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Abstra
t

We review some of the re
ent results on two-intera
ting parti
les (TIP) in low-dimensional disordered quantum

models. Spe
ial attention is given to the mapping of the problem onto random band matri
es. In parti
ular,

we 
onstru
t two simple, seemingly 
losely related examples for whi
h an analogous mapping leads to in
orre
t

results. We brie
y dis
uss possible reasons for this dis
repan
y based on the physi
al di�eren
es between the TIP

problem and our examples.
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1. Introdu
tion

Until 1994, the theoreti
al and experimental re-

sear
h on transport in disordered systems 
learly

supported the s
aling hypothesis of lo
alization

for non-intera
ting ele
trons [1,2℄. The systems

studied usually fell into the predi
ted universal-

ity 
lasses, and, if they didn't, then they 
ould

be shown not to be generi
 [2℄. However, real

ele
trons of 
ourse intera
t [3℄, and their intera
-

tion is of relevan
e for the transport properties

of disordered systems [4,5℄, espe
ially in 2D and

1D where s
reening [6℄ is less eÆ
ient than in 3D.

The in
uen
e of weak intera
tions has been in-

vestigated extensively using perturbation theory

and the perturbative renormalization group (RG)

[7,8℄. One of the key results is that the lower


riti
al dimension of the MIT is d

�




= 2 as it is

for non-intera
ting ele
trons. The appli
ation of

the perturbative RG in 1D [9{13℄ has lead to the

predi
tion that all thermodynami
 states remain

lo
alized in the presen
e of repulsive many-body

intera
tions.

Due to the persistent 
urrent problem [14{19℄

and new experiments on 2D ele
tron systems [20{

�
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22℄ whi
h show striking signatures of a metal-

insulator transition, these theoreti
al 
onsidera-

tions re
eived a lot of renewed attention. In order

to theoreti
ally study the e�e
ts of the interplay

between disorder and intera
tions, one should in

prin
iple solve a problem with an exponentially

growing number of states in the Hilbert spa
e

with in
reasing system size. At present, this 
an

be a
hieved only for a few parti
les in 1D [23{

26℄ and very few parti
les in 2D [27{31℄. How-

ever, in 1994 Shepelyansky [32,33℄ proposed to

simply look at two intera
ting parti
les (TIP) in

a random environment. In parti
ular, he sug-

gested that the two parti
les would form pairs

even for repulsive intera
tions su
h that the TIP

pairs would have a larger lo
alization length than

the two single parti
les (SP) separately. Thus

the intera
tion would lead to an enhan
ed possi-

bility of transport [34℄. The perhaps even more

surprising part of the predi
tion is that the TIP

pairs will have a lo
alization length �

2

su
h that

at pair energy E = 0

�

2

/ U

2

�

1

2

; (1)

where U represents the onsite intera
tion strength

and �

1

is the SP lo
alization length. Sin
e �

1

/

105=W

2

[35{39℄ in 1D, this implies large values
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of �

2

for small disorders W .

The �rst numeri
al studies devoted to the TIP

problem used the transfer-matrixmethod (TMM)

[2℄ to investigate the proposed enhan
ement of

the pair lo
alization length �

2

[32,40℄. The TMM

of [32℄ 
ontained an additional arti�
ial in�nitely-

long-ranged intera
tion that tends to mask the

onsite intera
tion [41℄. The TMM of [40℄ avoids

this problem, but is restri
ted to small system

sizes and results for lo
alization lengths of �

2

�

300 had been dedu
ed on systems of size M =

100. Therefore, two of us studied the TIP prob-

lem by a di�erent TMM [42℄ at large system size

M & 300 and found that (i) the enhan
ement

�

2

=�

1

de
reases with in
reasing M , (ii) the be-

havior of �

2

for U = 0 is equal to �

1

in the limit

M ! 1 only, and (iii) for U 6= 0 the enhan
e-

ment �

2

=�

1

also vanishes 
ompletely in this limit.

Consequently, we 
on
luded [42℄ that the TMM

applied to the TIP problem in 1D measures an

enhan
ement of the lo
alisation length whi
h is

due to the �niteness of the systems 
onsidered.

