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Abstra
t

We investigate various aspe
ts of the integrability of the vertex models asso
iated

to the D

2

n

aÆne Lie algebra with open boundaries. We �rst study the solutions of the


orresponding re
e
tion equation 
ompatible with the minimal symmetry of this system.

We �nd three 
lasses of general solutions, one diagonal solution and two non-diagonal

families with a free parameter. Next we perform the Bethe ansatz analysis for some of

the asso
iated open D

2

2

spin 
hains and we identify the boundary having quantum group

invarian
e. We also dis
uss a new D

2

2

R-matrix.
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1 Introdu
tion

Mu
h work has been done in integrable latti
e statisti
al me
hani
s models with open boundary


onditions, sin
e Sklyanin [1℄ generalized the quantum inverse s
attering method to ta
kle the

boundary problem. The bulk Boltzmann weights of an exa
tly solvable latti
e system are

usually the non-null matrix elements of a R-matrix R(�) whi
h satis�es the Yang-Baxter

equation. The integrability at boundary, for a given bulk theory, is governed by the re
e
tion

equation, whi
h reads

R

12

(�� �)

1

K

�

(�)R

21

(�+ �)

2

K

�

(�) =

2

K

�

(�)R

12

(� + �)

1

K

�

(�)R

21

(� � �) (1)

where the matrix K

�

(�) des
ribes the re
e
tion at one of the ends of an open 
hain. Similar

equation should also hold for the re
e
tion K

+

(�) at the opposite boundary. However, for

several relevant latti
e models K

+

(�) 
an be dire
tly obtained from K

�

(�). For example, this

is the 
ase of models whose R(�) matrix satis�es extra properties su
h as unitarity, P and T

invarian
es and 
rossing symmetry [1, 2℄.

Therefore, the �rst step toward 
onstru
ting integrable models with open boundaries is

to sear
h for solutions of the re
e
tion equation. To date, solutions of this equation have

been found for a number of latti
e models ranging from vertex systems based on Lie algebras

[3, 4, 6, 5℄ to solid-on-solid models and their restri
tion [7℄. Classi�
ation of su
h solutions for

parti
ular systems [8℄ as well as extensions to in
lude supersymmetri
 models [9℄ 
an also be

found in the literature.

In spite of all these works, there is an interesting vertex model based on the non-ex
eptional

D

2

n

Lie algebra for whi
h little is known about the solution of the 
orresponding re
e
tion

equation. This is probably related to the fa
t that the D

2

n

R-matrix does not 
ommute for

di�erent values of the rapidity [10℄, 
onsequently the trivial diagonal solution K

�

(�) = I does

not hold for this system [3℄. The purpose of this paper is to bridge this gap, by presenting

what we hope to be the minimal solution of the re
e
tion equation for D

2

n

vertex models. This

result o�ers us the possibility to understand a relevant open problem whi
h is the integrability

of the D

2

n

vertex model with quantum algebra symmetry. In fa
t, this symmetry has been

1



found for all vertex models based on non-ex
eptional Lie algebras [3℄ ex
ept for the D

2

n

model.

It turns out that, by 
arring out a Bethe ansatz analysis, we are able to identify this symmetry

for the simplest D

2

2

model and 
onje
ture it for arbitrary values of n.

We have organized this paper as follows. We start next se
tion by 
onsidering the re
e
tion

equation for the D

2

2

vertex model. We �nd one diagonal solution without free parameters and

two non-diagonal families whi
h depend on a free parameter. We also derive the 
orresponding

integrable one-dimensional open spin 
hains. In se
tion 3 we present the Bethe ansatz solutions

of the open D

2

2

spin 
hain asso
iated to the diagonal K-matrix and to a spe
ial manifold of

the �rst non-diagonal family. This allows us to identify the quantum group symmetry for the

D

2

2

model. In se
tion 4 we generalize the K-matri
es results of se
tion 2 for arbitrary values

of n > 2. Se
tion 5 is reserved for our 
on
lusions as well as a dis
ussion on possible new D

2

n

R-matri
es. In Appendix A we 
olle
t some useful relations and Appendix B 
ontains a new

D

2

2

R-matrix as well as its boundary behaviour.

2 The D

2

2

K-matri
es

The D

2

2

vertex model has four independent degrees of freedom per bond and its Boltzmann

weights preserve only one U(1) symmetry out of two possible ones. Here we are interested in

looking at solutions of the re
e
tion equation that 
ommute with this symmetry. We �nd that

the most general K-matrix having this property is

K

�

(�) =

0

B

B

B

B

B

B

B

�

Y

1

(�) 0 0 0

0 Y

2

(�) Y

5

(�) 0

0 Y

6

(�) Y

3

(�) 0

0 0 0 Y

4

(�)

1

C

C

C

C

C

C

C

A

(2)

Our next step is to substitute this ansatz in equation (1) and look for relations that 
on-

straint the unknown elements Y

j

(�); j = 1; : : : ; 6. Although we have many fun
tional equations,

a few of them are a
tually independent, and the most suitable ones have been 
olle
ted in Ap-

pendix A. The basi
 idea is to try to solve su
h equations algebrai
ally, whi
h hopefully will
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produ
e a general ansatz for fun
tions Y

j

(�) 
ontaining several arbitrary parameters. The

general strategy we use is to separate these equations in terms of ratio of fun
tions depending

either on � or on �. From the relations (A.5-A.7) one easly 
on
ludes that the simplest possible

solution is to take Y

5

(�) = Y

6

(�) = 0. This is the diagonal solution, and by employing the

\separation variable method" des
ribed above for the relations (A.5-A.7) we are able to �x the

following ratios

Y

2

(�)

Y

1

(�)

=

e

�

� �

1

e

��

� �

1

;

Y

3

(�)

Y

1

(�)

=

e

�

� �

2

e

��

� �

2

;

Y

4

(�)

Y

3

(�)

=

e

�

� �

3

e

��

� �

3

(3)

where �

j

; j = 1; 2; 3 are arbitrary 
onstants.

