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Analysis of over- and underdetermined nonlinear

di�erential-algebrai
 systems with appli
ation to nonlinear


ontrol problems

�

Abstra
t

We study over- and underdetermined systems of nonlinear di�erential-algebrai


equations. Su
h equations arise in many appli
ations in 
ir
uit and multibody system

simulation, in parti
ular when automati
 model generation is used, or in the analysis

and solution of 
ontrol problems via a behaviour approa
h.

We give a general (lo
al) existen
e and uniqueness theory and apply the results to

nonlinear 
ontrol problems. In parti
ular, we study regularization by state or output

feedba
k.

The theoreti
al analysis also leads immediately to numeri
al methods for the

simulation as well as the 
onstru
tion of regularizing 
ontrols.

Keywords: nonlinear di�erential-algebrai
 equations, nonlinear 
ontrol prob-

lems, solvability, model 
onsisten
y, behaviour approa
h, strangeness index, regular-

ization, feedba
k design

AMS(MOS) subje
t 
lassi�
ation: 93C50, 65L05, 34H05, 93B10, 93B11,

93B40

1 Introdu
tion

In this paper, we study nonlinear di�erential-algebrai
 systems of the form

F (t; x; _x) = 0; (1)

with F 2 C(I� D

x

� D

_x

;R

m

), I� R (
ompa
t) interval, D

x

; D

_x

� R

n

open. Su
h systems

in
lude in parti
ular nonlinear 
ontrol problems

F (t; �; u;

_

�)= 0; (2)

y=G(t; �): (3)

Here � 2 R

n

�

is the state, u 2 R

n

u

the input and y 2 R

n

y

the output of the system.

Control systems of the form (2) 
an be rewritten in the form (1) via a behaviour approa
h

that 
ombines the ve
tor fun
tions � and u as

x =

�

�

u

�

2 R

n

;

�

Supported by DFG resear
h grant Ku964/4-1:

�

Uber- und unterbestimmte ni
htlineare DAEs.
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with n = n

�

+ n

u

, see [27, 29℄. For the 
ase of 
ontrol problems that in
lude the output

equation (3), we set

x =

2

4

�

u

y

3

5

2 R

n

with n = n

�

+ n

u

+ n

y

. We will dis
uss both 
ases.

Example 1 Throughout this paper we will illustrate the various results and problems by

means of the simple nonlinear 
ontrol system given by

F (t; �; u;

_

�) =

�

_

�

2

log �

2

+ sinu

�

= 0; (4)

with � = (�

1

; �

2

)

T

, n

�

= 2 and n

u

= 1. The 
orresponding behaviour system reads

F (t; x; _x) =

�

_x

2

log x

2

+ sinx

3

�

= 0; (5)

with n = 3.

General models like (1) as well as the des
ribed 
ontrol problems arise in me
hani
al

multibody systems [14, 18, 19℄, ele
tri
al 
ir
uits [17℄ or mixed systems, where di�erent

models are 
oupled together [15℄. In this general form they allow to model very 
omplex

dynami
al systems with 
onstraints, models that are automati
ally generated with redun-

dant equations or 
ombinations of models of di�erent types, see, e.g., [15, 18℄. Redundant

equations typi
ally o

ur when several submodels (modules) are linked together su
h that

they form loops. We also get overdetermined systems when we in
lude �rst integrals of the

problem. For example, Hamiltonian systems of ordinary di�erential equations are known

to 
onserve energy. Standard integration s
hemes typi
ally 
annot yield numeri
al approx-

imations that keep the initial energy. Instead, the s
heme produ
es or 
onsumes energy

during the integration. If 
onservation of energy is 
ru
ial, one 
an use so-
alled symple
-

ti
 integration s
hemes (see, e. g., [20℄), but one has to be very 
autious with the stepsize

sele
tion. Combining the given system with the equation for the 
onservation of energy

leads to an overdetermined system of di�erential-algebrai
 equations. Designing numeri
al

methods for this type of problems that satisfy all inherent algebrai
 
onstraints is therefore

an important topi
.

To analyze general nonlinear di�erential-algebrai
 systems and also to design 
ontrols,

we need to develop the mathemati
al theory as well as numeri
al methods that 
an be

used for the analysis, design and simulation.

The theory and numeri
al solution methods for di�erential-algebrai
 equations have un-

dergone major 
hanges in the last 10 years, see [1, 8, 9, 16, 22, 23, 24, 26, 28, 30, 31℄.

The theory and also numeri
al te
hniques have also been partially extended to the study

of linear 
ontrol problems [6, 11, 12, 27, 32℄. Ex
ept for the restri
tion to linear prob-

lems, a major drawba
k of the previous methods was the missing analysis for over- and

2



underdetermined systems. It is the topi
 of this paper to extend the previous analysis of

[22, 25, 26, 27℄ to the general nonlinear 
ase.

The paper is organized as follows. After some preliminaries in Se
tion 2, we give an

analysis of the general problem in Se
tion 3. We then apply these results to 
ontrol

problems in Se
tion 4. In Se
tion 5, we propose numeri
al algorithms for the integration

of the arising problems. Finally, we give some 
on
lusions in Se
tion 6.

2 Preliminaries

Sin
e the 
on
epts for di�erential-algebrai
 equations (DAEs) have 
hanged in re
ent years,

we need to re
all some of the terminology and some of the previous results.

De�nition 1 Consider system (1). A fun
tion x : I ! R

n

is 
alled a solution of (1)

if x 2 C

1

(I;R

n

) and x satis�es (1) pointwise. It is 
alled a solution of the initial value

problem 
onsisting of (1) and

x(t

0

) = x

0

; (6)

if x is a solution of (1) and satis�es (6). An initial 
ondition (6) is 
alled 
onsistent if the


orresponding initial value problem has at least one solution.

In the 
ontrol setting, for a given input fun
tion u the 
on
ept of solvability is des
ribed

by De�nition 1. Using the behaviour approa
h, it also 
overs the so-
alled model 
onsis-

ten
y, i. e., the existen
e of a solution � for some input fun
tion u. A more interesting

question in the 
ontext of 
ontrol problems is whether it is possible to 
hoose a 
ontrol

su
h that the resulting problem is regular (in the sense of a DAE, see [26℄). We will dis
uss

this question at least lo
ally, i. e., for a suÆ
iently small neighborhood of t

0

2 I.

In order to analyze the properties of the system, like existen
e and uniqueness of solutions,

in [26℄ for the square nonlinear 
ase and in [27℄ for the re
tangular linear 
ase, hypotheses

have been formulated whi
h lead to an index 
on
ept, the so-
alled strangeness-index or

s-index whi
h generalizes the 
on
ept of di�erentiation index. In the following, we will

formulate a generalization of these hypotheses and the strangeness-index for the general

nonlinear nonsquare 
ase. To do this, we assume for 
onvenien
e that all fun
tions are

suÆ
iently smooth. As in [26℄, we introdu
e a nonlinear derivative array, see also [8, 10℄,

of the form

F

`

(t; x; _x; : : : ; x

(`+1)

) = 0; (7)

whi
h sta
ks the original equation and all its derivatives up to level ` in one large system,

i. e.,

F

`

(t; x; _x; : : : ; x

(`+1)

) =

2

6

6

6

4

F (t; x; _x)

d

dt

F (t; x; _x)

.

