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Abstract

In this paper we consider a piecewise linear collocation method for the solu-
tion of a pseudo-differential equation of order r = 0, —1 over a closed and smooth
boundary manifold. The trial space is the space of all continuous and piecewise lin-
ear functions defined over a uniform triangular grid and the collocation points are
the grid points. For the wavelet basis in the trial space we choose the three-point
hierarchical basis together with a slight modification near the boundary points of
the global patches of parametrization. We choose linear combinations of Dirac delta
functionals as wavelet basis in the space of test functionals. For the correspond-
ing wavelet algorithm, we show that the parametrization can be approximated by
low order piecewise polynomial interpolation and that the integrals in the stiffness
matrix can be computed by quadrature, where the quadrature rules are composite
rules of simple low order quadratures. The whole algorithm for the assembling of
the matrix requires no more than O(N[log N]3) arithmetic operations, and the er-
ror of the collocation approximation, including the compression, the approximative
parametrization, and the quadratures, is less than O(N —(2-r)/ 2). Note that, in con-
trast to well-known algorithms by v.Petersdorff, Schwab, and Schneider, only a finite
degree of smoothness is required. In contrast to an algorithm of Ehrich and Raths-
feld, no multiplicative splitting of the kernel function is required. Beside the usual
mapping properties of the integral operator in low order Sobolev spaces, estimates
of Calderén-Zygmund type are the only assumptions on the kernel function.

1 Introduction

It is a well-known fact that usual finite element discretizations of linear integral equa-
tions (e.g. of boundary integral equations) lead to systems of linear equations with fully
populated matrices. Thus, even an iterative solution method requires a huge number of
arithmetic operations and a large storage capacity. In order to improve these finite ele-
ment approaches for integral equations, several algorithms have been developed. One of
these consists in employing wavelet bases of the finite element spaces. The basic idea goes
back to Beylkin, Coifman, and Rokhlin [3], and has been thoroughly investigated by Dah-
men, v.Petersdorff, Préfidorf, Schneider, and Schwab [11, 12, 30, 29, 28, 40] (cf. also the
contributions by Alpert, Harten, Yad-Shalom, Ehrich, and Rathsfeld [1, 21, 36, 18]). In
the present paper, we shall apply the wavelet technique to the piecewise linear collocation
of two-dimensional boundary integral equations of order r = 0 and r = —1 corresponding
to three-dimensional boundary value problems.

First we shall recall the definition of a simple biorthogonal wavelet basis analyzed in
[38] (cf. the familiar constructions in [22, 42, 24] and compare [13, 14, 15, 5, 6, 7, 16]). The
grids will be supposed to be uniform refinements of a coarse initial triangulation, and the
basis will be the system of three-point hierarchical basis functions, i.e. each basis function
will be a linear combination of no more than three finite element functions defined over
the corresponding level of a grid hierarchy. In comparison to other bases of continuous
wavelet functions our basis functions will have a rather small support, and we believe that



this property is essential for the wavelet algorithm. Indeed, small supports lead to better
compression rates, especially, for higher levels and to faster quadrature algorithms for the
assembling of the stiffness matrix.

For the basis in the test space spanned by Dirac delta functionals, we shall take
the usual test functionals which can be considered at as scaled versions of difference
formulas (cf. the wavelet collocation methods by Dahmen, Proidorf, Schneider, Harten,
Yad-Shalom, and Rathsfeld [12, 21, 36, 35, 37]). Applying the wavelet basis functions
of the trial and test space, we shall obtain the well-known compression results for trial
wavelets with vanishing moments due to Dahmen, v.Petersdorff, Pro3dorf, Schneider, and
Schwab [12, 30, 40]. The compression for trial functions without vanishing moments is
the same as in [35] (cf. also the univariate analogue for the Galerkin method treated in
[30, 4]). Note that we have to assume that the derivatives of the kernel function up to a
finite order satisfy the Calderén-Zygmund estimate. This is the fundamental relation not
only for the wavelet compression but also for the fast assembling of the stiffness matrix
via quadrature.

In general, the stiffness matrix cannot be computed exactly. This is the case, for
instance, if the boundary manifold is given by a discrete set of points or if no analytic
formula is available to integrate the kernel and trial functions. Therefore, we shall consider
an algorithm for the approximation of the boundary surface and for the quadrature of
the integrals. We emphasize that this is the most time consuming and the most difficult
part of the wavelet method. To set up the stiffness matrix, we shall proceed as follows.
We shall replace the parametrization of the boundary manifold by a low order piecewise
polynomial interpolation over the finest grid. Depending on the test functional and on the
trial function, we shall define an appropriate partition of the supports of the trial basis
functions. We shall apply a low order composite quadrature rule over this partition. This
way, we shall arrive at a fully discretized wavelet algorithm with O(N[log N|?) arithmetic
operations to compute the O(N[log N]) entries of the compressed stiffness matrix. If
r = —1, then even O(N[log N]?) arithmetic operations are sufficient. Here N stands
for the number of degrees of freedom. Assuming that the collocation without wavelet
algorithm is stable, the asymptotic error of the exact collocation solution is known to be
less than O(N_(Z_")/z) which is optimal for piecewise linear trial spaces. The fully discrete
wavelet algorithm will be shown to be stable and convergent with an optimal error less
than O(N~2-1)/2).

Notice that alternative quadrature algorithms have been considered by Beylkin, Coif-
man, Rokhlin [3] for integral operators with smooth kernels and by v.Petersdorff, Schwab,
and Schneider [30, 40] (cf. also the numerical implementation by Lage and Schwab [23]) for
boundary integral operators with analytic Green kernels over piecewise analytic bound-
aries. Another quadrature algorithm due to Ehrich and Rathsfeld [19] applies to product
kernels, where one factor has a finite degree of smoothness and no singularity whereas the
second factor can be singular but must be analytic outside the singularity. In contrast
to these, the fully discrete algorithm of the present paper applies to boundary integral
equations over surfaces with finite degree of smoothness and including kernel functions
with finite degree of smoothness. In fact, the required degree of smoothness for the ge-



ometry will be equal to 2[2 — r] 4+ 1, i.e. to the doubled order of convergence increased
by one. Moreover, the kernel function of the integral operator will be assumed to have
continuous mixed derivatives up to order 2[2 —r]| outside the diagonal. In the proof of the
corresponding error estimates, we shall show that the techniques developed for the com-
pression algorithm apply to the analysis of the discretization as well. The only thing to do
is to replace the decay properties in the matrix entries due to the vanishing moments of
the trial functions and the norm estimates due to the smoothness of the solution by error
estimates of the approximate parameter mappings and by estimates of the quadrature
rules, respectively.

The plan of the paper is as follows. In Sect.2 we shall describe the boundary manifold,
the integral equation, and the conventional piecewise linear collocation method. We shall
introduce the three-point hierarchical wavelet functions of the piecewise linear trial space,
the test wavelet functionals, and the corresponding compression algorithm in Sect.3. Sect.
4 will be devoted to the description of the interpolation of the parameter mappings and
to the quadrature algorithm. All proofs will be deferred to Sects.5 and 6. In particular,
in Sect. 5 we shall recall some technical results from the compression estimates, and the
discretization including the approximation of the parametrizations and of the integration
will be analyzed in Sect. 6.

Finally, we remark that our algorithm applies in particular to the double layer poten-
tial equation (cf. the examples in Sect. 2.2). However, though the double layer operator
is a pseudodifferential operator of order zero, the kernel function is the kernel of a pseu-
dodifferential operator of order minus one. Moreover, the constant functions are eigen
functions corresponding to the eigen value one. Using these additional properties and
the technique of the present paper, a rate of convergence O(N) multiplied by logarithmic
factors can be derived for a modified algorithm, which applies to thrice continuously dif-
ferentiable manifolds, which replaces the exact parametrization by a piecewise quadratic
interpolation, and which is based on composite quadrature rules of convergence order two.

2 The Piecewise Linear Collocation Method

2.1 The Manifold

We suppose that the integral equation to be solved is given on a closed boundary manifold
I' C IR? with finite degree of smoothness. More exactly, we assume that ' is the union of
mp triangular patches [3,, i.e.

I = U, T, T = tn(T), (2.1)
T = {(s,t) ceR?: 0<s<1, ogtgmin{s,l—s}}.

Here the k,, denote parametrization mappings from the standard triangle T to the man-
ifold I'. We assume that the ,, extend to mappings from the larger triangle

T¢ .= {(sjt)e]RQ: -3 < s <5, —1§t§min{8+2,4—s}}
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to I' and that these extensions are dr times continuously differentiable. Here dr is an
integer which is assumed to be greater or equal to three when dealing with zero order
operators and greater or equal to four when dealing with operators of order r = —1. This
degree of smoothness is sufficient for the usual convergence estimates of the linear collo-
cation and for an almost optimal compression algorithm. For the quadrature, however,
we need more smoothness. We assume that dr is greater or equal to five when dealing
with zero order operators and greater or equal to seven when dealing with operators of
order r = —1.

Further we suppose that the intersection of two patches T}, and T}, is either empty
or a corner point for both patches or a whole side for T}, and T},,. In the last case we
assume that the representations

Lo N = {fm(ci+Mez—c1)) s 0< A< 1Y,
TN = k(i +Ach—c)): 0<A <1}
satisfy the condition
fm(c1+ A= 1)) = Kw(ci+AdG—d)), 0<A<L. (2.2)

Note that, for the numerical method, the parameter mappings x,, need not to be given
for all points of 7. We shall use only the values of k,, at the points of a uniform grid over
the triangle T'.

To secure stability of the so constructed basis (cf. [38]), we even need two further
assumptions. In connection with the numbering we suppose that, if the corner P of a
patch I}, is contained in the union Um,_:llf‘m/ of the preceding patches, then at least one
of the sides of [},, ending at P is contained in U”T},,;. It is not hard to see that, for a
boundary manifold I' homeomorphic to the sphere and for any fixed triangulation, there
always exists a numbering of the triangular patches which fulfills the assumption. Finally,
for the parametrizations, we suppose the following assumption. Forany m = 2,..., mp—1,
we suppose that, if one of the two “shorter” sides r,,({(s,s) : 0 < s < 0.5}) and
km({(s,1 —s) : 0.5 < s < 1}) is contained in U”;T},, then the other must also be
contained in U”, 4 T,,. This last assumption can always be satisfied if the parameter
mappings k,, are replaced by a composition of x,, with a suitable affine automorphism of
T.

Since the manifold is at least continuously differentiable, for each ) € ', there exists
a unit vector ng normal to I' at ) and pointing into the exterior domain bounded by I'.
The Sobolev spaces H*(T") over ' can be defined in the usual way. We define the space
H?*(T},) over T}, as the image of the Sobolev space over T, i.e.

H*(Ty) = {f: forme H(T)}.

Consequently, we get

m A s 1 3
HS(F) = {(fm)mrzl € @ H (Fm) : fm|Fmﬂl"m/ = fm’|FmﬂFm/}7 5 <s< 5)
m=1
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T 1 1
HS(F) = @ HS(Fm), —5 < s < 5, (23)
m=1

1f]

mrp 1 3
oy ~ | 3 Il fEHT), —5 <5<
m=1

2.2 The Integral Equation

Over T we consider a pseudo-differential operator A of order r = 0 or r = —1 mapping
H*/? into H~"/2. We suppose that A is an integral operator of the form A = K forr = —1
and A = al+ K forr = 0, where al stands for the operator of multiplication by a function
a which may be zero, and the integral operator K is defined by

Ku(P) = /F K(P,Q)u(Q)dol, k(P,Q) := k(P,Q,no). (2.4)

The function k& depends on the points P, () € T', and k and a are supposed to have a finite
degree of smoothness, i.e. the function a and the kernel k are supposed to be dj times
continuously differentiable. More precisely, for any dj-th order derivative 0%, |a| = dj
taken with respect to variable P € I' and for any dj-th order derivative Bg, |B| = dj taken
with respect to the variables (Q € ', we require that 8]%88k(P, @) is continuous if P # Q.
The degree of smoothness dj, is supposed to be greater or equal to two for r = 0 and to
three for r = —1. Moreover, we assume the so-called Calderén-Zygmund estimate, i.e. the
existence of a constant C' > 0 such that, for any multiindices « and 8 with ||, |5 < d,

0205K(P.Q)| < CraslP — Q72 I8 (2.5)

The function k£ need not to be a restriction to I' X I of a function defined on the space
IR? x IR®. Tt may depend for instance on the unit normals np and ng pointing into
the exterior or on any different kind of differentiable vector field over I'. To specify the
notation, we assume a special dependence and take k = k(P,Q) = k(P,Q,ng) with k
defined on at least a neighbourhood of {(P,Q,n): P,Q € T, n =ng} C T x ' x IR
If r = 0, then the integrand in (2.4) can be strongly singular and the integral is to be
understood in the sense of a Cauchy principal value. To ensure the existence of this
principal value, we assume the Mikhlin-Gireaud property (parity property)

k(P,P—i—(Q—P)) - —k(P,P—(Q—P)) 4 (’)<|Q—P|‘1>.

For the operator A including the just defined integral operator K, we assume the
continuity of the mapping

A: H* (D) — HY(D) (2.6)

with s = 0 and s = 1.1 (or s = 1.1 replaced by a different s with 1 < s < 1.5) and the
invertibility of (2.6) with s = 0. For an operator A which satisfies all these assumptions,
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we shall solve the operator equation Au = v with known right-hand side v and unknown
u. To get error estimates with optimal order 2 — r, we finally assume v € H?(T'). Un-
fortunately, the smoothness of the kernel is not sufficient for the quadrature algorithm.
To get a convergence order 2 — r even with wavelet compression and adapted quadrature
approximation, we need dy = 2[2 — r]. Furthermore, we suppose that Ap is 2[2 + r| times
continuously differentiable for all functions p which are linear polynomials with respect to
the parametrization. Note that this higher differentiability and this higher dj. is needed
for the quadrature in the Sects. 4.2.2, 4.3.2, and 4.3.3. The compression in Theorem 3.1
and the quadrature in the Sects. 4.1, 4.2.1, and 4.3.1 can easily be modified such that a
degree of smoothness dj, equal to 2 —r is sufficient. Of course, there would arise additional
logarithmic factors in the estimates of the modified method.

