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Abstract

In this paper we retail the approximation of the clamped plate problem by means

of two boundary element methods. In both cases, the variational formulation is

given on product of Sobolev spaces and we avoid the orthogonality to polynomi-

als of degree one. The use of biorthogonal wavelets on these spaces leads to a

well-conditioned sti�ness matrix and reduces strongly the complexity thanks to a

compression procedure. The solution of the compressed Galerkin scheme converges

to the exact solution at the same rate as for the classic Galerkin method.

1 Introduction

The clamped plate problem involves the biharmonic operator of order 4. The integral

formulation of the problem has been studied by several authors [5, 7, 8, 9, 10, 18, 20]

among others. The advantage of this method is to reduce the dimension of the problem

but it shows some drawbacks. When writing down the integral formulation by "single

layer potential", we obtain a coupled system of unknowns (q

1

; q

2

) and a 2� 2 system of

pseudodi�erential operators. This system is strongly elliptic on the product H

�3=2

(�)�

H

�1=2

(�) and self-adjoint but the associated bilinear form is only positive de�nite on a

subspace of the previous one, namely the subspace

�

(q

1

; q

2

) 2 H

�3=2

(�)�H

�1=2

(�) s.t. hq

1

; P i+ hq

2

; @

n

P i = 0; 8P 2 P

1

	

;

when P

1

is the space of polynomials of degree one. In order to approximate the exact

solution (q

1

; q

2

), we have to construct an approximation space and a basis satisfying this

orthogonality condition, which seems to be di�cult from a practical point of view.

Therefore, one can ask if we can avoid this condition and work directly on the product

space given above. Doing this, we can show that existence and uniqueness of the solution

is not guaranteed and it appears that, for certain values of the capacity cap �, the problem

formulated like this has no more unique solution. For instance, when the curve � is a

circle of radius R, the value R = e

�1

leads to nonuniquely solvable system (see [5, 18] and

[7] for other examples).

In the �rst part of the paper, we use some results of [7] where the idea is to reformulate

the problem on the scaled curve ��. The method show that a maximum of 4 values of �,

which can be computed, have to be avoid. For all other scaling factors � the variational

formulation of the problem is coercive and consequently, existence and unicity hold. We

also present another integral formulation due early to G.C. Hsiao and R. MacCamy in

[20] and continued by M. Costabel, E.P. Stephan and W.L. Wendland in [10] for the case

of a polygonal boundary �. In this method, we add three new constraint equations to

1



the system which has therefore 5 unknowns. Existence and uniqueness of the solution is

achieved for all curve �.

In both methods, we use a wavelet basis for the discretization in order to avoid two

other important drawbacks of general boundary element methods. Generally, the sti�ness

matrix is ill-conditioned and full, since the involved operators are nonlocal. Biorthogonal

wavelets seem to be an e�cient tool to avoid these two drawbacks. Wavelets have been

studied from a theoretical point of view in [6, 12, 16, 21] and they are used for solving

general elliptic partial di�erential equations, as in the precursory work [1] and later by

several other authors [13, 14, 25], most of the time for elliptic operators of order 2. The

originality of the present work is to extend the domain of using wavelets to more general

operators, for instance to operators of order 4 (see also [3]).

We now explain how the paper is organised. In section 2, we recall some notations and

we give the integral formulation of the problem. We mention the main properties of the

involved operators and explain how we can avoid the use of spaces orthogonal to traces

of polynomials of degree 1. In the next section, the Galerkin method is de�ned and one

obtains a �rst error estimate due to the coercivity of the variational formulation. Section

4 is devoted to the construction of a biorthogonal wavelet basis which characterizes some

Sobolev spaces in term of wavelet coe�cients. With these functions, we get a simple

preconditioner of the sti�ness matrix in section 5. Furthermore, we can get a sparse

compressed matrix with O(N) nonzero elements instead of O(N

2

), by compressing two

times. We complete the method by giving an error estimate between the exact solution

and its wavelet-Galerkin approximation. In section 7, we present another approach for

the formulation of the clamped plate problem by adding three constraints to the system of

equations. The new system leads to a coercive variational formulation of the problem and

the use of wavelets substantially reduces the complexity and improves the conditioning.

2 Integral formulation

Let 
 � R

2

be a bounded domain with a smooth boundary � = @
 (C

2

for instance).

We note 


0

= (
)

c

the open complementary of 
 in R

2

and n the unitary outer normal

vector on �.

For a more general domain 
 � R

n

and for a positive real s = m+�, with m 2 N and

� 2 (0; 1), the function u belongs to the Sobolev space H

s

(
) if and only if kuk

H

s

(
)

<1

with

kuk

H

s

(
)

=

n

kuk

2

H

m

(
)

+ juj

2

H

s

(
)

o

1=2

; (1)

2



with the semi-norm de�ned, for j�j = m, by

juj

2

H

s

(
)

=

X

j�j=m

Z Z




2

jD

�

u(x)�D

�

u(y)j

2

jx� yj

n+2�

dxdy: (2)

We will note P

l

the space of polynomials of degree less than or equal to l.

Because of the smoothness of the boundary �, the trace operators




0

: u �! 


0

u := u

j�

; (3)




1

: u �! 


1

u := @

n

u

j�

; (4)

de�ned from D(
) onto C

0

(�) admit continuous extensions

(


0

; 


1

) : H

s

(
) �! H

s�1=2

(�)�H

s�3=2

(�); (5)

for s > 3=2.

In order to write the integral formulation of the problem, we introduce the weighted

Sobolev spaces

L

2

1

(


0

) =

�

u 2 D

0

(


0

)j(1 + r

2

)

�1

(log(2 + r

2

))

�1

u 2 L

2

(


0

)

	

; (6)

W

2

(


0

) =

�

u 2 L

2

1

(


0

)j(1 + r

2

)

�1=2

(log(2 + r

2

))

�1

@

x

i

u 2 L

2

(


0

); (7)

@

x

i

@

x

j

u 2 L

2

(


0

); 8i; j = 1; 2

	

: (8)

If we pose

B := H

3=2

(�)

=P

1

�H

1=2

(�)

=C

; (9)

B is the space of the couples (g

0

; g

1

) such that there exists a function u 2 W

2

(R

2

)=P

1

satisfying the boundary conditions (


0

u; 


1

u) = (g

0

; g

1

). We will note B

0

the dual space

of B.

The clamped plate problem reads as follow : �nd u solution of

8

>

<

>

:

�

2

u = 0; in 
;

u = g

0

; on �;

@

n

u = g

1

; on �:

(10)

For s 2 R, and given data g

0

2 H

s+

3

2

(�), g

1

2 H

s+

1

2

(�), there exists a unique solution

u 2 H

s+2

(�) of problem (10).

We recall the fundamental solution of the biharmonic operator in R

2

:

G(x; y) = �

1

8�

jx� yj

2

log jx� yj: (11)
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We introduce the following integral operators :

Au(x) := �

Z

�

G(x; y)u(y)ds

y

; (12)

Bu(x) := �

Z

�

@

n

y

G(x; y)u(y)ds

y

; (13)

B

0

u(x) := �

Z

�

@

n

x

G(x; y)u(y)ds

y

; (14)

Cu(x) := �

Z

�

@

n

x

@

n

y

G(x; y)u(y)ds

y

; (15)

for x 2 
 [ 


0

. The solution of problem (10) admits the following single layer represen-

tation

u(x) = �fAq

1

(x) +Bq

2

(x)g ; x 2 
 [ 


0

; (16)

where (q

1

; q

2

) is a solution of the system

(

Aq

1

(x) +Bq

2

(x) = �g

0

(x);

B

0

q

1

(x) + Cq

2

(x) = �g

1

(x):

(17)

The above system of two equations suggests to introduce the operator

A =

 

A B

B

0

C

!

: (18)

We recall the main properties of A (see [11]).

Lemma 2.1 If the boundary � of the domain is smooth, the operator A is a strongly

elliptic selfadjoint matrix of pseudodi�erential operators of orders

 

�3 �2

�2 �1

!

.

Moreover, the system (17) de�nes a bounded positive de�nite bilinear form on the

subspace of codimension 3 :

B

0

:=

�

H

3=2

(�)

=P

1

�H

1=2

(�)

=C

�

0

; (19)

where (�)

0

denotes the duality. More precisely, the space B

0

is de�ned by

B

0

=

�

(q

1

; q

2

) 2 H

�3=2

(�)�H

�1=2

(�) s.t. hq

1

; P i+ hq

2

; @

n

P i = 0; 8P 2 P

1

	

: (20)

We present hereafter some methods and results for which the bilinear form is still

positive de�nite on the space H

�3=2

(�)�H

�1=2

(�), i.e. without the additional orthogonal

condition.