.

.

d

`

dt

`

F (t; x; _x)

3

7

7

7

5

: (8)
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Partial derivatives of F

`

with respe
t to sele
ted variables p from (t; x; _x; : : : ; x

(`+1)

) are

denoted by F

`;p

, e. g.,

F

`;x

=

�

�x

F

`

; F

`; _x;:::;x

(`+1)

= [

�

� _x

F

`

: : :

�

�x

(`+1)

F

`

℄:

A 
orresponding notation is used for partial derivatives of other fun
tions.

3 General analysis

In order to analyze existen
e and uniqueness of solutions we need to study the solution set

of the derivative array F

�

for some integer �. We denote this set as

L

�

= fz

�

2 I� R

n

� R

n

� : : :� R

n

j F

�

(z

�

) = 0g: (9)

The following hypothesis extends Hypotheses 2.1 and 3.2 in [26℄, see also [24℄.

Hypothesis 1 Consider the general system of nonlinear di�erential-algebrai
 equations

(1). There exist integers �, r, a, d, and v su
h that L

�

is not empty, and the following

properties hold:

1. The set L

�

� R

(�+2)n+1

forms a manifold of dimension (�+ 2)n+ 1� r.

2. We have

rankF

�;x; _x;:::;x

(�+1)

= r (10)

on L

�

.

3. We have


orankF

�;x; _x;:::;x

(�+1)

� 
orankF

��1;x; _x;:::;x

(�)

= v (11)

on L

�

. (The 
orank is the dimension of the 
orange and we use the 
onvention that


orankF

�1;x

= 0.)

4. We have

rankF

�; _x;:::;x

(�+1)

= r � a (12)

on L

�

su
h that there are smooth full rank matrix fun
tions Z

2

and T

2

de�ned on L

�

of size ((�+ 1)m; a) and (n; n� a), respe
tively, satisfying

Z

T

2

F

�; _x;:::;x

(�+1)

= 0; rankZ

T

2

F

�;x

= a; Z

T

2

F

�;x

T

2

= 0 (13)

on L

�

.

5. We have

rankF

_x

T

2

= d = m� a� v (14)

on L

�

.
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For square systems without redundan
ies, i. e., m = n and v = 0, Hypothesis 1 redu
es

to Hypothesis 3.2 in [26℄ and for linear time varying system to Hypothesis 2.7 in [24℄. The

di�eren
e to the assumptions in [10℄ are that we allow redundan
ies, underdeterminedness

and that we do not require 
onstant rank in a neighborhood of the solution in the whole

spa
e but only on a submanifold. Furthermore we need less smoothness of the fun
tion F .

The latter observation is des
ribed in detail in [26℄. As in [24, 26℄, we 
all the smallest

possible � the strangeness-index of (1). Systems with vanishing strangeness-index are 
alled

strangeness-free.

To derive the impli
ations of Hypothesis 1 and to motivate the various assumptions, we

pro
eed as follows.

Let z

0

�

= (t

0

; x

0

; _x

0

; : : : ; x

(�+1)

0

) 2 L

�

. Observe that in this 
ontext _x

0

; : : : ; x

(�+1)

0

denote

algebrai
 variables in R

n

. Sin
e L

�

is a manifold of dimension (�+2)n+1�r, we 
an lo
ally

parametrize it by (�+2)n+1�r parameters. These 
an be 
hosen from (t; x; _x; : : : ; x

(�+1)

)

in su
h a way that dis
arding the asso
iated 
olumns from

F

�;t;x; _x;:::;x

(�+1)

(t

0

; x

0

; _x

0

; : : : ; x

(�+1)

0

)

does not lead to a rank drop. Be
ause of part 2 of Hypothesis 1, F

�;x; _x;:::;x

(�+1)

has already

maximal rank. Hen
e, we 
an always 
hoose t as a parameter.

Be
ause of part 4 of Hypothesis 1, we 
an 
hoose n � a parameters out of x. Without

restri
tion we 
an write x as (x

1

; x

2

; x

3

) with x

1

2 R

d

, x

2

2 R

n�a�d

, x

3

2 R

a

, and 
hoose

(x

1

; x

2

) as further parameters. In parti
ular, the matrix Z

T

2

F

�;x

3

is then nonsingular. The

remaining parameters p 2 R

(�+1)n+a�r


an be 
hosen out of ( _x; : : : ; x

(�+1)

).

Hen
e, Hypothesis 1 implies that there is a di�eomorphism ' de�ned on a neighborhood

U � R

(�+2)n+1�r

of (t

0

; x

10

; x

20

; p

0

) as part of z

0

�


orresponding to the sele
ted parameters

(t; x

1

; x

2

; p) and a neighborhood V � R

(�+2)n+1

of z

0

�

su
h that

L \ V = f'(t; x

1

; x

2

; p) j (t; x

1

; x

2

; p) 2 Ug:

This in
ludes that lo
ally F

�

(z

�

) = 0 if and only if z

�

= '(t; x

1

; x

2

; p) for some

(t; x

1

; x

2

; p) 2 U. In parti
ular, there are fun
tions G (
orresponding to x

3

) and H (
orre-

sponding to ( _x; : : : ; x

(�+1)

)) su
h that

F

�

(t; x

1

; x

2

;G(t; x

1

; x

2

; p);H(t; x

1

; x

2

; p)) � 0 (15)

on U.

De�ning

^

F

2

= Z

T

2

F

�

(16)

on U, where Z

2

is given a

ording to Hypothesis 1, we have

^

F

2

(t; x

1

; x

2

;G(t; x

1

; x

2

; p);H(t; x

1

; x

2

; p)) � 0 (17)

on U. Di�erentiation with respe
t to p yields (omitting arguments)

d

dp

^

F

2

= (Z

T

2;x

3

F

�

+ Z

T

2

F

�;x

3

)G

p

+ (Z

T

2; _x;:::;x

(�+1)

F

�

+ Z

T

2

F

�; _x;:::;x

(�+1)

)H

p

= Z

T

2

F

�;x

3

G

p

� 0

5



on U. By 
onstru
tion, the parameters x

3

were sele
ted su
h that Z

T

2

F

�;x

3

is nonsingular.