Although Ref. [42℄ has been 
riti
ized [43,44℄,

we emphasize that subsequent publi
ations have

shown [45{47℄ that there are no variants of TMM

that reprodu
e Eq. (1). Furthermore, in a later

numeri
al approa
h [48℄, based on Green fun
-

tion methods, Song and v. Oppen argue that our

extrapolations for M ! 1 were o� by � 11%

only, whereas the original TMM of [40℄ deviated

by about a fa
tor of 3 [48℄. Thus while our 
riti-


ized TMM results are valid, various other numer-

i
al investigations by other groups [48{57℄ as well

as ourselves [58{61℄ 
onvin
ingly demonstrated

some enhan
ement. The reason for the failure of

the TMM approa
h of [40,42℄ has been explained

by Song and v. Oppen [48℄ by arguing that the

TMM measures a lo
alization length �

f

< �

2

due

to the 
igar-shape geometry [62℄ of the TIP states.

Reliable numeri
al approa
hes to the TIP prob-

lem are nowadays based on the 
omputation of

the de
ay of the Green fun
tion [48,50,57,59,63℄.

Other dire
t numeri
al approa
hes to the TIP

problem have been based on the time evolution of

wave pa
kets [32,52,53,56℄, exa
t diagonalization

[62℄, variants of level statisti
s [49,51℄ and analy-

sis of multifra
tal properties [54,55℄, perturbative

methods [64,65℄ and mappings to e�e
tive models

[66{70℄. In these investigations an enhan
ement

of �

2


ompared to �

1

has been found as remarked

above but the quantitative results tend to di�er

both from the analyti
al predi
tion in Eq. (1),

and, albeit less, from ea
h other. Furthermore, a


he
k of the fun
tional dependen
e of �

2

on �

1

is

numeri
ally very expensive sin
e it requires very

large system sizes M � �

2

� �

1

. Extensions

of the original arguments have been proposed for

TIP in 2D [27,34,61,69,71,72℄ and 3D [73℄, for TIP


lose to a Fermi sea [74℄, and for long-range in-

tera
tions in 1D [41,42,52℄.

The basi
 idea leading to the predi
tion (1)

is based on looking at the intera
tion matrix

element between two eigenstates  

kl

=  

k

 

l

and  

nm

=  

n

 

m

of the non-intera
ting sys-

tem [32,33℄. Here  

k

;  

l

;  

n

;  

m

denote SP eigen-

states lo
alizedwith lo
alization length �

1

around

sites k; l; n;m. For an onsite intera
tion [75℄

U

P

N

j=1

n

j#

n

j"

(with n

j�

denoting the number

operator at site j for spin �) only states with

jk�lj � �

1

, jn�mj � �

1

, jk�nj � �

1

, jl�mj � �

1

will give signi�
ant 
ontributions to the intera
-

tion matrix element

u = h 

kl

jU j 

nm

i

= U

N

X

j=1

 

y

k

(j) 

y

l

(j) 

n

(j) 

m

(j): (2)

These 
onditions are illustrated in Fig. 1. If one

assumes [32,69℄ that the SP state is given as

 

k

(j) /

1

p

�

1

exp

�

�

jj � kj

�

1

+ i�(j)

�

(3)

with �(j) a random phase, one �nds [32℄ that the

typi
al intera
tion matrix element has a magni-

tude of

u / �

�3=2

1

(4)

sin
e it is the sum of �

1

random 
ontributions

of magnitude �

�2

1

. Shepelyansky next 
al
ulated

the de
ay rate � of a non-intera
ting eigenstate

by means of Fermi's golden rule � � U

2

=�

1

t

[32,33,64℄. Sin
e the typi
al hopping distan
e

is of the order of �

1

the di�usion 
onstant is

D � U

2

�

1

=t. Within a time � the parti
le pair

visitsN � U�

3=2

1

t

�1=2

�

1=2

states. Di�usion stops
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Figure 1. S
hemati
 pi
ture of the TIP arguments

of Ref. [32℄. The two-parti
le state  

kl

(left solid

and dashed exponentials indi
ate the envelopes of

the 
onstituents  

k

and  l) is lo
alized within a

distan
e �

1

from the two-parti
le state  

nm

(right

solid and dashed 
urves). The resulting overlap-

matrix element u = hUi � h 

kl

jU j 

nm

i leads to

a longer de
ay length �

2

for the TIP state as ex-

plained in the text. This e�e
t 
an be visual-

ized as an e�e
tive redu
tion (thi
k short-dashed

line) of the original disorder potential (thin short-

dashed line).

