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1 Introduction 1

1 Introduction

The solution of the Stokes system in polygonal or polyhedral domains has in general sin-

gular behaviour near corners and edges of the domain. Hence standard numerical methods

lose accuracy on quasi-uniform meshes, and locally re�ned meshes are proposed. Two-

dimensional problems with corner singularities have been analyzed by Becker and Ran-

nacher [6], Orlt and S�andig [18], and El Bouzid and Nicaise [7]. In the last reference,

[7], the authors extend their results also to polyhedral domains where edge and corner

singularities may appear.

In [7, 18] the authors use isotropic (regular in Ciarlet's sense) meshes re�ned in a neigh-

bourhood of the singular edges and corners in order to compensate the singular behaviour

of the solution. In three-dimensional problems this method leads to over-re�nement near

the edges, as we have seen in the analysis of mesh re�nement for the Poisson problem [2].

Therefore we want to use anisotropic meshes with re�nement only perpendicularly to the

edge. This leads to elements with arbitrarily large aspect ratios, so called anisotropic ele-

ments. We remark that in viscous 
ow problems also laminar boundary layers may appear

which can also be resolved favorably by using anisotropic meshes.

For the stability of the method it is required that the discrete spaces satisfy an inf-sup

condition with a constant independent of the aspect ratio of the elements. Furthermore,

the approximation error and, if the method is non-conforming, the consistency error must

be estimated under the assumption of the weak regularity of the singular solution. Let us

refer to results from the literature.

Quadrilateral elements have been analyzed by Becker and Rannacher [5, 6] and by

Sch�otzau, Schwab, and Stenberg [21, 22]. In particular, the inf-sup condition with a con-

stant independent of the aspect ratio was proved in [5] for stabilized Q

1

�P

0

and Q

1

�Q

1

rectangular elements, and in [6] for the

~

Q

1

�P

0

rectangular element. By Q

1

we denote, as

usual, the space of bilinear functions, and by

~

Q

1

the non-parametric rotated Q

1

element

[19]. The consistency error was not analyzed. In [21, 22] quadrilateral and triangular ele-

ments have been considered for the hp-version of the �nite element method, in particular

combinations Q

n

�Q

n�2

and P

n

�P

n�2

, n � 2. The inf-sup constant does not depend on

the aspect ratio, but slightly on n

�1

(n

�1=2

for the quadrilaterals and n

�3

for the triangles).

This is compensated by the exponentially good approximation. We remark that all these

results were proved for the two-dimensional case.

Well-known triangular elements are the mini element (P

1

� bubble)� P

1

, the Taylor-

Hood element P

2

� P

1

, and its modi�ed form P

1;h=2

� P

1

. In standard proofs of the

inf-sup condition for the isotropic case, the inverse inequality produces a factor h

�1

which

is compensated by a factor h coming from an approximation property. The same proof

leads in the anisotropic case to an inf-sup constant depending on the aspect ratio. It has

been reported by Russo that the mini element becomes instable on anisotropic meshes [1].

A non-conforming method on triangular and tetrahedral meshes is obtained by using the

Crouzeix-Raviart (nonconforming P

1

) element for the velocity in combination with piece-

wise constant pressure. This element was analyzed by Acosta and Duran [1] for anisotropic

meshes. The inf-sup condition is simple to prove, the challenge is the analysis of the con-
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sistency error. Acosta and Duran used the connection to Raviart-Thomas interpolation

and succeeded in the case of regular solutions (u; p) 2 (H

2

(
))

3

�H

1

(
). Our analysis of

this element was performed independently, by a di�erent approach, and, in particular, for

solutions with edge singularities. Basic results, without connection to the Stokes system,

have already been published in [4].

Since the analysis of the consistency error is not straightforward we are restricted here to

tensor product domains 
 = G�Z and tensor product meshes. The inf-sup condition holds

for general meshes and the interpolation error can be estimated for non-tensor product

meshes under a maximal angle condition and a coordinate system condition. We consider

also pentahedral meshes where the elements are triangular prisms, because we needed this

as an intermediate step in the basic investigations of the consistency error in [4].

