

; and by T

T

v) post pro
essing of the values u(P ) � �

P

; e.g. 
omputation

of linear fun
tionals of the solution u

(3.10)

The GMRes algorithm is des
ribed in [39℄, and the diagonal pre
onditioner for the algo-

rithm (3.9) will be derived in Se
t. 5.3 (
f: (5.14)).

3.5 The Compression Algorithm

From now on we suppose that the numberm

#

of vanishing moments of the test fun
tionals

is equal to 4�r. We note, however, that for the 
ompression and for most of the quadrature

algorithm the 
hoi
e m

#

= 2 � r would be suÆ
ient. Only for the quadrature in Se
t:

4.3.3 the 
hoi
e m

#

= 4� r is 
ru
ial. In order to introdu
e the 
ompression pattern P,

we need some notation. Let us retain the de�nition of r

�

l

and 4

�

L

from Se
t. 2.3. For

18



P 2 4

�

L

, re
all that l(P ) is the level of P (
f: the end of Se
t. 2.3). By 	

P

we denote the

support of the fun
tion  

P

and by �

P

the 
onvex hull of the support of the test fun
tional

#

P

, i:e:, #

P

:= �

m

(
onv(�

�1

m

(supp #

P

))). Now we take a 
onstant d � 1 and de�ne the set

P as the set of all (P

0

; P ) 2 4

�

L

�4

�

L

su
h that 	

P

is 
ompletely 
ontained in the interior

of a single parameter pat
h �

m

and

dist (	

P

;�

P

0

) � max

n

2

�l(P )

; 2

�l(P

0

)

; d2

0:6L�0:7 l(P )�0:9 l(P

0

)

o

(3.11)

or su
h that 	

P


ontains points of at least two parameter pat
hes and

dist (	

P

;�

P

0

) � max

n

2

�l(P )

; 2

�l(P

0

)

; d2

L�0:7 l(P )�1:3 l(P

0

)

o

: (3.12)

In numeri
al 
omputations the 
ompression parameter d should be determined by exper-

iments. However, to get an asymptoti
ally optimal 
ompression result whi
h is asymp-

toti
ally optimal up to logarithmi
 fa
tors and whi
h is 
onvenient for the subsequent

quadrature s
heme, it is suÆ
ient to 
hoose d suÆ
iently large. The well-known proof

te
hniques of [12, 29, 40, 35℄ yield

Theorem 3.1 For the pattern P, the number of non-zero entries N

P

is less than CL2

2L

�

N logN , where N � 2

2L

is the number of degrees of freedom. If the pie
ewise linear


ollo
ation is stable, then the 
ollo
ation method with 
ompression is stable, too. The error

estimates (2.9) and (2.10) remain valid if u

L

=

P

�

P

 

P

is the solution of the 
ompressed

matrix equation A

w;


L

(�

P

)

P

= (#

P

(v))

P

.

Clearly the number of ne
essary arithmeti
 operations of all steps in the algorithms

(3.9) and (3.10) ex
ept the steps iii) and iv) is less than C N

P

. Step iv) requires

C N

P

logN operations. However, if we solve the systems su

essively over the grids

4

�

l

; l = 0; : : : ; L and if the initial solution for the grid 4

�

l+1

is the �nal solution from

the 
oarser grid 4

�

l

, then the number of ne
essary iterations is uniformly bounded. This


as
adi
 iteration method requires no more than C N

P

operations. The key point for a

fast algorithm, however, is the implementation of step iii). Usually, this is the most time


onsuming part of the numeri
al 
omputation. For its realization and 
omplexity, we refer

to the results in Se
t. 4 and the proofs in Se
t. 6. Further details for the implementation

of the wavelet algorithm 
an be found in [23, 34℄.

4 Approximation of the Parametrization Mappings

and Quadrature

4.1 Parametrization and Quadrature for the Far Field

Now we 
onsider the 
omputation of the matrix entries a

w;
;q

P

0

;P

(
f: Se
t. 3.4). Obviously,

the terms #

P

0

(a 

P

) (
f: (3.7)) 
an be 
omputed without diÆ
ulty, and the 
orresponding

number of arithmeti
 operations is less than O(N logN). Therefore, we only have to

deal with the 
omputation of #

P

0

(K 

P

) 
orresponding to the integral operator K. In
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this subse
tion we shall indi
ate the assembling of those entries for whi
h dist(	

P

;�

P

0

) is

larger or equal to maxf2

�l(P )

; 2

�l(P

0

)

g. These entries will be 
alled the far �eld entries.

For the quadrature over 	

P

, we shall apply a 
omposite quadrature rule with a �xed

basis rule of 
onvergen
e order three or four. Thus we have to start with the introdu
tion

of the partition for the 
omposite rule. Clearly, 	

P

is the union of a �nite number of

triangles �

Q

with l(Q) = l(P )+1 where the trial basis fun
tion  

P

is linear with respe
t to

the parametrization parameter. In general, however, this �rst partition is not suÆ
iently

�ne. Instead we split 	

P

into the union of all �

Q

with level l(Q) = l(P; P

0

) + l

0

, where

l(P; P

0

) :=

8

>

<

>

:

l(P ) + 1 if dist(	;�

P

0

)

1:1

� 2

0:9L�l(P )�l(P

0

)

l + 1 if dist(	;�

P

0

)

1:1

< 2

0:9L�l(P )�l(P

0

)

and if

2

0:9L�l�l(P

0

)

� dist(	;�

P

0

)

1:1

< 2

0:9L�(l�1)�l(P

0

)

:

(4.1)

and where l

0

is a �xed integer whi
h is supposed to be suÆ
iently large. This 
onstant

l

0

is introdu
ed to enfor
e stability. For pra
ti
al 
omputations, however, we expe
t that

the 
hoi
e l

0

= 0 is a

eptable. In a

ordan
e with (3.7) and (2.4), we shall introdu
e

quadrature approximations a

w;
;q

P

0

;P;Q

for

#

P

0

 

Z

�

Q

k(�; R; n

R

) 

P

(R) d

R

�

!

: (4.2)

Here the fun
tional #

P

0

is applied to the fun
tion in bra
kets depending on the variable

indi
ated by a dot. Using these a

w;
;q

P

0

;P;Q

, we de�ne the entries a

w;
;q

P

0

;P

by

a

w;
;q

P

0

;P

:= #

P

0

(a 

P

) +

(

0 if (P

0

; P ) 62 P

P

Q2ut

�

l(P )+1

: �

Q

�supp 

P

a

w;
;q

P

0

;P;Q

if (P

0

; P ) 2 P:

(4.3)

We shall defer the de�nition of the near �eld terms a

w;
;q

P

0

;P;Q

, i.e: the terms with the property

dist(	

P

;�

P

0

) < maxf2

�l(P )

; 2

�l(P

0

)

g to Se
ts.4.2 - 4.3. In this subse
tion we introdu
e the

far �eld terms a

w;
;q

P

0

;P;Q

.

Let us �x a far �eld subdomain �

Q

with Q = �

m

(�) 2 ut

�

l

and l = l(P; P

0

). Using the

parametrization �

m

over T

�

= �

�1

m

(�

Q

), we write the integral of (4.2) in the form

#

P

0

�

Z

T

�

k(�; �

m

(�); n

�

m

(�)

)

~

 

P

(�)J

m

(�) d�

�

; (4.4)

where J

m

(�) := j�

�

1

�

m

(�)��

�

2

�

m

(�)j is the Ja
obian determinant of the transformation

�

m

at � = (�

1

; �

2

) 2 T

�

and where

~

 

P

(�) stands for the fa
tor  

P

(R) =  

P

(�

m

(�))

whi
h is independent of the parametrization �

m

(
f: (3.2) and (2.7)). We derive the

approximation a

w;
;q

P

0

;P;Q

for (4.4) in two steps.

In the �rst step, we repla
e the parametrization �

m

over T

�

by a pie
ewise polynomial

interpolation �

0

m

. For a �xed � 2 T

�

, the polynomial interpolant is de�ned over the level L

triangle T

�

0

determined by �

0

2 ut

T

L

and � 2 T

�

0

� T

�

. The polynomial interpolation �

0

m

is


hosen to be of degree m

p

:= 3� r whi
h is greater than the optimal order of 
onvergen
e
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m := 2� r. In parti
ular, for m

p

= 3 a 
ubi
 interpolation with ten interpolation knots


an be 
hosen. For m

p

= 2, whi
h unfortunately is less than 3 � r and whi
h leads

to suboptimal rates of 
onvergen
e, a quadrati
 interpolation with six knots would be

possible. This quadrati
 interpolation is de�ned as in [2℄. Denoting by �

i

; i = 1; 2; 3 the

three 
orner points of the triangle T

�

0

� �

�1

m

(�

Q

), respe
tively, and by �

i

; i = 4; 5; 6 the

mid-points

�

4

=

1

2

(�

2

+ �

3

) ; �

5

=

1

2

(�

1

+ �

2

) ; �

6

=

1

2

(�

1

+ �

3

) ;

of the three sides of the triangle, we set

�

0

m

(�) =

6

X

i=1

�

m

(�

i

)L

i

(�); (4.5)

L

1

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= s[2s� 1℄;

L

2

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= t[2t� 1℄;

L

3

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= (1� s� t)[2(1� s� t)� 1℄;

L

4

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= 4t(1� s� t);

L

5

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= 4st;

L

6

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= 4s(1� s� t):

In any 
ase, we approximate (4.4) by

#

P

0

�

Z

T

�

k(�; �

0

m

(�); n

0

�

0

m

(�)

)

~

 

P

(�)J

0

m

(�) d�

�

; (4.6)

where J

0

m

(�) := j�

�

1

�

0

m

(�)��

�

2

�

0

m

(�)j is the Ja
obian determinant of the transformation

�

0

m

at � = (�

1

; �

2

) 2 T

�

. The symbol n

0

�

0

m

(�)

in the last formula stands for the unit ve
tor

at the point �

0

m

(�) whi
h is normal to the approximating surfa
e �

0

m

(T

�

).