We mention �rst a modi�cation of the initial system, introduced by Fuglede [18] where

only the second equation in (17) is modi�ed and replaced by

�

1

2�

Z

�

�

log jx� yjq

1

(y)� @

n

y

log jx� yjq

2

(y)

	

ds

y

�

1

2

q

2

(y) = 0:
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For this modi�ed system of equations, existence and unicity of the solution is proved in

[18] for cap � =2 f1;

1

e

g, when cap is the capacity of a given curve. For instance when �

is a circle of radius R, existence and uniqueness hold for R 6=

1

e

.

Coming back to the clamped plate problem, in [7] the authors study the solvability of

the initial system (17), without any additional equation. The main result reads as follows:

for any curve �, the problem (17) considered on the scaled curve

�� := f�x 2 R

2

s.t. x 2 �g (21)

is uniquely solvable if and only if the scale factor � > 0 satis�es � =2 S

�

, where card S

�

2

f1; : : : ; 4g. Let us remark that there is no particular assumption on the regularity of �

which can be smooth or polygonal. In the latest case, we have to de�ne carefully the

Sobolev spaces H

�3=2

(�), H

�1=2

(�), and when one writes the trace theorem on @
, some

compatibility conditions appear at the corners (see [19]).

We recall the method used by M. Costabel and M. Dauge in [7].

The main idea is to reformulate the problem (17) in new spaces. The new formulation

is equivalent to the initial one when the domain is smooth, no regularity assumption on

� is needed (except for the polygonal case as explained before) and the problem becomes

scalar. We introduce the following Sobolev spaces. Let us respectively de�ne

~

H

2

(R

2

n �) := C

1

0

(R

2

n �)

H

2

(R

2

)

; (22)

H

2




(�) := H

2

(R

2

)

=

~

H

2

(R

2

n�)

: (23)

We pose


 : H

2

(R

2

) �! H

2




(�); (24)

and

H

�2

�

:= fq 2 H

�2

(R

2

) s.t. supp q � �g: (25)

The above spaces have the following properties (see Lemma 4.1 in [7]).

Lemma 2.2 For all boundary �, H

�2

�

= (H

2




(�))

0

.

If � is smooth, we have two isomorphisms :

H

2




(�) � H

3=2

(�)�H

1=2

(�); (26)

H

�2

�

� H

�3=2

(�)�H

�1=2

(�): (27)

The latest one is de�ned, for a given q 2 H

2




(�) with (q

1

; q

2

) 2 H

�3=2

(�)�H

�1=2

(�), we

write

hq; �i =

Z

�

(q

1

�+ q

2

@

n

�)ds; 8� 2 C

1

0

(R

2

):

5



Therefore, the operator A de�ned by (18) acts also on H

�2

�

:

A : H

�2

�

�! H

2




(�):

We pose, as the notations in [7], A = A, X = H

�2

�

, X

0

= H

2




(�), P = span fp

0

; p

1

; p

2

; p

3

g

with (p

0

; p

1

; p

2

; p

3

) = 
(1; x

1

; x

2

; jxj

2

), 
 beeing de�ned by (24), and

X

0

= ff 2 X : hf; p

i

i = 0, 8i 2 f0; : : : ; 3gg:

As explained before, operator A is positive on X

0

. We therefore de�ne the modi�ed

system of equations

(

Aq =

P

3

i=0

!

i

p

i

;

hq; p

i

i = �

i

; i = 0; : : : ; 3;

(28)

which has, for all � 2 R

4

, a unique solution (q; !) 2 H

�2

�

�R

4

and we introduce the linear

application � �! ! := B

�

�.

The compact set � has to verify the additional assumption :

(P) The traces of polynomials 1; x

1

; x

2

; jxj

2

in H

2




(�) are linearly independent.

The previous hypothesis is allways satis�ed when the boundary � of the domain is a

curve, for instance. Assuming now that the assumption (P) is satis�ed, we obtain a new

expression of operator B

�

under the scale transformation � �! ��.

Lemma 2.3 Let � > 0. Under the scale transformation (21), the operator B

�

de�ned

above becomes

B

��

= D

�

�

B

�

+

log �

8�

C

�

D

�

; (29)

with

C =

0

B

B

B

@

0 0 0 1

0 �2 0 0

0 0 �2 0

1 0 0 0

1

C

C

C

A

; D

�

=

0

B

B

B

@

� 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �

�1

1

C

C

C

A

: (30)

Therefore, the followowing theorem explains for which values of � the system (17) can be

solved on the space H

�2

�

.

Theorem 2.4 If � is a compact set satisfying assumption (P), the operator

A

�

: H

�2

��

�! H

2




(��) (31)

is not an isomorphism if and only if

� = e

�8��

; (32)

where � is the eigenvalue of the matrix C

�1

B

�

.

6



In the rest of the paper, we assume that

� =2 S

�

:= fe

�8��

; � 2 Sp (C

�1

B

�

)g; (33)

and we will write for short � instead of ��, with � =2 S

�

.

3 Galerkin method

We begin to describe the variational formulation of the problem (10).

Let us de�ne the bilinear form a by

a(q; q

0

) = hAq; q

0

i

H

2




(�)�H

�2

�

; 8q

0

2 H

�2

�

: (34)

We are seeking for the unknown

q = (q

1

; q

2

) =

�

�

�

@(�u)

@n

�

; [�u]

�

2 H

�2

�

; (35)

where [�] denotes the jump through the boundary �.

An explicit expression of the bilinear form a is given by

a(q; q

0

) =

Z

���

q

1

(x)q

0

1

(y)E(jx� yj)ds

x

ds

y

+

Z

���

q

2

(x)q

0

1

(y)@

n

x

E(jx� yj)ds

x

ds

y

+

Z

���

q

1

(x)q

0

2

(y)@

n

y

E(jx� yj)ds

x

ds

y

+

Z

���

q

2

(x)q

0

2

(y)@

n

x

@

n

y

E(jx� yj)ds

x

ds

y

: (36)

Therefore, the variational formulation of the problem consists in �nding q 2 H

�2

�

solution of

a(q; q

0

) = h(g

0

; g

1

); q

0

i; 8q

0

2 H

�2

�

: (37)

In view of the previous section, we immediatly get

Proposition 3.1 For all � =2 S

�

, the bilinear form a is symmetric, continuous and coer-

cive on H

�2

�

.

Given a positive integer J , we de�ne the set of grid points fx

k

g

2

J

�1

k=0

on the boundary �

and we note s

k

the curvilinear abscissae of x

k

on �. If c

�

is the length of the curve �, we

pose :

js

k+1

� s

k

j =

c

�

2

�J

; 8k = 0; : : : ; 2

J

� 1:

7



The approximation space S

J

of H

�2

�

is given by

S

J

= f(f; g) 2 S

L

J

� S

M

J

g; (38)

where

S

L

J

= ff : f

j[s

k

;s

k+1

]

2 P

L

; k = 0; : : : ; 2

J

� 1g; (39)

with

L � s�

5

2

; M � s�

3

2

: (40)

Using the Galerkin method, we want to �nd q

J

2 S

J

solution of

a(q

J

; q

0

J

) = h(g

0

; g

1

); q

0

J

i; 8q

0

J

2 S

J

: (41)

Due to the coercivity of the bilinear form, we have the error estimate :

Theorem 3.2 Let q = (q

1

; q

2

) 2 H

s�3=2

(�) � H

s�1=2

(�) be the exact solution of prob-

lem (17) with data (g

0

; g

1

) 2 H

s+3=2

(�) � H

s+1=2

(�) and suppose that (40) is satis�ed.

Therefore, if � =2 S

�

and if q

J

is the Galerkin approximation of q, we have

kq � q

J

k

H

�2

�

(�)

. 2

�sJ

�

kg

0

k

2

H

s+3=2

(�)

+ kg

1

k

2

H

s+1=2

(�)

�

1=2

: (42)

Proof: By C�ea's Lemma, we may write

kq � q

J

k

H

�2

�

(�)

. kq �Q

J

qk

H

�2

�

(�)

;

where Q

J

is the L

2

(�)

2

-projection on S

J

. Because of the regularity of the data, we have

q

1

2 H

s�3=2

and q

2

2 H

s�1=2

. Now, if the approximation space admits a spline basis, it is

well-known from approximation theory that

kq �Q

J

qk

2

H

�2

(�)

. 2

2J(�3=2�(s�3=2))

kg

0

k

2

H

s+3=2

(�)

+ 2

2J(�1=2�(s�1=2))

kg

1

k

2

H

s+1=2

(�)

:

�

Instead of using a classical spline basis of the approximation space S

J

, we construct in the

next section a biorthogonal wavelet basis which characterizes spaces H

s

(�) � H

s+1

(�).

This new basis will lead to a simple preconditioning and a compression of the sti�ness

matrix.