The outline of the paper is as follows. In Section 2 we state the Stokes problem in a

domain with an edge, introduce some function spaces, and prove the regularity result in

the form appropriate for our further analysis. In Section 3 we describe and ana-lyse the

discretization. We obtain the optimal �nite element error estimate

ku� u

h

k

1;h

+ kp� p

h

k

0;


. hkfk

0;


where h � max

K

diamK and k:k

2

m;h

:=

P

K

j : j

2

m;K

, m � 0. The notation a . b means the

existence of a positive constant C (which is independent of T

h

and of the function under

consideration) such that a � Cb. For the assessment of this result it is essential to point

out that the number of elements/degrees of freedom is of the order h

�3

, that means, it is

asymptotically not larger than that for uniform meshes where only a reduced convergence

order h

�

, 0 < � < 1, is obtained. A numerical test in Section 4 con�rms our theoretical

results.

2 Statement of the problem and regularity results

Let 
 = G � Z where G � IR

2

is a polygonal domain and Z is a real interval. By the

local nature of corner singularities (and then edge ones for 
), we may suppose that G

has possibly one corner with interior angle ! > � at the origin, the other interior angles

being smaller than �. The corresponding edge of 
 is part of the x

3

-axis and will be called

the singular edge of 
. Over this domain 
, we consider the stationary Stokes problem

with Dirichlet boundary conditions: Given a vector function f = (f

1

; f

2

; f

3

), �nd a vector

function u = (u

1

; u

2

; u

3

) representing the velocity of the 
uid and a scalar function p

representing the pressure and satisfying

8

<

:

��u+rp = f in 
;

r � u = 0 in 
;

u = 0 on @
:

(1)

Here we use the weak formulation which has a unique solution (u; p) 2 X �M ,

X := fv 2 (H

1

(
))

3

: vj

�

= 0g; M := fv 2 L

2

(
) :

Z




v = 0g;
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for f 2 L

2

(
)

3

as shown in [11, Theorem I.5.1], namely

�

a(u; v) + b(v; p) = (f; v) 8v 2 X;

b(u; q) = 0 8q 2M;

(2)

where

a(v; w) =

3

X

i=1

Z




rv

i

(x) � rw

i

(x); b(v; q) = �

Z




qr � v:

As usual, we denote by L

p

(:) (1 � p � 1) the Lebesgue spaces and by W

s;p

(:) (s � 0,

1 � p � 1) the Sobolev(-Slobodetski��) spaces. Sometimes we write W

0;p

(:) for L

p

(:) and

H

s

(:) for W

s;2

(:). The usual norm and seminorm of W

s;p

(
) is denoted by k � k

s;p;


and

j � j

s;p;


. In the case p = 2, we will drop the index p. In order to describe the edge regularity

of the solution of our problem, we will use weighted Sobolev spaces of Kondrat'ev type:

V

`;p

�

(
) := fv 2 D

0

(
) : kvk

`;p;�;


<1g; ` 2 IN; p 2 (1;1); � 2 IR;

kvk

p

`;p;�;


:=

X

i+j+k�`

kr

��`+i+j+k

@

i

1

@

j

2

@

k

3

v;L

p

(
)k

p

;

where r(x) = (x

2

1

+ x

2

2

)

1=2

is the distance of x = (x

1

; x

2

; x

3

) to the singular edge. Again,

we will drop the index p in the case p = 2. We use the abbreviations @

i

for

@

@x

i

and @

ij

for

@

i

@

j

.

Theorem 1 Let � > 0 be the smallest positive solution of

sin(�!) = �� sin! (3)

and assume that f 2 L

2

(
)

3

. Then the solution (u; p) 2 X �M of the Stokes problem (2)

satis�es

u 2 V

2;2

�

(
)

3

and p 2 V

1;2

�

(
) 8� 2 (1� �; 1); (4)

@

3

u 2 V

1;2

0

(
)

3

and @

3

p 2 L

2

(
): (5)

and the a-priori estimate

kuk

2;�;


+ k@

3

uk

1;0;


+ kpk

1;�;


+ k@

3

pk

0;


. kfk

0;


holds.