In the se
ond step, we split the integrand of (4.6) into the produ
t f(�)~%(�)

f(�) := k(�; �

0

m

(�); n

�

0

m

(�)

)J

0

m

(�);

~%(�) := %

�

�

0

m

(�)

�

=

~

 

P

(�):

Note that ~% is linear with respe
t to �. We apply a produ
t quadrature with weight ~% and

of order q := 3 � r to the integral in (4.6). In general, for all following approximations,

we always assume that the order of 
onvergen
e of the quadrature rule q 
oin
ides with

the degree m

p

of the approximate pie
ewise polynomial parametrization. If q = 3, then

we 
hoose the six point rule based upon quadrati
 interpolation whi
h has been used for
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(4.5). In 
ase q = 2, whi
h unfortunately is less than 3� r and leads to suboptimal rates

of 
onvergen
e, we take the three point rule. The produ
t quadrature rule takes the form

Z

T

�

f(�)~%(�) d� �

3

X

�=1

f(�

�

)b

w;
;q

P;Q;�

; b

w;
;q

P;Q;�

:=

Z

T

�

~

�

Q;�

(�)

~

 

P

(�) d�; (4.7)

where

~

�

Q;�

is the linear fun
tion on T

�

de�ned by

~

�

Q;�

(�

�

0

) = Æ

�;�

0

. Similar rules in
luding

more knots �

�

and higher order Lagrange interpolation polynomials

~

�

Q;�


an be de�ned

for arbitrary q. An easier but equivalent 
hoi
e for q = 2 only is to repla
e the three


orner points �

�

by the three mid-points of the sides of triangle T

�

. If the quadrature

weights are one third of the measure of T

�

, then the resulting quadrature is known to be

exa
t for quadrati
 fun
tions and we get

Z

T

�

f(�)~%(�) d� �

3

X

�=1

f(�

�

)b

w;
;q

P;Q;�

; b

w;
;q

P;Q;�

:=

1

3

jT

�

j

~

 

P

(�

�

): (4.8)

In any 
ase, the integral (4.6) is approximated by

a

w;
;q

P

0

;P;Q

:= #

P

0

 

X

�

k(�; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;
;q

P;Q;�

!

; (4.9)

where Q

0

�

:= �

0

m

(�

�

) denote the 
orner points and, possibly, some additional quadrature

knots of the triangles �

0

m

(T

�

), respe
tively. The symbol n

0

Q

0

�

in the last formula stands for

the unit ve
tor at the point Q

0

�

= �

0

m

(�

�

) whi
h is normal to the approximating surfa
e

�

0

m

(T

�

).

In Se
t. 6.1 we shall prove that the additional error due to the far �eld quadrature is,

roughly speaking, less than the error of the exa
t 
ollo
ation. Analogous error estimates

are true also for the approximation of the near �eld and the singular integrals in the Se
ts.

4.2 - 4.3. More pre
isely, we get

Theorem 4.1 Consider the wavelet 
ollo
ation and the matrix 
ompressed a

ording to

the pattern P of Theorem 3.1 and suppose the integer 
onstant l

0

is suÆ
iently large. If

the exa
t 
ollo
ation des
ribed in Se
t. 2.5 is stable, then the 
ompressed 
ollo
ation with

approximation of the boundary and with the quadrature of Se
ts. 4.1 - 4.3 is stable, too.

The error for the 
ollo
ation solution u

L

, in
luding 
ompression, approximation of the

parameter mappings, and quadrature, satis�es (2.9) and (2.10), respe
tively. The number

of quadrature knots and the number of ne
essary arithmeti
 operations for the 
omputation

of the sti�ness matrix A

w;
;q

L

is less than C N [logN ℄

3

if r = 0 and less than C N [logN ℄

2

if r = �1.

Proof. Due to Se
t: 5.3, the stability and the error estimates will be a 
onsequen
e of

the Lemmata 6.1, 6.3, and 6.5. The 
omplexity bound will be shown in the Lemmata 6.2,

6.4, and 6.6.
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4.2 Parametrization and Quadrature for the First Part of the

Near Field

4.2.0. Let us �x #

P

0

and  

P

with 0 < dist(	

P

;�

P

0

) < maxf2

�l(P )

; 2

�l(P

0

)

g, and let us


onsider the integral (4.2) for whi
h we seek the partition of supp 

P

into triangles �

Q

and

the 
orresponding quadratures a

w;
;q

P

0

;P;Q

. The near �eld part with dist(	

P

;�

P

0

) = 0 will

be treated in Se
t. 4.3. In parti
ular, the 
omputation of the singular integrals will be

dis
ussed in Se
t. 4.3. For the �rst part of the near �eld, we shall distinguish two 
ases

in this subse
tion.

4.2.1. We start with the 
ase determined by l(P ) � l(P

0

) and 0 < dist(	

P

;�

P

0

).

In view of the near �eld 
ondition, we have 0 < dist(	

P

;�

P

0

) � 2

�l(P

0

)

. Moreover,

there is a 
onstant 


�

> 0 su
h that 


�

2

�l(P )

< dist(	

P

;�

P

0

) � 2

�l(P

0

)

. Indeed, suppose




0

�

is the re
ipro
al Lips
hitz 
onstant of the inverse parametrization mappings, i.e: for

m = 1; : : : ; m

�

and for any pair of points �

1

; �

2

2 T , there holds




0

�

j�

1

� �

2

j � j�

m

(�

1

)� �

m

(�

2

)j :

Set 


�

:= 


0

�

=2. Then the distan
e of a point �

1

of the level l grid to a triangle T

�

2

of

the level l triangulation not 
ontaining �

1

is at least 0:5 2

�l

. Hen
e, the distan
e of a

point P

1

:= �

m

(�

1

) of the level l grid over � to a triangle �

Q

:= �

m

(T

�

2

) of the level

l triangulation not 
ontaining �

1

is at least 


�

2

�l

. Sin
e the points of #

P

0

are on the

grid of level l(P

0

) + 1 and 	

P


onsists of triangles of level l(P ) + 1, the lower estimate




�

2

�l(P )

< dist(	

P

;�

P

0

) follows.

We introdu
e the integer l(P; P

0

) just as in (4.1) but with dist(	

P

;�

P

0

) repla
ed by

dist(	

P

; supp #

P

0

), i.e: this time the distan
e is measured to the single points in supp #

P

0

and not to their 
onvex hull �

P

0

. The partition of 	

P

= supp 

P

is obtained like in the far

�eld 
ase in Se
t: 4.1 as the union of all �

Q

of level l(P; P

0

)+ l

0


ontained in 	

P

. Retaining

the de�nition q = m

p

:= 3 � r and using the de�nition (4.3), we get the 
orresponding

quadrature approximation.

4.2.2. Next we 
onsider the 
ase determined by l(P ) < l(P

0

) and 0 < dist(	

P

;�

P

0

).

In view of the near �eld 
ondition and the fa
t that  

P

resp. #

P

0

are de�ned on the grids

of level l(P ) resp. l(P

0

), we have 


�

2

�l(P

0

)

< dist(	

P

;�

P

0

) � 2

�l(P )

. Pro
eeding similarly

to Se
t: 4.1, we set Dist := dist(	

P

;�

P

0

) and introdu
e l(P; P

0

) by

l(P; P

0

) :=

8

>

>

>

>

<

>

>

>

>

:

l(P ) + 1 if Dist

0:55

� 2

0:95L�1:1 l(P

0

)�0:4 l(P )

l + 1 if Dist

0:55

< 2

0:95L�1:1 l(P

0

)�0:4 l(P )

and if

2

0:95L�1:1 l(P

0

)�l+0:6 l(P )

� Dist

0:55

;

Dist

0:55

< 2

0:95L�1:1 l(P

0

)�(l�1)+0:6 l(P )

:

(4.10)

The partition of 	

P

= supp 

P

is obtained in three steps.

i) We split 	

P

into the triangles of level l(P ) + 1.

ii) We introdu
e the dyadi
 partition of ea
h of these triangles into a minimal number

of triangles from f�

Q

0

; Q

0

2 4

�

L

g su
h that the distan
e of these triangles to �

P

0

is

greater or equal to 2

�l(Q

0

)�1

. This is obtained as follows. We start with the level
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l(P ) + 1 triangles of step i) and let the level l run from l = l(P ) + 1 to L. For

ea
h level l, we have a 
ertain number of level l triangles. We 
he
k if the distan
e

of these triangles to �

P

0

is greater or equal to 2

�l�1

. If yes, then we keep these

triangles. If not, then we split these triangles into the four subtriangles of level l+1

and repla
e the level l triangles by the new level l+1 triangles. The pro
edure ends,

if no triangle of level l+1 is produ
ed. Obviously, the number of all these triangles

�

Q

0

is less than a 
onstant times L.

iii) Now we split ea
h of the triangles �

Q

0

from the previous step ii) uniformly into

higher level triangles. Note that in Se
t: 4.1 ea
h l(P ) + 1 level triangle of 	

P

is split into the l(P; P

0

) + l

0

level subtriangles, i.e: the partition is re�ned over

[l(P; P

0

)+ l

0

� (l(P )+1)℄ levels. Analogously, we re�ne the partition of step ii) over

[l(P; P

0

) + l

0

� (l(P )+ 1)℄ levels. In other words, ea
h triangle �

Q

0

of ii) is split into

the triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

;

~

l := l(Q

0

)+ [l(P; P

0

)+ l

0

� (l(P )+ 1)℄.

We denote the resulting partition of 	

P

by f�

Q

: Q 2 ut

�

P

0

;P

g. Using this partition and

pro
eeding analogously to Se
tion 4.1, we arrive at the quadrature approximation de�ned

by

a

w;
;q

P

0

;P

:= #

P

0

(a 

P

) +

X

Q2ut

�

P

0

;P

a

w;
;q

P

0

;P;Q

; (4.11)

where the terms a

w;
;q

P

0

;P;Q

are given by (4.9), where the produ
t rule (4.7) is repla
ed by the

analogous produ
t rule of order q := 4, and where a pie
ewise polynomial interpolation

�

0

m

of degree m

p

:= q is employed.

4.3 Parametrization and Quadrature for the Se
ond Part of the

Near Field

4.3.1.0. Throughout the present se
tion we suppose dist(	

P

;�

P

0

) = 0. First we 
onsider

the 
ase l(P ) � l(P

0

). By de�nition, the fun
tional #

P

0

is a linear 
ombination of point

evaluation fun
tionals

#

P

0

(f) :=

�

P

0

X

�=1




�

f(P

�

)

and 	 := supp is the union of level l(P ) + 1 triangles �

Q

�

for � = 1; : : : ; �

P

. A

ording

to this splitting, we get

a

w;
;q

P

0

;P

:= #

P

0

(a 

P

) +

�

P

0

X

�=1




�

�

P

X

�=1

a

w;
;q

P

0

;�;P;�

(4.12)

a

w;
;q

P

0

;�;P;�

�

Z

�

Q

�

k(P

�

; R; n

R

) 

P

(R) d

R

�:

In the following we 
ompute a

w;
;q

P

0

;�;P;�

analogously to a

w;
;q

P

0

;P

in Se
t: 4.2.1.
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4.3.1.1. If dist(�

Q

�

; P

�

) > 0, then dist(�

Q

�

; P

�

) > 


�

2

�l(P )

. We introdu
e l(P; P

0

) =

l(P; �; P

0

; �) just as in (4.1) but with dist(	;�

P

0

) repla
ed by dist(�

Q

�

; P

�

). The partition

f�

Q

: Q 2 ut

�

Q

�

;P

�

g of �

Q

�

for the quadrature is obtained like that of 	

P

in the far �eld


ase in Se
t: 4.1 as the union of all �

Q

of level l(Q) 
ontained in �

Q

�

with

l(Q) := l(P; P

0

) + l

0

+

(

0 if r = �1

h

1

3�r

2

logL

i

if r = 0:

(4.13)

Using the de�nition (4.12) and

a

w;
;q

P

0

;�;P;�

:=

X

Q2ut

�

Q

�

;P

�

X

�

k(P

�

; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;
;q

P;Q;�

(4.14)

with the quadrature weights b

w;
;q

P;Q;�

of a quadrature rule of order q := 3� r (
f: (4.7) and

(4.8)) with an approximate pie
ewise polynomial interpolation �

0

m

of degree m

p

:= q, we

get the 
orresponding quadrature approximation.