when the level spa
ing of the visited states is of

the order of the frequen
y resolution 1=� . This

determines the 
ut-o� time �

�

and the 
orre-

sponding pair-lo
alization length is obtained as

�

2

�

p

D�

�

� (U=t)

2

�

2

1

in agreement with Eq.

(1). Appli
ability of Fermi's golden rule requires

� � t=�

2

1

whi
h is equivalent to U

2

�

1

=t

2

� 1.

This is exa
tly the 
ondition for an enhan
e-

ment of �

2


ompared to �

1

. Alternatively, the

model may be mapped to a random-matrixmodel

(RMM) with entries 
hosen a

ording to Eq. (4)

[32,67,68℄.

2. Numeri
al results for the random-

matrix model of TIP

The arguments presented in the last se
tion

are of a qualitatively nature and Eq. (1) must

be 
he
ked for quantitative a

ura
y. Even be-

fore testing (1), it is already worthwhile to 
he
k

the validity of (4) and the subsequent arguments

or the RMM approa
h [32,67,68℄. In Ref. [40℄, it

had been shown that the assumption of a Gaus-

sian distribution of the matrix elements u was

oversimpli�ed. The distribution showed long tails

making the arithmeti
 average unsuitable to 
har-

a
terize the typi
al value. In Ref. [76℄ we have

paid spe
ial attention to the exa
t dependen
e of

u on �

1

and system size. To this end, we di-

agonalized the 1D Anderson model for a given

M and W and 
omputed u by averaging over

all suitable states and many disorder 
on�gura-

tions. We showed that due to the strongly non-

Gaussian distribution of u, one should rather use

the logarithmi
 average than the arithmeti
 av-

erage as the typi
al value for the 
omputation

of u(�

1

). But whereas the arithmeti
 average

[54℄ gives u

abs

/ �

�1:5

1

, the typi
al value obeys

u

typ

/ �

�1:95

1

. Following the arguments above,

this would imply �

2

/ �

1:1

1

, i.e., a very small en-

han
ement. We emphasize that this result does

not mean that there is no enhan
ement of the

lo
alization length. Rather, the results of Ref.

[76℄ indi
ate that the arguments of Ref. [32℄ 
ap-

ture the physi
s, but only in a somewhat sim-

pli�ed form. One step towards a better agree-

ment between the analyti
al and the numeri
al

approa
hes is to take into a

ount the energy de-

nominators in the 
omputation of u, e.g., to 
on-

sider only intera
tion matrix elements for states

whose energy spa
ings are of the order of U or

smaller [60℄. In this 
ase we �nd that there is

a slight de
rease in the value of the typi
al ex-

ponent and 
orrespondingly a slight in
rease in

TIP delo
alization yielding �

2

/ �

1:4�0:2

1

. This

suggests that higher orders in perturbation the-

ory than the �rst order RMM approa
h [32℄ are

important. Furthermore, the exponent 1:4� 0:2

is in reasonable agreement with previous results

in the literature [40,41,45{55,57,59,63{65,69,70℄.

3. RMM approa
h for toy models

In this se
tion we show that a naive appli
ation

the RMM approa
h may give qualitatively in
or-

re
t results even if the RMM 
ontains the 
orre
t

dependen
e of the matrix elements on the disor-

der strength. To this end we 
onsider two toy

models whi
h seem to be 
losely related to the

TIP problem. For these models, viz. Anderson

models of lo
alization with additional perturbing

random potentials, we show that mapping onto

RMMs and estimating the lo
alization length by
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Fermi's golden rule leads to an in
orre
t enhan
e-

ment of the lo
alization length.

