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Analysis of over- and underdetermined nonlinear

differential-algebraic systems with application to nonlinear
control problems*

Abstract

We study over- and underdetermined systems of nonlinear differential-algebraic
equations. Such equations arise in many applications in circuit and multibody system
simulation, in particular when automatic model generation is used, or in the analysis
and solution of control problems via a behaviour approach.

We give a general (local) existence and uniqueness theory and apply the results to
nonlinear control problems. In particular, we study regularization by state or output
feedback.

The theoretical analysis also leads immediately to numerical methods for the
simulation as well as the construction of regularizing controls.

Keywords: nonlinear differential-algebraic equations, nonlinear control prob-
lems, solvability, model consistency, behaviour approach, strangeness index, regular-
ization, feedback design

AMS(MOS) subject classification: 93C50, 65L05, 34HO05, 93B10, 93B11,
93B40

1 Introduction
In this paper, we study nonlinear differential-algebraic systems of the form
F(t,z,) =0, (1)

with FF € C(Ix D, x D;,R™), T C R (compact) interval, D,,D; C R™ open. Such systems
include in particular nonlinear control problems

F(t,&,u,8) =0, (2)
y:G(taf)' (3)

Here ¢ € R is the state, u € R" the input and y € R™ the output of the system.
Control systems of the form (2) can be rewritten in the form (1) via a behaviour approach
that combines the vector functions £ and u as

x:[g]GRn,
u
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with n = ng + n,, see [27, 29]. For the case of control problems that include the output
equation (3), we set
£
r=|u | R’
Yy

with n = n¢ + n, +n,. We will discuss both cases.

Example 1 Throughout this paper we will illustrate the various results and problems by
means of the simple nonlinear control system given by

N 5 _
Bt & u.€) = [ log &, —T— sin u ] =0, (4)

with & = (&1, &)7, ne =2 and n, = 1. The corresponding behaviour system reads

F(t,z, i) = { & ] =0, (5)

log x5 + sin x3
with n = 3.

General models like (1) as well as the described control problems arise in mechanical
multibody systems [14, 18, 19], electrical circuits [17] or mixed systems, where different
models are coupled together [15]. In this general form they allow to model very complex
dynamical systems with constraints, models that are automatically generated with redun-
dant equations or combinations of models of different types, see, e.g., [15, 18]. Redundant
equations typically occur when several submodels (modules) are linked together such that
they form loops. We also get overdetermined systems when we include first integrals of the
problem. For example, Hamiltonian systems of ordinary differential equations are known
to conserve energy. Standard integration schemes typically cannot yield numerical approx-
imations that keep the initial energy. Instead, the scheme produces or consumes energy
during the integration. If conservation of energy is crucial, one can use so-called symplec-
tic integration schemes (see, e. g., [20]), but one has to be very cautious with the stepsize
selection. Combining the given system with the equation for the conservation of energy
leads to an overdetermined system of differential-algebraic equations. Designing numerical
methods for this type of problems that satisfy all inherent algebraic constraints is therefore
an important topic.

To analyze general nonlinear differential-algebraic systems and also to design controls,
we need to develop the mathematical theory as well as numerical methods that can be
used for the analysis, design and simulation.

The theory and numerical solution methods for differential-algebraic equations have un-
dergone major changes in the last 10 years, see [1, 8, 9, 16, 22, 23, 24, 26, 28, 30, 31].
The theory and also numerical techniques have also been partially extended to the study
of linear control problems [6, 11, 12, 27, 32]. Except for the restriction to linear prob-
lems, a major drawback of the previous methods was the missing analysis for over- and



underdetermined systems. It is the topic of this paper to extend the previous analysis of
[22, 25, 26, 27] to the general nonlinear case.

The paper is organized as follows. After some preliminaries in Section 2, we give an
analysis of the general problem in Section 3. We then apply these results to control
problems in Section 4. In Section 5, we propose numerical algorithms for the integration
of the arising problems. Finally, we give some conclusions in Section 6.

2 Preliminaries

Since the concepts for differential-algebraic equations (DAEs) have changed in recent years,
we need to recall some of the terminology and some of the previous results.

Definition 1 Consider system (1). A function z : I — R" is called a solution of (1)
if z € CHI,R") and r satisfies (1) pointwise. It is called a solution of the initial value
problem consisting of (1) and

z(to) = o, (6)

if z is a solution of (1) and satisfies (6). An initial condition (6) is called consistent if the
corresponding initial value problem has at least one solution.

In the control setting, for a given input function u the concept of solvability is described
by Definition 1. Using the behaviour approach, it also covers the so-called model consis-
tency, i. e., the existence of a solution ¢ for some input function u. A more interesting
question in the context of control problems is whether it is possible to choose a control
such that the resulting problem is regular (in the sense of a DAE, see [26]). We will discuss
this question at least locally, i. e., for a sufficiently small neighborhood of ¢, € I.