These relations enable us to write an ansatz for three unknown fun
tions in terms of a

normalizing fa
tor, say Y

1

(�). Substituting the relations (3) ba
k to the re
e
tion equation

(1), we 
on
lude that all the parameters �

j

are �xed by

�

1

= ��

2

= �1=�

3

=

I

p

q

(4)

where q is the deformation parameter of the D

2

2

R-matrix [10℄. This leads us to our �rst

solutions with no free parameter,

Y

(1)

1

(�) = 1; Y

(1)

2

(�) =

e

�

�

I

p

q

e

��

�

I

p

q

; Y

(1)

3

(�) =

e

�

+

I

p

q

e

��

+

I

p

q

; Y

(1)

4

(�) =

e

�

+

I

p

q

e

��

+

I

p

q

e

�

� I

p

q

e

��

� I

p

q

(5)

Next we turn our sear
h for non-diagonal solutions now with both Y

5

(�) and Y

6

(�) non

null. From the equations (A.8-A.11), we noti
e that it is possible to solve Y

2

(�); Y

3

(�) and

Y

6

(�) in terms of Y

5

(�). At this point we should keep in mind that we are looking for regular

K-matri
es, i.e. K

�

(0) � identity. After some simpli�
ations, we �nd the following general

solutions

�

1

(1 + e

2�

)[Y

5

(�) + Y

6

(�)℄ = �

2

e

�

[Y

5

(�)� Y

6

(�)℄ (6)

(e

2�

� 1)[Y

2

(�) + Y

3

(�)℄ = �

3

e

�

[Y

6

(�) � Y

5

(�)℄ (7)

Y

2

(�) � Y

3

(�) = �

4

[Y

5

(�)� Y

6

(�)℄ (8)
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where �

j

are four arbitrary parameters. These are linear equations whi
h 
an be easily solved

for the ratios Y

2

(�)=Y

5

(�); Y

3

(�)=Y

5

(�) and Y

6

(�)=Y

5

(�). Taking this into a

ount as well as

equations (A.5) and (A.7), we end up with the following ansatz for fun
tions Y

j

(�)

Y

1

(�) = (�

5

e

2�

+ �

6

e

�

+ �

7

)=e

�

; Y

2

(�) = (1 + e

2�

)

h

�

4

(e

2�

� 1)� �

3

e

�

i

(9)

Y

3

(�) = (1 + e

2�

)

h

��

4

(e

2�

� 1)� �

3

e

�

i

; Y

4

(�) = (�

8

e

2�

+ �

9

e

�

+ �

10

)e

�

(10)

Y

5

(�) = (e

2�

� 1)

h

�

2

e

�

+ �

1

(1 + e

2�

)

i

; Y

6

(�) = (e

2�

� 1)

h

�

2

e

�

� �

1

(1 + e

2�

)

i

(11)

having altogether ten free parameters. Substituting this ansatz ba
k to the re
e
tion equation

and after involving algebrai
 manipulations, we �nd that nine parameters are in fa
t �xed,

leading us to two 
lasses of non-diagonal solution with a free parameter. The �rst 
lass is

given by

Y

(2)

1

(�; �

�

) = (e

2�

+ q)(�

2

�

qe

2�

� 1)e

��

; Y

(2)

4

(�; �

�

) = (e

2�

+ q)(�

2

�

q � e

2�

)e

�

(12)

Y

(2)

2

(�; �

�

) =

(1 + e

2�

)

2

h

2(e

2�

� 1)�

�

q � e

�

(1 + q)(1� �

2

�

q)

i

(13)

Y

(2)

3

(�; �

�

) =

(1 + e

2�

)

2

h

�2(e

2�

� 1)�

�

q � e

�

(1 + q)(1� �

2

�

q)

i

(14)

Y

(2)

5

(�; �

�

) = Y

(2)

6

(�; �

�

) =

(e

2�

� 1)

2

(1� q)(�

2

�

q + 1)e

�

(15)

while the se
ond family is

Y

(3)

1

(�; �

�

) = (e

2�

� q)(�

�

e

2�

� 1)e

��

; Y

(3)

4

(�; �

�

) = (e

2�

� q)(�

�

� e

2�

)e

�

(16)

Y

(3)

2

(�; �

�

) = Y

(3)

3

(�; �

�

) =

(1 + e

2�

)

2

(1� q)(�

�

� 1)e

�

(17)

Y

(3)

5

(�; �

�

) =

(e

2�

� 1)

2

�

2(e

2�

+ 1)

q

�

�

q + (1 + q)(1 + �

�

)e

�

�

(18)

Y

(3)

6

(�; �

�

) =

(e

2�

� 1)

2

�

�2(e

2�

+ 1)

q

�

�

q + (1 + q)(1 + �

�

)e

�

�

(19)

where �

�

is an arbitrary parameter.
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Sin
e the D

2

2

R-matrix is PT invariant and 
rossing symmetri
, the K

+

(�) matri
es at the

opposite boundary are easily derived from the above solutions [2, 3℄. More pre
isely, we have

K

+

(�; �

+

) = K

t

�

(ln[q℄� �; �

+

)M (20)

where M is a matrix related to the 
rossing matrix V by M = V

t

V [3℄. From the results of

Appendix A, we have that for the D

2

2

model M is given by

M = diag(q; 1; 1; q

�1

) (21)

Having found the K

�

(�) matri
es, one 
an 
onstru
t the 
orresponding 
ommuting transfer

matrix � (�). Following Sklyanin [1℄, we have

t

(l;m)

(�) = Tr

a

"

a

K

(m)

+

(�)T (�)

a

K

(l)

�

(�)T

�1

(��)

#

(22)

where T (�) = R

aL

(�) � � �R

a1

(�) is the monodromy matrix of the asso
iated 
losed 
hain with L

sites. This means that the three families of K

�

(�) matri
es we found will produ
e nine possible

types of open boundary 
onditions. The 
orresponding Hamiltonian of the spin 
hains with

open boundaries are obtained by expanding the transfer matrix t

(l;m)

(�) in powers of �. When

Tr[K

(m)

+

(0)℄ is non-null, the Hamiltonian H

(l;m)

is proportional to the �rst-order expansion [1℄

H

(l;m)

=

L�1

X

k=1

H

k;k+1

+

1

2�

d

a

K

(l)

�

(�)

d�

j

�=0

+

Tr

a

"

a

K

(m)

�

(0)H

La

#

Tr

h

K

(m)

+

(0)

i

(23)

where H

k;k+1

= P

k;k+1

d

d�

R

k;k+1

(�)j

�=0

is the two-body bulk Hamiltonian and � is the normal-

ization R

12

(0) = �P

12

1

For the �rst two solutions we indeed have Tr[K

+

(0)℄ 6= 0 while for the third one Tr[K

+

(0)℄ =

0. In this last 
ase one has to 
onsider the se
ond order expansion in the spe
tral parameter �

[11℄. We �nd 
onvenient to write the expression for the Hamiltonians in terms of Pauli matri
es

�

�

�;i

and �

z

�;i

with 
omponents � ="; # a
ting on the site i of a latti
e of size L. In terms of

1

The normalization we use for R(�) (see Appendix A) produ
es � = (q � 1=q)