Thus,

G

p

(t; x

1

; x

2

; p) � 0

on U implying that

x

3

= G(t; x

1

; x

2

; p) = G(t; x

1

; x

2

; p

0

):

Thus, there (lo
ally) exists a fun
tion R with

R(t; x

1

; x

2

) = G(t; x

1

; x

2

; p

0

):

Di�erentiating (17) in the form

^

F

2

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0

with respe
t to (x

1

; x

2

), we get (omitting arguments)

d

d(x

1

;x

2

)

^

F

2

= (Z

T

2;x

1

;x

2

F

�

+ Z

T

2

F

�;x

1

;x

2

) + (Z

T

2;x

3

F

�

+ Z

T

2

F

�;x

3

)R

x

1

;x

2

+ (Z

T

2; _x;:::;x

(�+1)

F

�

+ Z

T

2

F

�; _x;:::;x

(�+1)

)H

x

1

;x

2

= Z

T

2

F

�;x

1

;x

2

+ Z

T

2

F

�;x

3

R

x

1

;x

2

= Z

T

2

F

�;x

�

I

R

x

1

;x

2

�

� 0

on U su
h that we 
an 
hoose T

2

in part 4 of Hypothesis 1 as

T

2

(t; x

1

; x

2

) =

�

I

R

x

1

;x

2

(t; x

1

; x

2

)

�

: (18)

In parti
ular, this means that part 5 of Hypothesis 1 only in
ludes the original variables

(t; x; _x). Part 5 also implies that there exists a matrix fun
tion Z

1

of size (m; d) with full

rank satisfying

rankZ

T

1

F

_x

T

2

= d (19)

on U. Obviously, Z

1


an even be 
hosen 
onstant.

Summarizing the 
onstru
tion up to now, Hypothesis 1 yields that the original system

implies a redu
ed system (in the original variables) given by

(a)

^

F

1

(t; x

1

; x

2

; x

3

; _x

1

; _x

2

; _x

3

)= 0;

(b) x

3

�R(t; x

1

; x

2

)= 0;

(20)

with

^

F

1

= Z

T

1

F . Eliminating x

3

and _x

3

in (20a) with the help of (20b) and its derivative

then leads to

^

F

1

(t; x

1

; x

2

;R(t; x

1

; x

2

); _x

1

; _x

2

;R

t

(t; x

1

; x

2

) +R

x

1

(t; x

1

; x

2

) _x

1

+R

x

2

(t; x

1

; x

2

) _x

2

) = 0:

By part 5 of Hypothesis 1 we 
an assume without loss of generality that this system 
an

(lo
ally) be solved for _x

1

leading to the system

_x

1

= L(t; x

1

; x

2

; _x

2

);

x

3

= R(t; x

1

; x

2

):

(21)

6



Obviously, in this system x

2

2 C

1

(I;R

n�a�d

) 
an be 
hosen arbitrarily (at least when

staying in the domain of de�nition of R and L) while the resulting system has lo
ally a

unique solution for x

1

and x

3

provided a 
onsistent initial 
ondition is given.

In summary, we have proved the following result.

Theorem 2 Let F in (1) be suÆ
iently smooth and satisfy Hypothesis 1 with �, a, d, v.

Then every solution of (1) also solves the redu
ed problems (20) and (21) 
onsisting of

d di�erential and a algebrai
 equations.

So far, we have not used the quantity v. This quantity measures the number of equations

in the original system that gives rise to trivial equations 0 = 0, i. e., it 
ounts the number

of redundan
ies in the system. Together with a and d it gives a 
omplete 
lassi�
ation

of the m equations into d di�erential equations, a algebrai
 equations and v trivial equa-

tions. Of 
ourse, trivial equations 
an be simply removed without altering the solution

set. Omitting part 3 of Hypothesis 1 would mean that a given problem may satisfy the

modi�ed hypothesis for di�erent values of a and d.

Example 2 Setting x

3

= 0 in (5) of Example 1 gives the problem

F (t; x; _x) =

�

_x

2

logx

2

�

= 0; (22)

with m = 2 and n = 2. Note that here x

1

, x

2

denote the 
omponents of x and not the

splitting of x used in the above theoreti
al 
onstru
tion. To 
he
k Hypothesis 1 for � = 0

we 
onsider the set

L

0

= f(t; x

1

; x

2

; _x

1

; _x

2

) j x

2

= 1; _x

2

= 0g:

Obviously, L

0

is a manifold parametrized by (t; x

1

; _x

1

). Furthermore, we have

F

0; _x

=

�

0 1

0 0

�

; F

0;x

=

�

0 0

0 x

�1

2

�

=

�

0 0

0 1

�

on L

0

. Thus,

rankF

0;x; _x

= 2; 
orankF

0;x; _x

= 0; rankF

0; _x

= 1:

With Z

T

2

= [ 0 1 ℄, we then obtain

rankZ

T

2

F

0;x

= rank[ 0 1 ℄ = 1;

and with T

T

2

= [ 1 0 ℄ �nally

rankF

_x

T

2

= 0:

Hen
e, we get the quantities r = 2, v = 0, a = 1, and d = 0. Hypothesis 1 is not satis�ed,

sin
e d 6= m � a � v = 1. If we would drop part 3 of Hypothesis 1, there would be no


ondition on v and we 
ould simply 
hoose v = 1 to satisfy all remaining requirements. To


he
k Hypothesis 1 for � = 1 we must deal with F

1

= 0, whi
h 
onsists of the equations

_x

2

= 0; log x

2

= 0; �x

2

= 0;

_x

2

x

2

= 0:

7



The set

L

1

= f(t; x

1

; x

2

; _x

1

; _x

2

; �x

1

; �x

2

) j x

2

= 1; _x

2

= 0; �x

2

= 0g

is a manifold parametrized by (t; x

1

; _x

1

; �x

1

). Furthermore, we have

F

1; _x;�x

=

2

6

6

4

0 1 0 0

0 0 0 0

0 0 0 1

0 x

�1

2

0 0

3

7

7

5

=

2

6

6

4

0 1 0 0

0 0 0 0

0 0 0 1

0 1 0 0

3

7

7

5

and

F

1;x

=

2

6

6

4

0 0

0 x

�1

2

0 0

0 �x

�2

2

_x

2

3

7

7

5

=

2

6

6

4

0 0

0 1

0 0

0 0

3

7

7

5

on L

1

. Thus,

rankF

1;x; _x;�x

= 3; 
orankF

1;x; _x;�x

= 1; rankF

1; _x;�x

= 2:

Pro
eeding as above, we 
ompute

Z

T

2

=

�

0 1 0 0

1 0 0 �1

�

; T

2

=

�

1

0

�

;

and

rankZ

T

2

F

0;x

= rank

�

0 1

0 0

�

= 1; rankF

_x

T

2

= rank

�

0

0

�

= 0:

Hen
e, Hypothesis 1 is satis�ed with � = 1, r = 2, v = 1, a = 1, and d = 0.