Let us consider some examples. For instance, single and double layer potential equa-
tions belong to our class of operator equations. Indeed, for the single layer case A = A,
corresponding to Laplace’s equation, the order r, is —1, and

1 1
ks (P, Q) == wP—0

In case of the double layer operator A = A; we get the order r; = 0, and the multiplication
function ay = 0.5 is constant. The integral operator K, is defined by

1 ng-(P—-Q)
ka(P,Q,ng) = —EW
Note that the operator K; without al is a pseudo-differential operator of order —1. Bound-
ary integral operators for the Stokes system or for Lame’s system can be represented in a
similar fashion (cf. [25]).
To get a further example, we take the adjoint operator K and replace the normal
vector field ng by an oblique field og. We arrive at a strongly singular boundary integral
operator A = A, which corresponds to the oblique derivative boundary value problem for

Laplace’s equation. In this case, a, := —0.5np - op and K, is given by
1 op - (P - Q)
k,(P,Q, = —-——
(PQor) =~ pqp

2.3 Grid and Collocation Points

Let us introduce a hierarchy of uniform grids over the standard triangle T'. For the step
sizes 271, 1 =0,..., L, we set

AT = ATURT,
A= @227 0<i <2, 0< < min{2' i},
N o= {2 2727 s 0<i< 2 0<j < minf2 — i+ 1}

6



Figure 1: Grid AP’

and denote the grid points by 7 = (s,t) € AF. The grid AT is the restriction of the grid
(cf. Figure 1)

AP ={G27 27 s ije z?fu{TT 2T + (i27 2 g € 27
to the triangle T'. Using the parametrizations, we arrive at a grid hierarchy on T'.
A {I{m(T) cm=1,...,mp, TE AZT}

Clearly, a grid point P = k,,,(7) may have more than one representation. If P is in the
interior of a side of the triangular patch T, which is a common side with T}/, then there
are exactly two representations P = k,,(7) and P = k,(7'). If P is a corner point of a
patch, then there exist & > 2 representations P = Ky, (T1) = K, (2) = ... = K, (Tk)-
We introduce AT as the set of those P € A] whose representation P = k,,(7) with the
smallest m satisfies 7 € AT, i.e.,

A] = Uit {Iim(T) 1 €N k(1) & Ug;llffm,(AlT)},

and arrive at Al = AT UPAT. The points of A] will be denoted by upper capital letters
like P and Q.

To each grid AT there corresponds a partition of T into triangular pieces. Indeed, let
us introduce the sets of centroids

2 11 15 11 o 1
= ()8 D)k () ok () vem)
0 26) " 26) " 6'2) " 6'2) " ©
of = {277 renl’}, of = Tnof,
O = {nm(T): T en!, m:1,2,...,mp}.

For each point 7 € O], there exist three uniquely defined neighbour points 71, 7, and
73 such that 71,7, 7 € AT, that the triangle T, spanned by the three corners 7y, 7o,
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and 73 is of square measure 272 /4, and that 7 is the centroid of T,. We arrive at the
triangulation {7, : 7 € OF} of T. Note that, for I’ > [, the centroids in O7 are located
at the boundaries of the smaller triangles T} with 7/ € OF. Hence there is a one to one
correspondence between the triangles T, over several levels and the centroids in Uj 07 .
Similarly to the triangulation over T, we define the triangulation {7, : 7 € Dl]RQ} of IR%.
For I' and a point Q = k,,(7) €0, we set [g := {km(c) : o € T,} and arrive at the
triangulation {Ip : @ € O7'}. Further, we denote the level | of the points @ € O] by
[(Q). Notice that each partition triangle Iy, @ €0}, of the generation [ splits into four
subtriangles of the generation [ + 1.
Beside the grids A] we introduce the difference grids

LTV AN\ AL =0, L1,

and obtain AL = U-! VI, For P € AL, we denote the unique level I for which P € VI
by I(P). Analogously to VI, we define the difference grids and the point levels over T
and R? and get AT = UF=Y, VT as well as A® = UE-!, VI, Finally, in accordance
to the splitting A} = AT U AT, we introduce 'V = VI nAl,; for i = 1,2 and get
VI ='VTU?VT as well as 2V] = A7, Similarly, we define "V and 'VT.

Now the set of collocation points will be the grid AL, i.e. the test functionals of the
collocation scheme are the Dirac delta functionals §p with P € AL. The test space Dir]
is the span of all these dp.

2.4 The Trial Functions

Figure 2: Hat function (s,t) — Yo(s,t).



To prepare the introduction of linear spaces, we first define two-dimensional hat func-
tions for the grid AT’

o (s,t) = max{(),l—max{|s—t|,|s+t|}},
(s, t) = max{0,1—2max{|8|,|t|}}.

Clearly, the function % and the function % shifted to the point (0.5,0.5) are piecewise
linear functions subordinate to the triangulation {T} : 7 € OF'} (cf. the grid in Figure
1, the graph of 'y in Figure 2, and the graph of %o shifted to the point (0.5,0.5) in Figure
3).

Now we get piecewise linear basis functions by dilating and shifting ' and % to each
grid point. More precisely, for each grid point on 7', we set

o (o) = T (21(0 - 7')) , TeNT.
With the help of the parametrizations we introduce the piecewise linear (with respect to
the parametrization) hat functions over I'. For each grid point P € AT, we set

op(Q) =

{ ¢l (o) if there exist m, 7,0 s.t. Q = kp(0), P = kip(7) (2.7)

0 else.

Due to the assumptions on the parametrizations (cf. (2.2)) the basis functions are well
defined. Note that if P € Al is in the interior of the parametrization patch I, then the
support supp b of @b is contained in T,. If P = K,,(7) = ki (7) is in the interior of a
side, then supp @b C I, UT,,. For corner points P = K, (T1) = bimy(T2) = ... = ki, (Tk)
of the triangular parametrization patches we get supp pb C UF_ T, . We denote the span
of the functions b, P € Al by Lin}. Obviously, this is the space of all continuous and
piecewise linear functions over the partition {Tp : @ € O} } corresponding to the grid
AT. Here linearity is understood with respect to the parametrization. The space Lint
will be the set of trial functions for the collocation.

2.5 The Collocation Scheme

Now the collocation method seeks an approximate solution uy, for the exact solution u of
Au = v. This is sought in the trial space Lint by solving

Aug(P)=v(P), Pe Al (2.8)

Using the representation u; = 2pent Eppk, the collocation equation can be written in
form of a matrix equation Ar ¢ = n, where we set

£ = (gP)Pesz n-= (nP)PeAEa np = v(P).

The matrix of the linear system is the so called stiffness matrix given by
Ap = (app)p pear, ap,p = (Agp)(P').

9
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/

Figure 3: Hat function (s, ) — %p(s — 0.5,¢ — 0.5).

Moreover, using the interpolation projection Ry defined by Ry f := ZpeAE f(P)pk, the
collocation can be treated as a projection equation of the form R; Au; = Ryv.

Throughout this paper we shall assume that the collocation method applied to the
operator equation Au = v is stable. For the exact definition of stability and some remarks
we refer to Sect. 5.3. If the collocation is stable, if the exact solution w is in H?(T'), and
if h ~ 27 denotes the step size of the discretization, then the approximate solution u,
satisfies the well-known optimal convergence estimates

||U_UL||L2(F) < Oh27 I'ZO,—L (29)
lo —urllgaqpy < OB, r=—1. (2.10)

3 The Wavelet Algorithm

3.1 The Wavelet Basis of the Trial space

Now we introduce a simple wavelet basis for the piecewise linear space. These functions
have been considered first for the case of different grids in the plane R? (cf. [22, 42, 24])
and are called three-point hierarchical basis functions. More precisely, for the plane and
for any point 7 € Agﬁ, we set (cf. Figure 5 for the supports of such functions)
@0 if € VI
Pri=4 ot -1 {golgl + gogl} if r € 'V with I =1(r) € {0,...,L—1}  (3.1)

Pt — Lot 4 ol if 7 € 2V with [ =1(7) € {0,...,L — 1}.

T2

Here 7, and 75 denote the uniquely defined neighbours of 7 on A} (cf. Figure 4). Indeed
any difference grid point 7 € 2V ¢ AT has exactly two neighbour points 7 and 7, at

10



2

Figure 4: Neighbours 7, and 7.

NN NS NN N

N NN Y :\ /:\

\‘

Figure 5: Supports of wavelets v, and ).

minimal distance which belong to A" € AT, Any difference grid point 7' € 'V ¢
Alﬂfl has exactly two neighbour points 7{ and 75 at minimal distance which belong to
NR* Alﬂfl. The functions t, with 7 € VZ° [ = 0,...,L — 1 have two vanishing
moments, i.e. they are orthogonal to all constant and linear functions.

The wavelet functions ¢, on the manifold T' are slight modifications of (3.1). The
definition is not very difficult. However, to motivate this definition, we shortly explain
the construction:

e We start with the first parametrization patch I'; and the definition of functions p
such that P € AL NT;. First we restrict the functions v, from (3.1) to T'. If these
restrictions intersect the boundary of T', then we modify them adding restrictions
of three-point basis functions 1, with 7' outside of T'. The resulting basis functions
Y& are restrictions of functions which are symmetric (even) with respect to the
boundary of T. For P = k(7), we take the composition ¢p = ¥ o ;! to arrive at
functions over the parametrization patch I'y. To get continuous trial functions over

11



I', we extend the ¢p with P € VI NIy, I = —1,0,...,L—1 from I'; to I such that
the extensions are piecewise linear on the partition {I'p: @ € Df+1} corresponding
to the grid Al,; and vanish at all grid points from A}, \ T'y.

e Next we define the functions ¢p such that P € AL N{Ty\ I';}. We start again
with the restrictions of (3.1) to 7. Since we have already basis functions over the
boundary I'y N I'y, we need basis functions on I's vanishing over I'y N 'y, i.e. basis
functions on T vanishing on the side S’ for which k5(S") = 'y N T'y. Therefore, we
modify the functions on 7" such that they are restrictions of functions antisymmetric
(odd) with respect to the side S’ and symmetric (even) with respect to the sides
S of T with ko(S) ¢ I';. Clearly all these functions vanish on S’. We take the
composition with x5! to arrive at functions over the parametrization patch I'y which
vanish over I's NIT'y. To get continuous trial functions, we extend these functions p
with P € VI N{,\T1}, I =—1,0,...,L—1 from 'y to [ such that the extensions
are piecewise linear on the partition {I'y : @ € Oj,;} corresponding to the grid
AJ,; and vanish at all grid points from A7, \ Ta.

e Analogously to the previous step, we define the functions p such that the point
Pisin AT n{l3\ (T1 UTy)}. Then we construct the functions ¢p with point P
in AL n{ly\ (T; UTyUT;)} and so on. Finally, we define ¢p with point P in
AL T, \ U ', b

m=1

For more details and the properties of the basis we refer to [38] and Sect.5.1. The final
definition of the three-point hierarchical wavelet functions over the manifold I' is

0% if Pe V',
yp = Q= L {ePPight 4 ePPRl L i P e 'V with 1€ {0,...,L—1}  (3.2)
ot = {ePPightt 4 PPt it P e 2VE with 1 € {0,..., L — 1},

where P, and P, are the uniquely defined neighbours on A};l of P e Vi ie P =kp(n)
and Py = Ky, (12) if P = Kp,,(7) is the representation with the minimal m € {1,...,mr}
and if 77, 7 are the neighbours of 7. The coefficients PP are equal to one in almost all
cases. Only if the point P’ = P;, P; is at the boundary of a parametrization patch, then
a value ePF" different from one is needed. More precisely, the coefficients e©F" are given

12



by (cf. Sect. 2.3 for the definition of AT)

(1 if there is a parametrization patch I, such that P and P’ belong
to the interior of the triangle T,
or there exists a side I}, N[, of a parametrization patch such
that P and P’ belong to the interior of the side T}, N T,
2 if there exists a side I}, N[}, of a parametrization patch such
that m < m’, that P is an interior point of I},,, and that P’
belongs to the interior of the side [}, N 1T},
or P' =Nk T, is a corner of a parametrization patch, P’ € A,
ePP = the point P is an interior point of a side I},, N T,,,, and (3.3)
my <m;, t=2,...,k
4 if P'=nk_ T, is a corner of a parametrization patch, P’ € AT,
the point P is an interior point of a side [},,, N T},,, and
my <m;, t=2,...,k
or P' = nk_ T, is a corner of a parametrization patch, P’ € AL,
the point P is an interior point of the face I3,,, and
my <m;, t=2,...,k
[ 0 else.

Clearly, the support of ¢p is contained in the union of all those T}, in which P or at least
one of the neighbour points P; or P, is located. The basis {¢p : P € AL} spans the trial
space Lint since the system is linearly independent (cf. (5.1)). Moreover, it represents a
hierarchical basis, i.e.
-1
{p: Penrl}= U {¢r: PeV]},
=1
Ling C Lin} C ... C Linj,
-1
Linj, = span U {@/)p : Pe VZF}
I=—1
The function ¢p with P € V], [ =0,..., L—1 and with supp ¢» contained in the interior
of only one parametrization patch has two vanishing moments, i.e. it is orthogonal to
the set of all functions that are constant or linear with respect to the parametrization.
Orthogonality means here orthogonality with respect to the L? scalar product in the
parameter domain.

3.2 The Wavelet Basis of the Test space

Let us retain the definition of neighbour points P, P, € A] of Pe V], 1=0,...,L—1
from the last subsection, and recall that dp stands for the Dirac delta functional at point
P. With this notation, we introduce the functionals

5p—%{(5p1—|—6p2} 1fP€VZF Wlthl:l(P)G{O,,L—l} (34)

13



5] T 2
Figure 6: Interpolation points for my = 3.

