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1. Introdu
tion

The interplay between disorder and many-body intera
tions 
ontinues to be one of

the main topi
s of 
ondensed matter physi
s. In one-dimensional quantum many-body

systems without disorder, the Bethe ansatz (BA) has proven to be a valuable tool, giving

a

ess to the energy spe
tra and eigenstates of 
ertain so-
alled integrable models [1, 2℄.

At �rst glan
e, it appears that the integrability, namely the existen
e of in�nitely many

integrals of motion, seems to pre
lude any appli
ations of the method to disordered

systems. However, in 1984 it was shown [3, 4℄ how to apply the BA method to the

Kondo problem [5℄ of a single magneti
 impurity in a bath of 
ondu
tion ele
trons.

Further developments led to the 
onstru
tion and solution of integrable spin 
hains

with embedded spin defe
ts [6, 7℄.

A di�erent approa
h to integrable impurity models was 
onsidered in referen
es [8℄

where impurity verti
es are introdu
ed by varying the lo
al intera
tion parameters while

preserving integrability. These studies have stimulated further investigations [9, 10℄ of

su
h impurities in various systems. The resulting models have impurity terms with


ouple to the 
harge degrees of freedom, and look fairly similar to generi
 impurity

terms. However, the energy spe
trum is independent of the spatial distribution of the

defe
ts, and there is no lo
alization of the ground-state wave fun
tion, unlike what is

expe
ted for generi
 impurities. This pe
uliar behaviour 
an be understood by the fa
t

that integrability implies a purely forward-s
attering me
hanism at the impurities [10℄.

There is no re
e
tion and thus no possibility of destru
tive quantum interferen
e whi
h


ould lead to a lo
alization.

Ba
k-s
attering 
an be introdu
ed into integrable models by 
hoosing suitable

boundary 
onditions (BC). Sklyanin [11℄ proposed a systemati
 approa
h to 
onstru
t

and solve integrable quantum spin systems with open BC. Central to his method are the

so-
alled re
e
tion equations (RE) [12℄ whi
h are the boundary analogues of the Yang-

Baxter equations (YBE) [13℄. Together, the YBE and RE imply the integrability of a

model whi
h 
an then be 
onstru
ted as usual by the algebrai
 approa
h of the quantum

inverse s
attering method (QISM) [14℄. The �nite-size 
orre
tions of the 
orresponding

energy spe
tra and the asymptoti
 behaviour of 
orrelation fun
tions follow predi
tions

based on boundary 
onformal �eld theory [15℄. We remark that the BC of Sklyanin [11℄

are 
alled \open" in order to distinguish them from the more often used periodi
 and

the free BC. Although the term \open" seems to suggest parti
ular transmission and

re
e
tion properties, this is not ne
essarily implied. The 
ombination of open BC and

integrable impurities has been 
onsidered in referen
es [16, 17, 18, 19℄. Of parti
ular

interest is the 
ase where the forward-s
attering impurity is dire
tly 
oupled to a ba
k-

s
attering open boundary [18, 19℄. This 
ombination may lead to physi
ally relevant,

yet 
ompletely integrable models.

In the present arti
le, we 
onstru
t two kinds of integrable impurities for a fermioni


small-polaron model with general open BC. Due to the fermioni
 nature of the model,

we employ the graded version of the QISM [20, 21℄. For well-separated impurity verti
es
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lo
ated within the bulk, the lo
al intera
tion terms involve the two neighbouring sites as

usual [8℄. Pla
ing the forward-s
attering impurities at the ba
k-s
attering boundaries,

we derive a Hamiltonian with rather general boundary terms whi
h may be interpreted

as sour
es and sinks of parti
les at the boundaries. Using the graded YBE and the

graded RE, we derive the BA equations, and obtain expressions for the eigenvalues for

spe
ial 
ases of the Hamiltonian. In addition, we dis
uss the ground-state properties in

the thermodynami
 limit.

The paper is organized as follows. In se
tion 2, we introdu
e the small-polaron

model with general open BC. In se
tion 3, a 
lass of integrable impurities is 
onstru
ted

by shifting the spe
tral parameters of lo
al Lax operators at arbitrary sites in the bulk.

By embedding the impurity fermion vertex at ea
h boundary of the model, we 
onstru
t

a 
lass of integrable impurities with perfe
t ba
k-s
attering in se
tion 4. In se
tion 5, we

study the algebrai
 BA solutions for those impurity models. The ground-state properties

are dis
ussed in se
tion 6. Se
tion 7 is devoted to a dis
ussion and 
on
lusion.