2

for D

2

2

model.
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these operators and up to irrelevant additive 
onstants

2

, we have

H

(l;m)

= �

I(q� 1=q)

2

L�1

X

k=1

~

H

k;k+1

+ I

(q � 1=q)

2

2

f

X

�=";#

�

(l)

�

(�

�

)�

z

�;1

+ Æ

(l)

�

z

";1

�

z

#;1

+ J

(l)

"

(�

�

)�

+

";1

�

�

#;1

+ J

(l)

#

(�

�

)�

+

#;1

�

�

";1

�

X

�=";#

�

(m)

�

(�

+

)�

z

�;L

+ Æ

(m)

�

z

";L

�

z

#;L

+ J

(m)

#

(�

+

)�

+

";L

�

�

#;L

+ J

(m)

"

(�

+

)�

+

#;L

�

�

";L

9

=

;

(24)

where the expression of the bulk part

~

H

k;k+1

is

~

H

k;k+1

=

(q � 1=q)

2

h

(�

z

";k

+ �

z

#;k

)(�

+

";k+1

�

�

#;k+1

+ �

�

";k+1

�

+

#;k+1

)� (�

+

";k

�

�

#;k

+ �

�

";k

�

+

#;k

)(�

z

";k+1

+ �

z

#;k+1

)

i

+(

p

q �

1

p

q

)

2

h

�

+

";k

�

�

";k+1

�

�

#;k

�

+

#;k+1

+ �

�

";k

�

+

";k+1

�

+

#;k

�

�

#;k+1

+�

+

";k

�

+

";k+1

�

�

#;k

�

�

#;k+1

+ �

�

";k

�

�

";k+1

�

+

#;k

�

+

#;k+1

i

�2

h

(�

+

";k

�

�

";k+1

+ �

�

";k

�

+

";k+1

)(1 + �

z

#;k

�

z

#;k+1

) + (�

+

#;k

�

�

#;k+1

+ �

�

#;k

�

+

#;k+1

)(1 + �

z

";k

�

z

";k+1

)

i

+(

p

q +

1

p

q

)

h

(�

+

";k

�

�

";k+1

+ �

�

";k

�

+

";k+1

)(1� �

z

#;k

�

z

#;k+1

)

+(�

+

#;k

�

�

#;k+1

+ �

�

#;k

�

+

#;k+1

)(1� �

z

";k

�

z

";k+1

)

i

�(

p

q �

1

p

q

)

h

(�

+

";k

�

�

#;k+1

+ �

�

";k

�

+

#;k+1

)(�

z

#;k

� �

z

";k+1

) + (�

+

#;k

�

�

";k+1

+ �

�

#;k

�

+

";k+1

)(�

z

";k

� �

z

#;k+1

)

i

+[1�

(q + 1=q)

2

℄(�

z

";k

�

z

#;k

+ �

z

";k+1

�

z

#;k+1

)�

(

p

q �

1

p

q

)

2

4

(�

z

";k

�

z

#;k+1

+ �

z

#;k

�

z

";k+1

)

�[

(q + 1=q)

4

+

3

2

℄(�

z

";k

�

z

";k+1

+ �

z

#;k

�

z

#;k+1

) +

(q � 1=q)

2

X

�=";#

(�

z

�;k

� �

z

�;k+1

)� 2(q +

1

q

)I

k;k+1

Turning to the boundary intera
tions we found that the 
hemi
al potentials are given by

�

(l)

�

(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�

(1)

"

(�) = 1=2 � I

p

q

1+q

; �

(1)

#

(�) = 1=2 + I

p

q

1+q

�

(2)

"

(�) = �

(1+q+2�q)

(1+q)(�

2

q

2

�1)

; �

(2)

#

(�) = �

(1+q�2�q)

(1+q)(�

2

q

2

�1)

�

(3)

"

(�) = �

(3)

#

=

1

1��

(25)

2

We also note that we have normalized the Hamiltonian by the pure imaginary number.
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while the on-site parameters Æ

(l)

and J

(l)

�

(�) are

Æ

(l)

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Æ

(1)

=

(q�1)

2(1+q)

Æ

(2)

=

(q�1)

2(1+q)

Æ

(3)

=

(1+q)

2(q�1)

(26)

and

J

(l)

�

(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

J

(1)

"

(�) = J

(1)

#

= 0

J

(2)

"

(�) = J

(2)

#

(�) =

(q�1)(1+�

2

q)

(1+q)(�

2

q�1)

J

(3)

"

(�) =

(1+q)(1+�)+4

p

q�

(q�1)(��1)

; J

(3)

#

(�) =

(1+q)(1+�)�4

p

q�

(q�1)(��1)

(27)

A natural question to be asked is whi
h (if any) of these solutions would lead us to an

integrable D

2

2

model with quantum algebra symmetry. One way to investigate that is by

applying the Bethe ansatz method to diagonalize the above open spin 
hains. This allows

us to extra
t information about the eigenspe
trum, whi
h in the 
ase of quantum algebra

invarian
e, should be highly degenerated (see e.g. [12℄). In next se
tion we will dis
uss this

problem in details.

3 Bethe ansatz analysis

The purpose of this se
tion is to study the spe
trum of some of the open spin 
hains presented

in se
tion 2 by the 
oordinate Bethe ansatz formalism. One of our motivations is to identify

the boundary that leads us to the quantum group symmetry. We begin by noti
ing that the

total number of spins

^

N

s

=

P

L

i=1

P

�=";#

�

z

�;i

is a 
onserved quantity and its eigenvalues ns

labels the many possible disjoint se
tors of the Hilbert spa
e. Therefore, the wave fun
tion

solving the eigenvalue problem H j	

ns

i = E

(l;m)

(L) j	

ns

i 
an be written as follows

j	

ns

i =

X

�

j

X

x

Q

j

f

(�

1

;���;�

n

)

(x

Q

1

; � � � ; x

Q

ns

)�

+

�

1

;x

Q

1

� � � �

+

�

ns

;x

Q

ns

j0i (28)

where j0i denotes the ferromagneti
 state (all spins up) and 1 � x

Q

1

� x

Q

2

� � � � � x

Q

ns

� L

indi
ate the positions of the spins.
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We will start our study by �rst 
onsidering the open spin 
hain H

(1;1)


orresponding to

the diagonal K-matrix solution. As it is 
ustomary we begin our dis
ussion of the eigenvalue

problem in the se
tor of one down spin, ns = 1. In this se
tor, we �nd that for 1 < x < L

I

2(1=q � q)

E

(1;1)

(L)f

(�)

(x) = (L�2)�f

(�)

(x)+f

(�)