Proof Theorem 6.2 of [15] yields the regularity

r

�

@

ij

u 2 L

2

(
)

3

; i; j = 1; 2; 3;

r

�

@

i

p 2 L

2

(
); i = 1; 2; 3;

with � from (4) since there is no vertex singularity in the strip [�1=2; 1], see Section 6.2

of [15]. A localization argument and the application of Hardy's inequalities [12, page 28]
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yield the regularity u 2 V

2;2

�

(
)

3

and p 2 V

1;2

�

(
). Note that Theorem 6.1 of [13] states the

same regularity results because of the absence of vertex singularities in the strip [�1=2; 1].

It remains to prove the extra regularity in the edge direction for u and p. First this

extra regularity is satis�ed far from the endpoint of the singular edge as a consequence

of the general arguments of [14]. Near a �xed vertex S of the singular edge, we use a

localization argument as in [3, 15]. Fix a cut-o� function � equal to 1 near S and equal to

zero outside a small neighbourhood of S and use spherical coordinates (R; �; �) centered

at S such that � is the angular distance to the singular edge. Then by Theorems 4.3 and

4.4 of [15] the couple (w; q) de�ned by

w(t; �; �) = e

�

t

2

(�u)(e

t

; �; �);

q(t; �; �) = e

t

2

(�p)(e

t

; �; �);

is solution of an elliptic problem in IR � G

S

(whose principal part frozen at � = 0 is

the Stokes system), where G

S

is the intersection of 
 and the unit sphere centered at S.

Theorem 3.4 of [15] implies that w 2 V

2;2

�

(IR � G

S

) with � from (4), its norm depending

continuously on the norms of the data; furthermore Theorem 3.1 of [14] guarantees that

@w

@t

belongs to V

1

0

(IR � G

S

) and that

@q

@t

belongs to L

2

(IR � G

S

) with norms depending

continuously on the norms of the data, where V

`;2

�

(IR�G

S

) is the weighted Sobolev space

on IR � G

S

of Kondrat'ev's type de�ned as before where r is replaced by �, the distance

to the singular edge of IR � G

S

. Going back to the spherical coordinates and using the

regularity (4), we get the desired regularities (5). 2

Remark 1 The leading singularity of u

3

is characterized by r

�=!

. But the smallest positive

solution � of (3) satis�es

1=2 < � <

�

!

;

see for instance [10]. Consequently, the global regularity is dominated by r

�

.

3 Discretization and error estimates

Let us recall the meshes used for the treatment of edge singularities of the Poisson problem

[2, 4]. We de�ne families of meshes T

h

= fKg by introducing in G the standard mesh

grading for two-dimensional corner problems, see for example [16, 20]. Let fTg be a

regular isotropic triangulation of G; the elements are triangles. With h being the global

mesh parameter, � 2 (0; 1] being the grading parameter, r

T

being the distance of T to the

corner,

r

T

:= inf

(x

1

;x

2

)2T

(x

2

1

+ x

2

2

)

1=2

;

and with some constant R > 0, we assume that the element size h

T

:= diamT satis�es

h

T

�

8

<

:

h

1=�

for r

T

= 0;

hr

1��

T

for 0 < r

T

� R;

h for r

T

> R:
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h

1=�

h

Figure 1: Example for an anisotropic mesh.