In order to analyze the properties of the system, like existence and uniqueness of solutions,
in [26] for the square nonlinear case and in [27] for the rectangular linear case, hypotheses
have been formulated which lead to an index concept, the so-called strangeness-index or
s-index which generalizes the concept of differentiation index. In the following, we will
formulate a generalization of these hypotheses and the strangeness-index for the general
nonlinear nonsquare case. To do this, we assume for convenience that all functions are
sufficiently smooth. As in [26], we introduce a nonlinear derivative array, see also [8, 10],
of the form

Fyt,z, @, ... aFY) =0, (7)

which stacks the original equation and all its derivatives up to level £ in one large system,
i e,
F(t,z, &)
iF‘(t7 x, SL')
Fo(t,z i, ... a0y = | 4

(8)

¢ ' .
b (t 7, %)



Partial derivatives of F, with respect to selected variables p from (t,,,...,z(*1) are
denoted by Fy,, e. g.,

0 0 0

FZ;x = %Fﬁv Fe;j;,...,x<ff+1) = [% £oeee O (t+1) FZ]'

A corresponding notation is used for partial derivatives of other functions.

3 General analysis

In order to analyze existence and uniqueness of solutions we need to study the solution set
of the derivative array F), for some integer i. We denote this set as

L,={2, €¢IxR"xR" x...xR" | F,(2,) = 0}. (9)
The following hypothesis extends Hypotheses 2.1 and 3.2 in [26], see also [24].

Hypothesis 1 Consider the general system of nonlinear differential-algebraic equations
(1). There exist integers p, r, a, d, and v such that L, is not empty, and the following
properties hold:

1. The set L, € R¥F2"+L forms a manifold of dimension (pu+2)n +1 — 7.

2. We have
rank F, ., ;s =7 (10)
on L,.
3. We have
corank F,., & 4 —corank B,y 5 oy =0 (11)

on L,. (The corank is the dimension of the corange and we use the convention that
corank F' 4., = 0.)

4. We have
rank F; oy =7 —a (12)

on L, such that there are smooth full rank matriz functions Zs and Ty defined on L,
of size (1 + 1)m,a) and (n,n — a), respectively, satisfying

Zy Fps wusn =0, rankZ] Fu, =a, Zy F,To =0 (13)
on L,.
5. We have
rank F;To =d=m—a—v (14)
on L.



For square systems without redundancies, i. e., m = n and v = 0, Hypothesis 1 reduces
to Hypothesis 3.2 in [26] and for linear time varying system to Hypothesis 2.7 in [24]. The
difference to the assumptions in [10] are that we allow redundancies, underdeterminedness
and that we do not require constant rank in a neighborhood of the solution in the whole
space but only on a submanifold. Furthermore we need less smoothness of the function F'.
The latter observation is described in detail in [26]. As in [24, 26], we call the smallest
possible p the strangeness-index of (1). Systems with vanishing strangeness-index are called
strangeness-free.

To derive the implications of Hypothesis 1 and to motivate the various assumptions, we
proceed as follows.

Let 2 = (to, =g, 4o, . . - ,:c(()’”l)) € L,,. Observe that in this context g, ... ,x(()’”l) denote
algebraic variables in R”. Since L, is a manifold of dimension (p+2)n+1—7, we can locally
parametrize it by (p+2)n+1—7r parameters. These can be chosen from (¢, z, 4, ..., z(#+1)
in such a way that discarding the associated columns from

Fu;t,m,m",...,a:“‘*“ (t07 L0, ‘@Oa SRR $8M+1))

does not lead to a rank drop. Because of part 2 of Hypothesis 1, F}, . ; .+ has already
maximal rank. Hence, we can always choose t as a parameter.

Because of part 4 of Hypothesis 1, we can choose n — a parameters out of x. Without
restriction we can write  as (1, 72, 73) with 7; € R?, 2y € R*%7¢ 13 € R?, and choose
(z1,T2) as further parameters. In particular, the matrix Z7 F),.,, is then nonsingular. The
remaining parameters p € R#F7+9=" can be chosen out of (i, ..., zH+D).

Hence, Hypothesis 1 implies that there is a diffeomorphism ¢ defined on a neighborhood
U C Rwt2nti=r of (to, 10, T20, Po) as part of zg corresponding to the selected parameters
(t,x1,75,p) and a neighborhood V C R#+2n+1 of 2y such that

Lmv = {So(thlﬂx?ap) | (t,.CUl,.iUg,p) € U}

This includes that locally F,(z,) = 0 if and only if 2, = ¢(t 21, 22,p) for some
(t,x1,22,p) € U. In particular, there are functions G (corresponding to z3) and H (corre-
sponding to (,...,z#*Y)) such that

Fu(ta Ty, T2, g(ta Ty, x2ap)7 H(ta Iy, $2ap)) =0 (15)
on U.
Defining X
Fy=Z]F, (16)

on U, where 7 is given according to Hypothesis 1, we have
Fy(t, x1, 22, G(t, 1, 22, p), H(t, 21, 72,p)) = 0 (17)
on U. Differentiation with respect to p yields (omitting arguments)

i lr = (230, Fu+ Z3 Fluny)Gp + (Zy, i Fu + 23 Fliatern ) My
= Z3 Fli2,Gp = 0



on U. By construction, the parameters z3 were selected such that ZI'F,.,, is nonsingular.
Thus,
Gy(t,z1,22,p) =0
on U implying that
x3 = G(t, 21,22, p) = G(t, 21, T2, po).-
Thus, there (locally) exists a function R with

R(t,x1,22) = G(t, 21, T2, o).