(x+1)+f

(�)

(x�1)+

(1 � q)

2

4q

f

(�)

(x); � ="; #

(29)

where we have de�ned � = q + 1=q. The mat
hing 
ondition at the left and right boundaries

gives us the following 
onstraints

0

B

�

f

(")

(0)

f

(#)

(0)

1

C

A

=

0

B

�

�� p

1"

d

1"

d

1#

�� p

1#

1

C

A

0

B

�

f

(")

(1)

f

(#)

(1)

1

C

A

(30)

and

0

B

�

f

(")

(L + 1)

f

(#)

(L + 1)

1

C

A
=

0

B

�

�� p

L"

d

L"

d

L#

�� p

L#

1

C

A

0

B

�

f

(")

(L)

f

(#)

(L)

1

C

A
(31)

where the matri
es parameters are given by

p

1"

=

3I +

p

q + q

2

(I + 3

p

q)

4q(I +

p

q)

; p

1#

=

�3I +

p

q + q

2

(�I + 3

p

q)

4q(�I +

p

q)

(32)

p

L"

=

3 � 2q + 3q

2

� 2I

p

q + 2Iq

p

q

4q

; p

L#

=

3 � 2q + 3q

2

+ 2I

p

q � 2Iq

p

q

4q

(33)

d

1"

= d

1#

= �d

L"

= �d

L#

=

q � 1=q

4

(34)

In order to go ahead it is 
ru
ial to noti
e that both boundary 
onstraints (30) and (31) 
an

be diagonalized by the same unitary transformation U . After performing this transformation

the new 
omponents

~

f

�

(x) = Uf

�

(x) satisfy

0

B

�

~

f

(")

(0)

~

f

(#)

(0)

1

C

A

=

0

B

�

1 0

0

�

2

1

C

A

0

B

�

~

f

(")

(1)

~

f

(#)

(1)

1

C

A

(35)

and

0

B

�

~

f

(")

(L+ 1)

~

f

(#)

(L+ 1)

1

C

A

=

0

B

�

�

2

0

0 1

1

C

A

0

B

�

~

f

(")

(L)

~

f

(#)

(L)

1

C

A

(36)

8



Clearly, equation (29) for 1 < x < L remains the same but now for the transformed

amplitudes

~

f

(�)

(x). Now we rea
hed a point in whi
h one 
an try the usual Bethe ansatz (e.g.

see ref. [13, 14℄), namely

~

f

(�)

(x) = A

�

(k)e

ikx

�A

�

(�k)e

�ikx

(37)

and by substituting this ansatz in (29) we obtain the following eigenvalue

I

2(1=q � q)

E

(1;1)

(L) = (L � 2)� + 2 
os(k) +

(1� q)

2

4q

(38)

The fa
t that this ansatz should be also valid for the ends x = 1 and x = L provides us


onstraints for the amplitudes A(k) and A(�k), whi
h reads

A(�k) = �e

ik

A(k) and A(�k) =

(1 �

�

2

e

�ik

)

(1�

�

2

e

ik

)

e

2i(L+1)k

A(k) (39)

whose 
ompatibility gives a restri
tion on the momentum k, namely

e

2ikL

(e

ik

�

�

2

)

(

�

2

e

ik

� 1)

= 1 (40)

The next task is to generalize these results for arbitrary numbers of down spins. For a

general multiparti
le state, we assume the Bethe ansatz wave fun
tion

~

f

(�

1

;���;�

n

)

(x

Q

1

; � � � ; x

Q

ns

) =

X

P

sgn(P )

ns

Y

j=1

e

[ik

p

j

x

Q

j

℄

A(k

PQ

1

; � � � ; k

PQ

N

e

)

�

Q

1

; � � � ; �

Q

ns

(41)

where P is the sum over all the permutations of the momenta, in
luding the negations k

j

!

�k

j

, and the symbol sgn a

ounts for the sign of the permutations and negations. It turns

out that for 
on�gurations su
h that jx

Q

i

� x

Q

j

j � 2 the open spin 
hain H

(1;1)

behaves as a

free theory and the 
orresponding eigenvalues are

I

2(1=q � q)

E

(1;1)

(L) = (L� 1)� +

ns

X

j=1

[2 
os(k

j

)��℄ +

(1� q)

2

4q

(42)

The new ingredient for ns � 2 is that the nearest neighbor spin 
on�gurations enfor
e


onstraints on the amplitude of the wave fun
tion. This 
ondition enhan
es a relation between

the ex
hange of two states su
h as f(k

i

; �

i

); (k

j

; �

j

)g and f(k

j

; �

j

); (k

i

; �

i

)g whi
h ultimately

is represented by the two-body s
attering

A

����

j

; �

i

���

(� � � ; k

j

; k

i

; � � �) = S

i;j

(k

i

; k

j

)A

����

i

; �

j

���

(� � � ; k

i

; k

j

; � � �) (43)
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while the re
e
tion at the left and right ends generalizes equation (29), whi
h now reads

A

�

i

;���

(�k

j

; � � �) = �e

ik

j

A

�

i

;���

(k

j

; � � �) (44)

A

���;�

i

(� � � ;�k

j

) =

(1�

�

2

e

�ik

j

)

(1 �

�

2

e

ik

j

)

e

2i(L+1)k

j

A

����

i

;

(� � � ; k

j

) (45)

Fortunately, the bulk two-body s
attering amplitude S

i;j

(k

i

; k

j

) has been re
ently identi�ed

in ref.[15℄ for the periodi
 
hain. This result is of enormous help here sin
e it allows us to 
hoose

the suitable parametrization for the momenta k

j

in terms of the S-matrix rapidities �

j

, whi
h

is

e

ik

j

=

sinh(�

j

� i
=2)

sinh(�

j

+ i
=2)

(46)

where we have 
onveniently de�ned q = e

i


. For expli
it expression of the non-null S-matrix

elements see ref.[15℄.