This graded two-dimensional mesh is now extended in the third dimension using a uniform

mesh size, h. In this way we obtain a pentahedral triangulation or, by dividing each

pentahedron, a tetrahedral triangulation of 
, see Figure 1 for an illustration. Note that

the number of elements is of the order h

�3

for the full range of �. The notation is extended

to the three-dimensional case as follows. Let r

K

be the distance of an element K to the

edge (x

3

-axis) and let h

i;K

be the length of the projection of K on the x

i

-axis. Then these

element sizes satisfy

h

3;K

� h; h

1;K

� h

2;K

�

8

<

:

h

1=�

for r

K

= 0;

hr

1��

K

for 0 < r

K

� R;

h for r

K

> R:

: (6)

On tetrahedral meshes T

h

we approximate the velocity in the Crouzeix-Raviart �nite

element space X

h

and the pressure in the space M

h

of piecewise constant functions,

X

h

:= fv

h

2 (L

2

(
))

3

: v

h

j

K

2 (P

1

)

3

8K;

Z

F

[v

h

] = 0 8Fg; (7)

M

h

:= fq

h

2 L

2

(
) : q

h

j

K

2 P

0

8K;

Z




q

h

= 0g; (8)

where we denote faces of elements by F and by [v

h

] the jump of the function v

h

on the

faces F . For boundary faces we identify [v

h

] with v

h

. In analogy to [4] we introduce as the

corresponding space X

h

for pentahedral meshes

X

h

:= fv

h

2 (L

2

(
))

3

: v

h

j

K

2 (P

1

� span fx

2

3

g)

3

8K;

Z

F

[v

h

] = 0 8Fg: (9)

We note that X

h

6� X. Hence we de�ne the approximate solution by using the weaker

bilinear forms a

h

(:; :) and b

h

(:; :),

a

h

(u; v) :=

X

K

3

X

i=1

Z

K

ru

i

� rv

i

; (10)
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b

h

(u; v) := �

X

K

Z

K

qr � u: (11)

The mixed �nite element formulation reads now: Find u

h

2 X

h

, p

h

2M

h

, such that

(

a

h

(u

h

; v

h

) + b

h

(v

h

; p

h

) = (f; v

h

) 8v

h

2 X

h

;

b

h

(u

h

; q

h

) = 0 8q

h

2M

h

:

(12)

For the analysis of this method it is convenient to introduce the Crouzeix-Raviart

interpolant I

h

: X ! X

h

which is de�ned elementwise by

Z

F

u =

Z

F

I

h

u 8F � @K; 8K 2 T

h

: (13)

In [4] it is analyzed that this interpolant is well de�ned also for our choice (9) of X

h

in the

case of pentahedral meshes. In particular, this interpolant is stable in H

1

(
),

jI

h

uj

1;K

. juj

1;K

: (14)

Hence we can prove the inf-sup condition by the standard proof.

Lemma 1 (inf-sup condition) There is a constant � > 0 (independent of h) such that

inf

q

h

2M

h

sup

v

h

2X

h

b

h

(v

h

; q

h

)

kv

h

k

1;h

kq

h

k

0;


� �: (15)

Proof Consider an arbitrary but �xed q

h

2M

h

. By Corollary I.2.4 of [11] (see also Lemma

6 of [9]), there exists v 2 X satisfying

r � v = �q

h

; jvj

1;


. kq

h

k

0;


: (16)

Since by (13) and Green's formula

Z

K

r � v =

X

F2@K

Z

F

v =

X

F2@K

Z

F

I

h

v =

Z

K

r � I

h

v

we get by using q

h

j

K

2 P

0

and (16)

b

h

(I

h

v; q

h

) = �

X

K

Z

K

q

h

r � I

h

v = �

X

K

Z

K

q

h

r � v = kq

h

k

2

0;


: (17)

By (14) and (16) we have

kI

h

vk

1;h

. jvj

1;


. kq

h

k

0;


: (18)

Combining (17) and (18) we obtain

sup

v

h

2X

h

b

h

(v

h

; q

h

)

kv

h

k

1;h

kq

h

k

0;


�

b

h

(I

h

v; q

h

)

kI

h

vk

1;h

kq

h

k

0;


& 1:

Since q

h

was chosen arbitrarily we have proved the assertion. 2

Note that the proof works for both tetrahedra and prisms.
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Remark 2 In the proof of the inf-sup condition we used only the boundedness (14) of I

h

which was proved in [4] for general tetrahedral elements, that means, the inf-sup condition

is valid for general tetrahedral meshes.