4.3.1.2.1. If dist(�

Q

�

; P

�

) = 0, we introdu
e l(P; P

0

) just as in (4.1) but with

dist(	;�

P

0

) repla
ed by 2

�l(P )

. Additionally we assume that P

�

is 
ontained in the in-

terior of exa
tly one parametrization pat
h �

m

or that r = �1. The partition of �

Q

�

is

obtained in two steps (
ompare the three steps in Se
t: 4.2.2).

i) We subtra
t the triangles �

Q

�

of level mL, de�ned by P

�

2 �

Q

�

� �

Q

�

, from �

Q

�

.

Then we introdu
e the dyadi
 partition of �

Q

�

n [�

Q

�

into a minimal number of

triangles �

Q

0

with levels l(Q

0

) between l(Q

�

) + 1 and mL su
h that the distan
e of

these triangles to P

0

is greater or equal to 2

�l(Q

0

)�1

. Obviously, the number of all

these triangles is less than a 
onstant times L.

ii) Now we split ea
h of the triangles �

Q

0

from the previous step i) uniformly into higher

level triangles. Ea
h triangle �

Q

0

of i) is split into the triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

su
h that

~

l := l(Q

0

) + [l(P; P

0

) + l

0

� (l(P ) + 1)℄ +

(

0 if r = �1

h

1

3�r

2

logL

i

if r = 0:

(4.15)

We denote the resulting partition of �

Q

�

by f�

Q

: Q 2 ut

�

P

0

;�;P;�

g. Using this partition

and the formulae (4.12) and (4.14) with quadrature order q = 3� r and with a pie
ewise

polynomial interpolation �

0

m

of degreem

p

:= q, we obtain the quadrature approximation.

4.3.1.2.2. If r = 0 and if P

�

is at the boundary of a parametrization pat
h and

thus 
ontained in at least two parametrization pat
hes �

m

, then we have to modify the

triangles �

Q

�

in the partition. This is ne
essary to get the right value of the integral

in a

ordan
e with Cau
hy's �nite part de�nition (
f: [26℄). More pre
isely, suppose

P

�

= �

m

i

(�

i

); i = 0; : : : ; i

�

and denote the level mL triangles of the parametrization

pat
h �

m

0


ontaining P

�

by �

j

0

:= �

m

0

(T

j

0

), j = 0; : : : ; j

�

. The subtriangles in �

Q

�

whi
h

we negle
t are now the triangles

�

j

i

:= �

m

i

(T

j

i

); T

j

i

:=

n

r

h

[�

m

i

℄

�1

Æ �

m

0

i

(�

0

)

�

T

j

0

�o

\ T;
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where r[[�

m

i

℄

�1

Æ �

m

0

℄(�

0

) stands for the Fr�e
het derivative of the mapping [�

m

i

℄

�1

Æ �

m

0

taken at the point �

0

. To get the right quadrature formula we have to repla
e step i) by

the following i').

i') We introdu
e the dyadi
 partition of �

Q

�

n [�

j

i

into a minimal number of triangles

�

Q

0

with levels l(Q

0

) between l(Q

�

) + 1 and mL su
h that the distan
e of these

triangles to P

0

is greater or equal to 2

�l(Q

0

)�1

. This is obtained as follows. We start

with the level l(P ) + 1 triangles �

Q

�

and let the level l run from l = l(P ) + 1 to

L. For ea
h level l, we have a 
ertain number of level l triangles. We 
he
k if the

distan
e of these triangles to P

0

is greater or equal to 2

�l�1

. If yes, then we keep

these triangles. If not, then we split these triangles into the four subtriangles of level

l+1 and repla
e the level l triangles by the new level l+1 triangles. The pro
edure

ends, if no new triangle is produ
ed. To get a full partition of �

Q

�

n[�

j

i

, we repla
e

the level mL triangles interse
ting [�

j

i

by a few number of triangles 
ontained in

�

Q

�

n[�

j

i

. Obviously, the number of all these triangles is less than a 
onstant times

L.

4.3.2.0. Next we 
onsider the 
ase dist(	

P

;�

P

0

) = 0 and l(P ) < l(P

0

). Again we split

	

P

into the union of the �

Q

�

. A

ording to this splitting, we get

a

w;
;q

P

0

;P

:= #

P

0

(a 

P

) +

�

P

X

�=1

a

w;
;q

P

0

;P;�

(4.16)

a

w;
;q

P

0

;P;�

� #

P

0

 

Z

�

Q

�

k(�; R; n

R

) 

P

(R) d

R

�

!

:

Further, we denote the boundary of �

Q

�


onsidered as a topologi
al subset of � by ��

Q

�

.

4.3.2.1. If dist(��

Q

�

;�

P

0

) > 0, then we even get dist(��

Q

�

;�

P

0

) > 


�

2

�l(P

0

)

. Setting

Dist := dist(��

Q

�

;�

P

0

) and �

e

m

:= �

m

(T

e

) (
f: Se
t: 2.1) and supposing �

Q

�

� �

m

, we get

a

w;
;q

P

0

;P;�

� #

P

0

 

Z

�

Q

�

k(�; R; n

R

) 

P

(R) d

R

�

!

= #

P

0

 

Z

�

e

m

k(�; R; n

R

) 

P

(R) d

R

�

!

�#

P

0

 

Z

�

e

m

n�

Q

�

k(�; R; n

R

) 

P

(R) d

R

�

!

� a

w;
;q

P

0

;�

e

m

� a

w;
;q

P

0

;�

e

m

n�

Q

�

:

We shall de�ne the approximation a

w;
;q

P

0

;�

e

m

for the integral over �

e

m

in Se
t: 4.3.3. The

approximation a

w;
;q

P

0

;�

e

m

n�

Q

�

for the integral over �

e

m

n �

Q

�


an be 
omputed analogously to

the approximation a

w;
;q

P

0

;P

in Se
t: 4.2.2. More pre
isely, we set Dist := dist(�

P

0

; ��

Q

�

) and

de�ne l(P; P

0

) := l(P; �; P

0

) by (4.10). The partition f�

Q

: Q 2 ut

�

P

0

;P;�

g of �

e

m

n �

Q

�

is

obtained in the two following steps.

i) We introdu
e the dyadi
 partition of �

e

m

n �

Q

�

into a minimal number of triangles

from f�

Q

0

; Q

0

2 r

�

l

; l = l(P )+1; : : : ;mLg su
h that the distan
e of these triangles

to �

P

0

is greater or equal to 2

�l(Q

0

)�1

. Obviously, the number of all these triangles

is less than a 
onstant times L.
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ii) Now we split ea
h of the triangles from the previous step i) uniformly into the

triangles of level

~

l = l(Q

0

) + [l(P; �; P

0

) + l

0

� (l(P ) + 1)℄.

Using this partition, applying the produ
t rule of order q = 4 (
ompare (4.7)) and em-

ploying a pie
ewise polynomial interpolation �

0

m

of degree m

p

:= q, we arrive at

a

w;
;q

P

0

;�

e

m

n�

Q

�

:= #

P

0

0

B

�

X

Q2ut

�

P

0

;P;�

X

�

k(�; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;
;q

P;Q;�

1

C

A

: (4.17)

4.3.2.2. If dist(��

Q

�

;�

P

0

) = 0, then we have to split �

P

0

as we did in Se
t: 4.3.1.

Instead of the a

w;
;q

P

0

;P;�

from Se
t: 4.3.2.1 we have to determine the a

w;
;q

P

0

;�;P;�

. However, these

a

w;
;q

P

0

;�;P;�


an be 
omputed similarly to the 
ase dist(�

Q

�

; P

�

) = 0 in Se
t: 4.3.1. More

pre
isely, we introdu
e l(P; P

0

) just as in (4.10) but with Dist repla
ed by 2

�l(P

0

)

. The

partition f�

Q

: Q 2 ut

�

P

0

;�;P;�

g of �

Q

�

is obtained in the following three steps.

i') We pro
eed from level l = l(P ) + 1 to level l = l(P

0

) and 
onstru
t partitions of

�

Q

�

. For l = l(P ) + 1, we simply take �

Q

�

. If level l is �nished and level l + 1 is


onsidered, then we 
he
k whether the �

Q

0

of the level l partition have a distan
e

dist(�

Q

0

;�

P

0

) greater than 2

�l(Q

0

)�1

. If yes, then we keep these triangles. If not,

then we repla
e the �

Q

0

by the four level l + 1 subtriangles 
ontained in �

Q

0

.

ii') We pro
eed from level l = l(P

0

) + 1 to at most l = mL and 
onstru
t further

partitions of �

Q

�

. The starting partition is taken from the last step. If level l is

�nished and level l + 1 is 
onsidered, then we 
he
k whether the �

Q

0

of the level l

partition have a distan
e dist(�

Q

0

; P

�

) greater than 2

�l(Q

0

)�1

. If yes, then we keep

these triangles in our partition. If not, then we repla
e �

Q

0

by the four level l + 1

subtriangles 
ontained in �

Q

0

. If there are level mL triangles in the last partition


ontaining the point P

�

, then, for r = �1, we throw these triangles away and, for

the 
onstru
tion of a full partition of �

Q

�

n [�

j

i

in the 
ase r = 0, we repla
e the

levelmL triangles with distan
e to P

0

less than 2

�mL�1

by a few number of triangles


ontained in �

Q

�

n [�

j

i

.

iii') Now we split ea
h of the triangles �

Q

0

from the previous step ii) uniformly into the

triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

su
h that

~

l is de�ned by (4.15) but with

1

3�r

repla
ed by

1

4

.

Using this partition and the formulae (4.12) and (4.14) based on the quadrature weights

b

w;
;q

P;Q;�

of the produ
t rule of order q = 4 and on a pie
ewise polynomial interpolation �

0

m

of degree m

p

:= q, we get the 
orresponding quadrature approximation.

4.3.3.0. We �x the index m and the point P

�

in the support �

P

0

of the test fun
tional

#

P

0

with �

P

0

� �

m

. We have P

�

:= �

m

(�

�

) and 
onsider a linear fun
tion p(�

m

(�)) = ~p(�)

de�ned on �

e

m

whi
h is either 
onstant or equal to one of the two 
omponents of the ve
tor

fun
tion �

m

(�) 7! � � �

�

. To get the approximations

a

w;
;q

P

0

;�;�

e

m

;p

�

Z

�

e

m

k(P

�

; R; n

R

)p(R) d

R

�

a

w;
;q

P

0

;�

e

m

;p

:=

X

�




�

a

w;
;q

P

0

;�;�

e

m

;p

� #

P

0

 

Z

�

e

m

k(�; R; n

R

)p(R) d

R

�

!