Clearly, the support supp ¥p is contained in I}, if P belongs to I,,. In particular, supp Jp
is on the side of a parametrization patch if P is on this side. If P is a corner of a
parametrization patch, then suppdp = {P}. The set {Jp : P € AL} is a hierarchical
basis of the test space Dirk (cf. the Sects.2.3 and 5.2 ). Forany P € VI, 1 =0,...,L—1,
the functional ¥p has two vanishing moments, i.e. it vanishes over the set of all functions
that are constant or linear with respect to the parametrization. To simplify the notation,
some times we shall write f(Jp) for Jp(f).

The basis {Jp} will be suitable for the compression applied to operators of order r = 0.
For r = —1 and for the quadrature estimates, a basis with more vanishing moments is
needed (cf. [12, 40]). Thus we have to generalize the construction of the test functional
basis to get a system {¥p} with my vanishing moments, where my > 2 is an arbitrarily
prescribed positive integer. To this end we follow the ideas of Harten and Yad-Shalom
[21]. We choose the integer Iy such that 22 < m, — 1 < 271, Moreover, for each
To = km(T>) € OF with the three corner points i, (1), fm(71), and k,,(71), we introduce
asystem {Pg,;: i=1,2,...,my(my + 1)/2} of interpolation points on Iy such that the
first three points are the corner points, such that each side of Iy contains exactly my of
the points, and such that all points are from the grid I'uN A{‘—I—lﬂ—l' If my = 2, then {Pp;}
is exactly the set of corner points. For my = 3, my = 4, and my = 5, we choose the
points Py ; = Ky, (7;) according to the figures 6, 7, and 8. By lg;, i = 1,...,my(my+1)/2
we denote the interpolation basis (Lagrange basis) of the space of polynomials with total
degree less than my defined by

my(my + 1)

lQ,i (PQJ') — 51',9', Z,] — 1,2, ey 2
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Figure 7: Interpolation points for my = 4.

Finally, the generalized test functional ¥p is given by

f(P) ifPeVi,il=1,...1y—2

Op (f) = { F(P) = St D2 10 (P) f (Poy) if PeVE, 1 1=0,...,L—1ly (3.5)
PeTly, Qeny.

Note that this definition is independent of the choice of I'y if P is contained in more than
one triangle Iy, i.e. for P € ToNTq, Q,Q" € O and P € Vi, ,, we get

Op (f) = f(P) - > li (P) f (Poy)-
i=1,..., m,g(m19+1)/2
PQ,iGFQﬂFQ/

Clearly, if f is a polynomial of degree less than my with respect to the parametrization
Km, then the interpolation polynomial R — > lg(R)f(Pg.) coincides with f, and we get
Up(f) = 0. In other words, Jp has my vanishing moments if I(P) > 1y — 1. If my = 3 and
P €Ty = ky(T;) with T, as in figure 9, then we get

Bonton (1) = 1 (sm(0)) = 37 (sm(m)) = 51 (sn(70)) + 5 (in(),
hnton (1) = 1 (nl02)) = 1 () = S () + £ (1)),
Genton (1) = F(n(03)) = 11 (1)) = 21 (sn(7)) + 57 (1) ).
Genion (1) = 1 (nl03)) = 31 (sm(16)) = 51 (7)) + 37 (1m0 ).



Benion (1) = F(nl0)) = 1 (1)) = 51 (sn(72)) + 537 (1) ).

onton (1) = 1 (n(09)) = 37 (s (5)) = 51 (7)) + 57 (1n(),

enton (1) = 1 (m(2)) + 5 (km(m)) + 57 (s (7)) = 77 (sn())
5 (m(re)) = 57 (sm().

Bonton (1) = £ (o) + 5 (sin(m)) + 57 (sn(7) = 17 (1m0 )
7 () = 37 (k)

hnton (1) = 1 () + 5 (k) + 57 (sm(2)) = 31 ()
Ss{et) - o),

3.3 Wavelet Transforms

For the trial space Lint we have two different systems of basis functions {pf} and
{1p} at our disposal. We denote the basis transform by 74 (lower index A stands for
ansatz), i.e. the matrix 74 maps the coefficient vector ¢& := (fﬁ)PeAE of the represen-
tation up = Y pear ¢Epk into the coefficient vector 8 := (BP)PGAE of the representation
ur = EPGAE Bpp . This transform can be determined by a pyramid type algorithm which
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Figure 9: Points for test functional if my = 3.

is called fast wavelet transform (cf. e.g. [17]). Similarly, the inverse transform 7, ! can be
realized by such a pyramid scheme. Analogously to the trial space, we have two different
bases in the test space. By Tr (lower index T stands for test space) we denote the linear
transform which maps the vector v = (vp) pear := (Jp(f)) pear of functionals applied to a
function f into the vector of function values n = (np) pear := (0p(f)) pear = (f(P))pear-
Again, the transform can be realized by a fast wavelet algorithm. The inverse 7" is sim-
ply a multiplication by a sparse matrix.

3.4 Wavelet Algorithm

Analogously to the stiffness matrix Ay in Sect.2.5 we can set up a matrix with respect to
the wavelet basis. We introduce A} by

AY = (ag,JD)P,,PEAE Ll p = Ip (Ayp). (3.6)

Note that Ap = Tr A7 Ta. It will turn out that most of the entries ap, p are so small that
they can be neglected. Thus in the next subsection we will give an a priori matrix pattern
P c AL x AL with no more than O(2*/L) elements. We will replace A¥ by the sparse
matrix obtained by the compression

9p (Kyp) if (P!, P) € P

Ap” = (ap;,P)P’,PeAE’ apl.p = Vp(avp) + { 0 else. (3:7)

In the numerical computation the entries have to be computed by approximating the

parametrization and by quadrature. We denote the approximate value for ap/’p by apiy

17



and set

A = TrAVCT,,  AST = Tp AYSIT,. (3.8)

w7c7q Pyp— w7c7q
A0 = (058) ey
With this notation we can describe two variants of the wavelet algorithm which differ in
the iterative solution of the discretized linear systems. The first is designed for integral
operators of arbitrary order r and requires the application of one transform 7, ' and one
transform 77 ' during the whole algorithm.

First Wavelet Algorithm

i)  compute the right-hand side v := (9p(v))p = T3 - (v(P))p

ii) compute the sparsity pattern P

iii) assemble A7“? by a quadrature algorithm

iv) solve A7 = ~ iteratively, e.g. by the diagonally preconditioned (3.9)
GMRes method

v)  compute £ =T, '3

vi) post processing of the values u(P) ~ &p, e.g. computation
of linear functionals of the solution u

The second is designed for operators of order r = 0. Though an application of the two
wavelet transforms 74 and 77 is required in each iteration, the corresponding number of
all iterations is often much smaller, and the second algorithm is faster.

Second Wavelet Algorithm

i)  compute the right-hand side n := (v(P))p

ii) compute the sparsity pattern P

iii) assemble A7"“? by a quadrature algorithm

iv) solve A& = n iteratively, e.g. by the GMRes method, (3.10)
whenever a multiplication by matrix Ay is required, then
multiply by T4, by A7 and by Tr

v)  post processing of the values u(P) = &p, e.g. computation
of linear functionals of the solution u

The GMRes algorithm is described in [39], and the diagonal preconditioner for the algo-
rithm (3.9) will be derived in Sect.5.3 (cf. (5.14)).

3.5 The Compression Algorithm

From now on we suppose that the number my of vanishing moments of the test functionals
is equal to 4—r. We note, however, that for the compression and for most of the quadrature
algorithm the choice my = 2 — r would be sufficient. Only for the quadrature in Sect.
4.3.3 the choice my = 4 — r is crucial. In order to introduce the compression pattern P,
we need some notation. Let us retain the definition of VI and AL from Sect.2.3. For
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P € AL, recall that [(P) is the level of P (cf. the end of Sect.2.3). By ¥p we denote the
support of the function ¢ and by Op the convex hull of the support of the test functional
Jp, i.e., Up := Ky, (conv (k! (supp Jp))). Now we take a constant d > 1 and define the set
P as the set of all (P’, P) € AL x AT such that Up is completely contained in the interior
of a single parameter patch I}, and

dist (Up, Op) < max{2—l(P), 2—l(P’)7d20.6L—0.7l(P)—0.91(P/)} (3.11)
or such that ¥p contains points of at least two parameter patches and
dist (Up, Opr) < max {2717 2717 gol-0TIP)=L3IP) ] (3.12)

In numerical computations the compression parameter d should be determined by exper-
iments. However, to get an asymptotically optimal compression result which is asymp-
totically optimal up to logarithmic factors and which is convenient for the subsequent
quadrature scheme, it is sufficient to choose d sufficiently large. The well-known proof
techniques of [12, 29, 40, 35] yield

Theorem 3.1 For the pattern P, the number of non-zero entries Np is less than C' L22F ~
Nlog N, where N ~ 2% s the number of degrees of freedom. If the piecewise linear
collocation is stable, then the collocation method with compression is stable, too. The error
estimates (2.9) and (2.10) remain valid if u, = Y. Epthp is the solution of the compressed
matriz equation A7(Ep)p = (9p(v))p.

Clearly the number of necessary arithmetic operations of all steps in the algorithms
(3.9) and (3.10) except the steps iii) and iv) is less than C' Np. Step iv) requires
C Nplog N operations. However, if we solve the systems successively over the grids
A7, 1 =0,...,L and if the initial solution for the grid AJ,, is the final solution from
the coarser grid AL, then the number of necessary iterations is uniformly bounded. This
cascadic iteration method requires no more than C' Np operations. The key point for a
fast algorithm, however, is the implementation of step iii). Usually, this is the most time
consuming part of the numerical computation. For its realization and complexity, we refer
to the results in Sect.4 and the proofs in Sect. 6. Further details for the implementation
of the wavelet algorithm can be found in [23, 34].

4 Approximation of the Parametrization Mappings
and Quadrature

4.1 Parametrization and Quadrature for the Far Field

Now we consider the computation of the matrix entries api’s (cf. Sect. 3.4). Obviously,
the terms Jp/ (athp) (cf. (3.7)) can be computed without difficulty, and the corresponding
number of arithmetic operations is less than O(Nlog N). Therefore, we only have to
deal with the computation of ¥p (K1p) corresponding to the integral operator K. In
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this subsection we shall indicate the assembling of those entries for which dist(¥p, Op/) is
larger or equal to max{2 “") 2-UF)} These entries will be called the far field entries.
For the quadrature over Wp, we shall apply a composite quadrature rule with a fixed
basis rule of convergence order three or four. Thus we have to start with the introduction
of the partition for the composite rule. Clearly, ¥p is the union of a finite number of
triangles I'p with [(Q) = I(P)+1 where the trial basis function p is linear with respect to
the parametrization parameter. In general, however, this first partition is not sufficiently
fine. Instead we split Up into the union of all Iy with level I(Q) = I(P, P’) + ly, where

I(P)+1 if dist(¥, Op)tt > 209 L-UP)—i(P")
I(P,P) = ¢ 1+1 if dist(¥, Op/)t! < 209E-UP)=UP) and if (4.1)
90.9 L—1-I(P") < diSt(\I/, G)P’)Ll < 90.9 L—(I—-1)—=I(P")

and where [ is a fixed integer which is supposed to be sufficiently large. This constant
[ is introduced to enforce stability. For practical computations, however, we expect that
the choice [y = 0 is acceptable. In accordance with (3.7) and (2.4), we shall introduce

1 3 w,c,q
quadrature approximations api po for

Ip (/FQ k(- R, ng)up(R) dRF> . (4.2)

Here the functional ¥/ is applied to the function in brackets depending on the variable

indicated by a dot. Using these api‘p ), we define the entries ap/°s by

0 )
w;c7q :: 19 7 w7c’ ] 4.3
apr p pr(ayp) + { EQGDIF(PHI: T Csupp ¢p aP’Jg,Q if (P, P) € P. -

We shall defer the definition of the near field terms apis ), i.e. the terms with the property
dist(Up, Op) < max{2'P) 27UF) to Sects. 4.2 - 4.3. In this subsection we introduce the

far field terms ap/F .
Let us fix a far field subdomain Ty with Q = k,,(7) € O and [ = [(P, P'). Using the

parametrization r,, over T, = r,}(Tg), we write the integral of (4.2) in the form

i ([ 5 in0)s 1 )0 () () ) (1.4

where J,,(0) := |0y, £m(0) X Oyl (0)| is the Jacobian determinant of the transformation
km at 0 = (01,05) € T, and where ¢p(0) stands for the factor ¢p(R) = p(kim(0))
which is independent of the parametrization r,, (cf. (3.2) and (2.7)). We derive the
approximation api’p , for (4.4) in two steps.

In the first step, we replace the parametrization ,, over T by a piecewise polynomial
interpolation ] . For a fixed o € T}, the polynomial interpolant is defined over the level L
triangle T, determined by 7/ € OF and o € T, C T,. The polynomial interpolation «/, is

chosen to be of degree m, := 3 —r which is greater than the optimal order of convergence
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m := 2 —r. In particular, for m, = 3 a cubic interpolation with ten interpolation knots
can be chosen. For m, = 2, which unfortunately is less than 3 — r and which leads
to suboptimal rates of convergence, a quadratic interpolation with six knots would be
possible. This quadratic interpolation is defined as in [2]. Denoting by 7;, i = 1,2, 3 the
three corner points of the triangle T» C k.'(Tg), respectively, and by 7;, i = 4,5,6 the
mid-points

1 1 1

7'425(7'24-7'3), 7'525(7'14-7'2)7 7'625(7'14-7'3),

of the three sides of the triangle, we set

i (0) = Zﬁm(Ti)ﬁi(U), (4.5)

SN

[

1| 73+ s(m1 — 73) +t7'2—7'3> = s[2s —1],

(

N7 N7 N N NN

2T3+8T1—T3 +t7’2—7'3 = t[?t—l],

o

s\ 3+ s(m—7) +t(e — T = (1-s—=t)[)2(1—-s—1t)—1],

o

4

£5 T3+8T1—T3 +t7’2—7'3 = 4St,

Lo+ s(m—m3)+t(r—13)) = 4s(1—s—1).