Differentiating (17) in the form

A

Fy(t, w1, 22, R(t, v1,22), H(t, ¥1,22,p)) =0
with respect to (z1,x2), we get (omitting arguments)

d(:md,m)FZ - (Zg:thFM + ZgF ;371»372) + (Zg:l%FN + ZgFMmS)Rth

T T
+ (Z2;a':,...,x(#+1)Fﬂ + Z2 Fu;a’:,...,x(#+1))Ha¢1,x2

I
= ZgFu;ml,mz + ZgmeaRwhm = Zgme [Rx x ] =0

on U such that we can choose T3 in part 4 of Hypothesis 1 as

I

Ty(t, z1,22) = . 18

2( o xz) |: Rxl,mg(taxlv‘rZ) :| ( )

In particular, this means that part 5 of Hypothesis 1 only includes the original variables

(t,x,&). Part 5 also implies that there exists a matrix function Z; of size (m,d) with full
rank satisfying

rank 71 F; Ty = d (19)

on U. Obviously, Z; can even be chosen constant.
Summarizing the construction up to now, Hypothesis 1 yields that the original system
implies a reduced system (in the original variables) given by

(a) Fl(tax17x27'r3ai.17:t27:t3):07 (20)
(b) T3 —R(t,ﬁCh.’Eg): 0,

with 7y = ZTF. Eliminating 3 and &3 in (20a) with the help of (20b) and its derivative
then leads to

A

Fl(t7 T1,T2, R(tv'rla'rQ)v ‘,tlv ',tzaRt(tv xlaxQ) + Rxl (taxlv ‘TQ):tl + Rxg (taxlv ‘TZ)'C.CQ) — 0

By part 5 of Hypothesis 1 we can assume without loss of generality that this system can
(locally) be solved for i leading to the system

«il = ‘C(ta Ty, T2, ‘®2))

I3 = R(t,l'hxz)- (21)

6



Obviously, in this system z, € CY(I,R** ) can be chosen arbitrarily (at least when
staying in the domain of definition of R and £) while the resulting system has locally a
unique solution for x; and x3 provided a consistent initial condition is given.

In summary, we have proved the following result.

Theorem 2 Let F in (1) be sufficiently smooth and satisfy Hypothesis 1 with p, a, d, v.
Then every solution of (1) also solves the reduced problems (20) and (21) consisting of
d differential and a algebraic equations.

So far, we have not used the quantity v. This quantity measures the number of equations
in the original system that gives rise to trivial equations 0 = 0, i. e., it counts the number
of redundancies in the system. Together with a and d it gives a complete classification
of the m equations into d differential equations, a algebraic equations and v trivial equa-
tions. Of course, trivial equations can be simply removed without altering the solution
set. Omitting part 3 of Hypothesis 1 would mean that a given problem may satisfy the
modified hypothesis for different values of a and d.

Example 2 Setting x3 = 0 in (5) of Example 1 gives the problem
N
F(t,z,i) = [ log 7 ] =0, (22)

with m = 2 and n = 2. Note that here z;, 5 denote the components of x and not the
splitting of x used in the above theoretical construction. To check Hypothesis 1 for ;1 =0
we consider the set

Lo = {(t, x1, 2, &1, %2) | x2 = 1, &3 = 0}.

Obviously, Ly is a manifold parametrized by (¢, z1,4). Furthermore, we have
01 0 O 0 0
F0;93—|:0 0:|7 F0;$_|:0 x21:|_|:0 1:|

rank Fy,, » = 2, corank Fy,; =0, rank Fy; = 1.

With ZI' = [0 1], we then obtain

on Ly. Thus,

rank 73 Fy., = rank[0 1] = 1,

and with 79 = [1 0] finally
rank F;T5 = 0.

Hence, we get the quantities r =2, v =0, a = 1, and d = 0. Hypothesis 1 is not satisfied,
since d # m —a —v = 1. If we would drop part 3 of Hypothesis 1, there would be no
condition on v and we could simply choose v = 1 to satisfy all remaining requirements. To
check Hypothesis 1 for p = 1 we must deal with F; = 0, which consists of the equations
5&2:0, IOg.’EQ:O, fi‘gzo, @ =0.
T2



The set
]L’l — {(tv‘rlv‘rQai.lv:th‘%lai.Q) | Ty = ]-7 'C&Q - 07 '%2 = 0}

is a manifold parametrized by (¢, xy, @1, %1). Furthermore, we have

0 1 ‘0 0
0 0|0 0
Frs= 197070 1|~
0 2,110 0
and
0 0 00
10 ! |01
Fie = 0 0 10 0
0 —x, iy 0 0
on L;. Thus,

rank Fl;w,de,ﬁi = 37 corank Fl;a:,a':,i - ]-, rank Fl;x’,i' = 2.