In this general 
ase, the 
ompatibility between the bulk and boundary s
attering 
onstraints

(43-45) leads us to the Bethe ansatz equation for the momenta k

j

e

2ik

j

L

(e

ik

j

�

�

2

)

(

�

2

e

ik

j

� 1)

= �

j

(k

1

; � � � ; k

ns

) (47)

where �

j

(k

1

; � � � ; k

ns

) are the eigenvalues of the auxiliary inhomogeneous transfer matrix t

j

=

S

jns

(k

j

; k

ns

) � � �S

j1

(k

j

; k

1

)S

1j

(k1;�k

j

) � � �S

nsj

(k

ns

;�k

j

). The integrability of this latter inho-

mogenous problem follows from the fa
t that the 2 � 2 identity K-matrix is a solution of the

re
e
tion equation asso
iated to the two-body s
attering S

ij

. As was shown in ref. [15℄ there is

no need of a se
ond Bethe ansatz to solve this auxiliary eigenvalue problem. By adapting the

results of ref.[15℄ to our 
ase and by relating the momenta k

j

and the rapidities �

j

by equation

(46) we �nd that the Bethe ansatz equations are given by

"

sinh(�

j

� i
=2)

sinh(�

j

+ i
=2)

#

2L


osh(�

j

+ i
=2)


osh(�

j

� i
=2)

=

ns

Y

k=1

sinh(�

j

=2 � �

k

=2 � i
=2)

sinh(�

j

=2 � �

k

=2 + i
=2)

sinh(�

j

=2 + �

k

=2 � i
=2)

sinh(�

j

=2 + �

k

=2 + i
=2)

j = 1; � � � ; ns (48)

and the eigenvalues (42) in terms of the rapidities �

j

are

E

(1;1)

(L) = �8 sin

3

(
)

ns

X

j=1

1


os(
)� 
osh(2�

j

)

� 4(L � 1) sin(2
) + 4 sin(
) sin

2

(
=2) (49)
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Clearly, the Bethe ansatz equations for the open spin 
hainH

(1;1)

are not just the \doubling"

of the 
orresponding results of the 
losed 
hain with periodi
 boundary 
onditions [16, 15℄ due

to an additional boundary left hand fa
tor. We re
all here that the \doubling" property has

been argued [17℄ to be one of the main features of a quantum algebra invariant open spin 
hain

at least for standard forms of 
omultipli
ation. Looking at the spe
trum of H

(1;1)

, however,

we noti
e a 
ertain pattern of degenera
ies whi
h suggests an underlying hidden symmetry. It


ould be that the diagonal boundary solution 
orresponds to an asymmetri
 form of 
oprodu
t

sin
e this, in prin
iple, is allowed too [18℄.

Next we turn our attention to the �rst non-diagonal solution and its 
orresponding open

spin 
hain. In this 
ase, at least for generi
 values of �

�

, the Bethe ansatz 
onstru
tion we

just explained above needs further generalizations. This 
an be seen even at the level of

one down spin state, sin
e there is not a unique transformation that diagonalizes both left

and right boundary matrix problems. However, there is a parti
ular manifold, �

+

= q�

�

, in

whi
h our previous Bethe ansatz formulation is still valid. Fortunately, as we shall see below,

this spe
ial manifold will be suÆ
ient to single out the boundary leading us to the quantum

algebra symmetry. Sin
e for �

+

= q�

�

, the Bethe ansatz analysis is very similar to the one

just des
ribed above, we restri
t ourselves to present only the �nal results. We found that the

Bethe ansatz equations for the Hamiltonian H

(2;2)

at �

+

= q�

�

are

"

sinh(�

j

� i
=2)

sinh(�

j

+ i
=2)

#

2L

=

ns

Y

k=1

sinh(�

j

=2 � �

k

=2 � i
=2)

sinh(�

j

=2 � �

k

=2 + i
=2)

sinh(�

j

=2 + �

k

=2 � i
=2)

sinh(�

j

=2 + �

k

=2 + i
=2)

; j = 1; � � � ; ns

(50)

while the 
orresponding eigenvalues are given by

E

(1;1)

(L) = �8 sin

3

(
)

ns

X

j=1

1


os(
)� 
osh(2�

j

)

�4(L�1) sin(2
)�4 sin(
)

2

4

X

�=";#

(�

(2)

�

(�

�

)� �

(2)

�

(�

+

)) + 2Æ

(2)

3

5

(51)

Now the Bethe ansatz equations do have the \doubling" property at �

+

= q�

�

and this is

an extra motivation to investigate the eigenspe
trum of H

(2;2)

. It turns out that at the value

�

�

= 0 and therefore �

+

= 0 we dis
over that the spe
trum of the open 
hain H

(2;2)

is spe
ially

highly degenerated. In fa
t, after some algebrai
 manipulations, we 
he
k that for �

�

= 0

11



the Hamiltonian H

(2;2)

has the appropriate boundary 
oeÆ
ients to ensure 
ommutation with

U

q

(D

2

2

). Therefore, we �nally managed to identify the quantum algebra symmetry for the D

2

2

vertex model.

Finally, it seems desirable to solve the open spins 
hains asso
iated to the non-diagonal

solutions for arbitrary values of the parameters �

�

. The 
oordinate Bethe ansatz method,

however, leads us to 
umbersome 
al
ulations even for the �rst ex
itation over the referen
e

state. In su
h general 
ase it seems wise to ta
kle this problem by using a more unifying

te
hnique su
h as the algebrai
 Bethe ansatz approa
h. Sin
e the basi
s of this method has

been re
ently developed for the D

2

n

vertex models [15℄ we hope to return to this problem

elsewhere.

4 The D

2

n

K-matri
es

Here we shall 
onsider the generalizations of the K-matri
es solutions of se
tion 2 for the

general D

2

n

model. This system has n� 1 distin
t U(1) 
onserved 
harges, and the K-matrix

ansatz 
ompatible with these symmetries 
an be represented by the following blo
k diagonal

matrix

K

�

(�) = diag(Y

1

(�); � � � ; Y

n�1

(�);

^

A(�); Y

n+2

(�); � � � ; Y

2n

(�)) (52)

where

^

A(�) is a 2� 2 matrix

^

A(�) =

0

�

Y

n

(�) Y

2n+1

(�)

Y

2n+2

(�) Y

n+1

(�)

1

A

(53)

where Y

j

(�); j = 1; � � � ; 2n + 2 are fun
tions we have determined by solving the re
e
tion

equation. Noti
e that for n = 2 we re
over our starting ansatz of se
tion 2.