)
T3+ s(11 — 73) +t72—73> = 4t(l —s—1t),

In any case, we approximate (4.4) by

i ([ K5, (0). 1 ) (0) T () dor ) (4.6

where J! (0) := |0y, k), (0) X O, k! (0)| is the Jacobian determinant of the transformation
Ky, at o = (01, 02) € T;. The symbol n, (o) 100 the last formula stands for the unit vector
at the point . (o) which is normal to the approximating surface «, (7).

In the second step, we split the integrand of (4.6) into the product f(o)o(o)

f(o') = k('v/{;z(o')vnﬁ'm(ff))jr;z(o')v
5(0) = o(ku(0)) = drlo).

Note that ¢ is linear with respect to . We apply a product quadrature with weight ¢ and
of order q := 3 — r to the integral in (4.6). In general, for all following approximations,
we always assume that the order of convergence of the quadrature rule q coincides with
the degree m,, of the approximate piecewise polynomial parametrization. If q = 3, then
we choose the six point rule based upon quadratic interpolation which has been used for
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(4.5). In case q = 2, which unfortunately is less than 3 — r and leads to suboptimal rates
of convergence, we take the three point rule. The product quadrature rule takes the form

3

| f@)ie)do ~ 3 FEIBEGL. VR = [ daulo)ip()ds  (47)

v=1

where éQ,v is the linear function on T, defined by (;BQ,U(TU/) = 0,,s. Similar rules including
more knots 7, and higher order Lagrange interpolation polynomials qBQ,U can be defined
for arbitrary q. An easier but equivalent choice for q = 2 only is to replace the three
corner points 7, by the three mid-points of the sides of triangle 7). If the quadrature
weights are one third of the measure of 7., then the resulting quadrature is known to be
exact for quadratic functions and we get

3

1 -
[ I@ee)ds = S FEbEG. Gl = 3T le(r). (18)

v=1

In any case, the integral (4.6) is approximated by

CL%,CIQIQ = 19p/ (Zk Qv’nQ’ j’ (T,U) g;é’?y) , (49)

where Q' := k! (1,) denote the corner points and, possibly, some additional quadrature
knots of the triangles «/,(T;), respectwely The symbol ng, in the last formula stands for
the unit vector at the point Q! = k,(7,) which is normal to the approximating surface
K (T).

m

In Sect. 6.1 we shall prove that the additional error due to the far field quadrature is,
roughly speaking, less than the error of the exact collocation. Analogous error estimates
are true also for the approximation of the near field and the singular integrals in the Sects.
4.2 - 4.3. More precisely, we get

Theorem 4.1 Consider the wavelet collocation and the matriz compressed according to
the pattern P of Theorem 3.1 and suppose the integer constant ly is sufficiently large. If
the exact collocation described in Sect. 2.5 is stable, then the compressed collocation with
approximation of the boundary and with the quadrature of Sects. 4.1 - .3 is stable, too.
The error for the collocation solution ur, including compression, approximation of the
parameter mappings, and quadrature, satisfies (2.9) and (2.10), respectively. The number
of quadrature knots and the number of necessary arithmetic operations for the computation
of the stiffness matriz A7 is less than C N[log N]* if r = 0 and less than C N[log N|?
ifr=—1.

Proof. Due to Sect. 5.3, the stability and the error estimates will be a consequence of

the Lemmata 6.1, 6.3, and 6.5. The complexity bound will be shown in the Lemmata 6.2,
6.4, and 6.6. "
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4.2 Parametrization and Quadrature for the First Part of the
Near Field

4.2.0. Let us fix ¥p and tp with 0 < dist(¥p, Op/) < max{2 P 274P)} and let us
consider the integral (4.2) for which we seek the partition of supp ¢ into triangles I'y and
the corresponding quadratures api‘p,. The near field part with dist(¥p, ©Op) = 0 will
be treated in Sect. 4.3. In particular, the computation of the singular integrals will be
discussed in Sect. 4.3. For the first part of the near field, we shall distinguish two cases
in this subsection.

4.2.1. We start with the case determined by [(P) > I(P’) and 0 < dist(¥p, Op).
In view of the near field condition, we have 0 < dist(¥p, Op) < 27'F). Moreover,
there is a constant cp > 0 such that ep27/F) < dist(¥p, Op/) < 21" Indeed, suppose
cr is the reciprocal Lipschitz constant of the inverse parametrization mappings, i.e. for
m = 1,...,mpr and for any pair of points 7, 7 € T, there holds

cp |1 =Tl < JEm(T1) — fm(T2)].

Set cp := ¢p/2. Then the distance of a point 7 of the level [ grid to a triangle T, of
the level [ triangulation not containing 7 is at least 0.52°'. Hence, the distance of a
point P, := k,(71) of the level [ grid over T' to a triangle Iy := k,,,(T%,) of the level
[ triangulation not containing 7y is at least cp 27!, Since the points of Jp are on the
grid of level I[(P') + 1 and Up consists of triangles of level [(P) + 1, the lower estimate
cr27'P) < dist(¥p, Op:) follows.

We introduce the integer [(P, P') just as in (4.1) but with dist(¥p, Op/) replaced by
dist(¥p, supp ¥pr), i.e. this time the distance is measured to the single points in supp Jps
and not to their convex hull ©p:. The partition of Up = supp 9p is obtained like in the far
field case in Sect. 4.1 as the union of all I'y of level I(P, P') +1, contained in ¥p. Retaining
the definition g = m,, := 3 — r and using the definition (4.3), we get the corresponding
quadrature approximation.

4.2.2. Next we consider the case determined by [(P) < [(P’) and 0 < dist(Up, Opr).
In view of the near field condition and the fact that ¢p resp. Up are defined on the grids
of level I(P) resp. I(P'), we have cp27/F) < dist(Up, Op1) < 27UP). Proceeding similarly
to Sect. 4.1, we set Dist := dist(¥p, Op/) and introduce I(P, P') by

I[(P)+1 if Dist®® > 2095L-1.1(P)-041(P)

l+ 1 if Dist0.55 < 20.95L71.1l(P’)70.4l(P) and if
l(P7 PI) = 20.95L—1.1l(P')—H—O.ﬁl(P) < Dist0.55 (410)

Dist05% « 9095 L—L1I(P')~(I=1)+0.61(P)

The partition of Up = supp ¢p is obtained in three steps.
i) We split Up into the triangles of level I(P) + 1.
ii) We introduce the dyadic partition of each of these triangles into a minimal number
of triangles from {Ty/, @' € AL} such that the distance of these triangles to Op is
greater or equal to 2749V~ This is obtained as follows. We start with the level
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[(P) + 1 triangles of step i) and let the level [ run from [ = [(P) + 1 to L. For
each level [, we have a certain number of level [ triangles. We check if the distance
of these triangles to Op: is greater or equal to 27'"1. If yes, then we keep these
triangles. If not, then we split these triangles into the four subtriangles of level [+ 1
and replace the level [ triangles by the new level [+ 1 triangles. The procedure ends,
if no triangle of level [ 4 1 is produced. Obviously, the number of all these triangles
I'gr is less than a constant times L.

iii) Now we split each of the triangles I'yy from the previous step ii) uniformly into
higher level triangles. Note that in Sect. 4.1 each I(P) + 1 level triangle of ¥p
is split into the [(P, P’) + Iy level subtriangles, i.e. the partition is refined over
[[(P,P")+1y— (I(P)+1)] levels. Analogously, we refine the partition of step ii) over
[[(P,P") +1y— (I(P)+1)] levels. In other words, each triangle ['ys of ii) is split into
the triangles Ty with Iy C Ty and Q € OF, 1:=1(Q') + [I(P, P') + 1o — (I(P) + 1)].

We denote the resulting partition of Wp by {I'p : @ € Op p}. Using this partition and
proceeding analogously to Section 4.1, we arrive at the quadrature approximation defined
by

api'p = Op(ayp) + > apipo; (4.11)

r
QGDP’,P

where the terms api‘5, are given by (4.9), where the product rule (4.7) is replaced by the
analogous product rule of order q := 4, and where a piecewise polynomial interpolation

k., of degree m, := q is employed.

4.3 Parametrization and Quadrature for the Second Part of the
Near Field

4.3.1.0. Throughout the present section we suppose dist(¥p, Op/) = 0. First we consider
the case [(P) > [(P’). By definition, the functional ¥Jp is a linear combination of point
evaluation functionals

Apt

e (f) = enf(Py)

A=1

and ¥ := supp ¢ is the union of level /(P) + 1 triangles Ty, for = 1,..., up. According
to this splitting, we get

Aps ©p
ap’y = Oplap) + Y e Y apip, (4.12)
=1 n=1

A, ~ /F k(P\, R, ng)p(R) dgT.
Qu

In the following we compute apYp , analogously to api‘F in Sect. 4.2.1.
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4.3.1.1. If dist(Ty,, P) > 0, then dist(I,, P\) > cr2 7). We introduce I(P, P') =
[(P, A\, P', i) just as in (4.1) but with dist(¥, ©ps) replaced by dist(I'y,, Py). The partition
{To: Q€ DCS;L,PJ of T, for the quadrature is obtained like that of Wp in the far field
case in Sect. 4.1 as the union of all Ty of level [(Q)) contained in 'y, with

, 0 ifr=-1
Q) = l(P,P)+l0+{ {LQIOgL] e (4.13)

3—r

Using the definition (4.12) and

B = Y SR Qg T (4.14)

r v
QED,, py

w7c7q

with the quadrature weights bp5%, of a quadrature rule of order q := 3 —r (cf. (4.7) and
(4.8)) with an approximate piecewise polynomial interpolation &/, of degree m, := q, we
get the corresponding quadrature approximation.

4.3.1.2.1. If dist(Ty,, P\) = 0, we introduce I(P, P') just as in (4.1) but with

dist(¥, ©p:) replaced by 27/). Additionally we assume that Py is contained in the in-
terior of exactly one parametrization patch I'y, or that r = —1. The partition of I'p, is
obtained in two steps (compare the three steps in Sect. 4.2.2).

i) We subtract the triangles I'g, of level mL, defined by Py € Iy, C I, from I, .
Then we introduce the dyadic partition of I'y, \ Ulp, into a minimal number of
triangles I'yr with levels [(Q') between [(Q,) + 1 and mL such that the distance of
these triangles to P’ is greater or equal to 2749~ Obviously, the number of all
these triangles is less than a constant times L.

ii) Now we split each of the triangles I'yy from the previous step i) uniformly into higher
level triangles. Each triangle Ty of i) is split into the triangles Iy with Ty C Ty
and Q € OF such that

[ = 1(Q)+[I(P,P)+1y— (I(P)+1)] +{ (f - ifr=-1 (4.15)

T logL] if r =0.
We denote the resulting partition of T, by {Tp : Q € Oy p,}. Using this partition
and the formulae (4.12) and (4.14) with quadrature order q = 3 —r and with a piecewise
polynomial interpolation &, of degree m, := q, we obtain the quadrature approximation.

4.3.1.2.2. If r = 0 and if P, is at the boundary of a parametrization patch and
thus contained in at least two parametrization patches I',,, then we have to modify the
triangles I'p- in the partition. This is necessary to get the right value of the integral
in accordance with Cauchy’s finite part definition (cf. [26]). More precisely, suppose
P\ = Km,(1;), i = 0,...,i\ and denote the level mL triangles of the parametrization
patch ', containing Py by T := ki, (1), 5 =0,...,jr. The subtriangles in ['g, which
we neglect are now the triangles

= k(M) T = {9 [lon] ™ 0 hmg] () (T9)} 0 T,
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where V|[[fm,] ™! 0 fm,](70) stands for the Fréchet derivative of the mapping [y,,] ! 0 K,

taken at the point 75. To get the right quadrature formula we have to replace step i) by
the following i’). '

i’) We introduce the dyadic partition of I'y, \ UTY/ into a minimal number of triangles
[y with levels I(Q') between [(Q,) + 1 and mL such that the distance of these
triangles to P’ is greater or equal to 27/ (@)=1_ This is obtained as follows. We start
with the level [(P) + 1 triangles I'p, and let the level I run from [ = [(P) + 1 to
L. For each level [, we have a certain number of level [ triangles. We check if the
distance of these triangles to P’ is greater or equal to 27!=!. If yes, then we keep
these triangles. If not, then we split these triangles into the four subtriangles of level
[ 41 and replace the level [ triangles by the new level [ + 1 triangles. The procedure
ends, if no new triangle is produced. To get a full partition of I'y, \UF{ , we replace
the level mL triangles intersecting UF{ by a few number of triangles contained in

Io, \UF? . Obviously, the number of all these triangles is less than a constant times
L.

4.3.2.0. Next we consider the case dist(Up, Op) = 0 and [(P) < I(P'). Again we split
Up into the union of the I'y,. According to this splitting, we get

up
ap’p = Op(ahp) + ) ap'p, (4.16)
pn=1

apd, ~ o ([
To

Further, we denote the boundary of I'p, considered as a topological subset of I' by dlg, .
4.3.2.1. If dist(dTg,, ©p/) > 0, then we even get dist(dly,,Op) > cr27F). Setting
Dist := dist(0Tg,, ©p) and I, := K, (T°) (cf. Sect. 2.1) and supposing Iy, C T, we get

W ~ %(/
T
Qu

— O (/F k(-, R, ng)yp(R) dRF>

m

k(', R, nR)g//p(R) dRF> .

n

k(', R, nR)g//p(R) dRF>

—Upr (/%\FQ# k(-, R,ngr)yp(R) dRF) ~ apife — ag;?fz%\r%-

We shall define the approximation ap/pe for the integral over Iy, in Sect. 4.3.3. The

approximation al;;fl%\rw for the integral over I';, \ Ty, can be computed analogously to

the approximation api’p in Sect. 4.2.2. More precisely, we set Dist := dist(©pr, 0T, ) and
define [(P, P') := I(P, s, P') by (4.10). The partition {Tp : @ € Op p,} of T, \ Ty, is
obtained in the two following steps.

i) We introduce the dyadic partition of [}, \ I'p, into a minimal number of triangles
from {Tg:, Q' € VI, | =1(P)+1,...,mL} such that the distance of these triangles
to Op is greater or equal to 27191 Obviously, the number of all these triangles
is less than a constant times L.