3.1. 2D Anderson model with perturba-

tion on a line

The �rst example is set up to lead to the same

RMM as the TIP problem. It 
onsists of the usual

2D Anderson model perturbed by an additional

weak random potential of strength U at the diag-

onal x = y in real spa
e. Sin
e the perturbation

in
reases the width of the disorder distribution

at the diagonal we expe
t it to de
rease the lo-


alization length. We map the model onto an

RMM following the arguments for the TIP prob-

lem sket
hed in Se
. 1. Again, the eigenstates of

the unperturbed system are lo
alized with a lo-


alization length �

1

and approximately given by

 

n

(x; y) �

1

�

1

exp

�

�

jr� r

n

j

�

1

+ i�

n

(r)

�

(5)

where r = (x; y)

T

is the 
oordinate ve
tor of the

parti
le and � is again assumed to be a random

phase. The Hamiltonian of the 2D perturbed An-

derson model di�ers from the TIP Hamiltonian

in two points: (i) the diagonal elements (given

by the random potential) are independent ran-

dom numbers instead of being 
orrelated as in

the TIP problem and (ii) the perturbing poten-

tial U(x; x) 2 [�U;U ℄ at ea
h diagonal site is ran-

dom instead of having a de�nite sign and modu-

lus U as in the TIP problem. However, none of

these points enters the mapping pro
edure out-

lined in Se
. 1. Thus, we �nd that the pertur-

bation 
ouples ea
h state 
lose to the diagonal

(jx

n

� y

n

j < �

1

) to O(�

2

1

) other su
h states.

The intera
tion matrix element is again a sum

of O(�

1

) terms of magnitude U=�

2

1

and random

phases and as before u � U�

�3=2

1

. Consequently,

our toy model is mapped onto exa
tly the same

RMM as TIP in a random potential. Therefore,

the resulting lo
alization length along the diago-

nal is also given by Eq. (1). We thus arrive at the

surprising 
on
lusion, that adding a weak random

potential at the diagonal of a 2D Anderson model

leads to an enormous enhan
ement of the lo
al-

ization length along this diagonal, in 
ontradi
-

tion to the expe
tation expressed above, viz. that

in
reasing disorder leads to stronger lo
alization.

5 10 15 20 25
W

1

10

100

λ 1(
M

)
Figure 2. Dependen
e of �

1

(M) on disorder

W for the 2D Anderson model at E = 0 for

M = 10; 25; 30; 35 and 50 indi
ated by in
reasing

symbol size. We use the M = 50 data, empha-

sized by the solid line, as �nite-size estimate of

�

1

.

As for the TIP 
ase [76℄ we now numeri
ally


he
k whether the relation u � U�

�3=2

1

between

the 
oupling matrix element u and the lo
aliza-

tion length �

1

of the unperturbed system is 
or-

re
tly des
ribed by the RMM. Sin
e in 2D a sim-

ple analyti
 formula for the dependen
e of �

1

on

the disorder W does not exist, we �rst 
ompute

estimates �

1

(M) for quasi-1D strips of �nite strip

width M with 1% a

ura
y by TMM. In Fig. 2,

we show data of �

1

(M) as a fun
tion ofW . In the

following, we take �

1

(50) to 
ompute the 
oupling

matrix elements.

Next, we 
al
ulate both the arithmeti
 aver-

age u

abs

= hjuji and the logarithmi
 average

u

typ

= exp[hlog(juj)i℄ for di�erent values of W

and various M �M squares. Disorder averaging

is over 20 samples and we study u

abs

and u

typ

as

fun
tions of �

1

(M). We emphasize that instead

of the well-known extrapolations of �

1

(M) to in-

�nite system size by means of FSS [2℄, we take

the �nite-size approximants �

1

(M) on purpose,

sin
e we 
ompute �

2

also for 
omparable �nite

sizes only.