4 Biorthogonal wavelet basis

We recall in this section the main steps for the construction of a biorthogonal wavelet

basis. We refer to [12, 13, 14, 25] for further details.
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Given a Hilbert space H (for instance H = L

2

(�) or H = H

s

(�)), we suppose that we

have a sequence of nested closed subspaces S

j

of H, whose union is dense in H :

S

0

� S

1

� � � � � H;

clos

H

 

1

[

j=0

S

j

!

= H:

The spaces S

j

have the form

S

j

= S(�

j

) = clos

H

(Span(�

j

)); �

j

= f'

j;k

: k 2 �

j

g;

with �

j

a countable set of indices and �

j

are stable bases.

From the identity

S(�

j+1

) = S(�

j

)

M

S(	

j

);

we introduce the set W

j

= S(	

j

), the complement of S(�

j

) in S(�

j+1

). The set 	

j

=

f 

j;k

: k 2 r

j

g is the collection of the successive translates of the wavelet  

j

, at a �xed

level j.

For a function  , on R

n

to �x the ideas, we will note

	 = f 

�

: � 2 rg;

where the indices � 2 r encode the level of resolution, which will be denoted by j�j (or

j as in the previous notation), the location of the function (k) and sometimes the type of

wavelet which is used (e).  

�

can be written as

 

�

= 2

jn=2

 

e

(2

j

� �k): (43)

Sometimes it is useful to use the condensed notation (43) instead of the original one

 

j;k

(x) = 2

jn=2

 (2

j

x� k).

Now suppose that are given two sets of functions :

	 = f 

j;k

: (j; k) 2 rg;

~

	 = f

~

 

j;k

: (j; k) 2 rg;

where r = f(j; k) : k 2 r

j

; j = �1; 0; 1; 2; : : :g such that

h 

j;k

;

~

 

j

0

;k

0

i = �

(j;k);(j

0

;k

0

)

; (j; k); (j

0

; k

0

) 2 r; (44)

where h�; �i is the scalar product in H.

Let � : � �! [0; 1] be a smooth parametrisation of the boundary �. We also introduce,

for ' 2 C

1

0

(�), the function ~� de�ned by

~� � '(x) = '

�

�

�1

(x)

�

: (45)
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The wavelets have the two following fundamental properties, which are essential when

writing down the Galerkin method and the compression. First of all, wavelets  and their

dual

~

 have a compact support. In the following, we will note




j;k

:= supp  

j;k

; (46)

the support of the wavelet  

j;k

. By the same way and as needed when writing the

compression, we also introduce




s

j;k

:= Sing supp  

j;k

; (47)

for the singular support of  

j;k

.

On the other hand, if � is de�ned as above, the wavelets satisfy the moment property

Z

R

x

�

 

j;k

(�

�1

(x))dx = 0; j�j �

~

d; k 2 r

j

: (48)

That is,  has

~

d + 1 vanishing moments. Thanks to these assumptions, we will be able

to compress the sti�ness matrix in section 5. Let us de�ne the following projectors : for

u 2 L

2

(R), we note Q

j

the projection on S

j

and pose

(Q

j+1

�Q

j

) u =

X

k2r

j

hu;

~

 

j;k

i 

j;k

; (49)

�

~

Q

j+1

�

~

Q

j

�

u =

X

k2r

j

hu;  

j;k

i

~

 

j;k

: (50)

With the above biorthogonal system, every v 2 H has a unique expansion in these bases

of the following form :

v =

X

(j;k)2r

hv;

~

 

j;k

i 

j;k

=

X

(j;k)2r

hv;  

j;k

i

~

 

j;k

(51)

such that the systems are stable in the sense that

kvk

2

H

�

X

(j;k)2r

jhv;

~

 

j;k

ij

2

=

X

(j;k)2r

jhv;  

j;k

ij

2

: (52)

Such a dual system is a good candidate for the characterization of the usual Sobolev

spaces on R

n

by means of the wavelet coe�cients if the Bernstein and Jackson estimates

hold. We recall the following general result ([12, 13]).

Theorem 4.1 Let us assume that the Jackson estimate holds, namely

kv �Q

j

vk

�

. 2

j(��t)

kvk

t

; v 2 H

t

(�); (53)
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for �

~

d � 1 < � < 
; � � t;�~
 < t � d + 1, with a similar inequality for (v �

~

Q

j

v), by

interchanging d and

~

d, 
 and ~
.

Moreover, if we have the following "inverse" property

kv

j

k

t

. 2

j(t��)

kv

j

k

�

; v

j

2 S

j

; (54)

if �1 < � � t < ~
 ; and

kv

j

k

t

. 2

j(t��)

kv

j

k

�

; v

j

2

~

S

j

; (55)

for �1 < � � t < 
, the next eqivalences hold :

kvk

t

�

X

k2�

j

0

jhv; '

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

j

2

2jt

jhv;

~

 

j;k

ij

2

; (56)

kvk

t

�

X

k2�

j

0

jhv; '

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

j

2

2jt

jhv;  

j;k

ij

2

; (57)

for �~
 < t < 
;�
 < t < ~
.

Remark 4.2 The choice d =

~

d = 2 (i.e. the use of piecewise linear elements) allows to

characterize H

s

(R) for s 2 [�

1

2

;

3

2

) and in this case, 
 =

3

2

.

Now we apply the previous general construction to our concrete problem. Suppose

that, with the above construction, we have a set of wavelets f 

d

1

;j;k

g, exact of order d

1

,

which characterize H

s

1

(R) for s

1

2 (�~


1

; 


1

), with the assumption ~


1

> �

r

2

, 


1

> �

r

2

.

Because r = �3, we immediatly get that the value s

1

= �

3

2

belongs to the interval

(�~


1

; 


1

).

By the same way, we construct a second set of wavelets f 

d

2

;j;k

g which characterizes

H

s

2

(R) for s

2

2 (�~


2

; 


2

). The case s

2

= �

1

2

is again included. Consequently, using a

smooth parametrisation � of the boundary @
 and for j � j

0

> 0, we de�ne the following

wavelets in L

2

(�

2

) :

 

1

j;k

:=

 

 

d

1

;j;k

0

!

; k 2 r

1

j

(58)

 

2

j;k

:=

 

0

 

d

2

;j;k

!

; k 2 r

2

j

(59)

(resp.

~

 

1

j;k

,

~

 

2

j;k

for the dual system). The integer j

0

is chosen su�ciently large such that

supp  

d

i

;j

0

;0

� [0; 1] for i = 1; 2. With the above wavelets we get the theorem

Theorem 4.3 For � 2 R

+

and for all s 2 (�

3

2

;�

3

2

+ �), we choose (


1

; 


2

) such that




1

; 


2

> �

1

2

+ �: (60)
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For all q = (q

1

; q

2

) 2 H

s

(�)�H

s+1

(�) such that

q =

X

k2�

j

0

hq; '

j

0

;k

i'

j

0

;k

+

1

X

j=j

0

2

4

X

k2r

1

j

hq;

~

 

1

j;k

i 

1

j;k

+

X

k2r

2

j

hq;

~

 

2

j;k

i 

2

j;k

3

5

; (61)

the next equivalence holds

kqk

2

H

s

(�)�H

s+1

(�)

�

X

k2�

j

0

jhq; '

j

0

;k

ij

2

+

1

X

j=j

0

8

<

:

X

k2r

1

j

2

2sj

jhq;

~

 

1

j;k

ij

2

+

X

k2r

2

j

2

2(s+1)j

jhq;

~

 

2

j;k

ij

2

9

=

;

: (62)

Proof: We start to write the de�nition of the norm of q :

kqk

2

H

s

(�)�H

s+1

(�)

:= kq

1

k

2

H

s

(�)

+ kq

2

k

2

H

s+1

(�)

;

and we estimate separetly the two norms on the right hand side. In view of the properties

of  

d

1

;j;k

and with assumption (60), we have

kq

1

k

2

H

s

(�)

�

X

k

jhq

1

; '

1

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

1

j

2

2sj

jhq

1

;

~

 

d

1

;j;k

ij

2

;

where

'

1

j

0

;k

:=

 

'

j

0

;k

0

!

:

The conclusion holds because of the equality

hq

1

;

~

 

d

1

;j;k

i = hq;

~

 

1

j;k

i:

We estimate the second norm using the de�nition of  

d

2

;j;k

and again assumption (60).

Namely, we have for '

2

j

0

;k

=

 

0

'

j

0

;k

!