26



ii) Now we split each of the triangles from the previous step i) uniformly into the
triangles of level [ = I(Q") + [I(P, i, P') + Iy — (I(P) + 1)].
Using this partition, applying the product rule of order q = 4 (compare (4.7)) and em-
ploying a piecewise polynomial interpolation ], of degree m, := q, we arrive at

apiier,, = Y| X Zk s Qg ) T (To) 0P | - (4.17)

Qeny, ..,

4.3.2.2. If dist(dlg,,Op) = 0, then we have to split ©p as we did in Sect. 4.3.1.

Instead of the ap/y , from Sect. 4.3.2.1 we have to determine the ap/yp . However, these

w,c,q

api s p, can be computed similarly to the case dist(T,, P\) = 0 in Sect. 4.3.1. More

precisely, we introduce [(P, P') just as in (4.10) but with Dist replaced by 2747). The
partition {Tg: Q €0piyp,} of Ty, is obtained in the following three steps.

i') We proceed from level I = l(P) + 1 to level [ = [(P') and construct partitions of
[g,. For I = I(P)+ 1, we simply take ['y,. If level [ is finished and level [ 41 is
considered, then we check whether the I'y of the level [ partition have a distance
dist(Tyr, ©ps) greater than 2-1Q)=1 If yes, then we keep these triangles. If not,
then we replace the I'yr by the four level [ + 1 subtriangles contained in I'y.

ii") We proceed from level | = I(P') + 1 to at most [ = mL and construct further
partitions of I'p,. The starting partition is taken from the last step. If level [ is
finished and level [ 4 1 is considered, then we check whether the I'y: of the level [
partition have a distance dist(I'yr, P\) greater than 2-H@)=1 " If yes, then we keep
these triangles in our partition. If not, then we replace [y by the four level I 4 1
subtriangles contained in I'y. If there are level mL triangles in the last partition
containing the point P, then, for r = —1, we throw these triangles away and, for
the construction of a full partition of Ty, \ qu' in the case r = 0, we replace the
level mZ triangles with distance to P’ less than 2~mL=1 by a few number of triangles
contained in T, \ ULY.

iii") Now we split each of the triangles 'y from the previous step ii) uniformly into the
triangles Ty with Ty C Ty and @ € OF such that [ is defined by (4.15) but with Far
replaced by i.

Using this partition and the formulae (4.12) and (4.14) based on the quadrature weights
b%:g?v of the product rule of order g = 4 and on a piecewise polynomial interpolation !,
of degree m, := q, we get the corresponding quadrature approximation.

4.3.3.0. We fix the index m and the point P, in the support ©p: of the test functional

Upr with ©p C T,,. We have Py := k(7)) and consider a linear function p(k,, (7)) = p(7)
defined on I}, which is either constant or equal to one of the two components of the vector
function k,,(7) — 7 — 7\. To get the approximations

CL%,C)\QFE P ~ /e k(P)\, R, nR)p(R) dRF
Upie p = ZC/\GQIIDJ;?;\({F&,IJ ~ Opr (/E k(- R.ng)p(R) dRF) (4.18)
A m
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and, as a linear combination of these, the values ap;j% , we distinguish two cases.
m

4.3.3.1. If{(P) > L = 2=2L, then we can choose apifi , := 0. Indeed, the
definition (4.18) of api’f. , involves the functional Jp with my = 4—r vanishing moments.
In view of this fact a%;%j\‘frﬁ,p can be neglected for higher levels [(P') (cf. the “second”
compression in [40]).

4.3.3.2. If [(P') < Jt L, then we compute apiire , by the composite product quadra-
tures which we have applied before. The partition {I : @ € Ops \ e ,} of Iy, is obtained

in the following three steps.
i) We proceed from level | = —3 to level [ = [(P’) and construct partitions of I',. For

[ = —3, we simply take I' . If level [ is finished and level [ +1 is considered, then we
check whether the I'g: of the level I partition have a distance dist(I'y/, ©p/) greater
than 274@Q)=1_ Tf yes, then we keep these triangles in our partition. If not, then we
replace 'y by the four level [ 4 1 subtriangles contained in I'g.

ii) We proceed from level [ = [(P') + 1 to at most [ = mL and construct further
partitions of I'C . The starting partition is taken from the last step. If level [ is
finished and level [ 4 1 is considered, then we check whether the I'y: of the level [
partition have a distance dist(Iy, Py) greater than 27H@)=1 If yes, then we keep
these triangles in our partition. If not, then we replace ['ps by the four level [ 41
subtriangles contained in I'y. If there are level mL triangles in the last partition
containing the point Py, then we throw these triangles away.

iii) Now we split each of the triangles I'ps from the previous step ii) uniformly into the
triangles I'g with I'y C Ty and @ € EI}:, where

. 0 ifr=—1
[ = Q)+ (L —UP) + { [ log ] ;i o (4.19)

and where ¢ := 3/my and (' :=1/m.
Using this partition, applying the product quadrature of order ¢ = 2m (compare (4.7)),
and employing a piecewise polynomial interpolation &/, of degree m, := q, we obtain

Wil = X S RPLQung ) TG bt = [ de.(@)i(e)do.
’U T

Qenl
P/ TS,

5 Preliminary Results from the Analysis of the Com-
pression

5.1 The Properties of the Three-Point Hierarchical Basis

Retain the notation of the basis from 3.1. From now on C' stands for a generic constant
the value of which varies from instance to instance. For two expressions E; and Fs, we
write Fy ~ FEy if there is a constant independent of the parameters involved in F; and Fs
such that E;/C < Ey < C' E;. We infer the following two lemmata from [38].
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Lemma 5.1 i) For —0.5 < s < 1.5, the basis {typ : P € UX_ AL} is a Riesz basis,
i.e., for any L and for any vector of real numbers (£p)p, we get

> &pip ~ \J > 22D |¢p)2, (5.1)
Hs(T)

r r
pPenl pPenl

ii) For the Sobolev space orders s <t < 2, s < 1.5, the functions from Lin% fulfill the
approzimation property (Jackson type theorem)

Hs(T) < CQiL(t*s)HUHHt(F). (52)

inf |lu—wu
uLELinE || L|

iii) For the interpolation projection Ry defined in Sect. 2.5, for v € H'(T), and for the
Sobolev space orders 0 < s <t <2, s<1.b,t>1, we get

lu = Rpuflmsmy < C275ullgme g,y (5.3)

w) For the L*(T) orthogonal projection Pp and for the Sobolev space orders —2 < s <
t<2 s<1.5,t>—1.5, we get

||U — PLUHHS(F) S 02_L(t_8)||u||Ht(p). (54)

v) For the Sobolev space orders s < t < 1.5, the functions ur from Link fulfill the
inverse property (Bernstein inequality)

lucllmery < C2H ) ug

H*(T)- (5.5)

Lemma 5.2 Suppose the continuous function u belongs to ®,"iH*(T},) for an s with
—0.5 < s < 2 and suppose ZpeAE Epp is the representation of the orthogonal projection
Pru. Then

> PDIGR < Cllullyre . (5.6)
Pevy
1 if —05<s<15
S 2O < Clullure g - { | (5.7
- m=1 S(Fm)
\JpeAg VL if 1.5<s5<2.

5.2 The Properties of the Wavelet Basis in the Test Space

The properties of the basis of test wavelets introduced in Sect.3.2 can be described using
the predual basis. If the number of vanishing moments my is equal to two, then we simply
define the classical hierarchical basis by xp := @5t for P € VI and observe

(Op, xpr) = Vp(xp) = Opp (5.8)
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as well as span{xp : P € AL} = LinL. The interpolation projection can be represented
as

Riu = > u(P)ep = > (Ip,u) xp. (5.9)

T T
PeAl PeAl

If my > 2, then we introduce the space X7 of piecewise polynomials as the set of all f €
C(T) such that f|r, ok, is a polynomial of degree less than my for any triangle Ty C T,
of level L, i.e. for any Ty with @ € Of N T,,. Retaining the definition of I, from Sect.
3.2, we can define the spaces X of piecewise polynomials of level [ > Iy — 1 in the same
manner. We get the hierarchy X};_l C Xll; C ... C XTI and we can define the hierarchical
basis {xp} as follows. If P € V], | > ly—1and R, P € Ty with Q € O} ; and P = k,,(7;)
(cf. Sect. 3.2), then we set xp(R) :=lgi(R). For P € VI, 1 <ly—1, we set xp := @3 .
With the so defined basis, we conclude (5.8) as well as span{xp : P € AL} = XT. Again,
the interpolation projection Ry can be represented by (5.9). If my = 2, then X} = Lin}
and the functions yp coincide with gollgp)ﬂ. The following properties are straightforward
generalizations of well-known results for the classical hierarchical basis.

Lemma 5.3 i) For1 < s < 1.5, the basis {xp: P € U AL} is a Riesz basis, i.e.,
for any L and for any vector of real numbers ({p)p, we get

S tpvr ~ \l T 22D gpf2. (5.10)
He(T)

Penlt pent
ii) The approzimation and inverse properties for the space predual to the test functionals

are the same as those formulated in Lemma 5.1 ii)-v). The upper bound 2 and the
lower bound —2, however, can be replaced by my and —my, respectively.

iii) The finite element basis 5, P € AL satisfies the discrete norm equivalence
L 1 2
PRI ~ oL PRSI
PeAl L2(T) Penlt

Z §pXxp ~ 2%\} Z | Z 5PXP(]5)|2- (5-11)
L*(I)

In particular, we get

r D r
PeAj Penl PeAj

5.3 General Error Estimates for the Numerical Solution and
Preconditioning

In this subsection we recall well-known error estimates for stable numerical methods. We
formulate results on the stability and derive necessary conditions which ensure that the
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numerical methods, perturbed by compression and by boundary and quadrature approx-
imation, admit the same asymptotic orders of convergence as the unperturbed methods.
Moreover, we give necessary conditions which ensure the existence of diagonal precondi-
tioners for the matrix A" of the compressed and approximated collocation method.

The collocation method for the equation Au = v defines an approximate solution
ur € Lint by RpAup = Rpv (cf. Sect. 2.5). This method is called stable in the space
H*(T) if the approximate operators Ry A : Lint — Lint are invertible for sufficiently
large L and if their inverses are bounded, i.e.,

H (RLA|LinE) - wr

- < Cllwellgsry. wr€ Link.
We suppose that the collocation method is stable for s = 0. Additionally, if r = —1 or if
the algorithm (3.9) is applied to an operator A of order r = 0, then we suppose stability
also for s = 1.1 (or for an arbitrary s with 1 < s < 1.5 instead of 1.1). Note that stability
is well known for second kind integral operators including compact integral operators.
In particular this is true for double layer operators over smooth boundaries (cf. e.g. [2]).
For first kind operators and operators involving strongly singular integral operators, the
question of stability is not solved yet. A first step toward the solution is done in [31,
32, 8, 11]. Note that, since our trial space Lint is generated by two scaling functions,
the stability is needed for a multiwavelet space (cf. the univariate multiwavelet paper
[33]). Though a rigorous proof of stability is missing engineers frequently use collocation
methods without observing instabilities.

To simplify the notation, let us denote the operator RLA|LmE by Ar, i.e., by the
same symbol as for its matrix with respect to the basis {¢f : P € AL} (cf. Sect. 2.5).
Similarly, we denote by A¢ and A7? the operators in Lin} the matrix of which with respect
to {5 : P e AL} is AS and A7Y, respectively (cf. (3.8)). Using the L? orthogonal pro-
jection Pp, we represent the error v — uy, of the fully discretized and compressed method
A%quL = RL’U as

u—uy = u— Pu— (A {RpAu— Ay Pru}
= u— Ppu— (A7) H{[Ap — AZPou+ A(T = Pp)u — (I = Rp)A(I - Ppu}.

We apply the boundedness assumption on A (cf. Sect. 2.2), assume the stability of A7?
for Sobolev index s = 0, and use Lemma 5.1 to get

lu— UL||Hr(r) < - PLUHHr(r) +C {||[AL - ACL’q]PLU“HO(r) +

17 = Pr)ullygery + 27 AU = Pr)ull ey}
< C27 I ful| oy + C [[[AL = AL Prul| gorr, -

In other words, to ensure the optimal convergence order m = 2 —r, we need the estimate

| 1Az = A3V Prull oy < Co2 0 (512)
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for s = 2 and the stability of A7?. Since Ay is stable by assumption and since A7? =
AL{I + AFMATY — AL}, for the stability of A7 it will be sufficient to require

-1

[AL — AL

meyeme < 5| s AL e ror)

L'=Lo,Lo+1,...
The last condition is a consequence of (5.12) with s = 0 if we can show that C, < C||u||r2
for a constant C' which can be made smaller than any prescribed positive threshold.
Moreover, due to the inverse property, it suffices to show (5.12) with s = 1.1 and a small
constant C,, < Cl|ul|gr.i. The usual compression estimates prove the error estimate in
(5.12) but with the difference A; — A7? replaced by A; — AS. We refer the reader to
[12, 29, 40, 35] for the details. In the present paper it will be our task to prove the
estimates (5.12) for s = 2 and for s = 1.1 with Ay — A7? replaced by A — A7".

The issue of wavelet preconditioners has been addressed by many authors (cf. e.g.
[10, 12, 24, 43]) and we will follow the same ideas. In the case r = 0 the stability of A7?
implies that the matrix A7? has a condition number which is already uniformly bounded
with respect to L. Thus, for the algorithm (3.10), no preconditioning is needed, and we
can restrict our consideration to algorithm (3.9). Unfortunately, the wavelet transform
T7 1 (cf. Sect. 3.3) does not have a uniformly bounded condition number with respect to
Euclidean matrix norm. Therefore, preconditioning is needed even for r = 0, and the
preconditioner is to be derived from the stability for a different Sobolev index. We choose
eg. s=1.1.

Let us consider an operator A of order r = 0, —1 and suppose the stability of Ay in
the Sobolev space H'''(T"). If we could prove

|AL — AF!