Theorem 2 states that every (suÆ
iently smooth) solution x of the original system (1)

also solves the redu
ed systems (20) and (21). To show that the redu
ed systems re
e
t (at

least lo
ally) the properties of the original system 
on
erning solvability and stru
ture of

the solution set, we need the 
onverse dire
tion of this statement. The following theorem

gives suÆ
ient 
onditions.

Theorem 3 Let F in (1) be suÆ
iently smooth and satisfy Hypothesis 1 with �, a, d, v

and with �+1 (repla
ing �), a, d, v. Let z

0

�+1

2 L

�+1

be given and let the parametrization p

in (15) for F

�+1

in
lude _x

2

. Then, for every fun
tion x

2

2 C

1

(I;R

n�a�d

) with x

2

(t

0

) = x

20

,

_x

2

(t

0

) = _x

20

the redu
ed problem (21) has unique solutions x

1

and x

3

satisfying x

1

(t

0

) = x

10

.

Moreover, these together lo
ally solve the original problem.

Proof. By assumption, there exists (lo
ally with respe
t to z

0

�+1

2 L

�+1

) a parametrization

(t; x

1

; x

2

; p), where p is 
hosen out of ( _x; : : : ; x

(�+2)

), with

F

�+1

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0:

8



This in
ludes the equation

F

�

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0 (23)

with trivial dependen
e on x

(�+2)

as well as

d

dt

F

�

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0: (24)

Equation (23) implies that (omitting arguments)

F

�;t

+ F

�;x

3

R

t

+ F

�; _x;:::;x

(�+2)

H

t

� 0;

F

�;x

1

;x

2

+ F

�;x

3

R

x

1

;x

2

+ F

�; _x;:::;x

(�+2)

H

x

1

;x

2

� 0;

F

�; _x;:::;x

(�+2)

H

p

� 0:

(25)

The relation

d

dt

F

�

= 0 has the form

F

�;t

+ F

�;x

1

_x

1

+ F

�;x

2

_x

2

+ F

�;x

3

_x

3

+ F

�; _x;:::;x

(�+1)

2

6

4

�x

.

.

.

x

(�+2)

3

7

5

= 0:

Inserting the parametrization yields that (24) 
an be written as

F

�;t

+ F

�;x

1

H

1

+ F

�;x

2

H

2

+ F

�;x

3

H

3

+ F

�; _x;:::;x

(�+1)

H

4

� 0;

where H

i

, i = 1; : : : ; 4, are the parts of H 
orresponding to _x

1

, _x

2

, _x

3

, and the remaining

variables, respe
tively. Multipli
ation with Z

T

2

(
orresponding to Hypothesis 1 with �, a,

d, v) gives

Z

T

2

F

�;t

+ Z

T

2

F

�;x

1

H

1

+ Z

T

2

F

�;x

2

H

2

+ Z

T

2

F

�;x

3

H

3

� 0:

Inserting the relations (25) and observing that Z

T

2

F

�;x

3

is nonsingular, we �nd

Z

T

2

F

�;x

3

(H

3

�R

t

�R

x

1

H

1

�R

x

2

H

2

) � 0;

or

H

3

= R

t

+R

x

1

H

1

+R

x

2

H

2

;

that is

_x

3

= R

t

+R

x

1

_x

1

+R

x

2

_x

2

:

In summary, the derivative array F

�+1

= 0 implies that

(a) Z

T

1

F (t; x

1

; x

2

; x

3

; _x

1

; _x

2

; _x

3

) = 0;

(b) x

3

= R(t; x

1

; x

2

);

(
) _x

3

= R

t

(t; x

1

; x

2

) +R

x

1

_x

1

(t; x

1

; x

2

) +R

x

2

(t; x

1

; x

2

) _x

2

:

(26)

Elimination of x

3

and _x

3

from (26a) gives

_x

1

= L(t; x

1

; x

2

; _x

2

):

9



In parti
ular, _x

1

and _x

3

are not part of the parametrization.

Sin
e _x

2

is part of p, the following 
onstru
tion is possible. Let x

2

= x

2

(t) and _x

2

= _x

2

(t).

Let p = p(t) be arbitrary but 
onsistent to the 
hoi
e of _x

2

and to the initial value z

0

�+1

.

Finally, let x

1

= x

1

(t) and x

3

= x

3

(t) be the solution of the initial value problem

Z

T

1

F (t; x

1

; x

2

(t); x

3

; _x

1

; _x

2

(t); _x

3

) = 0; x

1

(t

0

) = x

10

x

3

= R(t; x

1

; x

2

(t)):

Although _x

1

and _x

3

are not part of the parametrization, we automati
ally get _x

1

= _x

1

(t)

and _x

3

= _x

3

(t). Thus, we have

F

�+1

(t; x

1

(t); x

2

(t); x

3

(t); _x

1

(t); _x

2

(t); _x

3

(t);H

4

(t; x

1

(t); x

2

(t); p(t)) � 0;

for all t in a neighborhood of t

0

, or

F (t; x

1

(t); x

2

(t); x

3

(t); _x

1

(t); _x

2

(t); _x

3

(t)) � 0

for the �rst blo
k.

Corollary 4 Let F in (1) be suÆ
iently smooth and satisfy Hypothesis 1 with �, a, d, v

and with � + 1 (repla
ing �), a, d, v and assume that a + d = n. For every z

0

�+1

2 L

�+1

the redu
ed problem (21) has a unique solution satisfying the initial value given by z

0

�+1

.

Moreover, this solution lo
ally solves the original problem.

Proof. Sin
e a+ d = n, there is no part x

2

of x in the above 
onstru
tion.