Substituting this ansatz into the re
e
tion equation, we realize that the simplest possible

solution is the symmetri
 one, namely

Y

1

(�) = Y

2

(�) = � � � = Y

n�1

(�) and Y

n+2

(�) = Y

n+1

(�) = � � � = Y

2n

(�) (54)

It turns out that the remaining fun
tional equations for the fun
tions Y

1

(�), Y

n

(�), Y

n+1

(�),

Y

2n

(�), Y

2n+1

(�) and Y

2n+2

(�) are very similar to those presented in the appendix A. Therefore,

12



they 
an be solved by the same pro
edure des
ribed in se
tion 2 and in what follows we only

quote our �nal results. As before we �nd three general families of K-matri
es, and the diagonal

one is given by

Y

(1)

1

(�) = 1; Y

(1)

n

(�) =

e

�

� Iq

�(n�1)=2

e

��

� Iq

�(n�1)=2

(55)

Y

(1)

n+1

(�) =

e

�

+ Iq

�(n�1)=2

e

��

+ Iq

�(n�1)=2

; Y

(1)

2n

(�) =

e

�

+ Iq

�(n�1)=2

e

��

+ Iq

�(n�1)=2

e

�

� Iq

(n�1)=2

e

��

� Iq

(n�1)=2

(56)

The one-parameter families of non-diagonal K-matri
es are given by

Y

(2)

1

(�; �

�

) = (e

2�

+ q

n�1

)(�

2

�

q

n�1

e

2�

�1)e

��

; Y

(2)

2n

(�; �

�

) = (e

2�

+ q

n�1

)(�

2

�

q

n�1

� e

2�

)e

�

(57)

Y

(2)

n

(�; �

�

) =

(1 + e

2�

)

2

h

2(e

2�

� 1)�

�

q

n�1

� e

�

(1 + q

n�1

)(1 � �

2

�

q

n�1

)

i

(58)

Y

(2)

n+1

(�; �

�

) =

(1 + e

2�

)

2

h

�2(e

2�

� 1)�

�

q

n�1

� e

�

(1 + q

n�1

)(1� �

2

�

q

n�1

)

i

(59)

Y

(2)

2n+1

(�; �

�

) = Y

(2)

2n+2

(�; �

�

) =

(e

2�

� 1)

2

(1 � q

n�1

)(�

2

�

q

n�1

+ 1)e

�

(60)

and

Y

(3)

1

(�; �

�

) = (e

2�

� q

n�1

)(�

�

e

2�

� 1)e

��

; Y

(3)

2n

(�; �

�

) = (e

2�

� q

n�1

)(�

�

� e

2�

)e

�

(61)

Y

(3)

n

(�; �

�

) = Y

(3)

n+1

(�; �

�

) =

(1 + e

2�

)

2

(1� q

n�1

)(�

�

� 1)e

�

(62)

Y

(3)

2n+1

(�; �

�

) =

(e

2�

� 1)

2

�

2(e

2�

+ 1)

q

�

�

q

(n�1)=2

+ (1 + q

n�1

)(1 + �

�

)e

�

�

(63)

Y

(3)

2n+2

(�; �

�

) =

(e

2�

� 1)

2

�

�2(e

2�

+ 1)

q

�

�

q

(n�1)=2

+ (1 + q

n�1

)(1 + �

�

)e

�

�

(64)

The next natural step is to sear
h for asymmetri
 K-matri
es for n � 3, i.e. those having

Y

1

(�) 6= Y

2

(�) 6= � � �Y

n�1

(�) and Y

n+2

(�) 6= Y

n+3

(�) 6= � � �Y

2n

(�). In this 
ase the number of

free parameters grows rapidly with n and the solution of the re
e
tion equation be
omes more

involving. To illustrate that, we 
onsider the D

2

3

model and for sake of simpli
ity we look �rst

for diagonal solutions. There are six fun
tions Y

j

(�) to be determined and their ratios are �xed

by 
hoosing some easy looking relations 
oming from the re
e
tion relation. More pre
isely,

we have found the following equations

Y

2

(�)

Y

1

(�)

=

e

2�

� 


1

e

�2�

� 


1

;

Y

3

(�)

Y

1

(�)

=

e

�

� 


2

e

��

� 


2

;

Y

4

(�)

Y

1

(�)

=

e

�

� 


3

e

��

� 


3

(65)
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Y

6

(�)

Y

4

(�)

=

e

�

� 


4

e

��

� 


4

;

Y

5

(�)

Y

6

(�)

=

e

�2�

� 


5

e

2�

� 


5

(66)

where 


j

are on
e again 
onstants yet to be determined. Substituting these relations ba
k to

the re
e
tion equation we �nd only one possible manifold for the parameters 


j

, whi
h reads




1

= 


5

= �1 and 


2

= 


3

= 


4

= 0 (67)

After an appropriate normalization, this solution leads us to a new diagonal K-matrix for

the D

2

3

model

K

D

2

3

�

(�) = diag(e

�2�

; 1; 1; 1; 1; e

2�

) (68)

It is plausible that this \almost unity" solution and its extensions generalizes for arbitrary

values of n � 4. Next we have looked at the possibility of asymmetri
 non-diagonal solutions

for the D

2

3

model. It turns out that, within our algebrai
 approa
h, we did not found any of

su
h solutions. However, this possibility should not be 
ompletely rule out, at least for general

n, sin
e we have so many free parameters that the 
han
e to miss a parti
ular integrable

manifold is high. In general, 
lassi�
ation of the solutions of the re
e
tion equation seems to

be an intri
ated problem even for simpler models [8℄. We hope, however, that our K-matri
es

results prompt further investigation 
on
erning this problem for the D

2

n

vertex models.

We would like to 
on
lude this se
tion with the following remarks. The K

+

(�) matri
es


an be obtained from K

�

(�) by the isomorphism

K

+

(�) = K

t

�

[(n� 1) ln[q℄� �℄M (69)

where M is a diagonal matrix given by

M = diag(q

(2n�3)

; q

2n�5

; � � � ; 1; 1; � � � ; q

�(2n�5)

; q

�(2n�3)

) (70)

On
e we are equipped with K

�

(�) matri
es, the 
onstru
tion of the 
orresponding open

spin 
hains is possible along the lines of se
tion 2. Similarly, at least for the diagonal solution,

one 
an also repeat our Bethe ansatz 
onstru
tion without further te
hni
al diÆ
ulties. In

parti
ular, we 
onje
ture that the open spin 
hain asso
iated to the �rst non-diagonal solution

at �

�

= 0 is the one having the underlying quantum group symmetry.
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5 Con
luding Remarks

In this paper we have made a great deal of progress towards the understanding of the integra-

bility of the D

2

n

vertex model with open boundaries. We have investigated the solutions of the

asso
iated re
e
tion equation and found three general families of K-matri
es whi
h respe
t

the minimal U(1) symmetries of this system. We have 
arried out a Bethe ansatz analysis for

the simplest 
ase, D

2

2

model, revealing to us that the �rst non-diagonal solution at �

�

= 0

possesses the spe
ial quantum algebra symmetry. In fa
t, the stru
ture of the K-matri
es at

this parti
ular point leads us to 
onje
ture that this will be the 
ase for arbitrary values of n.