Lemma 2 (approximation) Let (u; p) be the solution of the Stokes problem (2). Then

the estimates

inf

v

h

2X

h

ku� v

h

k

1;h

. hkfk

0;


(19)

inf

q

h

2M

h

ku� q

h

k

1;h

. hkfk

0;


(20)

hold if the mesh grading parameter � and the singular exponent � from (3) satisfy � < �.

Proof According to Theorem 1 the velocity components u

i

satisfy

k@

1

u

i

k

1;�;


+ k@

2

u

i

k

1;�;


+ k@

3

u

i

k

1;0;


. kfk

0;


with � 2 (1� �; 1). Hence we can apply Theorem 5.1 of [4] and obtain

ku

i

� I

h

u

i

k

1;h

. hkfk

0;


:

For (20), we estimate kp �M

h

pk

0;


where M

h

pj

K

:= M

K

p := (meas

3

K)

�1

R

K

p. Note

that M

K

preserves polynomials of degree 0.

For all elements K with r

K

> 0 we apply the estimate

kp� pk

0;K

.

3

X

i=1

h

i;K

k@

i

pk

0;K

which can be proved by the standard Bramble-Hilbert theory. We can proceed in analogy

to the proof for ku

i

� I

h

u

i

k

1;h

and obtain for � = 1� �

kp�M

K

pk

0;K

.

3

X

i=1

h

i;K

k@

i

pk

0;K

.

2

X

i=1

h

i;K

r

��

K

k@

i

pk

0;�;K

+ h

3;K

k@

3

pk

0;K

. h

2

X

i=1

k@

i

pk

0;�;K

+ hk@

3

pk

0;K

: (21)

Consider now the elements K with r

K

= 0. We use that M

K

: L

2

(K) ! P

0

is bounded

and thus for � � 1

kp�M

K

pk

0;K

. kpk

0;K

� kr

1��

k

0;1;K

kr

��1

pk

0;K

. h

1��

1;K

kr

��1

pk

0;K

� hkpk

1;�;K

: (22)
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Summing up the square of the estimates (21) and (22) over all elements we obtain

kp�M

h

pk

0;


. h (kpk

1;�;


+ k@

3

pk

0;


) . hkfk

0;


where we have again used Theorem 1. 2

Lemma 3 (consistency) Let (u; p) be the solution of the Stokes problem (2), and let

a

h

(:; :) and b

h

(:; :) be the bilinear forms de�ned in (10), (11). Then the estimate

ja

h

(u; v

h

) + b

h

(v

h

; p)� (f; v

h

)j . h kv

h

k

1;h

kfk

0;


holds for any v

h

2 X

h

if � < �.

Proof Let (u; v)

h

:=

P

K

R

K

uv be the mesh dependent scalar product and denote by v

h;i

the components of v

h

. We observe that

a

h

(u; v

h

) + b

h

(v

h

; p)� (f; v

h

) =

3

X

i=1

[(ru

i

;rv

h;i

)

h

+ (p; @

i

v

h;i

)

h

� (f

i

; v

h;i

)]:

For i = 1 we set � := ru

1

+ (p; 0; 0)

T

. Since r � � = f 2 L

2

(
) and by Theorem 1

�

1

; �

2

2 V

1;2

�

(
); � 2 (1� �; 1) � [0; 1]; �

3

2 V

1;2

0

(
); (23)

we can apply [4, Lemma 4.6] and obtain in analogy to [4, Theorem 5.2]

j(ru

1

;rv

h;1

)

h

+ (p; @

1

v

h;1

)

h

� (f

1

; v

h;1

)j = j(�;rv

h;1

)

h

� (f

1

; v

h;1

)j

. h kv

h;1

k

1;h

kf

1

k

0;


: (24)

In the same way we can treat the case i = 2.