:

kq

2

k

2

H

s+1

(�)

�

X

k

jhq

2

; '

2

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

2

j

2

2(s+1)j

jhq

2

;

~

 

d

2

;j;k

ij

2

;

�

X

k

jhq; '

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

2

j

2

2(s+1)j

jhq;

~

 

2

j;k

ij

2

:

�

As a consequence of the above Theorem, we immediatly get an error estimate for the

Wavelet-Galerkin method.
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Corollary 4.4 If Q

i

denotes the projection on V

i

along W

i

, with i � j

0

, for any (s; t) 2

(�

3

2

;�

3

2

+ �), s � t, we have for all q 2 H

t

(�)�H

t+1

(�) :

kq �Q

i

qk

H

s

(�)�H

s+1

(�)

. 2

i(s�t)

kqk

H

t

(�)�H

t+1

(�)

: (63)

Proof: If we write shortly q �Q

i

q in the wavelet basis of L

2

(�

2

) as

q �Q

i

q =

1

X

j=i

2

4

X

k2r

1

j

c

1

j;k

 

1

j;k

+

X

k2r

2

j

c

2

j;k

 

2

j;k

3

5

;

and using Theorem 4.3, one has

kq �Q

i

qk

2

H

s

(�)�H

s+1

(�)

�

1

X

j=i

8

<

:

X

k2r

1

j

2

2sj

jc

1

j;k

j

2

+

X

k2r

2

j

2

2(s+1)j

jc

2

j;k

j

2

9

=

;

. 2

2(s�t)i

1

X

j=i

8

<

:

X

k2r

1

j

2

2tj

jc

1

j;k

j

2

+

X

k2r

2

j

2

2(t+1)j

jc

2

j;k

j

2

9

=

;

. 2

2(s�t)i

kqk

H

t

(�)�H

t+1

(�)

;

the last estimate is obtained by applying once more Theorem 4.3. �

Remark 4.5 If we apply the previous estimate with t = s �

3

2

, s = �

3

2

and i = J , we

�nd again the same estimate as in the classical Galerkin method, using a spline basis of

S

J

(see Theorem 3.2).

From now on, we note shortly

f	

j;k

g

k2r

j

:= f 

1

j;k

g

k2r

1

j

[ f 

2

j;k

g

k2r

2

j

; (64)

as a wavelet basis of S

j

and we pose

f	g =

[

j;k2r

f	

j;k

g: (65)

The functions 	

j;k

of the set f	g are exact of order d with d 2 fd

1

; d

2

g and they have

(

~

d+ 1) vanishing moments for

~

d 2 f

~

d

1

;

~

d

2

g. For the sake of brevity, we write in the same

way 
 2 f


1

; 


2

g, and de�ne analogously ~
.

5 Preconditioning and compression of the sti�ness

matrix

For r

J

= f(j; k) : j = �1; : : : ; J , k 2 r

j

g; let

A

J

= (hA	

j;k

;	

j

0

;k

0

i)

(j;k);(j

0

;k

0

)2r

J

;=

�

A

(j;k);(j

0

;k

0

)

�

(j;k);(j

0

;k

0

)2r

J

; (66)
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be the sti�ness matrix of A in the wavelet basis 	.

When the operator A is of order r 6= 0 and the Hilbert space H = H

s

(�) with s 6= 0,

we have a simple diagonal preconditioner for the matrix A

J

.

Proposition 5.1 For i 2 f1; 2g, let D

i

s;j

be the diagonal matrix de�ned by

�

D

i

s;j

�

(j;k);(j

0

;k

0

)

= 2

(s�i+1)j

�

(j;k);(j

0

;k

0

)

; (j; k); (j

0

; k

0

) 2 r

i

j

; (67)

and let us pose

D

s;j

=

 

D

1

s;j

0

0 D

2

s;j

!

: (68)

If ~
 >

3

2

, we have :

cond (D

3=2;J

A

J

D

3=2;J

) � C; (69)

for a constant C independent of J .

Proof: By the de�nition of the matrices D

i

s;j

for i = 1; 2, the modi�ed sti�ness matrix

has entries computed on the new wavelet basis functions 	

j;k

= f 

1

j;k

g [ f 

2

j;k

g with :

 

1

j;k

= 2

3j=2

 

1

j;k

; (70)

 

2

j;k

= 2

j=2

 

2

j;k

: (71)

Due to the Theorem of characterization 4.3 applied with s = �3=2 and because of the

coercivity of the bilinear form a (see Proposition 3.1), the result follows immediately. �

Using wavelets, we are also able to compress the sti�ness matrix. The "compressed"

matrix will only have O(N) non-zero elements instead of O(N

2

) entries. One essential

property we need is the decreasing of the kernel E of our operator, namely the bilaplacian

here. This property exhibits a decay for the sti�ness matrix coe�cients, which is the

starting point for the compression. These results are summarized in the next Lemma.

Lemma 5.2 The following estimates hold :

1. The kernel K

�

2

of the biharmonic operator satis�es :

�

�

@

�

x

@

�

y

K

�

2

(x; y)

�

�

. [dist

�

(x; y)]

�(�2+j�j+j�j)

; (72)

when �2 + j�j+ j�j > 0.

The wavelelet coe�cents of the sti�ness matrix decrease in the following way :

2. Suppose that

~

d > 0 and dist(


j;k

; 


j

0

;k

0

) > 0, with 


j;k

de�ned by (46). We have

�

�

A

(j;k);(j

0

;k

0

)

�

�

=

�

�

hA	

(j;k)

;	

(j

0

;k

0

)

i

�

�

.

2

�(j+j

0

)(

~

d+

3

2

)

dist(


j;k

; 


j

0

;k

0

)

~

d

: (73)
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3. Let j

0

� j, 0 � d <

~

d � 3 and 
 > �

3

2

. We note 


j

0

;k

0

= [

n

�

�=1

f�

j

0

�

g where

s

j

0

�

:= �

j

0

�1

�

\ �

j

0

�

are the points of 


j

0

;k

0

on which the wavelet 	

j

0

;k

0

is not smooth.

Suppose now that

	

j

0

;k

0

(�

�1

)j�

j

0

�

2 P

d

: (74)

If we assume that

1

c

2

�j

0

� dist(


j;k

;


s

j

0

;k

0

) � c2

�j

; (75)

we have

jhA	

j;k

;	

j

0

;k

0

ij . 2

�j(

~

d+1=2)

2

j

0

=2

dist(


j;k

;


s

j

0

;k

0

)

2�

~

d

: (76)

Proof: By de�nition of the bilinear form a in (36), we have

a(	

j;k

; 	

j

0

;k

0

) =

4

X

i=1

Z Z

�

2

	

j;k

(x)	

j

0

;k

0

(y)k

i

(x; y)ds

x

ds

y

;

with

k

1

(x; y) = E(jx� yj) ; k

2

(x; y) = @

n

x

E(jx� yj);

k

3

(x; y) = @

n

y

E(jx� yj) ; k

4

(x; y) = @

n

x

@

n

x

E(jx� yj):

Now we estimate the successive derivatives of each k

i

by applying the Leibniz rule and

we get immediatly the �rst assertion of the Lemma.

Because of the smoothness of �, we use the parametrization of the boundary � de�ned

in (45) such that

a(	

j;k

; 	

j

0

;k

0

) =

X

i

Z Z

[0;1]

2

	

j;k

(�

�1

(x))	

j

0

;k

0

(�

�1

(y))

� k

i

(�

�1

(x); �

�1

(y))(�

�1

)

0

(x)(�

�1

)

0

(y)dxdy:

From now on we write shortly g

i

(x; y) = k

i

(�

�1

(x); �

�1

(y))(�

�1

)

0

(x)(�

�1

)

0

(y), for i =

1; : : : ; 4. Therefore we may write

hA	

j;k

;	

j

0

;k

0

i =

4

X

i=1

Z

R

2

g

i

(x; y)	

j;k

(�

�1

(y))	

j

0

;k

0

(�

�1

(x))dxdy: (77)

We now develop g

i

(x; y) in a Taylor serie in two steps.

First of all, for �

�1

(y) 2 


j;k

, we develop the function g

i

(x; �) as a function of x around

the point �

�1

(x

0

) 2 


j

0

;k

0

and until order

~

d, that is :

g

i

(x; y) =

X

j~�j�

~

d

c

i

~�

(x

0

; y)(x� x

0

)

~�

+R

i

~

d+1

(x; x

0

; y);
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where R

i

~

d+1

is the integral rest of Lagrange of the Taylor expansion and is de�ned by

R

i

~

d+1

(x; x

0

; y) =

X

j�j=

~

d+1

(x� x

0

)

�

(

~

d+ 1)

�!

Z

1

0

(1� t

1

)

~

d

@

�

x

g

i

(x

0

+ t

1

(x� x

0

); y)dt

1

:

Now if we introduce this Taylor expansion in the integral (77), due to the moment property

of the wavelets, the �rst term of the Taylor development disappears and only R

i

~

d+1

has to

be taken into account.