We believe that our results open an enormous avenue for further investigations. One 
lear

possibility is to use the Bethe ansatz results of se
tion 3 to 
ompute the thermodynami


behaviour, the bulk and the surfa
e 
riti
al exponents. It would be also interesting to generalize

our results of se
tion 3 for all sort of open boundary 
onditions and for arbitrary values of n. In

this 
ase, probably the most suitable tool would be instead the algebrai
 Bethe ansatz approa
h.

This method would allow us to show that indeed the Bethe ansatz states are highest weight

states of the underlying quantum algebra in the 
ase of the �rst non-diagonal family at �

�

= 0.

Other interesting issue is to apply the notion of the quantum group twisting [19℄ to �nd

out slightly di�erent D

2

n

R-matri
es. As a result, this might lead us to integrable models with

very di�erent behaviour, for an example see ref.[20℄. The pra
ti
al implementation of twisting,

however, seems to be quite involving spe
ially for an algebra su
hD

2

n

. To shed some light to this

problem we pro
eed in a mu
h more phenomenologi
al way. Motived by the stru
ture of the

non-diagonal solutions, we add extra Boltzmann weights to the Jimbo's R-matrix to a

ount

for su
h boundary terms at the level of the asso
iated bulk Hamiltonian. Next step is to try to

solve the Yang-Baxter equation for this novel R-matrix stru
ture. It turns out that we su

eed

to �nd a new R-matrix solution for the D

2

2

model. Sin
e this involves many te
hni
alities, we

have summarized it in appendix B together with the study of the 
orresponding solutions of

the re
e
tion equation. We hope that these results will be useful to motivate further progress

in this problem.
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Appendix A : R matrix properties and re
e
tion equations

In this appendix we brie
y dis
uss some useful properties of the D

2

n

R-matrix [10℄. We

also present for n = 2 some relevant relations derived from the re
e
tion equation. The D

2

n

R-

matrix satis�es, besides the unitarity and regularity, extra relations denominated PT invarian
e

and 
rossing symmetry, PT-Symmetry:

P

12

R

12

(�)P

12

= R

t

1

t

2

12

(�) (A.1)

Crossing-symmetry:

R

12

(�) =

�[�℄

�[(n� 1) ln[q℄� �℄

1

V

R

t

2

12

[(n� 1) ln[q℄� �)

1

V

�1

(A.2)

where �(�) is a normalization fun
tion and V is the following 
rossing matrix

V = antidiag

(

q

�(2n�3)=2

; q

�(2n�5)=2

; � � � ;

1

p

q

; 1; 1;

p

q; � � � ; q

(2n�5)=2

; q

(2n�3)=2

)

: (A.3)

Here we �nd 
onvenient to normalize the original Jimbo's R-matrix by an overall fa
tor

e

2�

q

n

and the fun
tion �(�) is given by

�(�) = (e

�

� e

��

)(

e

�

q

(n�1)

�

q

(n�1)

e

�

) (A.4)

Next we present the simplest relations derived from the re
e
tion equation we used in

se
tion 2. For sake of simpli
ity we shall use the following notation Y

i

(x) � Y

i

; Y

i

(y) �

Y

0

i

; w

j

(x � y) � w

j

; w

j

(x+ y) = w

0

j

. Considering this notation, the relations we have sele
ted

from the re
e
tion equation are given by

� w

0

2

h

�w

3

Y

0

1

Y

2

+ w

4

Y

1

Y

0

2

� w

5

Y

0

1

Y

5

+ w

6

Y

1

Y

0

6

i

=
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w

2

h

�w

0

4

Y

0

1

Y

1

+ w

0

5

(Y

0

2

Y

5

+ Y

2

Y

6

0

) + w

0

3

(Y

0

2

Y

2

+ Y

5

Y

6

0

)

i

(A.5)

�w

0

2

h

�w

3

Y

0

1

Y

3

+ w

4

Y

1

Y

0

3

+ w

6

Y

1

Y

0

5

�w

5

Y

0

1

Y

6

i

=

w

2

h

�w

0

4

Y

0

1

Y

1

+ w

0

5

(Y

3

Y

0

5

+ Y

0

3

Y

6

) + w

0

3

(Y

0

3

Y

3

+ Y

0

5

Y

6

)

i

(A.6)

�w

0

2

h

w

3

Y

0

3

Y

4

�w

4

Y

3

Y

0

4

+ w

5

Y

4

Y

0

5

�w

6

Y

0

4

Y

6

i

=

w

2

h

�w

0

3

Y

0

4

Y

4

+ w

0

6

(Y

3

Y

0

5

+ Y

0

3

Y

6

) + w

0

4

(Y

0

3

Y

3

+ Y

0

5

Y

6

)

i

(A.7)

�w

0

5

n

w

5

(Y

0

6

Y

6

� Y

5

Y

0

5

) + w

3

h

Y

0

2

(Y

5

� Y

6

) + Y

2

(Y

0

6

� Y

0

5

)

io

=

w

0

3

n

w

3

(Y

0

6

Y

5

� Y

6

Y

0

5

) + w

5

h

Y

0

2

(Y

6

� Y

5

) + Y

3

(Y

0

6

� Y

0

5

)

io

(A.8)

�w

0

3

n

w

5

(Y

0

3

Y

3

� Y

2

Y

0

2

) + w

3

h

Y

5

(Y

0

3

� Y

0

2

) + Y

0

5

(Y

2

� Y

3

)

io

=

w

0

5

n

w

3

(Y

2

Y

0

3

� Y

3

Y

0

2

) + w

5

h

Y

0

5

(Y

3

� Y

2

) + Y

6

(Y

0

3

� Y

0

2

)

io

(A.9)

�w

0

6

n

w

6

(Y

0

6

Y

6

� Y

5

Y

0

5

) + w

4

h

Y

0

2

(Y

5

� Y

6

) + Y

2

(Y

0

6

� Y

0

5

)

io

=

w

0

4

n

w

4

(Y

0

6

Y

5

� Y

6

Y

0

5

) + w

6

h

Y

0

2

(Y

6

� Y

5

) + Y

3

(Y

0

6

� Y

0

5

)

io

(A.10)

�w

0

4

n

w

6

(Y

0

3

Y

3

� Y

2

Y

0

2

) + w

4

h

Y

5

(Y

0

3

� Y

0

2

) + Y

0

5

(Y

2

� Y

3

)

io

=

w

0

6

n

w

4

(Y

0

3

Y

2

� Y

3

Y

0

2

) + w

6

h

Y

0

5

(Y

3

� Y

2

) + Y

6

(Y

0

3

� Y

0

2

)

io

(A.11)