-1
1 _
HL1(T)« HLl1+r(T) < 5 L’ LSlszrl ||AL11||H1-1+P(I‘)<—H1-1(1“)‘| ) (5-13)
=Lo,Lo+1,...
then A7? is stable in H*!(T'), too. From Sects. 3.1 and 5.2, we recall that A7 is the
matrix of the operator A7? with respect to the bases {¢pp : P € AL} and {xp: P e AL}
Under assumption (5.13), the assertions i) of the Lemmata 5.3 and 5.1 imply that the
matrices

I(P")(1.1-1 w,c, —I(P)(r+1.1-1
(3,2 ))P,P’EAEAL 1 (3pp2 (P11 D)

PPenl (5.14)
have condition numbers which are uniformly bounded with respect to L, i.e. the matrix
A7 admits a diagonal preconditioning. The boundedness of the condition number en-
sures the fast convergence of the iterative solver in the wavelet algorithm (3.9). In other
words, for the fast iterative solution of the linear systems A7 I8 = « (cf. part iv) of
(3.9)) using preconditioning, we only have to prove (5.13). This is well known for the
difference A; — A7? replaced by Ay — A§ (cf. [12, 29, 40, 35]). The estimate (5.13) with
Ap — A77 replaced by AS — A7 however, follows from (5.12) with s = 1.1 4+ r and the
inverse property v) of Lemma 5.1. All together, we have
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Remark 5.1 For almost optimal rates of convergence, for stability, and for precondition-
ing, we have to prove

—(2—r)L . 5
1145 - APl oy < 2{ e if u€ H*(T)

Clluf 2002 iy € i), O19)

where q > 0 and where ly is chosen such that C2~% s sufficiently small.

To derive an estimate like (5.15), we shall use the following well-known Schur lemma.

Lemma 5.4 Denote the entries of the compressed matrixz of quadrature errors [AS — A7
with respect to the wavelet bases {xp'} and {yp} by ap p := api'p — apip. Suppose T is
a fized real parameter which can be arbitrary. Usually x is equal to zero if it is not given
explicitly. Then the left-hand side of (5.15) can be estimated as

AS — AV Pru < “ k 5.16
H[ R { CllullmamZi B2 if s = 1.1, (>:16)
£y o= sup 277D 37 ol el Pgp pf, (5.17)
P'eA} PeAl
L-1 ,
So o= 3 2B sup Y 20 P gp | (5.18)
I=—1 PGV{‘ p/EAE

Proof. In view of (5.11), we get, for Pru =Y {pifp,

2
2

H[ACL — A7 Pru e > ap plpxp

r
() P!, PEAT

L2(r)

< C272 N 1Y S appépxe(P)

) r r
Penl |P'eA] PeA]

Clearly, the function values Xp/(]5) are non-negative and less than one. We apply the
Cauchy-Schwarz inequality and some easy calculations to arrive at

2

|5 — Az P

< 27 Z Z Z |CLP',P|2[$_SN(P)

D r r
PeAl I PleA] PeA]

< 3 lapnp 25 D)ep? [xp | (P)?

L*(T)

penl
< 02 Y Y 2 Y fap p 2B P ep P xp (P2,
PeAl Plent Penl
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Now we observe that, for a fixed P', the number of P € AL such that xp(P) > 0 is less
than C22IL- 1P Using this as well as (5.6) and (5.7), we continue

< Oy Z Z 2[90—2}!(P’)|aP,,P|2[s—ac}l(P)|§P|27

L2(1) PeAl Prent

2

H A5 — AST P

L-1
< 021 Z 2[27sfx}l sup Z 2[x72}l(P’)|aP,7P|
[=—1 PGV{‘ P'GAE
X Z 22(871)1(1))|5P|2 < Oy X 3.
PevT

6 The Estimation of the Errors due to the Approxi-
mate Parametrization and due to the Quadrature

6.1 The Far Field Estimate

In this subsection we suppose that the near field integrations are performed exactly and
derive the convergence estimates for the far field case. The error estimate for the near field
will be considered in Sects. 6.2 and 6.3, respectively. In view of Remark 5.1, it remains to
prove

Lemma 6.1 Suppose AS € L(Link) is the approvimate operator of the compressed col-
location method including the sparsity pattern P (cf. Sect. 3.5). If AT? is the operator of
the compressed collocation method including the approximation of the parameter mappings
and the quadrature of the far field, i.e. of Sect. 4.1, then we get the estimates (5.15).

Proof. i) It remains to estimate 3; and ¥ (cf. Lemma 5.4). For the approximate
parametrization and for the quadrature, we shall prove the error estimate

|aP/7P| = |a$;fp - a%}?}ﬂ < a}),vp + a?D,’P , (61)
a}),,P = CQiql()Qizl(P)27m19l(P,)27ql(P,P,)dlst (@Pl, \ij)_r_Q_q_mﬂ 7
a?”»P = (27 2(PlgmmollF)y=ml jjgy (Opr, \IIP)fer*m'9 i

In accordance with the splitting into these two terms, we get two estimates of the form
(5.16) which we denote by C,, ] 33 and C, 2 32, respectively. Furthermore, we introduce
the numbers

dist := dist (@pl, \I/p) s

M, := max {Q_I(P), 2_Z(P’)} ,
M; = max {27Z(P)7 27Z(P’), d20.6L70.7l(P)70.9l(P’)} , (6.2)
M, := max {Z—l(P)7 2—Z(P’)’ d2L—O.7l(P)—1.3l(P’)}
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(cf. the definition of the far field in Sect. 4.1 and the formulae (3.11) and (3.12)). Substi-
tuting the estimate a}, » and 2/(PF) > 209L-1(PIqigt=11 (cf. (4.1)) into the definition of
i, we get

L-1
SI< Cosup Y S 27slgmdogmgmmol(Pg-al(PFY g mr—2mme—d
PleAl |—_
€onl=-1 Pevrl:
Mo<dist<Ms

L-1
— — — ! — — . —_r—2—
S 2 ql02 0.9qL sup 2(q my)l(P’) § : 9 sl 9 2[ § : dist r—2 m19+0.1q'
Pent =
€L I=-1 PGV,F:
Mo <dist<My

Using the estimate

dpl
= st < o
PGV?§5t>M0 - {P€T: |P'—P|>Mo} |Pl _ P|r+2+m1970.1q
S CM07r7m19+0.1 q’ (63)
we continue
I(P")—1
Ei < CQiql()Qfo'qu sup Q(Q*mﬂ)l(P') Z 2l[fs+r+m1970.1 q]
B _1<I(P)<L-1 Pt
L-1
+ 2l(P’)[r+m1970.1q} Z 27sl < 0271:1!027[571'][/.
1=I(P")

On the other hand, substituting the estimate a}, p and 2/PFP) > 209L-UP)qigt =" into
the definition of X3, we get

L-1 L-1
Eé < C Z 2[278” sup Z 272[’ Z 2fqlo272l27mﬂl’27ql(P,P,)diSt—I'—2—m19—q

r r—
I=-1 Pevyr=-1 Pevh;
Mo <dist<Ma
L-1 L-1
< 02*‘1[02*0-9(111 Z 2fsl sup Z 2[q7m19}l'272l’ Z dist—r—z—mg-i-o.lq‘
I=—1 PEAT I'=—1 P'evh:
Mo <dist<Ms
Using the estimate (6.3), we continue
L—1 ! , -1 ,
E% < 02*01102*0-96111 Z 9—sl Z 2[r+0.9q}l + 2[r+m1970.1q}l Z 2[q7m19]l
1=—1 r=—1 =
< Qo dog-ls—rIl, (6.4)
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Next we turn to the estimates of £% and 2. Analogously to the treatment of i and
Y1, we arrive at

L1
»2 < Csup Y 3 g—slg—2lg—myl(P')g—mL i —r—2-my

Penl— 1
PGV,F:
Mo <dist<M,
L-1
< C2TmE gup 27D N gmsloA NN (s TR,
P'eAT I=—1
L PEVZF:
Mo <dist<M,

Using an estimate like (6.3), we continue

2% < OQme sup 9 myl(P’) { Z 2 + 24l Z 2~ sl} < CQme.

—1<i(P')<L-1 I=—1 1=I(P")

On the other hand, substituting the estimate 2-2(P)2 - msl(P)9-mL{jgt (Qp, p) " >7™
for a3, p into the definition of X3, we get

L-1 L-1
— — / — — / — . —_r—2—
Y, < C E 22=1 qup E 22 E 9o mylig—mlLjjg—r—2-my
- Pevl p—_
I=-1 Vi I'=-1 P'EVII;:
Mo <dist<Mjy

L-1 L-1
< 027mL Z 27sl sup Z 27m79l’ 272l’ Z distfr727m,9

= Penl p—_
I=-1  PeATI=-1 PevT.
Mo <dist<Mj
L—-1 l , L—-1 ,
S 027111[/ Z 2,sl Z 2l‘l + 2[I‘+m19]l Z 2711119[ S 027111[/'
I=-1 I'=-1 I'=l

ii) Let us prove (6.1). The first bound ap, pr is the bound for the error of the quadrature
applied to the integral in apip, where the parametrization is already replaced by the
piecewise polynomial interpolation. Indeed, by standard estimates of g-th order composite
rules, the quadrature error is less than a constant times the measure C'2-2P) of the domain
of integration times the g-th power of the step size of quadrature 27HQ) ~ 2=~
times the supremum of the g-th order derivative of the integrand function. Due to the
vanishing moments the test functional ¥p/ acts like a difference formula of order my with
improper scaling. Therefore, the q—th order derivative of the integrand function can be
estimated by the product of C27™#""") and the [my + q]-th order derivative of the kernel
function. Thanks to (2.5) the last factor is less than Cdist ™" > ™9, The replacement
of the parametrization does not cause any problem since the supremum of the derivatives
to the piecewise polynomial interpolations can be estimated by the supremum of the
derivatives to the original parametrization mapping, i.e. it is bounded.
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The second bound a%, p in (6.1) is the estimate for the error due to the replacement of
the parametrization by the piecewise interpolation. To estimate the corresponding error it
is sufficient to use the approximation order m+1 instead of the actual order m,+1 of the
piecewise polynomial interpolation of degree less than m,. As mentioned above, the test
functional ¥p can be considered to be a scaled version of a difference formula. Clearly, we
get |kp (o) — KL, (o) < C27@FVUD) for ¢ € T, = K} (Ty) with Q' € OF, ice. [(Q') = L.
Moreover, we obtain |V, ki, (0) — V,&! ()] < C27™U@) if V, is the gradient with respect
to 0. From the smoothness assumptions on «,, in Sect. 2.1 and on the integral kernel in
Sect. 2.2, we conclude

|Tn(0) = T (o) < C27™5, | Tw(0)| < O, [Ty (0)| < C,

9=(m+1)L g=myl(P)

IN

‘k (79P’7 Iim(O'), nﬁm(a)) —k (191”’ ’{;n(o-)? n:-c’m(a))

distZrrrmtl
9-mL 2—m19l(P’)
‘k (ﬂP””m(U)vnﬁm(O)) < C distZrTrms
9—mL 27m,9l(P’)
/ !
‘k’ (ﬂP',Km(U),nK;n(g)) < C dist2trtme

(6.5)

where we have used the notation dist := dist(©p/, Up) and the estimate dist > 277 (cf.
the definition of the far field in Sect. 4.1). Hence, we arrive at

‘k (ﬂpl, Km(0), nmm(a)) TIm(0) s (0) — K (0]3,, K (o), n;,m(g)) T (0)6rr(0) ‘
< Commb Tl digt 2

)

and the integral over T of this difference is less than a3, p in (6.1). n

Lemma 6.2 The number of necessary arithmetic operations for setting up the far field
part of the stiffness matriz A7, including the sparsity pattern P, is less than €220 [22L,

Proof. Clearly, the number of all arithmetic operations is bounded by a constant multiple
of the number of all quadrature knots. Thus we count the number N of quadrature knots.
For a fixed test functional Jp and for a fixed trial function ¥ p, the number of knots is
less than [27/(P)/271@)]2 ~ 022022l PP)-UP)I I view of (4.1), the term 2P can be
majorized by 2/(P)+1 4 209 LU dist="! By ©F we denote the set of P € VI such that
Up is not contained in the interior of a single patch [,,. Moreover, we set @f := V] \ OF .
Summing up over all ¢¥p and ¥Jpr and using the notation of the last proof, we arrive at

L—-1
N S Z Z Z C22l022[l(P,P’)—l(P)] + Z 0221022[1(13713/)_[(13)]
preay =t Peof: Peoy:
Mo <dist<M; Mo <dist<Ms
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L—1 , L—1 2L8L72V
oY oap Y0y et
I=—1 P’EVF I=—1 dlSt :
- e PeoT:
Mo <dist<M;
2L8L—2V
-2 2
+ St
dist™
PG@{‘:
Mo <dist <M

L-1 L-1

< 02 S M sup 0N 1+ Y1

I—— Pevh—_
r=-1 v==1 peor Peol:
dist<M; dist<Ms

L—-1 L—-1
+C2%02M N gqup Y27 YT dist ™2

'—_1 P'eVh |=—
I'=—1 yi=—1 Peol:
Mo<dist

L-1 L-1
+C27%02"8E N sup Y2727 Y dist™?
—_1Pev] =
I'=—1PeEV, =—1 Peot:
Mo<dist

Using the definitions of My, My, and My (cf. (6.2)) and applying the estimates (compare

(6.3))

2720 Y dist?? < OMyT? (6.6)

PevT:dist>Mg

270 Y dist™*? < OMTH

Pe@l:dist>M,

we continue

L-1 L1 1 v 0.6L—0.71—0.91'72

y 270427V +d2
21 21

N < (C2%° E 2 E {[ 51 ] +

I'=—1 [=—1
2—! + 2—!’ +d2L—0.7l—1.3l’

2lp 1.8LL_1 4 0.21 = 0.27 2lpn2L & ’ 0.21 & —l91.20
C2%02t8E 3" 8 N 202 N2 + 2202?20 N LN 202 N2

'=—1 |I=-1 = I'=—1 | I=-1 =
< (0o
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6.2 The Estimates for the First Part of the Near Field

Now we suppose that the far field integration and the integration of the second part of the
near field are performed exactly and derive the convergence estimates for the first part of
the near field. In view of Remark 5.1 it remains to prove

Lemma 6.3 Suppose AS € L(LinY) is the approvimate operator of the compressed col-
location method including the sparsity pattern P and that AT? is the operator of the com-
pressed collocation method including the approximation of the parameter mappings and
the quadrature of Sect. 4.2, then we get the estimate (5.15).