Proceeding as above, we compute
0 10 O 1
T _
2=[1as 4] m-fa]

rank Z;‘FFU;x = rank [ 01

and

0
0 0] =1, ranij;TQ—rank[O] =0.

Hence, Hypothesis 1 is satisfied with y=1,r=2,v=1,a =1, and d = 0.

Theorem 2 states that every (sufficiently smooth) solution z of the original system (1)
also solves the reduced systems (20) and (21). To show that the reduced systems reflect (at
least locally) the properties of the original system concerning solvability and structure of
the solution set, we need the converse direction of this statement. The following theorem
gives sufficient conditions.

Theorem 3 Let F in (1) be sufficiently smooth and satisfy Hypothesis 1 with u, a, d, v
and with p+1 (replacing p), a, d, v. Let z2+1 € L1 be given and let the parametrization p
in (15) for F,41 include 5. Then, for every function xo € C*(I, R*=%~%) with x4 (ty) = T2,
To(to) = @29 the reduced problem (21) has unique solutions x1 and x3 satisfying x1(ty) = 1.
Moreover, these together locally solve the original problem.

Proof. By assumption, there exists (locally with respect to 22 +1 € L) a parametrization
(t, 1, 29,p), where p is chosen out of (&, ...,z#+?)), with

FM+1(t,£C1,IL’2,R(t,£C1,xz),%(t,fﬁ'l,xg,p)) =0.

8



This includes the equation
Fu(t, o1, 20, R(t, 21, 72), H(t, 51,72, p)) =0 (23)

with trivial dependence on z#*+2?) as well as

d
dt
Equation (23) implies that (omitting arguments)

F,(t, 21,22, R(t, w1, x2), H(t, 21, 22,p)) = 0. (24)

Fu;t + Fu;waRt + Fu;x',...,x(“+2)%t =0,

Fleyan + FlesRayan + Fu;a},...,x(“+2)%$1,$2 =0, (25)
FMQ-;’___@(;LH)HP =0.

The relation %Fu = 0 has the form

Fii+ Fua @1 + Flpy@o + Flup, @3 + Flp o : =0.
x(ﬂ+2)

Inserting the parametrization yields that (24) can be written as
Fu;t + FM-’171H1 + Fu;scz%? + Fu;sca%:% + Fu;a’:,...,x(“+1)%4 =0,

where H;, » = 1,...,4, are the parts of H corresponding to %1, %5, 73, and the remaining
variables, respectively. Multiplication with ZI (corresponding to Hypothesis 1 with u, a,
d, v) gives

Z;FFﬂ;t + Z;FF#;;“,Hl + Zg'F#;x2H2 + Z;FFM;C?,H;), =0.

Inserting the relations (25) and observing that ZI F),..., is nonsingular, we find
ZQTFM;U?, (Hg — Rt — RmHl — Rm2H2) = 0,

or

Hs = Ri + Roy Hi + Ray Ho,

that is
.itg == Rt + Rxl«il + Rx2$2.

In summary, the derivative array F),; = 0 implies that

(a‘) ZfF(t,$1,$2,$3,.ft1,.ft2,¢3) :0,
(b) T3 = R(ta Iy, x2)7 (26)
(c) T3 = Ry(t, x1, 22) + Ry @1(t, x1, 2) + Ray (t, 21, 22)Ta.

Elimination of x5 and &3 from (26a) gives

i’l = ﬁ(t, T1,T2, Ig)

9



In particular, z; and 3 are not part of the parametrization.

Since 75 is part of p, the following construction is possible. Let xo = 25(t) and @9 = 5(t).
Let p = p(t) be arbitrary but consistent to the choice of &5 and to the initial value z2+1.
Finally, let ;7 = x1(t) and z3 = x3(t) be the solution of the initial value problem

ZLF(t,x1, 22(t), w3, 21, 52(t), 23) = 0,  21(to) = 210
T3y — R(t,l‘l,l‘g(t)).

Although #; and i3 are not part of the parametrization, we automatically get &, = &1(¢)
and 23 = #3(t). Thus, we have

Foia(t,xe(t), 22(t), w3 (t), &1(t), 2o (t), &3(t), Ha(t, z1(t), 22(t), p(t))

0,
for all ¢ in a neighborhood of ¢y, or

F(t,Il(t),l‘g(t),l'g(t),l'l(t),Ig(t),fl'g,(t)) =0

for the first block. O

Corollary 4 Let F in (1) be sufficiently smooth and satisfy Hypothesis 1 with p, a, d, v
and with p+ 1 (replacing u), a, d, v and assume that a + d = n. For every zg+1 € Lyt
the reduced problem (21) has a unique solution satisfying the initial value given by z2+1.
Moreover, this solution locally solves the original problem.