We do the same development for the function y �! R

i

~

d+1

(x; x

0

; y) for �

�1

(x) 2 


j

0

;k

0

and for �

�1

(y

0

) 2 


j;k

:

R

i

~

d+1

(x; x

0

; y) =

X

j�j�

~

d

c

i

�

(x; x

0

; y

0

)(y � y

0

)

�

+R

i

~

d+1

(x; x

0

; y; y

0

); (78)

where, by de�nition,

R

i

~

d+1

(x; x

0

; y; y

0

) =

X

j�j=

~

d+1

(y � y

0

)

�

(

~

d+ 1)

�!

Z

1

0

(1� t

2

)

~

d

@

�

y

R

i

~

d+1

(x; x

0

; y

0

+ t

2

(y � y

0

))dt

2

:

(79)

If we replace in the integral, we obtain

jhA	

j;k

;	

j

0

;k

0

ij .

4

X

i=1

�

�

�

�

Z

R

2

R

i

~

d+1

(x; x

0

; y; y

0

)	

j;k

(�

�1

(y))	

j

0

;k

0

(�

�1

(x))dxdy

�

�

�

�

.

4

X

i=1

X

j�j;j�j=

~

d+1

Z

R

2

jy � y

0

j

~

d+1

jx� x

0

j

~

d+1

j	

j;k

(�

�1

(y))	

j

0

;k

0

(�

�1

(x))j

�

�

�

�

�

�

�

�

Z

[0;1]

2

(1� t

2

)

~

d

(1� t

1

)

~

d

@

�

y

@

�

x

g

i

(x

0

+ t

1

(x� x

0

); y

0

+ t

2

(y � y

0

))dt

1

dt

2

�

�

�

�

�

�

�

dxdy;

.

4

X

i=1

X

j�j;j�j

Z

R

2

jx� x

0

j

~

d+1

jy � y

0

j

~

d+1

Sup

�

�1

(y)2


j;k

�

�1

(x)2


j

0

;k

0

j@

�

y

@

�

x

g

i

(x; y)j

� j	

j;k

(�

�1

(y))	

j

0

;k

0

(�

�1

(x))jdxdy:

By the de�nition of k

i

we have

jhA	

j;k

;	

j

0

;k

0

ij .

X

j�j;j�j

dist(


j;k

;


j

0

;k

0

)

�2

~

d

�

Z

R

2

jx� x

0

j

~

d+1

jy � y

0

j

~

d+1

j	

j;k

(�

�1

(y))	

j

0

;k

0

(�

�1

(x))jdxdy:

We �nish the proof by estimating the following integral using the de�nition of 	

j;k

and

a change of variables in

Z

R

jx� x

0

j

~

d+1

j	

j

0

;k

0

(�

�1

(x))jdx . 2

�j

0

(

~

d+

3

2

)

Z

(u+ k)

~

d+1

j	(�

�1

(u))jdu;
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and the last integral here above is uniformly bounded, independently of j and k because

	 has a compact support.

The proof of the third assertion of the Lemma is established in three steps. We begin

to estimate the following coe�cients :

jhA	

j;k

0

; '

j;k

ij .

X

i

X

j�j=

~

d+1

sup

�

�1

(x)2


j;k

0

y2Supp'

j;k

j@

�

x

g

i

(x; y)j

�

Z

R

2

j(x� x

0

)

�

jj	

j;k

0

(�

�1

(x))'

j;k

(�

�1

(y))jdxdy

.

2

�j=2

2

�j(

~

d+3=2)

dist(


j;k

0

; Supp'

j;k

)

~

d�1

.

2

�3j

[1 + 2

j

dist(


j;k

0

; Supp'

j;k

)

~

d�1

:

Under the assumption (74), we have the moment property

Z

R

	

j

0

;k

0

(�

�1

(x))x

�

dx = 0; j�j �

~

d:

Consequently, we can write, for x 2 �

j

0

�

,

	

j

0

;k

0

(�

�1

(x)) = 2

j

0

=2

X

j�j<d+1

c

�

[2

j

0

(x� x

�

)]

�

:

If we note �

j

0

�

= �

�1

�

j

0

�

, and if

~

A is de�ned as the restriction of A on �

j

0

�

, we get

jhA	

j;k

;	

j

0

;k

0

ij =

�

�

�

�

Z

R

�

A	

j;k

(�

�1

(x))

�

	

j

0

;k

0

(�

�1

(x))dx

�

�

�

�

.

X

�

j

0

�

�


j

0

;k

0

�

�

�

�

�

�

Z

Rn�

j

0

�

X

j�j�d

c

�

2

j

0

=2

2

j

0

(x� x

�

)

�

~

A	

j;k

(�

�1

(x))dx

�

�

�

�

�

�

: (80)

We now give an estimate of j(

~

A	

j;k

)(�

�1

(x))j.

For all x 2 � and x

jk

2 


j;k

, suppose that dist(x;


j;k

) & 2

�j

and we have

j(

~

A	

j;k

)(x)j =

�

�

�

�

Z

R

K

~

A

(�(x); y)	

j;k

(�

�1

(y))dy

�

�

�

�

.

X

j�j=

~

d+1

sup

�

�1

(y)2


j;k

j@

�

y

K

~

A

(�(x); y)j

Z

R

j(y � y

0

)

�

jj	

j;k

(�

�1

(y))jdy

.

2

�j(

~

d+3=2)

[dist(x;


j;k

)]

~

d�1

. 2

�5j=2

[1 + 2

j

dist(x; x

j;k

)]

1�

~

d

:
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Inserting the previous estimate in the integral (80), we get

jhA	

j;k

;	

j

0

;k

0

ij .

Z

jx�x

�

j>cdist(


j;k

;


s

j

0

;k

0

)

jc

�

jj2

j

0

(x� x

�

)j

�

2

j

0

=2

2

�5j=2

[2

j

jx� x

�

j]

1�

~

d

dx

. 2

�j(

~

d+3=2)

2

j

0

(j�j+1=2)

[dist(


j;k

;


s

j

0

;k

0

)]

j�j�

~

d+2

:

We get the conclusion to the Lemma 5.2 due to the assumption (75). �

With the above inequalities, we compress the sti�ness matrix in two steps. First of all,

for d <

~

d� 3, we de�ne

�

A

1

(j;k);(j

0

;k

0

)

�

J

:=

(

A

(j;k);(j

0

;k

0

)

; if dist(


j;k

;


j

0

;k

0

) � �

j;j

0

;

0; otherwise.

(81)

If d <

~

d� 3 and d

0

2 (d;

~

d� 3), we suppose that the compression parameters satisfy

�

j;j

0

� a

1

maxf2

�j

; 2

�j

0

; 2

J(2(d

0

+1)+3)�(j+j

0

)(

~

d+d

0

+2)

2(

~

d+1)�3

g: (82)

We assume from now on that

~

d+ 1 > 
 > �

3

2

: (83)

We de�ne the matrix

R

1

=

�

r

1

(j;k);(j

0

;k

0

)

�

(j;k);(j

0

;k

0

)2r

J

=

�

�

A

(j;k);(j

0

;k

0

)

�

J

�

�

A

1

(j;k);(j

0

;k

0

)

�

J

�

(j;k);(j

0

;k

0

)

: (84)

We use the next intermediate lemma in order to estimate the norm of R

1

.

Lemma 5.3 Let

~

d � 3 > d, d

0

satisfying d

0

2 (d;

~

d � 3) and a

1

> 1. Assume that the

compression parameters are chosen such that

�

j;j

0

� a

1

max

�

2

�j

; 2

�j

0

; 2

J(2d

0

+5)�(j+j

0

)(

~

d+d

0

+2)

2

~

d�1

�

: (85)

We therefore obtain

X

1

:=

X

k2r

j

2

�j=2

2

�(j+j

0

)(d+1)

jr

1

(j;k);(j

0

;k

0

)

j

. 2

�j

0

=2

a

1�2

~

d

1

2

�J(2d+5)

2

(j�J)(d

0

�d)

2

(j

0

�J)(d

0

�d)

;

for 0 � j; j

0

� J .
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Proof: By the de�nition of r

1

(j;k);(j

0

;k

0

)

and using the Lemma 5.2, we have

X

1

=

X

k2r

j

:

dist(


j;k

;


j

0

;k

0

)>�

j;j

0

2

�j=2

2

�(j+j

0

)(d+1)

jA

(j;k);(j

0

;k

0

)

j

. 2

�j=2

2

�(j+j

0

)(d+1)

2

�(j+j

0

)(

~

d+

3

2

)

�

X

k2r

j

:

dist(


j;k

;


j

0

;k

0

)>�

j;j

0

dist(


j;k

;


j

0

;k

0

)

�2

~

d

:

Because �

j;j

0

� maxf2

�j

; 2

�j

0

g, the last sum above is estimated via an integral :

X

1

. 2

�j(d+

~

d+3)

2

�j

0

(d+

~

d+5=2)

2

j

Z

jxj>�

j;j

0

jxj

�2

~

d

dx

. 2

�j

0

=2

2

�j(d+

~

d+2)

2

�j

0

(d+

~

d+2)

(�

j;j

0

)

1�2

~

d

:

Using now the assumption (85) on the parameters �

j;j

0

, we �nd

X

1

. 2

�j

0

=2

a

1�2

~

d

1

2

�(j+j

0

)[d+

~

d+2�(

~

d+d

0

+2)]

2

�J(2d

0

+5)

. 2

�j

0

=2

a

1�2

~

d

1

2

(j�J)(d

0

�d)

2

(j

0

�J)(d

0

�d)

2

�J[2(d+1)+3]

:

�

We recall the Schur Lemma which allows to estimate the norm of in�nite matrices (see

[21] for instance).