The above 
orollary espe
ially applies to the 
ase of regular problems as treated in [26℄,

where we have m = n and v = 0. Together with the observation that every (suÆ
iently

smooth) solution also solves the redu
ed problem, we have now found suÆ
ient 
ondi-

tions that guarantee that original problem and redu
ed problem (lo
ally) show the same

behaviour 
on
erning solvability and the stru
ture of the solution set.

Remark 1 Let the assumptions of Theorem 3 hold and let x

20

and _x

20

be the part of

z

0

�+1

2 L

�+1

belonging to x

2

and _x

2

. If ~x

20

and

_

~x

20

are suÆ
iently 
lose to x

20

and _x

20

,

they are part of a ~z

0

�+1

2 L

�+1


lose to z

0

�+1

and we 
an apply Theorem 3 with z

0

�+1

repla
ed

by ~z

0

�+1

.

Remark 2 Note that in Theorem 3 we 
an drop the assumption that _x

2

is part of the

parameters if we know from the stru
ture of the problem that L in (21) does not depend

on _x

2

. In parti
ular, this is the 
ase if we 
an 
hoose the splitting (x

1

; x

2

; x

3

) in su
h a way

that the original problem does not depend on _x

2

and on 
omponents of _x

3

that depend

on _x

2

. An important 
onsequen
e of this spe
ial 
ase is that we need not to require the

initial 
ondition _x

2

(t

0

) = _x

20

. This also applies to Remark 1.

10



Remark 3 Although we must deal with F

�+1

in order to show that the solutions of the

redu
ed problem also solve the original problem, it is suÆ
ient to 
onsider F

�

only in order

to obtain the redu
ed problem and to solve it. This 
ould already be observed in the linear


ase, see [25℄. Compare also with the numeri
al pro
edures in Se
tion 5.

Remark 4 The redu
ed problems (20) and (21) may already follow from F

`

= 0 with

` < �, although � is 
hosen as small as possible. This o

urs in 
ases where further

di�erentiations only lead to trivial equations 0 = 0 (when 
onsisten
y is guaranteed). To


he
k the 
onsisten
y of the model, however, it is still ne
essary to 
onsider F

�

= 0.

Example 3 Consider the problem of Example 2. The redu
ed problem simply 
onsists

of log x

2

= 0 and is already implied by F

0

= 0. The same holds for the slightly modi�ed

problem

_x

2

= 1; log x

2

= 0:

Observe that the 
orresponding set L

0

is nonempty. Di�erentiating on
e gives

�x

2

= 0; x

�1

2

_x

2

= 0

implying the 
ontradi
tion _x

2

= 0. Thus, L

1

is empty and the modi�ed problem is not

solvable.

4 Appli
ation to 
ontrol problems

In this se
tion we apply the results from the previous se
tion to 
ontrol problems of the form

(2). In the linear 
ase this has been the topi
 of numerous publi
ations [3, 4, 5, 6, 32, 33, 27℄.

In parti
ular in [5, 6, 32, 33, 27℄ the general 
ase of nonsquare 
ontrol problems has been

dis
ussed 
on
erning solvability, regularizability, model 
onsisten
y and 
onditions have

been derived that guarantee that the system 
an be regularized by state or output feedba
k

or how it 
an be reinterpreted as a square strangeness-free system. To do this, redundan
ies

are removed, free variables are reinterpreted as 
ontrols and �xed 
ontrols are reinterpreted

as state variables. In the nonlinear 
ase we have already shown under whi
h 
ir
umstan
es

redundan
ies 
an be removed, but we will assume in the following that a reinterpretation

of variables is not ne
essary, i.e., 
ontrols are variables that 
an be freely 
hosen and state

variables are variables that are determined from the system, on
e a 
ontrol has been 
hosen.

In the behaviour approa
h su
h an assumption is not really ne
essary but it simpli�es the

notation whi
h is already quite involved.

Consider the 
ontrol problem without the output equation, i. e., F (t; �; u;

_

�) = 0 with

� 2 R

n

�

, u 2 R

n

u

and n = n

�

+ n

u

. In a behaviour framework, we set

x =

�

�

u

�

11



and apply the theory of the previous se
tion. This gives lo
ally a redu
ed problem of the

form

^

F

1

(t; �; u;

_

�) = 0;

^

F

2

(t; �; u) = 0

(27)


orresponding to (20). To perform the next steps of the 
onstru
tion would require to

split x into (x

1

; x

2

; x

3

) where ea
h part may 
onsist of 
omponents of both � and u. To

avoid su
h a splitting we pro
eed as follows. Starting from (20) in the form

^

F

1

(t; x; _x) = 0;

^

F

2

(t; x) = 0;

Hypothesis 1 yields (without arguments)

^

F

2;x

T

2

= 0; rankT

2

= n� a; rank

^

F

1; _x

= d:

Choosing T

0

2

su
h that [ T

0

2

T

2

℄ is nonsingular, we �nd

rank

�

^

F

1; _x

^

F

2;x

�

= rank

�

^

F

1; _x

T

0

2

^

F

1; _x

T

2

^

F

2;x

T

0

2

0

�

= rank

^

F

1; _x

T

2

+

^

F

2; _x

T

0

2

= d+ a:

Thus, the given matrix has full row rank. In the present 
ontext, this means that the

(d+ a; n)-matrix

"

^

F

1;

_

�

0

^

F

2;�

^

F

2;u

#

(28)

has full row rank. Observe that in general �xing a 
ontrol u does not give a regular

strangeness-free redu
ed problem (in the sense of [26℄), sin
e

"

^

F

1;

_

�

^

F

2;�

#

may be singular. An immediate question is whether it is possible to 
hoose a 
ontrol su
h

that the resulting redu
ed problem is regular and strangeness-free. Ne
essarily, we must

have d + a = n

�

. As in the linear 
ase (see [27℄) we 
onsider state feedba
ks and output

feedba
ks. In the nonlinear 
ase a state feedba
k may have the form

u = K(t; �) (29)

leading to a 
losed loop redu
ed problem

^

F

1

(t; �;K(t; �);

_

�) = 0;

^

F

2

(t; �;K(t; �)) = 0:

(30)

The 
ondition for this system to be regular and strangeness-free reads

"

^

F

1;

_

�

^

F

2;�

+

^

F

2;u

K

�

#

nonsingular.

12



Sin
e (28) has full rank, the existen
e of a suitable

~

K = K

�

follows from the theory for

linear problems with 
onstant 
oeÆ
ients. Thus a possible state feedba
k is given by

u(t) =

~

K�(t) + w(t); (31)

where the fun
tion w 
an be used to satisfy initial 
onditions of the form

u

(`)

(t

0

) =

~

K�

(`)

0

+ w

(`)

(t

0

) = u

(`)

0

: (32)

Hen
e, we have proved the following theorem.