As for the TIP model [76℄ the distribution

P

o

(u) of the (o�-diagonal) 
oupling matrix ele-

ments is strongly non-Gaussian, suggesting that
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5 10 15 20 25
λ1(M)

10
−3

10
−2

10
−1

u

Figure 3. Dependen
e of u

abs

(squares) and u

typ

(
ir
les) on �

1

(M) for the perturbed 2D Anderson

model with U = 1 and M = 10; 25; 30 and 35

indi
ated by in
reasing symbol size. The solid

lines represent the power laws u

abs

� �

�1:6

1

and

u

typ

� �

�1:5

1

.

u

typ

rather than u

abs

is the relevant quantity.

The results for u

abs

and u

typ

are presented in

Fig. 3. The dependen
e of u

abs

on �

1

(M) for

2 � �

1

(M) � 12 follows u

abs

/ �

1

(M)

�1:6�0:1

in agreement with the RMM value of 3/2 and

with Ref. [76℄. Furthermore, here we also have

u

typ

/ �

1

(M)

�1:5�0:1

. We note that the 
hange

of the slopes of u

abs

and u

typ

at �

1

(M) �M=2 is

entirely due to the �nite sample sizes [76℄.

Consequently, in 
ontrast to the TIP problem

the RMM model for the 2D perturbed Anderson

model of lo
alization 
ontains the 
orre
t depen-

den
e of the 
oupling matrix elements on the lo-


alization length of the unperturbed system, but

still it leads to an in
orre
t enhan
ement of the

lo
alization length along the diagonal.

3.2. 1D Anderson model with perturba-

tion

An even more striking 
ontradi
tion 
an be ob-

tained for an 1D Anderson model of lo
alization.

The eigenstates are again given by Eq. (3) with

�

1

known from se
ond order perturbation the-

ory [35{37℄ and numeri
al 
al
ulations [38,39℄ to

vary as �

1

� t

2

=W

2

for small disorder. We now

add a weak random potential of strength U at all

sites. Sin
e the result is obviously an 1D Ander-

son model with a slightly higher disorder strength

W

u

> W the lo
alization length will be redu
ed,

�(U) � t

2

=W

2

u

.

The mapping onto an RMM 
an be performed

in 
omplete analogy to the TIP problem and the

2D Anderson model dis
ussed above. The per-

turbing potential leads to transitions between the

unperturbed eigenstates  

n

. Ea
h su
h state is

now 
oupled to O(�

1

) other states by 
oupling

matrix elements h 

n

jU j 

n

0

i with magnitude u �

U�

�1=2

1

sin
e we sum over �

1


ontributions with

magnitude U=�

1

and supposedly random phases.

The appli
ation of Fermi's golden rule in this

1D 
ase leads to a di�usion 
onstantD � U

2

�

2

1

=t.

The number of states visited within a time � is

N � U�

1

t

�1=2

�

1=2

. Again, di�usion stops at a

time �

�

when the level spa
ing of the states vis-

ited equals the frequen
y resolution. This gives

�

�

� U

2

�

2

1

=t

3

. The lo
alization length � of the

perturbed system thus reads � �

p

D�

�

� U

2

�

2

1

as in Eq. (1), in 
ontradi
tion to the 
orre
t re-

sult.

Again we numeri
ally 
he
k the relation be-

tween u

abs

and u

typ

and the unperturbed lo
al-

ization length �

1

. In Fig. 4, we show results

obtained for 
hains with various lengths and 50

disorder 
on�gurations for ea
h W . �

1

is 
om-

puted by TMM. For 10 � �

1

� 250, u

abs

varies

as �

�0:48�0:10

1

as predi
ted above. u

typ

varies as

�

�0:59�0:10

1

. Both variations are 
ompatible with

the RMM value of 1=2 for the exponent. Again

we need �

1

< M=2 in order to suppress �nite size

e�e
ts.

Consequently, although the RMM model for

the 1D perturbed Anderson model of lo
alization


ontains the 
orre
t dependen
e of the 
oupling

matrix elements on the lo
alization length of the

unperturbed system, it still leads to an in
orre
t

enhan
ement of the lo
alization length.