Proof. i) Like in Sect. 4.2 we distinguish the cases [(P) > [(P') and [(P) < [(P’), and
we start with [(P) > [(P'). Using Lemma5.4, we have to estimate the sums 3; and 3.
This time the estimate (6.1) holds with

ap p = C2 W0 2P a PP igt (supp Ipr, Up) T2, (6.7)
a%;QP = 27 2P mLdist (supp Jpr, \pr)*r*2 ) (6.8)

Note that these estimates follow analogously to part ii) of the proof to Lemma 6.1. The
only difference is that the vanishing moments of the test functional are not taken into
account.

Again, in accordance with the splitting (6.1) into two terms, we get two estimates of
the form (5.16) denoted by C, i X1 and C, X3 33, respectively. We introduce dist :=
dist(supp Upr, ¥p), and, similarly to part i) of the proof to Lemma 6.1, we conclude

L-1
p— p— u— u— / . —_r—2—
Sp < Cosup Y S g slg alg—2lg=al(PF) qigtr 27
r
PrEAL =P PevT:
er2—! <dist<2= 1P

L-1
< CQ‘QZ02—O.9qL sup 2ql(P’) Z 2—3! 2—2! Z diSt_r_z-H)'lq.

IN
Prely, I=1(P") pPevl:

ep2-t <dist<2~1(P")

Although the distance dist is less than 27/ we still have

dpl’

272! dist7r72+0.1q < C/
Z {Per: 2=UP) > |PI—P|>cr2-1} |p/ — P|r+2+0.1q

Pev]:271(P) > dist>ep2-!

< C[Q*l(P’)]*l“H).lq (69)

due to the change from dist = dist(¥p, Op/) to dist = dist(¥p, supp Jpr) and due to the
fact that the support supp ¥p of the collocation test functional consist of a small number
of points, only. Using (6.9), we continue

L
Ei < C2*Cll0270.9qL sup 21(P')[0.9q+r] Z 2731 < 027';11027[37,-}[/‘
—1<I(P")<L-1 1=1(P")
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On the other hand, substituting the estimate a} p and 2/(F) > 209L-1P)qigt ™" into
the definition of X3, we get

L-1 l
— — ! — — — ! . _r—’2—
E% S C Z 2[2 s)l sup Z 9 20 Z ) ql()2 2l2 ql(P,P )dISt r-2—q
- Pevl p—_
I=—1 eV, I'=-1 P'GV,I;:
er2—I<dist<2~"
L-1 l , ,
S C2—ql02—0.9qL Z 2—51 sup Z 2ql 2—21 Z dist—r—2+0.1q'
= PeAT p——
I=—1 enly="1 Prevh:
ep2-l<dist<2~V

Using the estimate (6.9), we continue

L-1 l
E% < C2fql0270.9qL Z 27sl Z 2[l‘+0.9q]l’ < 027ql027[sfr}L. (610)
I=-1 I'=—1

Next we turn to the estimates of 2 and ©2. Setting z = 1 in the estimates of Lemma
5.4, proceeding analogously to the treatment of X} and %1, and using the estimate (6.9),
we arrive at

L-1
¥ < C osup 271N S glt—sllg—2lg—mL i —r—2
Penl I=I(P") pevr:
ep2-l<dist<2- (P
L1
S 027mL sup 27l(P) Z 2[178][ 272[ Z distiriz
Plent I=1(P") Pevr:
er2—<dist<2—1(P")
. L-1
< ¢o2™mF gup  2FHIPY) N ot < ggrml (6.11)
—1<I(P")<L-1 I=1(P")

On the other hand, substituting the estimate 2-2(")2-mLdist (supp dp, Up) "> for a? p
into the definition of ¥2, we get

L-1 l
BoccY ey Yot Y ot
1=-1 PEVI Ir=-1 Plev:
er2—t<dist<2~!'
L-1 ! ,
< Ol Y oIl gy 3 9! 3 dist ™2
T
I=——1 PGAI I'=—1 Plevlfl‘: ’
er2~t<dist<2~!
L-1 l
< Com™I Y gl S gTolrtAll < gmm (6.12)
I=—1 I=-1
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ii) Now we consider the case [(P) < [(P’'). Using Lemma5.4, we have to estimate the
sums Yy and Y. We set Dist := dist(Opr, Up). This time the estimate (6.1) holds with

ap p = (2 W0 d(PP)gal(P)y mol(PDyjgg=r=ms (6.13)
— 02—q102—0.95qL20.4ql(P)2[1.1q—mlg]l(P’)DiStfr*m19+U.55q,
0 p = C27mEymol(FIDjggmr—ma, (6.14)

Indeed, for the quadrature term a},“P, we apply the error estimates from part ii) of the
proof to Lemma 6.1 to each subtriangle Iy of step ii) in Sect. 4.2.2. Note that, for
any level [, there is only a bounded number of triangles I'ys of level [ in the partition of
step ii) with the bound independent of [. The distance of such a Iy of level [ to Op
can be estimated from below and above by constant times 27!, Using 2-UF)2IP) <
02095 LHLLIP)+04UP) Dist?55 (cf. (4.10)) and adding up the standard quadrature esti-
mates, we arrive at

. — 2log Dist ) ) q o s myq
b p < C Z o—myl(P") -2l [271271027Z(P,P)21(P)] [24]
I=l(P
— 2log Dist
S C2—qlo2—0.95qL20.4ql(P)2[1.1q—mg]l(P’)DiSt0.55q Z 2l[r+m19}
I=l(P)+1
< C2—qlo2—0.95qL20.4ql(P)2[1.1q—mg]l(P’)DiStfr7m19+0.55q‘

Proceeding similarly for the term due to the approximate parametrization, we conclude

— 2log Dist ) m o romy
a%w,p < C Z o—myl(P')g—2l [Q—L] [2—1]
I=l(P
— 2log Dist
S 02—1‘1’1[/2—1‘1’1191(13’) Z 2l[r+m19] S 02—mL2—m19l(P’)DiSt—r—m19'
I=I(P)+1

Again, in accordance with the splitting (6.1) into two terms, we get two estimates of
the form (5.16) denoted by C, ¥ X} and C, 32 32, respectively. We choose the parameter
x = 0.5 in the estimates of Lemma 5.4 and, similarly to part i) of the proof to Lemma
6.1, we conclude

I(P") 2[0.5—s}l2—ql0 2—0.95 qL20.4 ql(P)2[1.1 q—myll(P’)

1 —0.50
¥1 < C sup 2 E E T tmy—0.55q
P'eAl =1 Dist
L - PevT:

ep2= (P <Dist<2~!

I(P")

< 02—ql02—0.95 qlL sup 2[—0.5+1.1 q—my]l { Z 2 [0.4q+0.5—s]l

UP,PEVT L, =
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Z Distrm19+0.55q}
PEV,F:
ep2- 1P <Digt<2~!
I(P")
< (9—dlo9—0.95qL sup o[—0.5+1.1q—my]i(P") Z 9[0.4q-+0.5—s]l {2—1(13')]
I(P") =1

S 027ql0 27[571'][/.

—r—my-+0.55q

On the other hand, substituting a}, p and 27 /(PPI2UP) < 27095 LALLIP)+04UP) Djgt0-5>
into the definition of X1, we get

_ _ _ _ !
L-1 92 ql02 0.95qL2[1.1q myl 20.4q

L-1
1 2—5—0.5]l 0.5-2]
¥, < C g 9l2=5-09] sup § pdl ] E Distf+mo—0-554d
I=—1 PEV,F =l Pevl: 15
[

er2— ! <Dist<2~!

L-1 L-1

_ _ _ _ !

S C2 ql02 0.95qL Z 2[1.5 s+0.4q]l sup {22[1.1(:1 my+0.5]1
=1 pevi U=

272” Z Dist—r—mg+0.55q}.

P'GV{;:
er2~! <Dist<2-!

Using the estimate

' dpT
9—2 Digt—T-mo+055d C’/
Z - {P’cT: cF2_l,2diSt22_l} dlSt (]_‘)/7 \ij)r+m1970.55q

P'GVlI,‘:
er2=! >dist>2-!

2=t
< C’/ / yTmoH055d 4y
0 2=V
S 02_12[r—|—m19—0.55q—1”,’ (615)

we continue

L-1 L-1
E% < 027ql0270.95qL Z 2[0.5*8‘}'0.4(:1” 22[r70.5+0.55q]l’ < 027(1[027[7‘78]11. (616)
I=—1 =l

Next we turn to the parametrization estimates % and ¥2. Proceeding analogously to
the treatment of ¥} and ¥{ and using estimates like (6.15), we arrive at

I(P")
21 < Cosup Y 3 g~ sy mLy mol(Ppjgg—r—ms

Pent [ ==
€opi=-1 PEVIF:

er2-(P) <Dist<2-!
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I(P')
< 2™k gup 27D N oo > Dist "™

Penl —
€21 I=-1 PEVIF:

er2-(P) <Dist<2-!

I(P")
< o2k g mal(P') ™ gl [o (P Y
sup > 27 27

I(P=—1,...L— =_1
< o2k (6.17)
and at the estimate
L-1 L-1 , ,
22 < oY 2B hsup 3 3 92 g —mLy—myl'Nyjg—r—my
r I —
I=-1 Pevy =i I,D,EVII;:
cr2~ " <Dist<2-t
L-1 L-1 , ,
S 02—mL Z 2[2—8” sup Z 2—1‘1’119[ 2—21 Z Dist—r—mg

er2~! <Dist<2!
L-1 L-1 , /
< C2—mL Z 2[2_5” Z 2—mgl 2[r+m19—1}l 2—! < C2—mL' (618)
I=-1 =l
(]

Lemma 6.4 The number of necessary arithmetic operations for setting up that part of
the near field of the stiffness matriz A7 7 treated in Sect. 4.2 is less than C'L*2%L.

Proof. Again we only have to count the number N of quadrature knots (cf. the proof
to Lemma 6.2). First we count those used for the case 0 < dist(¥p, Op/) < 2747 and
I[(P) > I(P'). For fixed 9p and Jps, the number of knots is less than C22022(PP)=I(P)],
Using 2/PF) < 2UP)+1 4 909L=UP) dist =11 (cf. (4.1)) and summing up over all ¢p and Jpr,
we get

L-1 L-1
N < Z Z C22l022[l(P,P,)—”
PEALIIE)  pevr,
ep2-l <dist<2- (P
L-1 , L-1 21.8L72l'
< (2% > 2% SUp_ > > 22 [221 + e ]
I'=-—1 Pev, =1
! PeV]: ,
er2~ !t <dist<2!
L-1 ’L—l , 5 L-1 L-1
S 022l0 Z 22l Z [27[ /27lj| +0221021.8L Z Z 272l Z dist*2-2
I'=—1 = I'=—11=l PEVIFZ
er2-<dist<2~"
L-1 L-1
< 022l0L22L+0221021.8L Z ZQO.Q[ < 02210L22L.

I'=—11=l
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Here we have applied (6.6).

Next we consider the case [(P) < [(P’) of Sect. 4.2.2. We set Dist := dist(0¥p, O).
For fixed 9p and Up, the number of knots is less than C'L22022(PP)—=UP) gince in
the step ii) of Sect. 4.2.2 the number of triangles Iy is less than C'L and since each
I'pr is split into 220 92[PP)=UP)] gubtriangles in step iii). Using 227 < 22(P)+2 4
19 L=22UP)+1L2UP)Djgt 1! (cf. (4.10)) into and summing up over all ¢ and Jpr, we get

L-1 IL—-1
N < Y Y 3y C'[,22092[(P.P))~1(P)]
PeAT I'=I(P) Plev:
er2— ! <Dist<2—H(P)
L—1 L—1 ,
< C’22l°L Z 221 sup Z Z 2—21 [221 + 21.9L—2.2l +1'2l/Dist1'1]
o _
=1 PevV} = If'ev}%
er2—! <Dist<2!
L—1 L—1 2
S C22l0L Z 22l Z [2—[/2—l]
I=—1 =l
L—1 L—1 , ,
+C22l0L21.9L Z 21.2l sup Z 270.2[ 272l Z Distfl.l
I=—1 PeV] 1=l

P'eV;:
er2 ! <Dist<2
L—-1 L-1
S 022l0L222L + 022l0L21.9L Z 21.2[ Z 270.2 l'27l20.1l' S 022l0L222L.
[=—1 "=l

Here we have applied an estimate like (6.15). n

6.3 The Estimates for the Second Part of the Near Field

Now we suppose that the far field integration and the integration of the first part of the
near field are performed exactly and derive the convergence estimates for the second part
of the near field. In view of Remark 5.1 it remains to prove

Lemma 6.5 Suppose AS € L(LinY) is the approvimate operator of the compressed col-
location method including the sparsity pattern P and that A7? is the operator of the com-
pressed collocation method including the approximation of the parameter mappings and
the quadrature of Sect. 4.3, then we get the estimate (5.15).

Proof. i) First we look at the quadrature in Sect. 4.3.1. The case dist(I'y,, P\) > 0
can be treated completely analogously to the quadrature of Sect. 4.2.1 since even in Sect.
4.2.1 the quadrature is applied over the triangles I'g, separately and since the vanishing
moments of the test functionals are not used in the estimates for the quadrature of Sect.
4.2.1.

Moreover, the case dist(I'p,, P\) = 0 can be included into the estimation in part i)
of the proof to Lemma 6.3, too. We only have to check the estimates for ap p and
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a}, p in (6.7). The estimate C2~ (@) [~or0[2-UQ)2 -l I(PP)UP)a[2-UQ)]"271-d for the
quadrature error (cf. part ii) of the proof to Lemma 6.1 and the definition of the step size
in (4.15)) applied to each of the subtriangles I'yy in the partition of step i) in Sect. 4.3.1
leads to

ml / ’ ’ n]—2-r—
abp < C Y 27Q) {Q—l(Q)2—l02—l(P,P)21(P)]q{Q—l(Q)] 4
(Q)=UP)+1
mL
< (2 A d(PP)AP) [ 0o §7 [24(@')]*”
I(Q)=I(P)+1

< 02_q102_21(P)2—ql(P,P’) [2_1(13)] —r—2—q '

Hence, in comparison to the estimate a} p we have a 27"F) instead of dist(supp Jpr, Up).
In other words, the quadrature error terms corresponding to dist(I'p,. Py) = 0 can be
treated like the terms with dist(Tg,, Py) ~ 27'(P).