(4.18)
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and, as a linear 
ombination of these, the values a

w;
;q

P

0

;�

e

m

, we distinguish two 
ases.

4.3.3.1. If l(P

0

) �

m

m

#

L =

2�r

4�r

L, then we 
an 
hoose a

w;
;q

P

0

;�

e

m

;p

:= 0. Indeed, the

de�nition (4.18) of a

w;
;q

P

0

;�

e

m

;p

involves the fun
tional #

P

0

withm

#

= 4�r vanishing moments.

In view of this fa
t a

w;
;q

P

0

;�;�

e

m

;p


an be negle
ted for higher levels l(P

0

) (
f: the \se
ond"


ompression in [40℄).

4.3.3.2. If l(P

0

) <

m

m

#

L, then we 
ompute a

w;
;q

P

0

;�;�

e

m

;p

by the 
omposite produ
t quadra-

tures whi
h we have applied before. The partition f�

Q

: Q 2 ut

�

P

0

;�;�

e

m

;p

g of �

e

m

is obtained

in the following three steps.

i) We pro
eed from level l = �3 to level l = l(P

0

) and 
onstru
t partitions of �

e

m

. For

l = �3, we simply take �

e

m

. If level l is �nished and level l+1 is 
onsidered, then we


he
k whether the �

Q

0

of the level l partition have a distan
e dist(�

Q

0

;�

P

0

) greater

than 2

�l(Q

0

)�1

. If yes, then we keep these triangles in our partition. If not, then we

repla
e �

Q

0

by the four level l + 1 subtriangles 
ontained in �

Q

0

.

ii) We pro
eed from level l = l(P

0

) + 1 to at most l = mL and 
onstru
t further

partitions of �

e

m

. The starting partition is taken from the last step. If level l is

�nished and level l + 1 is 
onsidered, then we 
he
k whether the �

Q

0

of the level l

partition have a distan
e dist(�

Q

0

; P

�

) greater than 2

�l(Q

0

)�1

. If yes, then we keep

these triangles in our partition. If not, then we repla
e �

Q

0

by the four level l + 1

subtriangles 
ontained in �

Q

0

. If there are level mL triangles in the last partition


ontaining the point P

�

, then we throw these triangles away.

iii) Now we split ea
h of the triangles �

Q

0

from the previous step ii) uniformly into the

triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

, where

~

l := l(Q

0

) + �L� �

0

l(P

0

) +

(

0 if r = �1

h

1

4�2r

2

logL

i

if r = 0:

(4.19)

and where � := 3=m

#

and �

0

:= 1=m.

Using this partition, applying the produ
t quadrature of order q = 2m (
ompare (4.7)),

and employing a pie
ewise polynomial interpolation �

0

m

of degree m

p

:= q, we obtain

a

w;
;q

P

0

;�;�

e

m

;p

:=

X

Q2ut

�

P

0

;�;�

e

m

X

�

k(P

�

; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;
;q

p;Q;�

; b

w;
;q

p;Q;�

:=

Z

T

�

~

�

Q;�

(�)~p(�) d�:

5 Preliminary Results from the Analysis of the Com-

pression

5.1 The Properties of the Three-Point Hierar
hi
al Basis

Retain the notation of the basis from 3.1. From now on C stands for a generi
 
onstant

the value of whi
h varies from instan
e to instan
e. For two expressions E

1

and E

2

, we

write E

1

� E

2

if there is a 
onstant independent of the parameters involved in E

1

and E

2

su
h that E

1

=C � E

2

� C E

1

. We infer the following two lemmata from [38℄.
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Lemma 5.1 i) For �0:5 < s < 1:5, the basis f 

P

: P 2 [

1

L=0

4

�

L

g is a Riesz basis,

i.e., for any L and for any ve
tor of real numbers (�

P

)

P

, we get






















X

P24

�

L

�

P

 

P






















H

s

(�)

�

v

u

u

t

X

P24

�

L

2

2l(P )(s�1)

j�

P

j

2

: (5.1)

ii) For the Sobolev spa
e orders s � t � 2; s < 1:5, the fun
tions from Lin

�

L

ful�ll the

approximation property (Ja
kson type theorem)

inf

u

L

2Lin

�

L

ku� u

L

k

H

s

(�)

� C2

�L(t�s)

kuk

H

t

(�)

: (5.2)

iii) For the interpolation proje
tion R

L

de�ned in Se
t. 2.5, for u 2 H

t

(�), and for the

Sobolev spa
e orders 0 � s � t � 2; s < 1:5; t > 1, we get

ku� R

L

uk

H

s

(�)

� C2

�L(t�s)

kuk

�

m

�

m=1

H

t

(�

m

)

: (5.3)

iv) For the L

2

(�) orthogonal proje
tion P

L

and for the Sobolev spa
e orders �2 � s �

t � 2; s < 1:5; t > �1:5, we get

ku� P

L

uk

H

s

(�)

� C2

�L(t�s)

kuk

H

t

(�)

: (5.4)

v) For the Sobolev spa
e orders s � t < 1:5, the fun
tions u

L

from Lin

�

L

ful�ll the

inverse property (Bernstein inequality)

ku

L

k

H

t

(�)

� C2

L(t�s)

ku

L

k

H

s

(�)

: (5.5)

Lemma 5.2 Suppose the 
ontinuous fun
tion u belongs to �

m

�

m=1

H

s

(�

m

) for an s with

�0:5 < s � 2 and suppose

P

P24

�

L

�

P

 

P

is the representation of the orthogonal proje
tion

P

L

u. Then

v

u

u

t

X

P2r

�

l

2

2l(s�1)

j�

P

j

2

� C kuk

�

m

�

m=1

H

s

(�

m

)

; (5.6)

v

u

u

t

X

P24

�

L

2

2l(P )(s�1)

j�

P

j

2

� C kuk

�

m

�

m=1

H

s

(�

m

)

�

(

1 if � 0:5 < s < 1:5

p

L if 1:5 � s � 2:

(5.7)

5.2 The Properties of the Wavelet Basis in the Test Spa
e

The properties of the basis of test wavelets introdu
ed in Se
t. 3.2 
an be des
ribed using

the predual basis. If the number of vanishing momentsm

#

is equal to two, then we simply

de�ne the 
lassi
al hierar
hi
al basis by �

P

:= '

l+1

P

for P 2 r

�

l

and observe

h#

P

; �

P

0

i := #

P

(�

P

0

) = Æ

P;P

0

(5.8)
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as well as spanf�

P

: P 2 4

�

L

g = Lin

�

L

. The interpolation proje
tion 
an be represented

as

R

L

u =

X

P24

�

L

u(P )'

L

P

=

X

P24

�

L

h#

P

; ui�

P

: (5.9)

If m

#

� 2, then we introdu
e the spa
e X

�

L

of pie
ewise polynomials as the set of all f 2

C(�) su
h that f j

�

Q

Æ�

m

is a polynomial of degree less than m

#

for any triangle �

Q

� �

m

of level L, i.e: for any �

Q

with Q 2 ut

�

l

\ �

m

. Retaining the de�nition of l

#

from Se
t:

3.2, we 
an de�ne the spa
es X

�

l

of pie
ewise polynomials of level l � l

#

� 1 in the same

manner. We get the hierar
hy X

�

l

#

�1

� X

�

l

#

� : : : � X

�

L

and we 
an de�ne the hierar
hi
al

basis f�

P

g as follows. If P 2 r

�

l

; l � l

#

�1 and R;P 2 �

Q

with Q 2 ut

�

l+1

and P = �

m

(�

i

)

(
f: Se
t: 3.2), then we set �

P

(R) := l

Q;i

(R). For P 2 r

�

l

; l < l

#

� 1, we set �

P

:= '

l

#

�1

P

.

With the so de�ned basis, we 
on
lude (5.8) as well as spanf�

P

: P 2 4

�

L

g = X

�

L

. Again,

the interpolation proje
tion R

L


an be represented by (5.9). If m

#

= 2, then X

�

L

= Lin

�

L

and the fun
tions �

P


oin
ide with '

l(P )+1

P

. The following properties are straightforward

generalizations of well-known results for the 
lassi
al hierar
hi
al basis.

Lemma 5.3 i) For 1 < s < 1:5, the basis f�

P

: P 2 [

1

L=0

4

�

L

g is a Riesz basis, i.e.,

for any L and for any ve
tor of real numbers (�

P

)

P

, we get
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P24
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�
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s

(�)

�

v
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u
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X

P24

�
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2

2l(P )(s�1)

j�

P

j

2

: (5.10)

ii) The approximation and inverse properties for the spa
e predual to the test fun
tionals

are the same as those formulated in Lemma 5.1 ii)-v). The upper bound 2 and the

lower bound �2, however, 
an be repla
ed by m

#

and �m

#

, respe
tively.

iii) The �nite element basis '

L

P

; P 2 4

�

L

satis�es the dis
rete norm equivalen
e
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u
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~
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2

:

In parti
ular, we get






















X

P24

�

L

�
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�
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L

2

(�)

�

1

2

L

v

u

u

t

X

~

P24

�

L

j

X

P24

�

L

�

P

�

P

(

~

P )j

2

: (5.11)

5.3 General Error Estimates for the Numeri
al Solution and

Pre
onditioning

In this subse
tion we re
all well-known error estimates for stable numeri
al methods. We

formulate results on the stability and derive ne
essary 
onditions whi
h ensure that the

30



numeri
al methods, perturbed by 
ompression and by boundary and quadrature approx-

imation, admit the same asymptoti
 orders of 
onvergen
e as the unperturbed methods.

Moreover, we give ne
essary 
onditions whi
h ensure the existen
e of diagonal pre
ondi-

tioners for the matrix A

w;
;q

of the 
ompressed and approximated 
ollo
ation method.

The 
ollo
ation method for the equation Au = v de�nes an approximate solution

u

L

2 Lin

�

L

by R

L

Au

L

= R

L

v (
f: Se
t. 2.5). This method is 
alled stable in the spa
e

H

s

(�) if the approximate operators R

L

A : Lin

�

L

�! Lin

�

L

are invertible for suÆ
iently

large L and if their inverses are bounded, i:e:,













�

R

L

Aj

Lin

�

L

�

�1

w

L













H

s+r

(�)

� C kw

L

k

H

s

(�)

; w

L

2 Lin

�

L

:

We suppose that the 
ollo
ation method is stable for s = 0. Additionally, if r = �1 or if

the algorithm (3.9) is applied to an operator A of order r = 0, then we suppose stability

also for s = 1:1 (or for an arbitrary s with 1 < s < 1:5 instead of 1:1). Note that stability

is well known for se
ond kind integral operators in
luding 
ompa
t integral operators.

In parti
ular this is true for double layer operators over smooth boundaries (
f: e.g: [2℄).