Theorem 5 Suppose that the 
ontrol problem (2) in behaviour form satis�es Hypothesis 1

with �, a, d, v and assume that d + a = n

�

. Then there (lo
ally) exists a state feedba
k

u = K(t; �) satisfying u

0

= K(t

0

; �

0

) and _u

0

= K

t

(t

0

; �

0

) +K

�

(t

0

; �

0

)

_

�

0

su
h that the 
losed

loop redu
ed problem is regular and strangeness-free.

Corollary 6 Suppose that the 
ontrol problem (2) in behaviour form satis�es Hypothe-

sis 1 with �, a, d, v and with � + 1 (repla
ing �), a, d, v and assume that d + a = n

�

.

Furthermore, let u be a 
ontrol in the sense that u and _u 
an be 
hosen as part of the

parametrization of L

�+1

at z

0

�+1

2 L

�+1

. Let u = K(t; �) be a state feedba
k whi
h satis�es

the initial 
onditions u

0

= K(t

0

; �

0

) and _u

0

= K

t

(t

0

; �

0

) +K

�

(t

0

; �

0

)

_

�

0

and yields a regular

and strangeness-free 
losed loop redu
ed system. Then, the 
losed loop redu
ed problem has

a unique solution satisfying the initial values given by z

0

�+1

. Moreover, this solution lo
ally

solves the 
losed loop problem

F (t; �;K(t; �);

_

�) = 0:

Proof. The proof follows the lines of that of Theorem 3.

Example 4 Consider the 
ontrol problem (4) of Example 1 and the 
orresponding be-

haviour system (5). To 
he
k Hypothesis 1 for � = 0 we use

x =

2

4

�

1

�

2

u

3

5

:

The set

L

0

= f(t; �

1

; �

2

; u;

_

�

1

;

_

�

2

; _u) j �

2

= exp(� sin u);

_

�

2

= 0g:

is a manifold parametrized by (t; �

1

; u;

_

�

1

; _u). Furthermore, we have

F

0; _x

=

�

0 1 0

0 0 0

�

; F

0;x

=

�

0 0 0

0 �

�1

2


os u

�

=

�

0 0 0

0 exp(sinu) 
os u

�

on L

0

. Thus,

rankF

0;x; _x

= 2; 
orankF

0;x; _x

= 0; rankF

0; _x

= 1:

13



With Z

T

2

= [ 0 1 ℄, we then obtain

rankZ

T

2

F

0;x

= rank[ 0 exp(sin u) 
os u ℄ = 1; T

2

=

2

4

1 0

0 � 
os u

0 exp(sinu)

3

5

;

and �nally

rankF

_x

T

2

= rank

�

0 � 
os u

0 0

�

= 1;

when we restri
t u to a neighborhood of zero. Hen
e, Hypothesis 1 is satis�ed with � = 0,

r = 2, v = 0, a = 1, and d = 1. For z

0

0

= (0; 0; 1; 0; 0; 1; 0) we 
an 
hoose Z

T

1

= [ 1 0 ℄ to

obtain the redu
ed problem

_

�

2

= 0; log �

2

+ sinu = 0:

Note that the redu
ed problem here 
oin
ides with the original problem due to its spe
ial

form (we have � = 0 and do not need to apply any transformations to separate the algebrai


equations) and due to the spe
ial 
hoi
e for Z

T

1

. Fixing the 
ontrol u a

ording to u = 0

gives a 
losed loop system that is not regular and strangeness-free. Indeed, it satis�es

Hypothesis 1 only for � = 1 and it even in
ludes a trivial equation due to a redundan
y,


p. Example 2. To get a regular and strangeness-free 
losed-loop redu
ed problem, we look

for a regularizing state feedba
k. Sin
e

"

^

F

1;

_

�

0

^

F

2;�

^

F

2;u

#

=

�

0 1 0

0 �

�1

2


os u

�

=

�

0 1 0

0 1 1

�

at z

0

0

, we 
an 
hoose

~

K = [ 1 0 ℄ or u = �

1

observing the initial values given by z

0

0

. The


orresponding 
losed loop redu
ed problem is given by

_

�

2

= 0; log �

2

+ sin �

1

= 0:

By 
onstru
tion, it is regular and strangeness-free near the initial value given by z

0

0

. For

�

1

(0) = 0, we parti
ularly get the unique solution �

1

(t) = 0, �

2

(t) = 1.

We turn now to 
ontrol problems that in
lude the output equation (3), i. e., F (t; �; u;

_

�) =

0 together with y = G(t; �), where � 2 R

n

�

, u 2 R

n

u

, y 2 R

n

y

and n = n

�

+ n

u

+ n

y

. In a

behaviour framework, we set

x =

2

4

�

u

y

3

5

and again apply the theory of the previous se
tion. Due to the expli
it form of the output

equation, it is obvious that it be
omes part of the algebrai
 
onstraints and does not a�e
t

14



the other 
onstraints, 
p. the linear 
ase in [27℄. Therefore, the redu
ed problem has the

form

^

F

1

(t; �; u;

_

�) = 0;

^

F

2

(t; �; u) = 0;

y = G(t; �):

(33)

If we 
onsider output feedba
ks

u = K(t; y); (34)

the 
losed loop redu
ed problem has the form

^

F

1

(t; �;K(t; G(t; �));

_

�) = 0;

^

F

2

(t; �;K(t; g(t; �))) = 0:

(35)

The 
ondition for this system to be regular and strangeness-free reads

"

^

F

1;

_

�

^

F

2;�

+

^

F

2;u

K

y

G

�

#

=

"

^

F

1;

_

�

0

^

F

2;�

^

F

2;u

#

�

I

K

y

G

�

�

nonsingular. (36)

Note that we get ba
k the state feedba
k 
ase if y = �. To guarantee that 
ondition (36)

holds for some 
hoi
e of K

y

, we need an extra 
ondition whi
h we 
an 
he
k lo
ally via

the following pro
edure, see Algorithm 1 in [27℄. As there, this algorithm dire
tly allows

the 
onstru
tion of a suitable linear output feedba
k that satis�es the above regularity


ondition.

Algorithm 1 Let the Ja
obians E

1

=

^

F

1;

_

�

, A

2

=

^

F

2;�

, B

2

=

^

F

2;u

and C = G

�

of the

redu
ed system 
orresponding to z

0

�

2 L

�

be given.