Proof. Since a + d = n, there is no part x, of x in the above construction. O

The above corollary especially applies to the case of regular problems as treated in [26],
where we have m = n and v = 0. Together with the observation that every (sufficiently
smooth) solution also solves the reduced problem, we have now found sufficient condi-
tions that guarantee that original problem and reduced problem (locally) show the same
behaviour concerning solvability and the structure of the solution set.

Remark 1 Let the assumptions of Theorem 3 hpld and let zoy and @5y be the part of
z2+1 € LL,+1 belonging to xp and #. If T99 and Zy are sufficiently close to zay and @,
they are part of a 2, € L4 close to z),, and we can apply Theorem 3 with 2}, replaced

50
by z,.1.

Remark 2 Note that in Theorem 3 we can drop the assumption that z, is part of the
parameters if we know from the structure of the problem that £ in (21) does not depend
on Z. In particular, this is the case if we can choose the splitting (z1, zs, x3) in such a way
that the original problem does not depend on &5 and on components of 3 that depend
on #». An important consequence of this special case is that we need not to require the
initial condition @9 (tg) = @29. This also applies to Remark 1.

10



Remark 3 Although we must deal with F},;; in order to show that the solutions of the
reduced problem also solve the original problem, it is sufficient to consider F), only in order
to obtain the reduced problem and to solve it. This could already be observed in the linear
case, see [25]. Compare also with the numerical procedures in Section 5.

Remark 4 The reduced problems (20) and (21) may already follow from F; = 0 with
¢ < p, although g is chosen as small as possible. This occurs in cases where further
differentiations only lead to trivial equations 0 = 0 (when consistency is guaranteed). To
check the consistency of the model, however, it is still necessary to consider F,, = 0.

Example 3 Consider the problem of Example 2. The reduced problem simply consists
of logzs = 0 and is already implied by Fy = 0. The same holds for the slightly modified
problem

o =1, logxzs =0.

Observe that the corresponding set Ly is nonempty. Differentiating once gives
B9 =0, x5y =0

implying the contradiction 2o = 0. Thus, L; is empty and the modified problem is not
solvable.

4 Application to control problems

In this section we apply the results from the previous section to control problems of the form
(2). In the linear case this has been the topic of numerous publications [3, 4, 5, 6, 32, 33, 27].
In particular in [5, 6, 32, 33, 27] the general case of nonsquare control problems has been
discussed concerning solvability, regularizability, model consistency and conditions have
been derived that guarantee that the system can be regularized by state or output feedback
or how it can be reinterpreted as a square strangeness-free system. To do this, redundancies
are removed, free variables are reinterpreted as controls and fixed controls are reinterpreted
as state variables. In the nonlinear case we have already shown under which circumstances
redundancies can be removed, but we will assume in the following that a reinterpretation
of variables is not necessary, i.e., controls are variables that can be freely chosen and state
variables are variables that are determined from the system, once a control has been chosen.
In the behaviour approach such an assumption is not really necessary but it simplifies the
notation which is already quite involved.

Consider the control problem without the output equation, i. e., F(t,f,u,f) = 0 with
£ e R, ueR™ and n = ng +n,. In a behaviour framework, we set

-4

11



and apply the theory of the previous section. This gives locally a reduced problem of the
form

}?l(ta 67 u, f) = 07

F2 (t, f, U) =0
corresponding to (20). To perform the next steps of the construction would require to
split = into (z1, zs, x3) where each part may consist of components of both ¢ and u. To
avoid such a splitting we proceed as follows. Starting from (20) in the form

1( v)
Fy(t,z) =

Hypothesis 1 yields (without arguments)

(27)

0

Fg;ng =0, rank7,=n—a, rank Fm—c =d.

Choosing Ty such that [Ty T, | is nonsingular, we find

- S o ) )

rank [ 1?1;;« ] = rank [ lf‘l;mTzl FigTh ] =rank F1,;Ts + Fo; Ty = d + a.
D Fy.. Ty 0

Thus, the given matrix has full row rank. In the present context, this means that the

(d + a,n)-matrix

A

Fl-g' 0 (28)
F2§ FQu

has full row rank. Observe that in general fixing a control u does not give a regular
strangeness-free reduced problem (in the sense of [26]), since

A

]Tl;é

F2;§

may be singular. An immediate question is whether it is possible to choose a control such
that the resulting reduced problem is regular and strangeness-free. Necessarily, we must
have d + a = n¢. As in the linear case (see [27]) we consider state feedbacks and output
feedbacks. In the nonlinear case a state feedback may have the form

= K(t,€) (29)

leading to a closed loop reduced problem

}?l(tafa K(t,f),
F2(t7€7 K(t,f))

The condition for this system to be regular and strangeness-free reads

9 =0 (30)

0.

A

by nonsingular.
28 &+ F, e

12



Since (28) has full rank, the existence of a suitable K = K, follows from the theory for
linear problems with constant coefficients. Thus a possible state feedback is given by

u(t) = KE(t) +w(t), (31)
where the function w can be used to satisfy initial conditions of the form
uO(t) = K& + w0 (tg) = ull. (32)
Hence, we have proved the following theorem.