Lemma 5.4 Let T = (T

j;j

0

)

j;j

0

2I

be a matrix, u 2 l

2

(I), ~u = (u

j

)

j2I

and s 2 R. It holds

kTuk .

"

sup

j2I

X

j

0

2I

jT

j;j

0

j2

s(j�j

0

)

#

1=2

�

"

sup

j

0

2I

X

j2I

jT

j;j

0

j2

s(j

0

�j)

#

1=2

� kuk

l

2

(I)

:

We use the Schur Lemma and the Lemma 5.3 to obtain an estimate of kRk.

Theorem 5.5 Let d

0

2 (d;

~

d� 3), 0 � t;

~

t < d+ 1. We pose

�

R

1;t;

~

t

j;j

0

�

j;j

0

=

�

2

�jt�j

0

~

t

jr

1

(j;k);(j

0

;k

0

)

j

�

j;j

0

; (86)

and we obtain

kR

1;t;

~

t

j;j

0

k . a

1�2

~

d

1

2

�J(t+

~

t+3)

2

(j�J)(d

0

+1�t)

2

(j

0

�J)(d

0

+1�

~

t)

: (87)
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Proof: We apply the Schur Lemma with s =

1

2

:

kR

1;t;

~

t

j;j

0

k . sup

k

0

X

k

2

(j

0

�j)=2

2

�jt�j

0

~

t

jr

1

j

+ sup

k

X

k

0

2

(j�j

0

)=2

2

�jt�j

0

~

t

jr

1

j

=

X

+

g

X

:

We treat the �rst sum de�ned above ; the other one is estimated in the same way by

interchanging the roles of j and j

0

. Using Lemma 5.3, we obtain

X

. 2

�j=2+j

0

=2

2

�jt�j

0

~

t

2

�(j+j

0

)(

~

d+

3

2

)

�

1�2

~

d

j;j

0

2

j

:

Because of the assumption (85) on the compression parameters we get :

X

. a

1�2

~

d

1

2

�j(t�d

0

�1)

2

�j

0

(

~

t�d

0

�1)

2

�J(2d

0

+5)

:

�

In a second step, thanks to the third estimate in Lemma 5.2, we de�ne a second

compression by the following way.

Let d < d

0

<

~

d� 3 and de�ne the matrix

A

c

J

:=

�

A

c

(j;k);(j

0

;k

0

)

�

(j;k);(j

0

;k

0

)2r

J

; (88)

by

�

A

c

(j;k);(j

0

;k

0

)

�

J

:=

8

>

<

>

:

A

1

(j;k);(j

0

;k

0

)

if j

0

� j and if dist(


j;k

;


s

j

0

;k

0

) � �

s

j;j

0

;

A

1

(j;k);(j

0

;k

0

)

if j

0

� j and if dist(


s

j;k

;


j

0

;k

0

) � �

s

j;j

0

;

0 else:

(89)

If d < d

0

<

~

d� 3 and a

c

> 1, the compression parameters are such that

�

s

j;j

0

� a

c

maxf2

�j

; 2

�j

0

; 2

J(2d

0

+5)�maxfj;j

0

g(

~

d+1)�(j+j

0

)(d

0

+1)

~

d�2

g: (90)

As before, we are able to estimate the di�erence between the �rst and second compressed

schemes.

Theorem 5.6 Let

~

d� 3 > d

0

> d and pose

r

c

(j;k);(j

0

;k

0

)

=

�

A

1

(j;k);(j

0

;k

0

)

�

J

�

�

A

c

(j;k);(j

0

;k

0

)

�

J

; (91)

with dist(


j;k

;


j

0

;k

0

) . minf2

�j

; 2

�j

0

g and the compression prameters �

s

j;j

0

satisfying (90).

If we de�ne

�

R

c

j;j

0

�

=

�

2

�(j+j

0

)(d+1)

jr

c

(j;k);(j

0

;k

0

)

j

�

; (92)

we obtain the estimate

kR

c

(j;j

0

)

k . a

c

2

�J(2d+5)

2

(j�J)(d

0

�d)

2

(j

0

�J)(d

0

�d)

: (93)

20



Proof: We proceed as in the proof of Theorem 5.5 when estimating kR

t;t

0

j;j

0

k. We use the

Schur Lemma 5.4 and the assumption (90) to conclude. �

6 Error estimate

In this section, we show that the compressed Galerkin scheme has the same order of

convergence as the initial one. As usual, we associate to the matrices A

1

J

; A

c

J

the operators

A

1

J

;A

c

J

.

We begin to estimate the di�erence A

1

J

� A

c

J

.

Theorem 6.1 For d < d

0

<

~

d� 3 and A

1

J

de�ned by (81), we have

k(A

J

�A

1

J

)uk

�d�1

. a

1�2

~

d

1

2

�J(2d+5)

kuk

d+1

(94)

Proof: Using the Theorem of characterization 4.3 and the de�nition (86) of R

1;t;

~

t

j;j

0

, we

arrive at

k(A

J

�A

1

J

)uk

�d�1

.

J�1

X

j;j

0

=�1

kR

1;d+1;d+1

j;j

0

k � kuk

d+1

: (95)

Now we make use of the estimate (87) of Theorem 5.5 and we get

k(A

J

�A

1

J

)uk

�d�1

.

X

j;j

0

a

1�2

~

d

1

2

�J(2d+5)

2

(j�J)(d

0

�d)

2

(j

0

�J)(d

0

�d)

kuk

d+1

: (96)

The conclusion follows for j; j

0

� J . �

By the same way, we can have such an estimate for the second compression.

Theorem 6.2 For d <

~

d� 3 and A

c

J

de�ned by (89), we get the following estimate

k(A

J

�A

c

J

)uk

�d�1

. a

c

2

�J(2d+5)

kuk

d+1

(97)

Proof: By Theorem 4.3 and de�nition (92), we write

k(A

J

�A

c

J

)uk

�d�1

.

J�1

X

j;j

0

=�1

kR

c

j;j

0

k � kuk

d+1

: (98)

Now we make use of the estimate (93) of Theorem 5.6 to obtain

k(A

J

�A

c

J

)uk

�d�1

. a

c

2

�J(2d+5)

X

j;j

0

2

(j�J)(d

0

�d)

2

(j

0

�J)(d

0

�d)

kuk

d+1

: (99)

�

The previous estimates allow to obtain the next Theorem of error.
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Theorem 6.3 For i 2 f1; 2g let �d

i

� 4 � s

i

< minf


i

; d

i

+ 1g with (s

1

; s

2

) = (�

3

2

;�

1

2

).

Furthermore, assume that s + s

i

� d

i

+ 1. For two parameters a

1

; a

c

large enough, we

de�ne the compression parameters �

j;j

0

; �

s

j;j

0

as in (85) and (90).

If we assume that the exact solution satis�es q = (q

1

; q

2

) 2 H

s�3=2

(�)�H

s�1=2

(�) and

if we note q

c

J

the solution of the (two times) compressed scheme A

c

J

, we have the following

optimal error estimate :

kq � q

c

J

k

H

�2

(�)

. 2

�sJ

�

kg

0

k

2

H

s+3=2

(�)

+ kg

1

k

2

H

s+1=2

(�)

�

1=2

: (100)

Proof: First of all, the assumption on the parameters a

1

; a

c

guarantees the stability of

the compression procedure, in view of Theorems 6.1 and 6.2 and due to the coercivity of

a.