For �rst kind operators and operators involving strongly singular integral operators, the

question of stability is not solved yet. A �rst step toward the solution is done in [31,

32, 8, 11℄. Note that, sin
e our trial spa
e Lin

�

L

is generated by two s
aling fun
tions,

the stability is needed for a multiwavelet spa
e (
f: the univariate multiwavelet paper

[33℄). Though a rigorous proof of stability is missing engineers frequently use 
ollo
ation

methods without observing instabilities.

To simplify the notation, let us denote the operator R

L

Aj

Lin

�

L

by A

L

, i.e., by the

same symbol as for its matrix with respe
t to the basis f'

L

P

: P 2 4

�

L

g (
f: Se
t. 2.5).

Similarly, we denote by A




L

and A


;q

L

the operators in Lin

�

L

the matrix of whi
h with respe
t

to f'

L

P

: P 2 4

�

L

g is A




L

and A


;q

L

, respe
tively (
f: (3.8)). Using the L

2

orthogonal pro-

je
tion P

L

, we represent the error u� u

L

of the fully dis
retized and 
ompressed method

A


;q

L

u

L

= R

L

v as

u� u

L

= u� P

L

u� (A


;q

L

)

�1

n

R

L

Au� A


;q

L

P

L

u

o

= u� P

L

u� (A


;q

L

)

�1

n

[A

L

� A


;q

L

℄P

L

u+ A(I � P

L

)u� (I �R

L

)A(I � P

L

)u

o

:

We apply the boundedness assumption on A (
f: Se
t. 2.2), assume the stability of A


;q

L

for Sobolev index s = 0, and use Lemma5.1 to get

ku� u

L

k

H

r

(�)

� ku� P

L

uk

H

r

(�)

+ C

n

k[A

L

� A


;q

L

℄P

L

uk

H

0

(�)

+

k(I � P

L

)uk

H

r

(�)

+ 2

�1:1L

kA(I � P

L

)uk

H

1:1

(�)

o

� C2

�(2�r)L

kuk

H

2

(�)

+ C k[A

L

� A


;q

L

℄P

L

uk

H

0

(�)

:

In other words, to ensure the optimal 
onvergen
e order m = 2� r, we need the estimate

k [A

L

� A


;q

L

℄P

L

uk

H

0

(�)

� C

u

2

�(s�r)L

(5.12)
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for s = 2 and the stability of A


;q

L

. Sin
e A

L

is stable by assumption and sin
e A


;q

L

=

A

L

fI + A

�1

L

[A


;q

L

� A

L

℄g, for the stability of A


;q

L

, it will be suÆ
ient to require

kA

L

� A


;q

L

k

H

0

(�) H

r

(�)

�

1

2

"

sup

L

0

=L

0

;L

0

+1;:::

kA

�1

L

0

k

H

r

(�) H

0

(�)

#

�1

:

The last 
ondition is a 
onsequen
e of (5.12) with s = 0 if we 
an show that C

u

� Ckuk

L

2

for a 
onstant C whi
h 
an be made smaller than any pres
ribed positive threshold.

Moreover, due to the inverse property, it suÆ
es to show (5.12) with s = 1:1 and a small


onstant C

u

� Ckuk

H

1:1

. The usual 
ompression estimates prove the error estimate in

(5.12) but with the di�eren
e A

L

� A


;q

L

repla
ed by A

L

� A




L

. We refer the reader to

[12, 29, 40, 35℄ for the details. In the present paper it will be our task to prove the

estimates (5.12) for s = 2 and for s = 1:1 with A

L

� A


;q

L

repla
ed by A




L

� A


;q

L

.

The issue of wavelet pre
onditioners has been addressed by many authors (
f: e.g:

[10, 12, 24, 43℄) and we will follow the same ideas. In the 
ase r = 0 the stability of A


;q

L

implies that the matrix A


;q

L

has a 
ondition number whi
h is already uniformly bounded

with respe
t to L. Thus, for the algorithm (3.10), no pre
onditioning is needed, and we


an restri
t our 
onsideration to algorithm (3.9). Unfortunately, the wavelet transform

T

�1

T

(
f: Se
t. 3.3) does not have a uniformly bounded 
ondition number with respe
t to

Eu
lidean matrix norm. Therefore, pre
onditioning is needed even for r = 0, and the

pre
onditioner is to be derived from the stability for a di�erent Sobolev index. We 
hoose

e.g: s = 1:1.

Let us 
onsider an operator A of order r = 0;�1 and suppose the stability of A

L

in

the Sobolev spa
e H

1:1

(�). If we 
ould prove

kA

L

� A


;q

L

k

H

1:1

(�) H

1:1+r

(�)

�

1

2

"

sup

L

0

=L

0

;L

0

+1;:::

kA

�1

L

0

k

H

1:1+r

(�) H

1:1

(�)

#

�1

; (5.13)

then A


;q

L

is stable in H

1:1

(�), too. From Se
ts. 3.1 and 5.2, we re
all that A

w;
;q

L

is the

matrix of the operator A


;q

L

with respe
t to the bases f 

P

: P 2 4

�

L

g and f�

P

: P 2 4

�

L

g.

Under assumption (5.13), the assertions i) of the Lemmata 5.3 and 5.1 imply that the

matri
es

�

Æ

P;P

0

2

l(P

0

)(1:1�1)

�

P;P

0

24

�

L

A

w;
;q

L

�

Æ

P;P

0

2

�l(P )(r+1:1�1)

�

P;P

0

24

�

L

(5.14)

have 
ondition numbers whi
h are uniformly bounded with respe
t to L, i.e: the matrix

A

w;
;q

L

admits a diagonal pre
onditioning. The boundedness of the 
ondition number en-

sures the fast 
onvergen
e of the iterative solver in the wavelet algorithm (3.9). In other

words, for the fast iterative solution of the linear systems A

w;
;q

L

� = 
 (
f: part iv) of

(3.9)) using pre
onditioning, we only have to prove (5.13). This is well known for the

di�eren
e A

L

� A


;q

L

repla
ed by A

L

� A




L

(
f: [12, 29, 40, 35℄). The estimate (5.13) with

A

L

� A


;q

L

repla
ed by A




L

� A


;q

L

, however, follows from (5.12) with s = 1:1 + r and the

inverse property v) of Lemma 5.1. All together, we have
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Remark 5.1 For almost optimal rates of 
onvergen
e, for stability, and for pre
ondition-

ing, we have to prove

k[A




L

� A


;q

L

℄P

L

uk

H

0

(�)

� 2

�ql

0

(

C

u

2

�(2�r)L

if u 2 H

2

(�)

Ckuk

H

1:1

2

�(1:1�r)L

if u 2 H

1:1

(�);

(5.15)

where q > 0 and where l

0

is 
hosen su
h that C2

�ql

0

is suÆ
iently small.

To derive an estimate like (5.15), we shall use the following well-known S
hur lemma.

Lemma 5.4 Denote the entries of the 
ompressed matrix of quadrature errors [A




L

�A


;q

L

℄

with respe
t to the wavelet bases f�

P

0

g and f 

P

g by a

P

0

;P

:= a

w;


P

0

;P

� a

w;
;q

P

0

;P

. Suppose x is

a �xed real parameter whi
h 
an be arbitrary. Usually x is equal to zero if it is not given

expli
itly. Then the left-hand side of (5.15) 
an be estimated as
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if s = 2

C kuk
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1
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2

if s = 1:1;

(5.16)

�

1

:= sup

P
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2

�xl(P

0
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X

P24

�

L

2

[x�s℄l(P )
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P
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j; (5.17)
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j: (5.18)

Proof. In view of (5.11), we get, for P

L

u =

P

�

P
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,
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:

Clearly, the fun
tion values �

P

0

(

~

P ) are non-negative and less than one. We apply the

Cau
hy-S
hwarz inequality and some easy 
al
ulations to arrive at
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Now we observe that, for a �xed P

0

, the number of

~

P 2 4

�

L

su
h that �

P

0

(

~

P ) > 0 is less

than C2

2[L�l(P

0

)℄

. Using this as well as (5.6) and (5.7), we 
ontinue
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6 The Estimation of the Errors due to the Approxi-

mate Parametrization and due to the Quadrature

6.1 The Far Field Estimate

In this subse
tion we suppose that the near �eld integrations are performed exa
tly and

derive the 
onvergen
e estimates for the far �eld 
ase. The error estimate for the near �eld

will be 
onsidered in Se
ts. 6.2 and 6.3, respe
tively. In view of Remark 5.1, it remains to

prove

Lemma 6.1 Suppose A




L

2 L(Lin

�

L

) is the approximate operator of the 
ompressed 
ol-

lo
ation method in
luding the sparsity pattern P (
f: Se
t. 3.5). If A


;q

L

is the operator of

the 
ompressed 
ollo
ation method in
luding the approximation of the parameter mappings

and the quadrature of the far �eld, i.e: of Se
t. 4.1, then we get the estimates (5.15).

Proof. i) It remains to estimate �

1

and �

2

(
f: Lemma 5.4). For the approximate

parametrization and for the quadrature, we shall prove the error estimate

ja

P

0

;P

j = ja

w;


P

0

;P

� a

w;
;q

P

0

;P

j � a

1

P

0

;P

+ a

2

P

0

;P

; (6.1)

a

1

P

0

;P

:= C2

�ql

0

2

�2l(P )

2

�m

#

l(P

0

)

2

�ql(P;P

0

)

dist (�

P

0

;	

P

)

�r�2�q�m

#

;

a

2

P

0

;P

:= C2

�2l(P )

2

�m

#

l(P

0

)

2

�mL

dist (�

P

0

;	

P

)

�r�2�m

#

:

In a

ordan
e with the splitting into these two terms, we get two estimates of the form

(5.16) whi
h we denote by C

u

�

1

1

�

1

2

and C

u

�

2

1

�

2

2

, respe
tively. Furthermore, we introdu
e

the numbers
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0

)

o
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(
f: the de�nition of the far �eld in Se
t: 4.1 and the formulae (3.11) and (3.12)). Substi-

tuting the estimate a

1

P

0

;P

and 2

l(P;P

0

)

� 2

0:9L�l(P

0

)

dist

�1:1

(
f: (4.1)) into the de�nition of

�

1

1

, we get

�

1

1

� C sup

P

0

24

�

L

L�1

X

l=�1

X

P2r

�

l

:

M

0

�dist�M

2

2

�sl

2

�ql

0

2

�2l

2

�m

#

l(P

0

)

2

�ql(P;P

0

)

dist

�r�2�m

#

�q

� C2

�ql

0

2

�0:9qL

sup

P

0

24

�

L

2

(q�m

#

)l(P

0

)

L�1

X

l=�1

2

�sl

2

�2l

X

P2r

�

l

:

M

0

�dist�M

2

dist

�r�2�m

#

+0:1q

:

Using the estimate

2

�2l

X

P2r

�

l

: dist>M

0

dist

�r�2�m

#

+0:1q

� C

Z

fP2�: jP

0

�P j>M

0

g

d

P

�

jP

0

� P j

r+2+m

#

�0:1q

� CM

0

�r�m

#

+0:1q

; (6.3)

we 
ontinue

�

1

1

� C2

�ql

0

2

�0:9qL

sup

�1�l(P

0

)�L�1

2

(q�m

#

)l(P

0

)