4. Appli
ation of the blo
k-s
aling pi
ture

to toy models

Let us now dis
uss the relation of these results

to Imry's blo
k-s
aling pi
ture (BSP) [34,69℄ for

the TIP problem. In this approa
h one 
onsiders

blo
ks of linear size �

1

and 
al
ulates the dimen-
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10 100 1000
λ1

10
−2

10
−1

u

Figure 4. Dependen
e of u

abs

(squares) and u

typ

(
ir
les) on �

1

for the perturbed 1D Anderson

model with U = 1 and M = 200; 300; 500 and

800 indi
ated by in
reasing symbol size. The solid

lines represent the power laws u

abs

� �

�0:48

1

and

u

typ

� �

�0:59

1

.

sionless pair 
ondu
tan
e on that s
ale,

g

2

�

u

2

�

2

; (6)

where u represents the typi
al intera
tion-

indu
ed 
oupling matrix element between states

in neighboring blo
ks and � � t=�

2

1

is the level

spa
ing within the blo
k. If the typi
al 
oupling

matrix element depends on �

1

as u � U�

��

1

the

pair 
ondu
tan
e obeys

g

2

� (U=t)

2

�

4�2�

1

: (7)

For the 2D Anderson model with perturbation


onsidered above, the BSP 
an be applied anal-

ogously. Again, we 
onsider blo
ks of linear size

�

1

and 
ompute the typi
al perturbation-indu
ed

matrix elements between these blo
ks. We then

�nd that a

ording to the BSP the 
ondu
tan
e of

a 2D Anderson model with additional weak per-

turbing potential along the diagonal is given by

Eq. (6). Using � = 1:5 � 0:1 as obtained above

from the numeri
al data for u

abs

and u

typ

, we

then have g

2

� (U=t)

2

�

1

. Thus we 
on
lude that

the BSP does not work for our 2D toy model, be-


ause it yields the same unphysi
al result as the

RMM approa
h of se
tion 3.1.

Let us also apply the BSP to the 1D toy exam-

ple. The level spa
ing in a 1D blo
k of size �

1

is

� � t=�

1

, and the 
oupling matrix element be-

tween states in neighboring blo
ks is u � U�

�1=2

1

.

Thus, the 
ondu
tan
e of the perturbed system

on a s
ale �

1

is obtained as g

2

� (U=t)

2

�

1

. For

large �

1

this again 
ontradi
ts the 
orre
t result,

viz. a de
rease of the 
ondu
tan
e 
ompared to

the unperturbed system. Thus, the BSP applied

to the two toy models introdu
ed in the present

work gives the same qualitatively in
orre
t results

for the lo
alization properties as the RMM. This

is not surprising sin
e the only ingredients of the

BSP are the intra-blo
k level spa
ing � � t=�

2

1

and the inter-blo
k 
oupling matrix elements u

whi
h also enter the RMM.

5. Con
lusions

We have presented two toy models whi
h seem

to be 
losely related to the TIP problem. For

these toy models the usual analyti
al arguments

given to support the delo
alization of TIP, viz.

the RMM and the BSP do not work. However,

the large-s
ale numeri
al simulations [48,50,57,

59,61,71℄ have 
onvin
ingly shown that an en-

han
ement of the two-parti
le lo
alization length

due to the intera
tion exists, even though the de-

tailed results are more 
ompli
ated than the orig-

inal predi
tion (1). This leads, of 
ourse, to the

question, under whi
h 
onditions the RMM map-

ping and the BSP give the 
orre
t result, at least

qualitatively. While a general answer to this ques-

tion is not known, it has been suggested [77℄ that

the di�eren
e between the TIP and our toy mod-

els is an additional symmetry in the TIP problem.

In summary, the two examples suggest that ad-

ditional physi
al insight is needed before apply-

ing the RMM. In addition, we expe
t that taking

into a

ount the energies of the states as in Ref.

[60℄ for TIP will result in a redu
ed enhan
ement,

i.e., a smaller value of �, in the analyti
al predi
-

tions. This will in turn give a better agreement

with the numeri
ally determined dependen
e of

the TIP lo
alization length on �

1

.
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