The case i = 3 is di�erent since @

3

u

3

+ p 62 V

1;2

0

(
). Here we set � := ru

3

and get the

properties (23) to apply the theory from [4]:

j(�;rv

h;3

)

h

� (r � �; v

h;3

)j . h kv

h;3

k

1;h

kr � �k

0;


= h kv

h;3

k

1;h

kf

3

+ @

3

pk

0;


: (25)

The desired term is now written as

j(ru

3

;rv

h;3

)

h

+ (p; @

3

v

h;3

)

h

� (f

3

; v

h;3

)j

= j(�;rv

h;3

)

h

+ (r � �; v

h;3

)

h

j+ j(p; @

3

v

h;3

)

h

� (f

3

; v

h;3

)� (r � �; v

h;3

)

h

j (26)

where the �rst term is already estimated by (25). The second term is reformulated to

j(p; @

3

v

h;3

)

h

� (f

3

; v

h;3

)� (r � �; v

h;3

)

h

j = j(p; @

3

v

h;3

)

h

� (@

3

p; v

h;3

)j

=

�

�

�

�

�

X

K

X

F�@K

n

3;F

Z

F

pv

h;3

�

�

�

�

�

=

�

�

�

�

�

X

K

X

F�@K

n

3;F

Z

F

(p�M

F

p)(v

h;3

�M

F

v

h;3

)

�

�

�

�

�
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where we have used a standard technique. We can apply now [4, Lemma 4.3] and get

j(p; @

3

v

h;3

)

h

� (f

3

; v

h;3

)� (r � �; v

h;3

)

h

j

.

X

K

X

F�@K

n

3;F

meas

2

F

meas

3

K

 

3

X

i=1

h

�2�

i;K

1;K

h

2

i;K

kr

�

i;K

@

i

pk

2

0;K

!

1=2

 

3

X

i=1

h

2

i;K

k@

i

v

h;3

k

2

0;K

!

1=2

(27)

with �

1;K

= �

2;K

= � = 1 � �, �

3;K

= 0 if r

K

= 0 and �

1;K

= �

2;K

= �

3;K

= 0 if

r

K

> 0. We observe now that n

3;F

�meas

2

F � 1 � h

2

1;K

for small faces and n

3;F

�meas

2

F .

h

�1

3;K

h

1;K

� h

1;K

h

3;K

� h

2

1;K

for large faces, that means

n

3;F

meas

2

F

meas

3

K

. h

�1

3;K

� h

�1

: (28)

Furthermore we get by the known technique

h

�2�

i

1;K

h

2

i;K

kr

�

i;K

@

i

pk

2

0;K

� h

2(1��)=�

kr

�

i;K

@

i

pk

2

0;K

� h

2

kr

�

i;K

@

i

pk

2

0;K

for r

K

= 0

h

2

i;K

k@

i

pk

2

0;K

� h

2

r

2(1��)

K

k@

i

pk

2

0;K

. h

2

kr

�

@

i

pk

2

0;K

for r

K

> 0

so that

 

3

X

i=1

h

�2�

i;K

1;K

h

2

i;K

kr

�

i;K

@

i

pk

2

0;K

!

1=2

. h

 

2

X

i=1

kr

�

@

i

pk

2

0;K

+ k@

3

pk

2

0;K

!

1=2

: (29)

Combining (27), (28) and (29) we derive

j(p; @

3

v

h;3

)

h

� (f

3

; v

h;3

)� (r � �; v

h;3

)

h

j . h

X

K

 

2

X

i=1

kr

�

@

i

pk

2

0;K

+ k@

3

pk

2

0;K

!

1=2

jv

h;3

j

1;K

. h

 

2

X

i=1

kr

�

@

i

pk

0;


+ k@

3

pk

0;


!

kv

h;3

k

1;h

: (30)

With (24), (25), (26) and Theorem 1 we obtain the desired estimate. 2

Remark 3 We remark that the consistency term can be reformulated by using k� �

RT(�)k

0

, � := ru � pI, RT being the Raviart-Thomas interpolant. This is analyzed for

regular solutions � 2 (H

1

(
))

3�3

in [1].

We are now ready to derive our �nite element error estimate.