8

<

:

l(P

0

)�1

X

l=�1

2

l[�s+r+m

#

�0:1q℄

+ 2

l(P

0

)[r+m

#

�0:1q℄

L�1

X

l=l(P

0

)

2

�sl

9

=

;

� C2

�ql

0

2

�[s�r℄L

:

On the other hand, substituting the estimate a

1

P

0

;P

and 2

l(P;P

0

)

� 2

0:9L�l(P

0

)

dist

�1:1

into

the de�nition of �

1

2

, we get

�

1

2

� C

L�1

X

l=�1

2

[2�s℄l

sup

P2r

�

l

L�1

X

l

0

=�1

2

�2l

0

X

P

0

2r

�

l

0

:

M

0

�dist�M

2

2

�ql

0

2

�2l

2

�m

#

l

0

2

�ql(P;P

0

)

dist

�r�2�m

#

�q

� C2

�ql

0

2

�0:9qL

L�1

X

l=�1

2

�sl

sup

P24

�

l

L�1

X

l

0

=�1

2

[q�m

#

℄l

0

2

�2l

0

X

P

0

2r

�

l

0

:

M

0

�dist�M

2

dist

�r�2�m

#

+0:1q

:

Using the estimate (6.3), we 
ontinue

�

1

2

� C2

�ql

0

2

�0:9qL

L�1

X

l=�1

2

�sl

2

4

l

X

l

0

=�1

2

[r+0:9q℄l

0

+ 2

[r+m

#

�0:1q℄l

L�1

X

l

0

=l

2

[q�m

#

℄l

0

3

5

� C2

�ql

0

2

�[s�r℄L

: (6.4)
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Next we turn to the estimates of �

2

1

and �

2

1

. Analogously to the treatment of �

1

1

and

�

1

1

, we arrive at

�

2

1

� C sup

P

0

24

�

L

L�1

X

l=�1

X

P2r

�

l

:

M

0

�dist�M

2

2

�sl

2

�2l

2

�m

#

l(P

0

)

2

�mL

dist

�r�2�m

#

� C2

�mL

sup

P

0

24

�

L

2

�m

#

l(P

0

)

L�1

X

l=�1

2

�sl

2

�2l

X

P2r

�

l

:

M

0

�dist�M

2

dist

�r�2�m

#

:

Using an estimate like (6.3), we 
ontinue

�

2

1

� C2

�mL

sup

�1�l(P

0

)�L�1

2

�m

#

l(P

0

)

8

<

:

l(P

0

)�1

X

l=�1

2

[4�s℄l

+ 2

4l(P

0

)

L�1

X

l=l(P

0

)

2

�sl

9

=

;

� C2

�mL

:

On the other hand, substituting the estimate 2

�2l(P )

2

�m

#

l(P

0

)

2

�mL

dist (�

P

0

;	

P

)

�r�2�m

#

for a

2

P

0

;P

into the de�nition of �

2

2

, we get

�

2

2

� C

L�1

X

l=�1

2

[2�s℄l

sup

P2r

�

l

L�1

X

l

0

=�1

2

�2l

0

X

P

0

2r

�

l

0

:

M

0

�dist�M

2

2

�2l

2

�m

#

l

0

2

�mL

dist

�r�2�m

#

� C2

�mL

L�1

X

l=�1

2

�sl

sup

P24

�

l

L�1

X

l

0

=�1

2

�m

#

l

0

2

�2l

0

X

P

0

2r

�

l

0

:

M

0

�dist�M

2

dist

�r�2�m

#

� C2

�mL

L�1

X

l=�1

2

�sl

2

4

l

X

l

0

=�1

2

rl

0

+ 2

[r+m

#

℄l

L�1

X

l

0

=l

2

�m

#

l

0

3

5

� C2

�mL

:

ii) Let us prove (6.1). The �rst bound a

1

P;P

0

is the bound for the error of the quadrature

applied to the integral in a

w;


P

0

;P

, where the parametrization is already repla
ed by the

pie
ewise polynomial interpolation. Indeed, by standard estimates of q-th order 
omposite

rules, the quadrature error is less than a 
onstant times the measure C2

�2l(P )

of the domain

of integration times the q-th power of the step size of quadrature 2

�l(Q)

� 2

�l

0

2

�l(P;P

0

)

times the supremum of the q-th order derivative of the integrand fun
tion. Due to the

vanishing moments the test fun
tional #

P

0

a
ts like a di�eren
e formula of order m

#

with

improper s
aling. Therefore, the q-th order derivative of the integrand fun
tion 
an be

estimated by the produ
t of C2

�m

#

l(P

0

)

and the [m

#

+q℄-th order derivative of the kernel

fun
tion. Thanks to (2.5) the last fa
tor is less than Cdist

�r�2�m

#

�q

. The repla
ement

of the parametrization does not 
ause any problem sin
e the supremum of the derivatives

to the pie
ewise polynomial interpolations 
an be estimated by the supremum of the

derivatives to the original parametrization mapping, i.e: it is bounded.
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The se
ond bound a

2

P

0

;P

in (6.1) is the estimate for the error due to the repla
ement of

the parametrization by the pie
ewise interpolation. To estimate the 
orresponding error it

is suÆ
ient to use the approximation orderm+1 instead of the a
tual orderm

p

+1 of the

pie
ewise polynomial interpolation of degree less than m

p

. As mentioned above, the test

fun
tional #

P

0


an be 
onsidered to be a s
aled version of a di�eren
e formula. Clearly, we

get j�

m

(�)� �

0

m

(�)j � C 2

�(m+1)l(Q)

for � 2 T

�

0

= �

�1

m

(�

Q

0

) with Q

0

2 ut

�

L

, i.e: l(Q

0

) = L.

Moreover, we obtain jr

�

�

m

(�)�r

�

�

0

m

(�)j � C 2

�ml(Q)

if r

�

is the gradient with respe
t

to �. From the smoothness assumptions on �

m

in Se
t. 2.1 and on the integral kernel in

Se
t. 2.2, we 
on
lude

jJ

m

(�)� J

0

m

(�)j � C2

�mL

; jJ

m

(�)j � C; jJ

0

m

(�)j � C;

�

�

�k

�

#

P

0

; �

m

(�); n

�

m

(�)

�

� k

�

#

P

0

; �

0

m

(�); n

0

�

0

m

(�)

�

�

�

� � C

2

�(m+1)L

2

�m

#

l(P

0

)

dist

2+r+m

#

+1

;

�

�

�k

�

#

P

0

; �

m

(�); n

�

m

(�)

�

�

�

� � C

2

�mL

2

�m

#

l(P

0

)

dist

2+r+m

#

;

�

�

�k

�

#

P

0

; �

0

m

(�); n

0

�

0

m

(�)

�

�

�

� � C

2

�mL

2

�m

#

l(P

0

)

dist

2+r+m

#

;

(6.5)

where we have used the notation dist := dist(�

P

0

;	

P

) and the estimate dist > 2

�L

(
f:

the de�nition of the far �eld in Se
t: 4.1). Hen
e, we arrive at

�

�

�k

�

#

P

0

; �

m

(�); n

�

m

(�)

�

J

m

(�)�

�; �

(�)� k

�

#

P

0

; �

0

m

(�); n

0

�

0

m

(�)

�

J

0

m

(�)�

�; �

(�)

�

�

�

� C2

�mL

2

�m

#

l(P

0

)

dist

�2�r�m

#

;

and the integral over T

�

of this di�eren
e is less than a

2

P

0

;P

in (6.1).

Lemma 6.2 The number of ne
essary arithmeti
 operations for setting up the far �eld

part of the sti�ness matrix A

w;
;q

L

, in
luding the sparsity pattern P, is less than C2

2l

0

L2

2L

.

Proof. Clearly, the number of all arithmeti
 operations is bounded by a 
onstant multiple

of the number of all quadrature knots. Thus we 
ount the number N of quadrature knots.

For a �xed test fun
tional #

P

0

and for a �xed trial fun
tion  

P

, the number of knots is

less than [2

�l(P )

=2

�l(Q)

℄

2

� C2

2l

0

2

2[l(P;P

0

)�l(P )℄

. In view of (4.1), the term 2

l(P;P

0

)


an be

majorized by 2

l(P )+1

+ 2

0:9L�l(P

0

)

dist

�1:1

. By �

�

l

we denote the set of P 2 r

�

l

su
h that

	

P

is not 
ontained in the interior of a single pat
h �

m

. Moreover, we set �

�

l

:= r

�

l

n�

�

l

.

Summing up over all  

P

and #

P

0

and using the notation of the last proof, we arrive at

N �

X

P

0

24

�

L

L�1

X

l=�1

8

>

>

>

>

>

<

>

>

>

>

>

:

X

P2�

�

l

:

M

0

�dist�M

1

C2

2l

0

2

2[l(P;P

0

)�l(P )℄

+

X

P2�

�

l

:

M

0

�dist�M

2

C2

2l

0

2

2[l(P;P

0

)�l(P )℄

9

>

>

>

>

>

=

>

>

>

>

>

;
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� C2

2l

0

L�1

X

l

0

=�1

2

2l

0

sup

P

0

2r

�

l

0

L�1

X

l=�1

8

>

>

>

>

>

<

>

>

>

>

>

:

X

P2�

�

l

:

M

0

�dist�M

1

2

�2l

"

2

2l

+

2

1:8L�2l

0

dist

2:2

#

+

X

P2�

�

l

:

M

0

�dist�M

2

2

�2l

"

2

2l

+

2

1:8L�2l

0

dist

2:2

#

9

>

>

>

>

>

=

>

>

>

>

>

;

� C2

2l

0

L�1

X

l

0

=�1

2

2l

0

sup

P

0

2r

�

l

0

L�1

X

l=�1

8

>

>

>

>

>

<

>

>

>

>

>

:

X

P2�

�

l

:

dist�M

1

1 +

X

P2�

�

l

:

dist�M

2

1

9

>

>

>

>

>

=

>

>

>

>

>

;

+C2

2l

0

2

1:8L

L�1

X

l

0

=�1

sup

P

0

2r

�

l

0

L�1

X

l=�1

2

�2l

X

P2�

�

l

:

M

0

�dist

dist

�2:2

+C2

2l

0

2

1:8L

L�1

X

l

0

=�1

sup

P

0

2r

�

l

0

L�1

X

l=�1

2

�l

2

�l

X

P2�

�

l

:

M

0

�dist

dist

�2:2

Using the de�nitions of M

0

, M

1

, and M

2

(
f: (6.2)) and applying the estimates (
ompare

(6.3))

2

�2l

X

P2r

�

l

: dist>M

0

dist

�2:2

� CM

0

�0:2

; (6.6)

2

�l

X

P2�

�

l

: dist>M

0

dist

�2:2

� CM

0

�1:2

;

we 
ontinue

N � C2

2l

0

L�1

X

l

0

=�1

2

2l

0

L�1

X

l=�1

8

<

:

"

2

�l

+ 2

�l

0

+ d2

0:6L�0:7 l�0:9 l

0

2

�l

#

2

+

"

2

�l

+ 2

�l

0

+ d2

L�0:7 l�1:3 l

0

2

�l

#)

+

C2

2l

0

2

1:8L

L�1

X

l

0

=�1

8

<

:

l

0

X

l=�1

2

0:2 l

+

L�1

X

l=l

0

2

0:2 l

0

9

=

;

+ C2

2l

0

2

2L

L�1

X

l

0

=�1

8

<

:

l

0

X

l=�1

2

0:2 l

+

L�1

X

l=l

0

2

�l

2

1:2 l

0

9

=

;

� C2

2l

0

L2

2L

:
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6.2 The Estimates for the First Part of the Near Field

Now we suppose that the far �eld integration and the integration of the se
ond part of the

near �eld are performed exa
tly and derive the 
onvergen
e estimates for the �rst part of

the near �eld. In view of Remark 5.1 it remains to prove

Lemma 6.3 Suppose A




L

2 L(Lin

�

L

) is the approximate operator of the 
ompressed 
ol-

lo
ation method in
luding the sparsity pattern P and that A


;q

L

is the operator of the 
om-

pressed 
ollo
ation method in
luding the approximation of the parameter mappings and

the quadrature of Se
t. 4.2, then we get the estimate (5.15).