Therefore, we can apply the �rst Strang Lemma in order to estimate the error. We

recall that for all s 2 R,

kq � q

c

J

k

s

. inf

q

J

2S

J

�

kq � q

J

k

s

+ sup

~q

J

2S

J

jh(A

J

�A

c

J

)q

J

; ~q

J

ij

k~q

J

k

s

�

: (101)

For the �rst term on the right hand, recalling that Q

J

is the projection on S

J

, we can

use the C�ea's Lemma to write

kq � q

J

k

H

�2

(�)

. kq �Q

J

qk

H

�2

(�)

. 2

�sJ

kqk

H

s�

3

2

(�)�H

s�

1

2

(�)

;

this last estimate being a direct consequence of Theorem 4.3.

For the second term on the right hand side of (101), we have

sup

~q

J

2S

J

jh(A

J

�A

2

J

)q

J

; ~q

J

ij

k~q

J

k

s

. k(A

J

�A

2

J

)q

J

k

s�r

;

which can be estimated thanks to Theorem 6.2 to get

sup

~q

J

2S

J

jh(A

J

� A

2

J

)q

J

; ~q

J

ij

k~q

J

k

s

. a

c

�

2

�2J[s�

3

2

�(�

3

2

+3)+3]

kq

1

k

2

s�

3

2

+ 2

�2J[s�

1

2

�(�

1

2

+3)+3]

kq

2

k

2

s�

1

2

�

1=2

. a

c

2

�sJ

kqk

H

s�

3

2

(�)�H

s�

1

2

(�)

:

�

Using the representation formula (16) and the continuity of operators A and B, we

obtain the following error estimate for the solution of the clamped plate problem (10).

Theorem 6.4 We note u the exact solution of the clamped plate problem and u

c

J

its

approximation. Under the same assumptions of Theorem 6.3, we get :

ku� u

c

J

k

H

2




(�)

. 2

�sJ

�

kg

0

k

2

H

s+

3

2

(�)

+ kg

1

k

2

H

s+

1

2

(�)

�

1=2

: (102)
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Proof: We use the integral representation (16) of the solution u and its approximation

u

c

J

:

u(x) = (Aq

1

(x) +Bq

2

(x)) ;

u

c

J

(x) = (Aq

c

1J

(x) +Bq

c

2J

(x)) :

And therefore we obtain

ku� u

c

J

k

2

H

2




(�)

. kA(q

1

� q

c

1J

)k

2

H

2




(�)

+ kB(q

2

� q

c

2J

)k

2

H

2




(�)

:

Now operators A and B are of order (�3) and (�2) respectively and are continuous.

Consequently we can write :

ku� u

c

J

k

2

H

2




(�)

. kq

1

� q

c

1J

k

2

H

�3=2

(�)

+ kq

2

� q

c

2J

k

2

H

�1=2

(�)

;

. kq � q

c

J

k

2

H

�2

(�)

;

. 2

�2sJ

�

kg

0

k

2

H

s+

3

2

(�)

+ kg

1

k

2

H

s+

1

2

(�)

�

;

by applying Theorem 6.3 in the last inequality. �

Remark 6.5 All the previous results can be easily extended to domains 
 � R

3

. The

fundamental solution becomes

E(x; y) = �

1

8�

jx� yj;

and the results of section 2 can be adapted. Using a patch-representation of the surface

@
, one can construct a system of biorthogonal wavelets on the two-dimensional boundary

� (see [15]). In R

3

, our system is allways uniquely solvable, for any curve �.

7 Integral formulation of Hsiao-MacCamy

In order to give a strongly elliptic variational formulation of the problem, for any value

of cap �, several authors studied a modi�ed system of equations, by adding three new

constraints. This work was initialized by Fichera, Hsiao, MacCamy [20], and Costabel,

Stephan, Wendland [10] for an extension to a polygonal boundary. The method reads as

follow.

The solution u of problem (10) admits the following representation formula

u(x) = �2

Z

�

(@

y

1

Gq

1

+ @

y

2

Gq

2

) ds

y

+ a

1

x

1

+ a

2

x

2

+ 
; (103)

where y = (y

1

; y

2

) 2 �, G is the fundamental solution of the bilaplacian given in (11).
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For a given data (g

0

; g

1

) 2 H

s+

3

2

� H

s+

1

2

, the unknowns are the functions (q

1

; q

2

) 2

H

s�

1

2

�H

s�

1

2

and the real numbers a

1

; a

2

; a

3

2 R which solve the system of equations

(

(S + L

11

)q

1

+ L

12

q

2

= '

1

� a

1

� a

3

k

1

;

L

21

q

1

+ (S + L

22

)q

2

= '

2

� a

2

� a

3

k

2

;

(104)

where

Su(x) :=

Z

�

g(x; y)u(y)ds

y

; (105)

is the single layer potential for the Laplacian with

g(x; y) = �

1

2�

log jx� yj; (106)

the fondamental solution (in R

2

) of �.

The operators L

ij

appearing in the above system are integral operators with smooth

kernels l

ij

de�ned by

 

l

11

l

12

l

21

l

22

!

= �

1

2�

 

(x

1

�y

1

)

2

jx�yj

2

+

1

2

(x

1

�y

1

)(x

2

�y

2

)

jx�yj

2

(x

1

�y

1

)(x

2

�y

2

)

jx�yj

2

(x

2

�y

2

)

2

jx�yj

2

+

1

2

!

: (107)

The vectors ' and k are de�ned by

 

'

1

'

2

!

=

 

_g

0

_x

1

+ g

1

_x

2

_g

0

_x

2

� g

1

_x

1

!

;

 

k

1

k

2

!

=

 

_x

1

_x

2

!

; (108)

where _g denotes the di�erentiation of g with respect to the arc length. Moreover, we

impose the three constraints :

Z

�

q

1

ds

y

= 0; (109)

Z

�

q

2

ds

y

= 0; (110)

Z

�

q

1

_x

1

ds

y

+

Z

�

q

2

_x

2

ds

y

= 0: (111)

We therefore write shortly the equations (104), (109), (110), (111) as

 

A T

� 0

! 

q

a

!

=

 

'

0

!

; (112)

with the following de�nitions of the operators :

A =

 

S + L

11

L

12

L

21

S + L

22

!

; (113)
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T a =

 

a

1

+ a

3

k

1

a

2

+ a

3

k

2

!

; (114)

�q =

0

B

@

R

�

q

1

ds

R

�

q

2

ds

R

�

(q

1

_x

1

+ q

2

_x

2

)ds

1

C

A

: (115)

Remark 7.1 The constant 
 in (103) can be easily found by imposing that u(x

0

) = g

0

(x

0

),

for a particular point x

0

on the boundary �.

For two real numbers s

1

; s

2

, let us introduce the notation :

H

s

1

;s

2

(�) := H

s

1

(�)�H

s

2

(�)�R

3

: (116)

The operator involved in (112) has the following property (see [10]).

Lemma 7.2 The operator A is a strongly elliptic pseudodi�erential operator of order

(�1) and the operator

B :=

 

A T

� 0

!

: H

s�

1

2

;s�

1

2

(�) �! H

s+

1

2

;s+

1

2

(�) (117)

is bijective, for all s 2 R.

For the sake of brevity, we de�ne � = (q; a) = (q

1

; q

2

; a

1

; a

2

; a

3

). The variational

formulation of problem (112) reads as :

Find � 2 H

�1=2;�1=2

(�) solution of

b(�;�

0

) := hB�;�

0

i

H

1=2;1=2

(�)�H

�1=2;�1=2

(�)

; 8�

0

2 H

�1=2;�1=2

(�): (118)

In view of Lemma 7.2, the bilinear form b is symmetric, continuous and coercive on

H

�1=2;�1=2

(�).

We therefore write in detail the Galerkin discretization of the problem (112). As in

section 3, for a given mesh �

J

, we de�ne as in (39) the approximation space

S

J

:= S

d

1

J

� S

d

2

J

� H

s�

1

2

�H

s�

1

2

; j = 0; : : : ; J; (119)

and with the assumption d

1

; d

2

� s� 3=2. A priori, one chooses d

1

= d

2

.

Let us make use of the following notations : q = (q

1

; q

2

), a = (a

1

; a

2

; a

3

) for the un-

knowns and q

J

= (q

1J

; q

2J

), a

J

= (a

1J

; a

2J

; a

3J

) for their respective approximations ; if

we note q

0

J

= (q

0

1J

; q

0

2J

) and a

0

J

= (a

0

1J

; a

0

2J

; a

0

3J

), with �

0

J

= (q

0

J

; a

0

J

) the Galerkin scheme

reads as :
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Find �

J

= (q

J

; a

J

) 2 S

d

1

J

� S

d

2

J

�R

3

such that

b(�

J

;�

0

J

) :=

* 

A T

� 0

! 

q

J

a

J

!

;

 

q

0

J

a

J

!+

=

* 

'

0

!

;

 

q

0

J

a

J

!+

; (120)

for all �

0

J

2 S

d

1

J

� S

d

2

J

�R

3

.