Theorem 5 Suppose that the control problem (2) in behaviour form satisfies Hypothesis 1
with p, a, d, v and assume that d + a = ne. Then there (locally) exists a state feedback
u = K(t,&) satisfying uy = K (to, &) and ug = Ki(to, &) + Ke(to, fg)ég such that the closed
loop reduced problem is reqular and strangeness-free.

Corollary 6 Suppose that the control problem (2) in behaviour form satisfies Hypothe-
sis 1 with p, a, d, v and with p+ 1 (replacing 1), a, d, v and assume that d + a = ne.
Furthermore, let uw be a control in the sense that uw and % can be chosen as part of the
parametrization of Ly, 11 at z2+1 €L,11. Let u= K(t,§) be a state feedback which satisfies

the initial conditions uy = K (ty, &) and iy = Ky(to, &) + Kg(tg,ﬁo)ég and yields a reqular
and strangeness-free closed loop reduced system. Then, the closed loop reduced problem has
a unique solution satisfying the initial values given by z2+1. Moreover, this solution locally
solves the closed loop problem

F(t7 57 K(t7 6)7 6) = 0

Proof. The proof follows the lines of that of Theorem 3. O

Example 4 Consider the control problem (4) of Example 1 and the corresponding be-
haviour system (5). To check Hypothesis 1 for = 0 we use

&1
r=| &
i

The set o _
IL'O = {(t,€17§27u,§1,€2,ﬂ) | 52 = eXp(_ Sinu)v 52 = 0}

is a manifold parametrized by (¢, &1, u, &1, @). Furthermore, we have

s _foro]l o _Jo o o ]_f[o o 0
%0 0 0 "%l 0 &Y cosu| |0 exp(sinu) cosu

on Ly. Thus,
rank Fy,, » = 2, corank Fy,; =0, rank Fy; = 1.
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With ZI' = [0 1], we then obtain

1 0
rank Z; Fy., = rank[ 0 exp(sinu) cosu]=1, To=|0 —cosu |,
0 exp(sinu)

and finally

rank F;T5 = rank [ 0 —cosu } =1,
0 0

when we restrict u to a neighborhood of zero. Hence, Hypothesis 1 is satisfied with u = 0,

r=2v=0,a=1,and d = 1. For 20 = (0,0,1,0,0,1,0) we can choose Z{ =[1 0] to

obtain the reduced problem
& =0, log& +sinu=0.

Note that the reduced problem here coincides with the original problem due to its special
form (we have . = 0 and do not need to apply any transformations to separate the algebraic
equations) and due to the special choice for ZI. Fixing the control u according to u = 0
gives a closed loop system that is not regular and strangeness-free. Indeed, it satisfies
Hypothesis 1 only for 4 = 1 and it even includes a trivial equation due to a redundancy,
cp. Example 2. To get a regular and strangeness-free closed-loop reduced problem, we look
for a regularizing state feedback. Since

Fep 0 | _Jo 1 0 ]_Jo1o0
Foe Fopy | L0 &Y cosu | [0 11

at 20, we can choose K = [1 0] or u = & observing the initial values given by 2J. The
corresponding closed loop reduced problem is given by

& =0, log& +sing =0.

By construction, it is regular and strangeness-free near the initial value given by 2. For
&1(0) = 0, we particularly get the unique solution & () = 0, &(t) = 1.

We turn now to control problems that include the output equation (3), i. e., F(¢, £, u, 5) =
0 together with y = G(¢,¢), where { € R*, v € R™, y € R™ and n = n¢ +n, +n,. In a
behaviour framework, we set

§

r= | u
Y

and again apply the theory of the previous section. Due to the explicit form of the output
equation, it is obvious that it becomes part of the algebraic constraints and does not affect
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the other constraints, cp. the linear case in [27]. Therefore, the reduced problem has the
form

}?l(ta 67 u, f) = 07
Fy(t, & u) =0, (33)
y=G(t¢).
If we consider output feedbacks
u=K(t,y), (34)

the closed loop reduced problem has the form

Fl(tvaK(taG(tag))a ) = 07 (35)
F2(t7 67 K(ta g(ta 5))) =0
The condition for this system to be regular and strangeness-free reads
e _ | e 0 [ I ] nonsingular. (36)
Fog + I Ky Ge Fye Fou | | G

Note that we get back the state feedback case if y = . To guarantee that condition (36)
holds for some choice of K, we need an extra condition which we can check locally via
the following procedure, see Algorithm 1 in [27]. As there, this algorithm directly allows
the construction of a suitable linear output feedback that satisfies the above regularity
condition.

Algorithm 1 Let the Jacobians E; = F1;g'v Ay = Fg;g, By = Fz;u and C' = G¢ of the
reduced system corresponding to 22 € L, be given.

1. Determine an orthogonal matrix @ = [ @y Q2 ] such that

E\[Qr Q2] =[Ewn 0],

where Ey; has size (d, d) and is nonsingular.

2. Determine orthogonal matrices U = [U; Uy | and V = [V} V4] such that

A 0
UT AxQaV = { 0 0 } !
where Asy is of size (G, @) and nonsingular. Set ¢ = a—a and check if rank U By = ¢.