Theorem 2 Let (u; p) be the solution of the Stokes problem (2), and let (u

h

; p

h

) be the

solution de�ned by (12). Assume that the mesh is re�ned according to � < �, with � from

(3). Then the �nite element error can be estimated by

ku� u

h

k

1;h

+ kp� p

h

k

0;


. hkfk

0;


:
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Proof By [8, Proposition 2.16] we get

ku� u

h

k

1;h

+ kp� p

h

k

0;


. inf

v

h

2X

h

ku� v

h

k

1;h

+ inf

q

h

2M

h

kp� q

h

k

1;h

+

+ sup

v

h

2X

h

ja

h

(u; v

h

) + b

h

(v

h

; p)� (f; v

h

)j

kv

h

k

1;h

:

The error estimate follows with Lemmata 1, 2, and 3. 2

Remark 4 By analogy one can prove for � < � � 1 that

ku� u

h

k

1;h

+ kp� p

h

k

0;


. h

�=��"

kfk

0;


for arbitrary small " > 0, compare with [2] where the modi�cations of the proof are

explained for the case of a conforming discretization of the Poisson equation. That means

that we get for the unre�ned mesh (� = 1) only an approximation order �� ".

4 Numerical test

Consider the Stokes problem

8

<

:

��u +rp = f in 
;

r � u = 0 in 
;

u = g on @


in the three-dimensional domain


 = f(r cos�; r sin�; x

3

) 2 IR

3

: 0 < r < 1; 0 < � < !; 0 < x

3

< 1g:

with ! = 3�=2. The right hand sides f and g are taken such that the exact solution is

u =

0

@

x

3

r

�

�

1

(�)

x

3

r

�

�

2

(�)

r

2=3

sin

2

3

�

1

A

; p = x

3

r

��1

�

p

(�);

where � � 0:5445 is the smallest positive solution of equation (3) and

�

1

(�) = � sin(��) cos! � � sin(�) cos(�(! � �) + �) + � sin(! � �) cos(��� �)

+ sin(�(! � �));

�

2

(�) = � sin(��) sin! � � sin(�) sin(�(! � �) + �)� � sin(! � �) sin(��� �);

�

p

(�) = 2� [sin((�� 1)�+ !) + sin((�� 1)�� �!)]:

Since this choice means that r

�

�

1

(�), r

�

�

2

(�), r

��1

�

p

(�) is a solution of the homoge-

neous Stokes problem over the two-dimensional domain G = f(r cos �; r sin�) 2 IR

2

: 0 <

r < 1; 0 < � < !g [17], this solution has the typical singular behaviour near the edge.
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N

ku� u

h

k

1;h

10

4

10

5

10

6

4 � 10

�1

3 � 10

�1

2 � 10

�1

10

�1

6 � 10

�2

� = 0:4, anisotropic

� = 1:0, uniform

1

1

1

0.5445

N

kp� p

h

k

0;


10

4

10

5

10

6

4 � 10

�1

3 � 10

�1

2 � 10

�1

10

�1

6 � 10

�2

4 � 10

�2

1

1

1

0.5445

Figure 2: Comparison of uniform vs. graded meshes: error norms for the velocity (left)

and the pressure (right).

We constructed tetrahedral meshes as described in Section 3, with � = 1 (quasi-

uniform) and � = 0:4 (anisotropically re�ned) and with di�erent numbers of elements.

From the numerical solutions (u

h

; p) 2 X

h

�M

h

and the known exact solution, the error

norms ku � u

h

k

1;h

and kp � p

h

k

0;


were computed. Figure 2 shows the plots of these

norms against the number N = 3N

face

+N

element

of unknowns. A double logarithmic scale

was used such that the slope of the curves corresponds to the approximation order. The

example veri�es the theoretically predicted convergence orders.

Note that the curved boundary at r = 1 is approximated by plane triangular faces.

As the test has shown, this crime, and also the e�ect of the non-homogeneous boundary

condition on the face r = 1, had no in
uence on our result.
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