Using spline basis, we have the error estimate [8] :

Lemma 7.3 Let � = (q; a) 2 H

s�

1

2

;s�

1

2

(�) be the exact solution of problem (112) with

data (g

0

; g

1

) 2 H

s+

3

2

(�)�H

s+

1

2

(�). For d

1

; d

2

� s� 3=2, we get

kq � q

J

k

H

�1=2

(�)�H

�1=2

(�)

+ ja� a

J

j . 2

�sJ

�

kg

0

k

2

H

s+

3

2

(�)

+ kg

1

k

H

s+

1

2

(�)

�

1=2

: (121)

Proof: Let us de�ne � = (q

1

; q

2

; a

1

; a

2

; a

3

) 2 H

s�

1

2

;s�

1

2

(�) and �

J

= (q

1J

; q

2J

; a

1J

; a

2J

; a

3J

)

its Galerkin approximation. If jaj denotes the usual euclidian norm on R

3

, a norm on

H

t

1

;t

2

(�) is given by

k�k

H

�

1

2

;�

1

2

(�)

=

�

kq

1

k

2

H

�

1

2

(�)

+ kq

2

k

2

H

�

1

2

(�)

+ jaj

2

�

1=2

:

Therefore, due to the coercivity of the bilinear form a, we have by C�ea's Lemma :

k�� �

J

k

2

H

�

1

2

;�

1

2

. k��Q

J

�k

2

H

�

1

2

;�

1

2

. kq

1

�Q

J

q

1

k

2

H

�

1

2

+ kq

2

�Q

J

q

2

k

2

H

�

1

2

+ ja�Q

J

aj

2

;

where Q

J

is the L

2

(�)

2

-projection on S

J

and Q

J

is the scalar projection. Now applying

Theorem 4.3 of section 4, we have respectively

kq

1

�Q

J

q

1

k

2

H

�

1

2

. 2

�2sJ

kq

1

k

2

H

s�

1

2

;

kq

2

�Q

J

q

2

k

2

H

�

1

2

. 2

�2sJ

kq

2

k

2

H

s�

1

2

:

The estimate for ja�Q

J

aj

2

is deduced from the equation (104), replacing a

i

by (a

i

�Q

J

a

i

),

i = 1; 2; 3. �

Now we describe the wavelet Galerkin method which allows to compress the matrix A

associated to operator A. We keep the same construction of the biorthogonal wavelets

as in section 4 and obtain a basis which characterizes H

s�

1

2

(�) � H

s�

1

2

(�). Namely, we

de�ne

f	

j;k

g

k2r

j

:= f 

1

j;k

g

k2r

1

j

[ f 

2

j;k

g

k2r

2

j

; (122)

with  

1

;  

2

de�ned by (58)-(59). We suppose that 
 2 f


1

; 


2

g satis�es


 > �

1

2

: (123)
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Consequently, we get the same Theorem of characterization as Theorem 4.3 in the range

s 2 (�

1

2

;�

1

2

+ �), for � 2 R

+

.

If we de�ne the sti�ness matrix related to operator A as

A

J

:= (hA	

j;k

;	

j

0

;k

0

i)

(j;k);(j

0

;k

0

)2r

; (124)

we introduce the diagonal matrix

�

D

s;j

�

(j;k);(j

0

;k

0

)

= 2

�sj

�

(j;k);(j

0

;k

0

)

(125)

and we pose

D

s;j

=

 

D

s;j

0

0 D

s;j

!

:

Consequently, we get

Cond

�

D

1=2;J

A

J

D

1=2;J

�

. 1: (126)

Proof: The proof is similar to these of Proposition 5.1. �

The advantage of using wavelets is also the possibility to compress the sti�ness matrix

of the Galerkin scheme. In fact, regarding more precisely the operator A de�ned by (113),

we show that the matrices related to the operators S and L

ij

can be compressed thanks

to the particular form of their kernels.

First of all, the kernel g(x; y) = �

1

2�

log jx� yj of the single layer potential operator S

satis�es the property

�

�

�

�

@

j�j+j�j

g(x; y)

@x

�

@y

�

�

�

�

�

.

1

jx� yj

j�j+j�j

;

which �ts well in our compression procedure.

Concerning operators L

ij

, i; j = 1; 2, we can write the corresponding kernels in the

form

l

ij

(x� y) =

p(x

1

� y

1

; x

2

� y

2

)

jx� yj

2

+ C;

when p is a polynomial of degree 2 and C is a real constant. If we pose t = (x� y) and

l

ij

(t) = p(t)=jtj

2

, we can easily show the

Lemma 7.4 For the multi-indices �; �, the next estimate holds :

�

�

�

�

@

j�j+j�j

l

ij

(x� y)

@x

�

@y

�

�

�

�

�

.

1

jx� yj

j�j+j�j

: (127)

This result show that the kernels of S and operators L

ij

for i; j 2 f1; : : : ; 4g have the

same decreasing property. Because A is of order (�1) and applying a similar proof as in

Lemma 5.2, we have :
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Lemma 7.5 The following estimates hold :

1. For (

~

d+ 1) > 0 and dist(


j;k

; 


j

0

;k

0

) > 0 we get

�

�

A

(j;k);(j

0

;k

0

)

�

�

.

2

�(j+j

0

)(

1

2

+

~

d)

dist(


j;k

; 


j

0

;k

0

)

2(

~

d+1)

: (128)

2. Let j

0

� j, 0 � d <

~

d � 1 and 
 > �

1

2

. We note 


j

0

;k

0

= [

n

�

�=1

f�

j

0

�

g where

s

j

0

�

:= �

j

0

�1

�

[ �

j

0

�

are the points of 


j

0

;k

0

on which the wavelet 	

j

0

;k

0

is not smooth.

Suppose now that

	

j

0

;k

0

(�

�1

)j�

j

0

�

2 P

d

:

If we assume that

2

�j

0

& dist(


j;k

;


s

j

0

;k

0

) & 2

�j

;

we obtain

jhA	

j;k

;	

j

0

;k

0

ij . 2

�j(

~

d+1=2)

2

j

0

=2

dist(


j;k

;


s

j

0

;k

0

)

�

~

d

: (129)

With this property, we de�ne the compressed matrices A

1

and A

c

as in (81)-(89) with two

compression parameters satisfying, for

~

d� 1 > d, d

0

2 (d;

~

d� 1) and a

1

> 1 respectively :

�

j;j

0

� a

1

maxf2

�j

; 2

�j

0

; 2

J(2d

0

+3)�(j+j

0

)(

~

d+d

0

+2)

2

~

d+1

g; (130)

�

s

j;j

0

� a

c

maxf2

�j

; 2

�j

0

; 2

J(2d

0

+3)�maxfj;j

0

g(

~

d+1)�(j+j

0

)(d

0

+1)

~

d

g: (131)

Concerning the error estimates, we have an equivalent of Theorems 6.1 and 6.2 in the

sense of

Theorem 7.6 For d < d

0

<

~

d� 1, A

1

J

and A

c

J

de�ned as in (81) and (89) with compres-

sion parameters de�ned as above, we have :

k(A

J

� A

1

J

)uk

�d�1

. a

�1�2

~

d

1

2

�J(2d+3)

kuk

d+1

; (132)

and

k(A

1

J

� A

c

J

)uk

�d�1

. a

c

2

�J(2d+3)

kuk

d+1

: (133)

The proof is similar to these of Theorems 6.1 and 6.2.

We conclude by giving the next error estimate.

Theorem 7.7 For i 2 f1; 2g, let �d

i

�2 � �

1

2

< minf


i

; d

i

+1g, s > 0 and s�

1

2

� d

i

+1.

For a

1

; a

c

su�ciently large, we obtain :

kq � q

c

J

k

H

�

1

2

(�)�H

�

1

2

(�)

. 2

�sJ

�

kg

0

k

2

H

s+

3

2

(�)

+ kg

1

k

2

H

s+

1

2

(�)

�

1=2

: (134)

28



Proof: We proceed as in the proof of Theorem 6.3 and write the �rst Strang Lemma

(101).

For the �rst term on the right hand side, we can use the C�ea's Lemma to write

kq � q

J

k

�

1

2

;�

1

2

. kq �Q

J

qk

�

1

2

;�

1

2

. 2

�sJ

kqk

s�

1

2

;s�

1

2

;

by using Theorem 4.3.

For the second term on the right hand side of the Strang Lemma, we have

sup

~q

J

2S

J

jh(A

J

� A

c

J

)q

J

; ~q

J

ij

k~q

J

k

s

. k(A

J

� A

c

J

)q

J

k

1

2

;

. a

c

2

�J[s�

1

2

�(�

1

2

+1)+1]

kqk

s�

1

2

;s�

1

2

. a

c

2

�sJ

kqk

s�

1

2

;s�

1

2

:

�
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