3. Determine the rank w of C'QQ2V5. In particular, determine an orthogonal matrix
W = [W; W>] such that
CQVoW = [C3 0],

where C5 has full column rank w.
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Theorem 7 Suppose that the output control problem, consisting of (2) and (3) in behaviour
form, satisfies Hypothesis 1 with p, a, d, v and assume that d4+a = ng as well as ¢ = w for
the quantities determined by Algorithm 1. Then there (locally) exists an output feedback
u = K(t,y) satisfying uop = K (to, yo) and g = K(to, yo) + K¢ (to, yo)Yo such that the closed
loop reduced problem is reqular and strangeness-free.

Proof. Under the given assumptions, the linear theory (involving Algorithm 1) yields a
suitable matrix K = K, such that (36) holds. The claim then follows for the linear output
feedback .

u(t) = Ky(t) +w(t),

where the function w is used to satisfy the given initial conditions. 0O

Corollary 8 Suppose that the output control problem, consisting of (2) and (3) in be-
haviour form, satisfies Hypothesis 1 with u, a, d, v and with p+ 1 (replacing u), a, d, v
and assume that d+a = n¢ as well as ¢ = w for the quantities determined by Algorithm 1.
Furthermore, let w be a control in the sense that uw and @ can be chosen as part of the
parametrization of Ly 1 at z2+1 € L. Let u = K(t,y) be an output feedback which
satisfies the initial conditions uy = K (to,yo) and uy = K(to, yo) + Ke(to, Yo)9o and yields
a reqular and strangeness-free closed loop reduced system. Then, the closed loop reduced
problem has a unique solution satisfying the initial values given by 22+1. Moreover, this
solution locally solves the closed loop problem

F(t,& K (1, G(t€)),€) = 0.

Proof. Again, the proof follows the lines of that of Theorem 3. 0O

Remark 5 Asin the case of the previous section, it is sufficient to consider F), in order to
compute the desired regularizing state or output feedback and the solution of the closed
loop system.

Remark 6 Although all obtained results were of local nature, they can be globalized as it
can be done in the case of ordinary differential equations (see, e. g., [21, Th. 1.7.4]). Like
there, we can continue the process (under the assumption of sufficient smoothness) until
we reach the boundary of L, or L, 41, respectively. Note that this may happen in finite
time.

Remark 7 Suppose that for a given control problem (2) the variable & can be split into
(&1,&) in such a way that the reduced problem (27) can be transformed to

él - [’(ta 617 U),
52 - R(ta 517 U)
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according to (21). Then for every u with wu(ty) sufficiently close to ug the closed loop
reduced problem obviously is regular and strangeness-free. Due to the structure of the
problem (cp. Remark 2), we do not need to require that @ is part of the parameters in
order to get the results of Corollaries 6 and 8. Accordingly, we do not need to require that

a(to) = to.

Example 5 A control problem for a multibody system has the form (see, e. g., [34])

’E

p) = f(t,p,q,u) + g,(p)TA, peR™, X cR®

9(p) =

since the control typically acts via external forces. Assuming that g,(p) has full row
rank and M (p) is symmetric and positive definite, Hypothesis 1 is satisfied with u = 2,
d = 2(n, —ny), a = 3n,, and v = 0, provided the model is consistent according to L,, # 0.
The corresponding reduced problem has the form

O

ZHL(M(p)q — f(t,p,q,u) — g,(p)"A) =0,
9(p) =0,
9p(p)q =0,

9op(0, @) + gp(P)M (p) ' [f (t, 1, q,u) + gp(p)"A] = 0

and can be shown to be regular and strangeness-free for given u near the initial value. Due
to the assumptions, we can split p = (p1,p2) and ¢ = (g1, ¢2) such that in the notation of
the previous section

Ty = (pl,(h), T2 = U, T3= (p27CI27>\)

is a possible choice. The special structure of the reduced problem implies that from z3
only A may depend on #. Thus, Remarks 2 and 7 apply.

5 Numerical methods

The theoretical results of the previous two sections directly imply numerical methods for
the computation of the desired solutions. In the general case of Section 3 we can use the
following numerical procedures.
To compute a consistent initial value at time g, i. e., a value x, that satisfies the algebraic
constraints, we must solve
Fu(to, o, &g, ..., xd"™) =0 (37)

for (xg, &, . - x(()“ﬂ)). The classical approach to solve such systems is the Gauf-Newton
method. For a nonlinear problem F(c) = 0 it generates a sequence ¢, of approximations

starting with an initial guess cq by

Ck,_|_1 = Cp — ]:c(ck)_}"(ck), (38)
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where F.(c;)” denotes a convenient (outer or left) generalized inverse (see, e. g., [7]) of
F.(ck). Due to the required consistency of the equations, i. e., L, # 0, we expect (for a
sufficiently good initial guess) superlinear convergence of the Gaufi-Newton method to a
solution of the system. For more details see Remark 8 below.