1. Determine an orthogonal matrix Q = [Q

1

Q

2

℄ su
h that

E

1

[Q

1

Q

2

℄ = [ E

11

0 ℄;

where E

11

has size (d; d) and is nonsingular.

2. Determine orthogonal matri
es U = [ U

1

U

2

℄ and V = [ V

1

V

2

℄ su
h that

U

T

A

2

Q

2

V =

�

A

22

0

0 0

�

;

where A

22

is of size (â; â) and nonsingular. Set � = a� â and 
he
k if rankU

T

2

B

2

= �.

3. Determine the rank ! of CQ

2

V

2

. In parti
ular, determine an orthogonal matrix

W = [W

1

W

2

℄ su
h that

CQ

2

V

2

W = [ C

3

0 ℄;

where C

3

has full 
olumn rank !.
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Theorem 7 Suppose that the output 
ontrol problem, 
onsisting of (2) and (3) in behaviour

form, satis�es Hypothesis 1 with �, a, d, v and assume that d+a = n

�

as well as � = ! for

the quantities determined by Algorithm 1. Then there (lo
ally) exists an output feedba
k

u = K(t; y) satisfying u

0

= K(t

0

; y

0

) and _u

0

= K

t

(t

0

; y

0

)+K

�

(t

0

; y

0

) _y

0

su
h that the 
losed

loop redu
ed problem is regular and strangeness-free.

Proof. Under the given assumptions, the linear theory (involving Algorithm 1) yields a

suitable matrix

~

K = K

y

su
h that (36) holds. The 
laim then follows for the linear output

feedba
k

u(t) =

~

Ky(t) + w(t);

where the fun
tion w is used to satisfy the given initial 
onditions.

Corollary 8 Suppose that the output 
ontrol problem, 
onsisting of (2) and (3) in be-

haviour form, satis�es Hypothesis 1 with �, a, d, v and with � + 1 (repla
ing �), a, d, v

and assume that d+ a = n

�

as well as � = ! for the quantities determined by Algorithm 1.

Furthermore, let u be a 
ontrol in the sense that u and _u 
an be 
hosen as part of the

parametrization of L

�+1

at z

0

�+1

2 L

�+1

. Let u = K(t; y) be an output feedba
k whi
h

satis�es the initial 
onditions u

0

= K(t

0

; y

0

) and _u

0

= K

t

(t

0

; y

0

) +K

�

(t

0

; y

0

) _y

0

and yields

a regular and strangeness-free 
losed loop redu
ed system. Then, the 
losed loop redu
ed

problem has a unique solution satisfying the initial values given by z

0

�+1

. Moreover, this

solution lo
ally solves the 
losed loop problem

F (t; �;K(t; G(t; �));

_

�) = 0:

Proof. Again, the proof follows the lines of that of Theorem 3.

Remark 5 As in the 
ase of the previous se
tion, it is suÆ
ient to 
onsider F

�

in order to


ompute the desired regularizing state or output feedba
k and the solution of the 
losed

loop system.

Remark 6 Although all obtained results were of lo
al nature, they 
an be globalized as it


an be done in the 
ase of ordinary di�erential equations (see, e. g., [21, Th. I.7.4℄). Like

there, we 
an 
ontinue the pro
ess (under the assumption of suÆ
ient smoothness) until

we rea
h the boundary of L

�

or L

�+1

, respe
tively. Note that this may happen in �nite

time.

Remark 7 Suppose that for a given 
ontrol problem (2) the variable � 
an be split into

(�

1

; �

2

) in su
h a way that the redu
ed problem (27) 
an be transformed to

_

�

1

= L(t; �

1

; u);

�

2

= R(t; �

1

; u)

16



a

ording to (21). Then for every u with u(t

0

) suÆ
iently 
lose to u

0

the 
losed loop

redu
ed problem obviously is regular and strangeness-free. Due to the stru
ture of the

problem (
p. Remark 2), we do not need to require that _u is part of the parameters in

order to get the results of Corollaries 6 and 8. A

ordingly, we do not need to require that

_u(t

0

) = _u

0

.

Example 5 A 
ontrol problem for a multibody system has the form (see, e. g., [34℄)

_p = q;

M(p) _q = f(t; p; q; u) + g

p

(p)

T

�; p 2 R

n

p

; � 2 R

n

�

g(p) = 0;

sin
e the 
ontrol typi
ally a
ts via external for
es. Assuming that g

p

(p) has full row

rank and M(p) is symmetri
 and positive de�nite, Hypothesis 1 is satis�ed with � = 2,

d = 2(n

p

� n

�

), a = 3n

�

, and v = 0, provided the model is 
onsistent a

ording to L

�

6= ;.

The 
orresponding redu
ed problem has the form

Z

T

11

( _p� q) = 0;

Z

T

12

(M(p) _q � f(t; p; q; u)� g

p

(p)

T

�) = 0;

g(p) = 0;

g

p

(p)q = 0;

g

pp

(q; q) + g

p

(p)M(p)

�1

[f(t; p; q; u) + g

p

(p)

T

�℄ = 0

and 
an be shown to be regular and strangeness-free for given u near the initial value. Due

to the assumptions, we 
an split p = (p

1

; p

2

) and q = (q

1

; q

2

) su
h that in the notation of

the previous se
tion

x

1

= (p

1

; q

1

); x

2

= u; x

3

= (p

2

; q

2

; �)

is a possible 
hoi
e. The spe
ial stru
ture of the redu
ed problem implies that from _x

3

only

_

� may depend on _u. Thus, Remarks 2 and 7 apply.

5 Numeri
al methods

The theoreti
al results of the previous two se
tions dire
tly imply numeri
al methods for

the 
omputation of the desired solutions. In the general 
ase of Se
tion 3 we 
an use the

following numeri
al pro
edures.

To 
ompute a 
onsistent initial value at time t

0

, i. e., a value x

0

that satis�es the algebrai



onstraints, we must solve

F

�

(t

0

; x

0

; _x

0

; : : : ; x

(�+1)

0

) = 0 (37)

for (x

0

; _x

0

; : : : ; x

(�+1)

0

). The 
lassi
al approa
h to solve su
h systems is the Gau�-Newton

method. For a nonlinear problem F(
) = 0 it generates a sequen
e 


k

of approximations

starting with an initial guess 


0

by




k+1

= 


k

�F




(


k

)

�

F(


k

); (38)
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where F




(


k

)

�

denotes a 
onvenient (outer or left) generalized inverse (see, e. g., [7℄) of

F




(


k

). Due to the required 
onsisten
y of the equations, i. e., L

�

6= ;, we expe
t (for a

suÆ
iently good initial guess) superlinear 
onvergen
e of the Gau�-Newton method to a

solution of the system. For more details see Remark 8 below.