On the other hand, for the corresponding parametrization error, we get the upper
estimate C'272/(Q)[2-L|mH1[2-HQ)]=2=r (cf. part ii) of the proof to Lemma 6.1 and use
the improved convergence order m + 2 instead of m + 1 for the approximation by the
piecewise polynomial approximation of degree m, = q > m+ 1). Applying this to each
of the subtriangles I'ps in the partition of step i) in Sect. 4.3.1, we conclude

mL

a%”,P < C Z 272Z(Q’) [27[1] m-+1 |:2,Z(QI)] —2—r
UQ)=I(P)+1
< 02_[m+1]L mZL [Q—l(Q’)] -r < C2—21(P)2—mL [2_1(13)] —r—2
HQH=I(P)+1

Here we have estimated the logarithmic term C'L appearing in the case r = 0 by using the
additional factor 27T of the interpolation. Hence, the parametrization error terms with
dist(T,, P\) = 0 can be treated like the terms with dist(Tg,, Py) ~ 27/,

ii) Next we consider the quadrature in Sect. 4.3.2. We suppose that the approximate
values ap)f and ap/yr. are known exactly. We defer the analysis of their approximation
to part iii) of the present proof. Now the case Dist := dist(0lp,,©p/) > 0 can be treated
analogously to the quadrature of Sect. 4.2.2. We only have to check the estimates for
apr p and a% p in (6.13) and (6.14). As usual, the estimate for the quadrature error over

the triangle T'y of step i) in Sect. 4.3.2.1 is

C (@) gmmalP) [9=(@)glog=IPPIIPI| % [p=l(@)) =27 -mo 4 gup [y (R)|
ReTy

(cf. part ii) of the proof to Lemma 6.1). The supremum of ¢p is bounded if the distance

of Ty to Up is less than C27/F) i.e. if [(Q') > I(P). For I(Q') < I(P), we get the bound
2/(P)=IQ") " Applying this to each of the subtriangles I'pr in the partition of step i) in Sect.
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4.3.2.1, we get

1 e 2(Q' I(P' U@ ) orlo (PP ol (P)] 4 [o1(Q')] ~2~T—mo—a 27
abp < C Z 9—21(Q") 9—myl(P’) {2— (@) 9=log=l(P,P")9l( )] {2— @ )] 5T
1(Q")=-3

—2log Dist L
+O Z 2*2[(Q’)2*mﬁl(P’) |:27l(Q,)2*102*l(P,P,)QZ(P)]q |:2*1(Q’)i| 9—q
HQ")=I(P)+1
I(P) )
02761l0 27m191(P’)2*ql(P,P’)2[q+1]l(P) Z [27“@,)] —r—my+
(Q")=-3
—2log Dist o
+ 2 dogml(Pg=al(PP)gal(P)  §™ [2—z<cz'>] r-my
H(QH=I(P)+1
< (9 Yoo myl(P)g-al(P.P)odl(P)Tyjgt T -my

IN

In other words, the quadrature error terms corresponding to Dist > 0 can be treated like
the terms in Sect. 4.2.2 with the distance dist(¥p, Op/) of the same size.
On the other hand, for the parametrization error, we arrive at the usual upper bound

€' sup [yp(R)|22(@ 27 mollP) [3E]"™ [poi(@)] 5

REFQ/

(cf. part ii) of the proof to Lemma 6.1 ). Applying this to each of the subtriangles I'yr in
the partition of step i) in Sect. 4.3.2.1, we conclude

Z(P) ’ ’ ’ m n]—2—r+m
Gp < C Y Ql(P)*l(Q)2*21(62)2*111191(1’)[Q*L] [2—«@)] me
1(Q)=—3

—2]og Dist m 2 r+m
C Z 9—21(Q") 9—myl(P") [Q*L] [Q*Z(Q')} 7
(Q=i(P)+1
L(r) —r—mgy-+1
< O ml(P')g-mLol(P) Y {Q—Z(Q’)] T4
(QH=-3
—2log Dist o
¢ mol(Pg-mL  §~ [24(Q'>] o
HQ")=I(P)+1

< (2 k(P g—mLpyjgp-rmy

Hence, the parametrization error terms with dist(0Ip,,©p) > 0 can be treated like the
terms with the distance dist(¥p,©ps) of the same size as dist(0ly,,Op:) corresponding
to the quadrature of Sect. 4.2.2 (cf. part ii) of the proof to Lemma 6.3).

If dist (0T, , ©p) = 0, we split Jps into the linear combination of point functionals at
the points P, and, setting Dist := 27/(") we derive the estimates (6.13) and (6.14) for
a}b p and a?, p. The usual bounds €2 2(Q) L~0ro[2-UQ)2 logI(PP)!(P)ja[ Q)] -2 rq
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resp. 02 2/(Q) [~ dr0g-myl(P) 2R ~log~IPP)9I(P)]a[g~ Q)] ~2-r—a+my for the quadra-
ture error (cf. part ii) of the proof to Lemma 6.1) applied to each of the subtriangles L'
in the partition of step ii’) in Sect. 4.3.2 lead to

I(P")
O’}D’,P < C Z
(Q)=I(P)+1
mL
+C Y 9=2UQ") 1, —brp0 [Q—Z(Q')2—102—1(13,13')21(13)]q [2_Z(Q’):|727"*q
(Q)=U(P")+1

9-2U(Q")9—myl(P') [ ~dr0 [24(@')Q—ZOQfl(P,P’)Ql(P)}q [24@')]‘2“““‘“‘0

I(P")
CQ*CIZ027m79l(P')27ql(p7pl)2ql(P) Z [271@,)] —r—my

(Q)=I(P)+1
mL
Ol al(PP)gdl(P) [ =0 §™ [Q—Z(Q'>]“‘
1(Q")=I(P")+1

< (9 dog—al(PP')9al(P)g—myl(F') [Q*l(P')] —romy

IN

Y

which is (6.13) with Dist replaced by 2=“”"). On the other hand, for the parametrization
error, we arrive at the usual upper bound C272/(Q")2=msl(P)g=[m+1]L[9=U(Q")]=2=r=my yagp,
027 2Q) = [mH1L[2=@)]=2F (cf. part ii) of the proof to Lemma 6.1 and notice that m,, >
m + 1). Applying this to each of the subtriangles Iy in the partition of step ii’) in Sect.
4.3.2.2, we conclude

E —2—r—m

a%)’,P S O Z 272Z(Q1)Q*mgl(P’)Qf[an_}L [Q*Z(Q')] 2 9
1(Q")=I(P)+1
mL

+C Y 2@y [prl@)] T
H(Q")=I(P")+1
P e - -
< (o ImHiLy—m,l(P) Z {2—1(@)] ! go-imHilL Z [2_1(@)]
1(Q)=I(P)+1 QNSIP) 11

—r—my —r—my

< O [0~ [m+1]Lo—myl(P') [27Z(P’)] < ('9—mLo-myl(P) {24(13')]
Hence, the quadrature and parametrization error terms with dist(dl'g,, ©p/) = 0 can be
treated like the terms with dist(T'g,,©p) ~ 27"P) corresponding to the quadrature of
Sect. 4.2.2 (cf. part ii) of the proof to Lemma 6.3).

LEEd w7c’
iii) The “quadrature” error a,}g,,r;zn d

» of neglecting the approximation ap/r.  for the

corresponding integral in the case [(P') > mﬂﬂL is less than C'2~ ™9/ since the integrand
is my times continuously differentiable by assumption (cf. Sect. 2.2) and since ¥p has
m, vanishing moments. For the other case [(P') < 2L, we really have to estimate
the quadrature error a},“m p and the parametrization error a%,,ym p» respectively. Now

applying the usual upper bounds C2-2(@Q") [ ~dro[2- Q)9 CLoC'UP)a[g-UR)]~2 14 pagp,
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02 2@ 2= mol(P) [ =0e0[2-1(Q1) 2~ CLC'IP a9~ Q)| -2 r—a-my for the quadrature error to
each of the subtriangles I'ys in the partition of step ii) in Sect. 4.3.3.2, we get the error
estimate

I(P")
CL})/ re p S C Z 2_2Z(Q’)2_m19[(P,)L—(5r,0 [2—1(@’)2—CL2C’Z(P’)](1 [2—[(@')] —2—r—q—my
I mo. l(Ql):_3
mL
+C S 27 @) e [24<Q'>274L2<'1<P'>}q[24@')]—2—“—‘1
uQ"=l(P")+1
I(P")
< CQ*mﬂl(P’)Q*QCLQCIC'l(P') Z {Q,l(Q/)] —r—my n
Q=3
mL
G B i)
(Q")=I(P")+1

< olr+adli(P)g—all

On the other hand, for the parametrization error over the level [(Q') triangles, we arrive
at the usual upper bound

—2—r—my

g-mal(P) [9=L]™ [9=1@)] if 1(Q")

oo (P")
21(Q")
02 [Q_L] m-+1 [Q—Z(Q')] —2—r 1fl(P’) ,

(@)

Applying this to each of the subtriangles I'yr in the partition of step ii) in Sect. 4.3.3.2,
we conclude

<l
<l

a?,, re p < Z 92~2UQ") 9—myl(F') [Q_L]mﬂ [2_1@,)]—2_1«_“10

Now we take into account that, for the computation of an api‘F, the trial function tp

is presented as a linear combination of the three basic linear polynomials p, where the
constant p has a bounded coefficient and where the coefficients of the linear functions
(ki (7)) = (T = [Em]) " (Py))s, i = 1,2 are bounded by 2/"). Consequently, the resulting
error af p, i = 1,2 for apF is bounded by 2'aj, . .

In view of Lemma 5.4, we have to estimate the sums 2! and 3% with ap p replaced
by a% p, @ = 1,2. Choosing i = 1, we obtain

Zi < sup Z 9=sl(P) crl(P)9—myl(P')
PeAT, UP)=Z85L peal: (P)<I(PY), ...
+ sup Z 9sl(P) (19l(P)glr+ac'll(P)g—a¢L

PIEAT UP<ZB5L peAl: 1(P)<I(PY), ...
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< O sup 2 ™IE) Y olsl)

P> sl I(P)=—1
I(P")
+O2m L sup ole+al’li(P’) Z 9[1=s]i(P)
UP)<g=L I(P)=—1

< (C27 my A5 L +C2” qCLQ[r+qC][m+2 L] < CQ?mL

as well as
mn-:—2L 1 mr:'2L 1
Z% S Z 22—5]1 sup{ Z 9~ a1 Z 0212[r+QC’}l’2—qCL
=1 Pevl U =41 P'evy: ...
+ Z 272 % 0212—“‘0”}
V=mmoL P'eV: ...
+ Z 2271 sup Z 27% 3 o2
=L PeV] I'=l+1 Pevh: ..
miz L1 miz bl L1 2-11?
< C Z 235}1{ Z gl-2+r+ad’ll'g—acl Z 2[2““9]1,}[ z']
=1 U=I+1 l=misl 2
2-11?
+C’Z23ssup222m‘9]ll,]
|——m 1 PeVT I'=i+1 2
m+2
< Cc27™F,

The dots in the last formulae stand for the restriction to pairs of P and P’ for which the
quadrature approximation to aﬁ;fp is treated in Sect. 4.3.2.1. Similarly, we conclude

E% < sup Z 9—s1(P) (19l(P)grl(P') 9—[m+0.5]L
PIEAL I(P)< 5L peaT .
< 27
L1 mypal1
23 < 22[273]1 sup Z 9 2l Z 92 2rl’ —[m+0.5]L
=1 PeV] r=i+1 Pevh:...

L—1 mT—2L 1 2—! 2
—[m+0.5]L 3—s]l [—2+4r]
< (02 [m+0.5] 22[ Z 9l=2+r] lQl']
=1 I'=l+1

< oo™k

iv) The last error to be estimated is the error due to the neglect of the singular
integrals over triangles of the level mZ. Such a neglect occurs in all the three subsections
of Sect. 4.3. However, if r = —1 or if r = 0 and the kernel k(P, Q) satisfies the Mikhlin-
Gireaud condition (cf. Sect. 2.2 and cf. e.g. [26]), then the value of such an integral is
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less than 27™L. Since we commit such an error at most once in every entry ap’s of
)

the stiffness matrix, Lemma 5.4 with the choice = 1 implies the global error estimate
1145 — AT"]Prul|r2qry < C27™F for s = 1.1 and s = 2. "

Lemma 6.6 The number of necessary arithmetic operations for setting up the part of the
near field of the stiffness matriz A7? treated in Sect. 4.3 is less than CL?*2?F if r = —1
and less than CL32%L if r = 0.

Proof. We have seen that each quadrature term of Sect. 4.3 computed over a ¥p or a
['p, can be included into the estimates of Sect. 4.2. In particular, each quadrature for an
entry of the second part of the near field requires the same number of quadrature knots
as a corresponding entry of the first part of the near field. The only exception is that, due
to the logarithmic term in the levels of the uniform refinements according to (4.13) and
(4.15), there arises an additional factor L in the complexity if r = 0. Consequently, we
get the same complexity estimate as in Lemma 6.4 for r = —1 and the same complexity
multiplied by L for r = 0.

It remains to count the quadrature knots for Sect. 4.3.3.2. For a fixed ¥p/, the number
of knots is less than CL[2¢F~¢/P)]2. Hence, the number of all arithmetic operations for
the computation according to Sect. 4.3.3.2 is less than

mtal mt?
C i 22l(P’)L {QCL—(’Z(P’)]z < XLy, i 221(13')[1—4'} < C L2
I(P)=—-1 I(P)=—-1
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