To perform an integration step from ¢, to t; = ty + h we first determine a projection P
that selects a suitable set of components from z which can serve as controls (in the notation
of Section 3 this was z5) and a possible Z; at zg according to Hypothesis 1. For a suitable

control u satisfying
U(to) = P.To, U(to) = Pio,

we combine the equation F),(z,) = 0, which implies that the algebraic constraints are
fulfilled, with the discretized differential equations. Denoting by D,z a BDF-discretization
of 7 (see, e. g., [1]), we obtain

Fu(tl,xl,fbh...,xguﬂ)) :0, P.’El :U(tl)7 (39)
ZfF(tlj.’L’l,P"tl-F(I—P)DhﬁCl) :0, P.’El :U(tl)7
which must be solved for (xl,jzl,...,xgﬂﬂ)). Again we may apply the Gaufl-Newton

method and expect superlinear convergence. Note that the quality of an initial guess
is here not crucial, since we can simple reduce the stepsize h.
In the case of a control problem without output equation, we solve

Fﬂ(t07£07u07£07u07"'7£éu+1)7u§]u+1)) =0 (40)
for (&, uo, &, g, - ., €T, ugfﬂ)) to obtain consistent initial values. Then, we determine

7y as above and a suitable K yielding a regularizing state feedback as described in the
previous section and set w = ug — K&,. Finally, we perform an integration step by solving

Fﬂ(tlagla f(fl + waélaula s 7€£#+1),U§N+1)) = 07

1 41
ZTF(t1,&, K& +w, Dp&y) =0 )
for (&,&1, 01, ... ,ff”ﬂ), ug“ﬂ)). Under the assumptions of Theorem 5, the Gaufl-Newton
method will show superlinear convergence for sufficiently small A.
Including the output equation, we accordingly solve
Fu(tf)a 507 Uo, Yo, 6.07 an ?J, I 6(()M+1)7 USM‘H)’ y(()u—i—l)) =0 (42)
for (fg,uo,yg,ég,ug,g'/o,...,f(()“ﬂ),u(()“ﬂ),yéﬂﬂ)) to obtain consistent initial values. We

again determine Z; and a suitable K yielding a regularizing output feedback and set
w = ug — Kyo. Here we must solve

Fﬂ(tlagla ky} + waylaélaulayla s ,gilﬁ‘l),ugﬂ‘i‘l),yiM‘FU) = 07

43
ZUF(t, &, Ky + w, Dyéy) = 0 (43)
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for (&1, Y1, Ex, i, T, - - ,g{““), ug”ﬂ), yY‘H)). Due to the explicit form of the output equa-
tion, we can remove it and all its derivatives from F),. Denoting the resulting function by
F,, it is sufficient to solve

Fﬂ(tlaglakG(tlafl) + waélaula cee 7££”+1)7ugﬁ+1)) = 0)

ZlTF(tlaglakG(tlyfl) +w,Dh§1) =0 (44)

for (&1, &, 0, . .. ,££“+1)7 ug’”l)) and we may determine (yi, 91, ..., y§“+1)) by the explicit

formulas given by the output equation and its derivatives. Still, we expect superlinear
convergence due to Theorem 7 for sufficiently small A.

Having performed an integration step, we always end up with a new consistent value on
L, since in all cases the equation F},(z,) = 0 is part of the numerical procedure. Thus, we
can iteratively proceed with the integration giving at least piecewise smooth regularizing
controls and associated solutions.

Remark 8 In order to perform the GauB-Newton iteration (38) we must specify how we
choose the generalized inverse F,(c)~. Since we know the rank of the Jacobian at the desired
solution (say r as for (37)), we can proceed as follows. We compute a QR-decomposition
with column pivoting of F,(co) of the form

T | Ry So
airm=| o).

where () is orthogonal, Ry is nonsingular with rank r, and II is a permutation matrix.
For ¢ sufficiently close to ¢y, we can determine a QR-decomposition of F.(c)IT of the form

Q=] T 30|

This can be done in such a way that @, R, S, and A depend smoothly on c. Moreover, R(c)
will still be nonsingular and A(c) will be small if we are sufficiently close to the solution

set. We then define N
£ =n| B S ] aqer

where the superscript © denotes the Moore-Penrose pseudoinverse, see e. g. [7]. By
construction, F.(c)” is an outer inverse of F.(c) and depends smoothly on ¢. One can
now show that for this Gaufi-Newton process (and sufficiently good initial guess cp), the
assumptions of Theorem 4 in [13] are satisfied giving the claimed superlinear convergence.

6 Conclusions and outlook

In this paper we have presented the theoretical analysis for general over- and underdeter-
mined nonlinear differential-algebraic equations. Such equations include control problems
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and allow the analysis of systems with redundant equations. We have extended the con-
cept of strangeness index to such general systems and have shown how one can construct a
reduced order strangeness-free system, which forms the basis for numerical methods. We
have shown that the same approach allows to analyse control problems and we have shown
how regularizing state and output feedbacks can be constructed. We have presented the
framework of numerical methods to perform these tasks.
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