Proof. i) Like in Se
t: 4.2 we distinguish the 
ases l(P ) � l(P

0

) and l(P ) < l(P

0

), and

we start with l(P ) � l(P

0

). Using Lemma 5.4, we have to estimate the sums �

1

and �

2

.

This time the estimate (6.1) holds with

a

1

P

0

;P

:= C2

�ql

0

2

�2l(P )

2

�ql(P;P

0

)

dist (supp #

P

0

;	

P

)

�r�2�q

; (6.7)

a

2

P

0

;P

:= C2

�2l(P )

2

�mL

dist (supp #

P

0

;	

P

)

�r�2

: (6.8)

Note that these estimates follow analogously to part ii) of the proof to Lemma 6.1. The

only di�eren
e is that the vanishing moments of the test fun
tional are not taken into

a

ount.

Again, in a

ordan
e with the splitting (6.1) into two terms, we get two estimates of

the form (5.16) denoted by C

u

�

1

1

�

1

2

and C

u

�

2

1

�

2

2

, respe
tively. We introdu
e dist :=

dist(supp#

P

0

;	

P

), and, similarly to part i) of the proof to Lemma 6.1, we 
on
lude

�

1

1

� C sup

P

0

24

�

L

L�1

X

l=l(P

0

)

X

P2r

�

l

:




�

2

�l

�dist�2

�l(P

0

)

2

�sl

2

�ql

0

2

�2l

2

�ql(P;P

0

)

dist

�r�2�q

� C2

�ql

0

2

�0:9qL

sup

P

0

24

�

L

2

ql(P

0

)

L�1

X

l=l(P

0

)

2

�sl

2

�2l

X

P2r

�

l

:




�

2

�l

�dist�2

�l(P

0

)

dist

�r�2+0:1q

:

Although the distan
e dist is less than 2

�l(P

0

)

, we still have

2

�2l

X

P2r

�

l

: 2

�l(P

0

)

>dist>


�

2

�l

dist

�r�2+0:1q

� C

Z

fP2�: 2

�l(P

0

)

>jP

0

�P j>


�

2

�l

g

d

P

�

jP

0

� P j

r+2+0:1q

� C[2

�l(P

0

)

℄

�r+0:1q

(6.9)

due to the 
hange from dist = dist(	

P

;�

P

0

) to dist = dist(	

P

; supp #

P

0

) and due to the

fa
t that the support supp#

P

0

of the 
ollo
ation test fun
tional 
onsist of a small number

of points, only. Using (6.9), we 
ontinue

�

1

1

� C2

�ql

0

2

�0:9qL

sup

�1�l(P

0

)�L�1

2

l(P

0

)[0:9q+r℄

L

X

l=l(P

0

)

2

�sl

� C2

�ql

0

2

�[s�r℄L

:
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On the other hand, substituting the estimate a

1

P

0

;P

and 2

l(P;P

0

)

� 2

0:9L�l(P

0

)

dist

�1:1

into

the de�nition of �

1

2

, we get

�

1

2

� C

L�1

X

l=�1

2

[2�s℄l

sup

P2r

�

l

l

X

l

0

=�1

2

�2l

0

X

P

0

2r

�

l

0

:




�

2

�l

�dist�2

�l

0
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�ql

0

2

�2l

2

�ql(P;P

0

)
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�r�2�q

� C2

�ql

0

2
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L�1

X

l=�1

2

�sl
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P24

�

l

l

X

l

0

=�1

2

ql

0

2
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0

X

P

0

2r

�

l

0

:




�

2

�l

�dist�2

�l

0
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�r�2+0:1q

:

Using the estimate (6.9), we 
ontinue

�

1

2

� C2

�ql

0

2

�0:9qL

L�1

X

l=�1

2

�sl

l

X

l

0

=�1

2

[r+0:9q℄l

0

� C2

�ql

0

2

�[s�r℄L

: (6.10)

Next we turn to the estimates of �

2

1

and �

2

1

. Setting x = 1 in the estimates of Lemma

5.4, pro
eeding analogously to the treatment of �

1

1

and �

1

1

, and using the estimate (6.9),

we arrive at

�

2

1

� C sup

P

0

24

�

L

2

�l(P

0

)

L�1

X

l=l(P

0

)

X

P2r

�

l

:




�
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0

)

2

[1�s℄l

2

�2l

2

�mL
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� C2

�mL
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P

0
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�

L

2
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0

)

L�1

X

l=l(P

0

)

2

[1�s℄l

2

�2l

X
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�

l
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0

)
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0
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2

[r�1℄l(P

0

)

L�1

X

l=l(P

0

)

2

[1�s℄l

l

Æ

r;0

� C2

�mL

: (6.11)

On the other hand, substituting the estimate 2

�2l(P )

2

�mL

dist (supp#

P

0

;	

P

)

�r�2

for a

2

P

0

;P

into the de�nition of �

2

2

, we get

�

2

2
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L�1

X

l=�1

2
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sup
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l

l

X
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0
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X

P

0
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�
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X
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2
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l
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0
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2
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0
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l
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0

2
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�mL

: (6.12)
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ii) Now we 
onsider the 
ase l(P ) < l(P

0

). Using Lemma5.4, we have to estimate the

sums �

1

and �

2

. We set Dist := dist(�

P

0

;	

P

). This time the estimate (6.1) holds with

a

1

P

0

;P

:= C2

�ql

0

2

�ql(P;P

0

)

2

ql(P )

2

�m

#

l(P

0

)

Dist

�r�m

#

(6.13)

= C2

�ql

0

2

�0:95qL

2

0:4ql(P )

2

[1:1q�m

#

℄l(P

0

)

Dist

�r�m

#

+0:55q

;

a

2

P

0

;P

:= C2

�mL

2

�m

#

l(P

0

)

Dist

�r�m

#

: (6.14)

Indeed, for the quadrature term a

1

P

0

;P

, we apply the error estimates from part ii) of the

proof to Lemma 6.1 to ea
h subtriangle �

Q

0

of step ii) in Se
t: 4.2.2. Note that, for

any level l, there is only a bounded number of triangles �

Q

0

of level l in the partition of

step ii) with the bound independent of l. The distan
e of su
h a �

Q

0

of level l to �

P


an be estimated from below and above by 
onstant times 2

�l

. Using 2

�l(P;P

0

)

2

l(P )

�

C2

�0:95L+1:1 l(P

0

)+0:4 l(P )

Dist

0:55

(
f: (4.10)) and adding up the standard quadrature esti-

mates, we arrive at

a

1

P

0
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� C

�

2
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X

l=l(P )+1

2

�m

#

l(P

0

)

2
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h

2

�l

2
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0

2
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0

)

2
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i

q

h

2

�l

i
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#
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0

2
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2
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2
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#
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0

)
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0:55q

�

2
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X
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2
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#

℄
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2
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2
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#
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)
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#

+0:55q

:

Pro
eeding similarly for the term due to the approximate parametrization, we 
on
lude

a

2

P

0

;P

� C

�

2
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X

l=l(P )+1

2

�m

#

l(P

0

)

2
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h

2
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i

m

h

2
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i
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#
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:

Again, in a

ordan
e with the splitting (6.1) into two terms, we get two estimates of

the form (5.16) denoted by C

u

�

1

1

�

1

2

and C

u

�

2

1

�

2

2

, respe
tively. We 
hoose the parameter

x = 0:5 in the estimates of Lemma 5.4 and, similarly to part i) of the proof to Lemma

6.1, we 
on
lude

�

1

1

� C sup

P

0
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�

L

2

�0:5 l

0

l(P

0

)

X
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X
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)
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X

P2r

�

l

:
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)
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)
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2
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h

2
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)
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�r�m
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�ql
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:

On the other hand, substituting a

1

P

0
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and 2

�l(P;P

0

)
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l(P )

� C2

�0:95L+1:1 l(P

0

)+0:4 l(P )
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into the de�nition of �

1

2

, we get
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:

Using the estimate
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; (6.15)

we 
ontinue
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: (6.16)

Next we turn to the parametrization estimates �

2

1

and �

2

2

. Pro
eeding analogously to

the treatment of �

1

1

and �

1

1

and using estimates like (6.15), we arrive at
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�
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�
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#
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� C2
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(6.17)

and at the estimate
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: (6.18)

Lemma 6.4 The number of ne
essary arithmeti
 operations for setting up that part of

the near �eld of the sti�ness matrix A

w;
;q

L

treated in Se
t: 4.2 is less than CL

2

2

2L

.

Proof. Again we only have to 
ount the number N of quadrature knots (
f: the proof

to Lemma 6.2). First we 
ount those used for the 
ase 0 < dist(	

P

;�

P

0

) � 2

�l(P

0

)

and

l(P ) � l(P

0

). For �xed  

P

and #

P

0

, the number of knots is less than C2
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0
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.
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(
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P
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0

,

we get

N �

L�1

X

P

0

24

�

L

L�1

X

l=l(P

0

)

X

P2r

�

l

:




�

2

�l

�dist�2

�l(P

0

)

C2

2l

0

2

2[l(P;P

0

)�l℄

� C2

2l

0

L�1

X

l

0

=�1

2

2l

0

sup

P

0

2r

�

l

0

L�1

X

l=l

0

X

P2r

�

l

:




�

2

�l

�dist�2

�l

0

2

�2l

"

2

2l

+

2

1:8L�2l

0

dist

2:2

#

� C2

2l

0

L�1

X

l

0

=�1

2

2l

0

L�1

X

l=l

0

h

2

�l

0

=2

�l

i

2

+ C2

2l

0

2

1:8L

L�1

X

l

0

=�1

L�1

X

l=l

0

2

�2l

X

P2r

�

l

:




�

2

�l

�dist�2

�l

0

dist

�2:2

� C2

2l

0

L2

2L

+ C2

2l

0

2

1:8L

L�1

X

l

0

=�1

L�1

X

l=l

0

2

0:2 l

� C2

2l

0

L2

2L

:

43



Here we have applied (6.6).