The fun
tions w

j

(�) are some of the Boltzmann weights of D

2

2

model and are given by [10℄

w

2

(�) = (e

�

� e

��

)(

e

�

q

�

q

e

�

); w

3

(�) = �

1

2

(q �

1

q

)(

e

�

q

�

q

e

�

)(e

��

+ 1) (A.12)

w

4

(�) = �

1

2

(q �

1

q

)(

e

�

q

�

q

e

�

)(e

�

+ 1); w

5

(�) =

1

2

(q �

1

q

)(

e

�

q

�

q

e

�

)(�e

�

+ 1) (A.13)

w

6

(�) = �

1

2

(q �

1

q

)(

e

�

q

�

q

e

�

)(e

�

� 1) (A.14)

Appendix B : A new D

2

2

R-matrix

We begin by presenting the new D

2

2

R-matrix

R(�) = (e

2�

� q

2

)

2

X

�6=2;3

E

��


 E

��

+ q(e

2�

� 1)(e

2�

� q

2

)

X

� 6= �; �

0

�or� 6= 2; 3

E

��


 E

��

�

(q

2

� 1)(e

2�

� q

2

)

2

[(e

�

+ 1)

X

� < 2

� = 2;3

+e

�

(e

�

+ 1)

X

� > 3

� = 2;3

℄(E

��


 E

��

+ E

�

0

�

0


 E

�

0

�

0

)
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�

(q

2

� 1)(e

2�

� q

2

)

2

[(1� e

�

)

X

� < 2

� = 2; 3

+e

�

(e

�

� 1)

X

� > 3

� = 2;3

℄(E

��


 E

�

0

�

+ E

�

0

�

0


 E

�

0

�

)

+

X

�;� 6=2;3

a

��

(�)E

��


E

�

0

�

0

+

X

� 6= 2;3

� = 2;3

b

+

�

(�)E

��


 E

�

0

�

0

+

~

b

+

�

(�)E

�

0

�

0


 E

��

+ b

�

�

(�)E

��


 E

�

0

�

+

~

b

�

�

(�)E

��

0


 E

��

+

X

�=2;3




+

(�)E

��


 E

�

0

�

0

+ 


�

(�)E

��


E

��

+ d

+

(�)E

��

0


 E

�

0

�

+ d

�

(�)E

��

0


 E

��

0

+

X

�=2;3

f(�) [E

��

0


 E

��

+ E

��


 E

��

0

� E

��


 E

�

0

�

� E

�

0

�


 E

��

℄

(B.1)

where E

��

are the elementary 4 � 4 matri
es and we set �

0

= 5 � �. The Boltzmann weights

are given by

a

11

(�) = a

44

(�) = q

2

(e

2�

� 1)

2

; a

14

(�) = a

41

(�)e

�2�

= (q � 1)(q

2

� 1)(e

2�

+ q) (B.2)

b

�

1

= �

q

3=2

2

(q

2

� 1)(e

2�

� 1)(e

�

� 1);

~

b

�

1

= �

q

�1=2

2

(q

2

� 1)(e

2�

� 1)(e

�

� q

2

) (B.3)

b

�

4

=

q

1=2

2

e

�

(q

2

� 1)(e

2�

� 1)(e

�

� q

2

);

~

b

�

4

=

q

1=2

2

e

�

(q

2

� 1)(e

2�

� 1)(e

�

� 1) (B.4)

d

�

= �

e

�

4

(q

2

� 1)

2

(e

�

� 1)

2

; f(�) =

e

�

4

(e

2�

� 1)(q

2

� 1)

2

(B.5)




�

= �

e

�

4

(q

2

� 1)(e

�

� 1)[e

�

(3 + q

2

)� (1 + 3q

2

)℄ + q(e

2�

� 1)(e

2�

� q

2

) (B.6)

This R-matrix has additional Boltzmann weights, the last term in equation (B.1), as 
om-

pare to the standard D

2

2

R-matrix [10℄. In addition, several other weights have also a di�erent

fun
tional dependen
e on the spe
tral paramater �. For periodi
 boundary 
onditions, su
h

di�eren
es are not important sin
e we veri�ed, by using the algebrai
 Bethe ansatz approa
h

[15℄, that the 
orresponding Bethe ansatz equations and eigenvalues are the same as those

found for the standard D

2

2

model [16, 15℄. This result is a strong indi
ation that indeed the

R-matrix (B.1) 
an be obtained by twisting the usual D

2

2

R-matrix. However, the situation for

open boundary 
onditions turns out to be a bit di�erent. In fa
t, we did not �nd any diagonal
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solution of the 
orresponding re
e
tion equation. The basi
 K-matri
es are non-diagonal and

we managed to �nd two 
lasses of su
h solutions. The �rst family depends only on a dis
rete

parameter " = � and is given by

Y

(1;")

1

(�; �

�

) = Y

(1;")

4

(�; �

�

) = (e

2�

+ " q) (B.7)

Y

(1;")

2

(�; �

�

) = Y

(1;")

3

(�; �

�

) =

1

2

(1 + " q)(1 + e

2�

) (B.8)

Y

(1;")

5

(�; �

�

) = Y

(1;")

6

(�; �

�

) =

1

2

(1 � " q)(�1 + e

2�

) (B.9)

while the se
ond family has an extra 
ontinuous parameter �

�

Y

(2;")

1

(�; �

�

) = (e

2�

� �

2

�

)(q + " e

2�

)e

��

; (B.10)

Y

(2;")

4

(�; �

�

) = (1� �

2

�

e

2�

)(q + " e

2�

)e

�

; (B.11)

Y

(2;")

2

(�; �

�

) =

1

2

(1 � �

�

e

�

)(�

�

+ e

�

)(1 + e

2�

)("+ q); (B.12)

Y

(2;")

3

(�; �

�

) =

1

2

(1 + �

�

e

�

)(��

�

+ e

�

)(1 + e

2�

)("+ q); (B.13)

Y

(2;")

5

(�; �

�

) =

1

2

(e

2�

� 1)("� q)(�

�

� e

�

)(�

�

e

�

� 1); (B.14)

Y

(2;")

6

(�; �

�

) =

1

2

(e

2�

� 1)("� q)(�

�

+ e

�

)(�

�

e

�

+ 1); (B.15)

Finally, we remark that sin
e this new R-matrix is only unitary, the asso
iated K

+

(�) ma-

tri
es 
an not be dire
tly obtained by an isomorphism of the type des
ribed in (20). However,

as shown in ref. [21℄, unitarity is a suÆ
ient 
ondition to allow one to 
onstru
t 
ommutative

transfer matri
es leading to open spin 
hains. In this 
ase one has to solve an extra re
e
tion

equation to obtain the K

+

(�) matrix [21℄.
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