To perform an integration step from t

0

to t

1

= t

0

+ h we �rst determine a proje
tion P

that sele
ts a suitable set of 
omponents from x whi
h 
an serve as 
ontrols (in the notation

of Se
tion 3 this was x

2

) and a possible Z

1

at z

0

�

a

ording to Hypothesis 1. For a suitable


ontrol u satisfying

u(t

0

) = Px

0

; _u(t

0

) = P _x

0

;

we 
ombine the equation F

�

(z

�

) = 0, whi
h implies that the algebrai
 
onstraints are

ful�lled, with the dis
retized di�erential equations. Denoting by D

h

x a BDF-dis
retization

of _x (see, e. g., [1℄), we obtain

F

�

(t

1

; x

1

; _x

1

; : : : ; x

(�+1)

1

) = 0; Px

1

= u(t

1

);

Z

T

1

F (t

1

; x

1

; P _x

1

+ (I � P )D

h

x

1

) = 0; P _x

1

= _u(t

1

);

(39)

whi
h must be solved for (x

1

; _x

1

; : : : ; x

(�+1)

1

). Again we may apply the Gau�-Newton

method and expe
t superlinear 
onvergen
e. Note that the quality of an initial guess

is here not 
ru
ial, sin
e we 
an simple redu
e the stepsize h.

In the 
ase of a 
ontrol problem without output equation, we solve

F

�

(t

0

; �

0

; u

0

;

_

�

0

; _u

0

; : : : ; �

(�+1)

0

; u

(�+1)

0

) = 0 (40)

for (�

0

; u

0

;

_

�

0

; _u

0

; : : : ; �

(�+1)

0

; u

(�+1)

0

) to obtain 
onsistent initial values. Then, we determine

Z

1

as above and a suitable

~

K yielding a regularizing state feedba
k as des
ribed in the

previous se
tion and set w = u

0

�

~

K�

0

. Finally, we perform an integration step by solving

F

�

(t

1

; �

1

;

~

K�

1

+ w;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

) = 0;

Z

T

1

F (t

1

; �

1

;

~

K�

1

+ w;D

h

�

1

) = 0

(41)

for (�

1

;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

). Under the assumptions of Theorem 5, the Gau�-Newton

method will show superlinear 
onvergen
e for suÆ
iently small h.

In
luding the output equation, we a

ordingly solve

F

�

(t

0

; �

0

; u

0

; y

0

;

_

�

0

; _u

0

; _y; : : : ; �

(�+1)

0

; u

(�+1)

0

; y

(�+1)

0

) = 0 (42)

for (�

0

; u

0

; y

0

;

_

�

0

; _u

0

; _y

0

; : : : ; �

(�+1)

0

; u

(�+1)

0

; y

(�+1)

0

) to obtain 
onsistent initial values. We

again determine Z

1

and a suitable

~

K yielding a regularizing output feedba
k and set

w = u

0

�

~

Ky

0

. Here we must solve

F

�

(t

1

; �

1

;

~

Ky

1

+ w; y

1

;

_

�

1

; _u

1

; _y

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

; y

(�+1)

1

) = 0;

Z

T

1

F (t

1

; �

1

;

~

Ky

1

+ w;D

h

�

1

) = 0

(43)
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for (�

1

; y

1

;

_

�

1

; _u

1

; _y

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

; y

(�+1)

1

). Due to the expli
it form of the output equa-

tion, we 
an remove it and all its derivatives from F

�

. Denoting the resulting fun
tion by

~

F

�

, it is suÆ
ient to solve

~

F

�

(t

1

; �

1

;

~

KG(t

1

; �

1

) + w;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

) = 0;

Z

T

1

F (t

1

; �

1

;

~

KG(t

1

; �

1

) + w;D

h

�

1

) = 0

(44)

for (�

1

;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

) and we may determine (y

1

; _y

1

; : : : ; y

(�+1)

1

) by the expli
it

formulas given by the output equation and its derivatives. Still, we expe
t superlinear


onvergen
e due to Theorem 7 for suÆ
iently small h.

Having performed an integration step, we always end up with a new 
onsistent value on

L

�

, sin
e in all 
ases the equation F

�

(z

�

) = 0 is part of the numeri
al pro
edure. Thus, we


an iteratively pro
eed with the integration giving at least pie
ewise smooth regularizing


ontrols and asso
iated solutions.

Remark 8 In order to perform the Gau�-Newton iteration (38) we must spe
ify how we


hoose the generalized inverse F




(
)

�

. Sin
e we know the rank of the Ja
obian at the desired

solution (say r as for (37)), we 
an pro
eed as follows. We 
ompute a QR-de
omposition

with 
olumn pivoting of F




(


0

) of the form

Q

T

0

F




(


0

)� =

�

R

0

S

0

0 �

0

�

;

where Q

0

is orthogonal, R

0

is nonsingular with rank r, and � is a permutation matrix.

For 
 suÆ
iently 
lose to 


0

, we 
an determine a QR-de
omposition of F




(
)� of the form

Q(
)

T

F




(
)� =

�

R(
) S(
)

0 �(
)

�

:

This 
an be done in su
h a way that Q, R, S, and � depend smoothly on 
. Moreover, R(
)

will still be nonsingular and �(
) will be small if we are suÆ
iently 
lose to the solution

set. We then de�ne

F




(
)

�

= �

�

R(
) S(
)

0 0

�

+

Q(
)

T

;

where the supers
ript

+

denotes the Moore-Penrose pseudoinverse, see e. g. [7℄. By


onstru
tion, F




(
)

�

is an outer inverse of F




(
) and depends smoothly on 
. One 
an

now show that for this Gau�-Newton pro
ess (and suÆ
iently good initial guess 


0

), the

assumptions of Theorem 4 in [13℄ are satis�ed giving the 
laimed superlinear 
onvergen
e.

6 Con
lusions and outlook

In this paper we have presented the theoreti
al analysis for general over- and underdeter-

mined nonlinear di�erential-algebrai
 equations. Su
h equations in
lude 
ontrol problems

19



and allow the analysis of systems with redundant equations. We have extended the 
on-


ept of strangeness index to su
h general systems and have shown how one 
an 
onstru
t a

redu
ed order strangeness-free system, whi
h forms the basis for numeri
al methods. We

have shown that the same approa
h allows to analyse 
ontrol problems and we have shown

how regularizing state and output feedba
ks 
an be 
onstru
ted. We have presented the

framework of numeri
al methods to perform these tasks.
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