Next we 
onsider the 
ase l(P ) < l(P

0

) of Se
t: 4.2.2. We set Dist := dist(�	

P

;�).

For �xed  

P

and #

P

0

, the number of knots is less than CL2

2l

0

2

2[l(P;P

0

)�l(P )℄

sin
e in

the step ii) of Se
t: 4.2.2 the number of triangles �

Q

0

is less than CL and sin
e ea
h

�

Q

0

is split into 2
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0

2
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0

)�l(P )℄

subtriangles in step iii). Using 2
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+
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(
f: (4.10)) into and summing up over all  

P

and #
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0

, we get
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Here we have applied an estimate like (6.15).

6.3 The Estimates for the Se
ond Part of the Near Field

Now we suppose that the far �eld integration and the integration of the �rst part of the

near �eld are performed exa
tly and derive the 
onvergen
e estimates for the se
ond part

of the near �eld. In view of Remark 5.1 it remains to prove

Lemma 6.5 Suppose A




L

2 L(Lin

�

L

) is the approximate operator of the 
ompressed 
ol-

lo
ation method in
luding the sparsity pattern P and that A


;q

L

is the operator of the 
om-

pressed 
ollo
ation method in
luding the approximation of the parameter mappings and

the quadrature of Se
t. 4.3, then we get the estimate (5.15).

Proof. i) First we look at the quadrature in Se
t: 4.3.1. The 
ase dist(�

Q

�

; P

�

) > 0


an be treated 
ompletely analogously to the quadrature of Se
t: 4.2.1 sin
e even in Se
t:

4.2.1 the quadrature is applied over the triangles �

Q

�

separately and sin
e the vanishing

moments of the test fun
tionals are not used in the estimates for the quadrature of Se
t:

4.2.1.

Moreover, the 
ase dist(�

Q

�

; P

�

) = 0 
an be in
luded into the estimation in part i)

of the proof to Lemma 6.3, too. We only have to 
he
k the estimates for a

1

P

0

;P

and
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quadrature error (
f: part ii) of the proof to Lemma 6.1 and the de�nition of the step size

in (4.15)) applied to ea
h of the subtriangles �

Q

0

in the partition of step i) in Se
t: 4.3.1

leads to
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:

Hen
e, in 
omparison to the estimate a

1

P

0

;P

we have a 2

�l(P )

instead of dist(supp#

P

0

;	

P

).

In other words, the quadrature error terms 
orresponding to dist(�

Q

�

; P

�

) = 0 
an be

treated like the terms with dist(�

Q

�

; P

�

) � 2

�l(P )

.

On the other hand, for the 
orresponding parametrization error, we get the upper

estimate C2

�2l(Q

0

)

[2

�L

℄

m+1

[2

�l(Q

0

)

℄

�2�r

(
f: part ii) of the proof to Lemma 6.1 and use

the improved 
onvergen
e order m + 2 instead of m + 1 for the approximation by the

pie
ewise polynomial approximation of degree m

p

= q � m + 1). Applying this to ea
h

of the subtriangles �

Q

0

in the partition of step i) in Se
t: 4.3.1, we 
on
lude

a

2

P
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0

)
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h
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)
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2

�l(P )

i

�r�2

:

Here we have estimated the logarithmi
 term CL appearing in the 
ase r = 0 by using the

additional fa
tor 2

�L

of the interpolation. Hen
e, the parametrization error terms with

dist(�

Q

�

; P

�

) = 0 
an be treated like the terms with dist(�

Q

�

; P

�

) � 2

�l(P )

.

ii) Next we 
onsider the quadrature in Se
t: 4.3.2. We suppose that the approximate

values a

w;
;q

P

0

;�

e

m

and a

w;
;q

P

0

;�;�

e

m

are known exa
tly. We defer the analysis of their approximation

to part iii) of the present proof. Now the 
ase Dist := dist(��

Q

�

;�

P

0

) > 0 
an be treated

analogously to the quadrature of Se
t: 4.2.2. We only have to 
he
k the estimates for

a

1

P

0

;P

and a

2

P

0

;P

in (6.13) and (6.14). As usual, the estimate for the quadrature error over

the triangle �

Q

0

of step i) in Se
t: 4.3.2.1 is
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�2l(Q

0

)

2
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#
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0

)

h
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)
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)

2
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i
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0

)

℄

�2�r�m

#

�q

sup

R2�

Q

0

j 

P

(R)j

(
f: part ii) of the proof to Lemma 6.1). The supremum of  

P

is bounded if the distan
e

of �

Q

0

to 	

P

is less than C2

�l(P )

, i.e: if l(Q

0

) � l(P ). For l(Q

0

) < l(P ), we get the bound

2

l(P )�l(Q

0

)

. Applying this to ea
h of the subtriangles �

Q

0

in the partition of step i) in Se
t:
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4.3.2.1, we get
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#

:

In other words, the quadrature error terms 
orresponding to Dist > 0 
an be treated like

the terms in Se
t: 4.2.2 with the distan
e dist(	

P

;�

P

0

) of the same size.

On the other hand, for the parametrization error, we arrive at the usual upper bound

C sup
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Q

0
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P
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(
f: part ii) of the proof to Lemma 6.1 ). Applying this to ea
h of the subtriangles �

Q

0

in

the partition of step i) in Se
t: 4.3.2.1, we 
on
lude
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0

)

2

�2l(Q

0

)

2

�m

#

l(P
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Hen
e, the parametrization error terms with dist(��

Q

�

;�

P

0

) > 0 
an be treated like the

terms with the distan
e dist(	

P

;�

P

0

) of the same size as dist(��

Q

�

;�

P

0

) 
orresponding

to the quadrature of Se
t: 4.2.2 (
f: part ii) of the proof to Lemma 6.3).

If dist(��

Q

�

;�

P

0

) = 0, we split #

P

0

into the linear 
ombination of point fun
tionals at

the points P

�

, and, setting Dist := 2

�l(P

0

)

, we derive the estimates (6.13) and (6.14) for

a

1

P

0

;P

and a

2

P

0
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. The usual bounds C2
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resp. C2
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for the quadra-

ture error (
f: part ii) of the proof to Lemma 6.1) applied to ea
h of the subtriangles �

Q

0

in the partition of step ii') in Se
t: 4.3.2 lead to
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h is (6.13) with Dist repla
ed by 2

�l(P

0

)

. On the other hand, for the parametrization

error, we arrive at the usual upper bound C2
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(
f: part ii) of the proof to Lemma 6.1 and noti
e thatm

p

�

m+ 1). Applying this to ea
h of the subtriangles �

Q

0

in the partition of step ii') in Se
t:

4.3.2.2, we 
on
lude
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Hen
e, the quadrature and parametrization error terms with dist(��

Q

�

;�

P

0

) = 0 
an be

treated like the terms with dist(�

Q

�

;�

P

0

) � 2

�l(P )


orresponding to the quadrature of

Se
t: 4.2.2 (
f: part ii) of the proof to Lemma 6.3).

iii) The \quadrature" error a

1

P

0

;�

e

m

;p

of negle
ting the approximation a

w;
;q

P
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;�

e

m
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for the


orresponding integral in the 
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) �

m

m
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)
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e the integrand
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#
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ontinuously di�erentiable by assumption (
f: Se
t: 2.2) and sin
e #

P

0
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m

#

vanishing moments. For the other 
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0
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m
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L, we really have to estimate

the quadrature error a
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, respe
tively. Now

applying the usual upper bounds C2
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for the quadrature error to
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h of the subtriangles �
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in the partition of step ii) in Se
t: 4.3.3.2, we get the error

estimate
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On the other hand, for the parametrization error over the level l(Q

0

) triangles, we arrive

at the usual upper bound
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<
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Applying this to ea
h of the subtriangles �

Q

0

in the partition of step ii) in Se
t: 4.3.3.2,

we 
on
lude
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Now we take into a

ount that, for the 
omputation of an a

w;
;q

P

0

;P

, the trial fun
tion  

P

is presented as a linear 
ombination of the three basi
 linear polynomials p, where the


onstant p has a bounded 
oeÆ
ient and where the 
oeÆ
ients of the linear fun
tions

p(�

m

(�)) 7! (� � [�

m

℄
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�
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i
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. Consequently, the resulting
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1
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repla
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The dots in the last formulae stand for the restri
tion to pairs of P and P

0

for whi
h the

quadrature approximation to a

w;


P

0

;P

is treated in Se
t: 4.3.2.1. Similarly, we 
on
lude

�

2
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� sup

P
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24
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iv) The last error to be estimated is the error due to the negle
t of the singular

integrals over triangles of the level mL. Su
h a negle
t o

urs in all the three subse
tions

of Se
t: 4.3. However, if r = �1 or if r = 0 and the kernel k(P;Q) satis�es the Mikhlin-

Gireaud 
ondition (
f: Se
t: 2.2 and 
f: e.g: [26℄), then the value of su
h an integral is
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less than 2

�mL

. Sin
e we 
ommit su
h an error at most on
e in every entry a

w;q;


P

0

;P

of

the sti�ness matrix, Lemma 5.4 with the 
hoi
e x = 1 implies the global error estimate

k[A




L

� A


;w

L

℄P

L

uk

L

2

(�)

� C2

�mL

for s = 1:1 and s = 2.

Lemma 6.6 The number of ne
essary arithmeti
 operations for setting up the part of the

near �eld of the sti�ness matrix A

w;
;q

L

treated in Se
t: 4.3 is less than CL

2

2

2L

if r = �1

and less than CL

3

2

2L

if r = 0.

Proof. We have seen that ea
h quadrature term of Se
t: 4.3 
omputed over a 	

P

or a

�

Q

�


an be in
luded into the estimates of Se
t: 4.2. In parti
ular, ea
h quadrature for an

entry of the se
ond part of the near �eld requires the same number of quadrature knots

as a 
orresponding entry of the �rst part of the near �eld. The only ex
eption is that, due

to the logarithmi
 term in the levels of the uniform re�nements a

ording to (4.13) and

(4.15), there arises an additional fa
tor L in the 
omplexity if r = 0. Consequently, we

get the same 
omplexity estimate as in Lemma 6.4 for r = �1 and the same 
omplexity

multiplied by L for r = 0.

It remains to 
ount the quadrature knots for Se
t: 4.3.3.2. For a �xed #

P

0

, the number

of knots is less than CL[2

�L��

0

l(P

0

)

℄

2

. Hen
e, the number of all arithmeti
 operations for

the 
omputation a

ording to Se
t: 4.3.3.2 is less than

C

m

m+2

L

X

l(P

0

)=�1

2

2l(P
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