2. The small-polaron model

We 
onsider the small-polaron model [22℄, whi
h des
ribes the motion of an additional

ele
tron in a polar 
rystal. The Hamiltonian reads

H = � J

N

X
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j�1
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j
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; (2.1)

where J is proportional to the overlap integral, V denotes the ele
tron-phonon 
oupling

and W is the energy of the polaron. The boundary 
oeÆ
ients p

�

, �

�

and �

�

are

Grassmann variables, with p

�

even and �

�

, �

�

odd. Hermiti
ity of the Hamiltonian

requires �

y

�

= �

�

and p

y

�

= p

�

. The fermioni
 
reation and annihilation operators a

y

j

and a

j

satisfy the usual anti
ommutation relations

fa
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; (2.2)

and n

j

= a

y

j

a

j

. The R-matrix and lo
al monodromy matrix are expli
itly given as [23℄
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respe
tively. They satisfy the graded Yang-Baxter algebra (YBA)
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where

T (u) = L

N

(u) � � �L

2

(u)L

1

(u); (2.6)

and

1
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X: (2.7)

Here, 


S

is the supertensor produ
t
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S

B℄
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Æ

= (�1)
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)℄P (�)

A
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(2.8)

with the parity P (1) = 0, P (2) = 1 su
h that the R-matrix 
orrespond to the null parity


ase P (�) + P (�) + P (
) + P (Æ) = 0 [20℄. We parametrize the 
oupling parameters J ,

V and W as

J = 1; (2.9a)

V = � 2


2

(0); (2.9b)

W = 2s

2

(0) tan(w) + 2


2

(0): (2.9
)

The entries of the R-matrix (2.3) and the monodromy matrix (2.4) are
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where we introdu
ed the 
onvenient notation

s

n

(u) � sin(u+ n�); 


n

(u) � 
os(u+ n�): (2.11)

Throughout the paper, we therefore use � and w for the parametrization of the model

parameters J , V , and W .

In a previous arti
le [24℄, we proved that the model (2.1) is integrable under the


onditions that the boundary K

�

supermatri
es

K
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Here we would like to emphasize that although we [24℄ 
onstru
t the general boundary

K-matri
es (2.12) for the small-polaron model (2.1) by the Lax pair formulation, we did

not �gure out the form of the RE 
orresponding to more general boundary K-matri
es

(2.12). In the above expressions, we further de�ned

p

�

= s

2

(0) 
ot 

�

: (2.14)

The parameters  

�


ontrol the strength of the boundary potential terms, whereas �

�

and �

�

in (2.13a){(2.13h) are the parameters 
hara
terizing the fermion sour
es and

sinks at the boundaries. The Hamiltonian (2.1) 
an be obtained as usual as an invariant

of the 
ommuting family of transfer matri
es � (u)
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by taking the derivative at a spe
ial value of the spe
tral parameter u. Namely,
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with Str

0

denoting the supertra
e with respe
t to the auxiliary spa
e.

3. Integrable impurities in the bulk

In this se
tion, we 
onstru
t integrable impurities whi
h appear in the bulk part for

the fermioni
 small-polaron model with general open BC. If the quantum R-matrix of a

fermioni
 system has the di�eren
e property of spe
tral parameters, the asso
iated Lax

operator with additional parameter also satis�es the graded YBA, i.e.,
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Therefore one 
an 
onstru
t a 
lass of integrable impurities for the fermion model with

both open and periodi
 BC by shifting the spe
tral parameters of lo
al monodromy

matri
es at arbitrary sites in the bulk. The asso
iated monodromy matrix is given as
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where the parameter �

m
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terizes the impurity strength at site m. Now we suppose

that the supermatri
es K

�

are the solutions of the graded RE [25, 26℄,
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21

(u) = PR
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e �. The

R-matrix possesses the unitary property R
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fun
tion of u. It follows that the double-row transfer matrix (2.15) may be 
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as a generating fun
tion of the in�nite 
onserved quantities su
h that the K-matri
es

are the solutions to the RE (3.3a) and (3.3b). From the relation (2.16), it is not diÆ
ult

to obtain the Hamiltonian for the open fermion 
hain with an impurity lo
ated at site

m,
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The prime denotes the derivative with respe
t to the spe
tral parameter u. The

intera
tions of the open fermion 
hain with the impurity are shown s
hemati
ally in

�gure 1.

In order to simplify the algebrai
 
al
ulation for the 
onstru
tion of su
h an

integrable impurity for the model (2.1), we let w = 0 the supermatri
es (2.12) be
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( up to a normalization )
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Then we 
he
k that the supermatri
es (3.7a) and (3.7b) satisfy the graded RE (3.3a)

and (3.3b), respe
tively. From (3.5), after some algebra, we obtain the Hamiltonian for

the small-polaron model with both general open BC and an integrable impurity lo
ated

at site m as
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1            2                                          m-2           m                                                     N-1         N

m-1

Figure 1. Graphi
al representation of the intera
tions in the 
hain with the impurity

lo
ated at an arbitrary site m together with boundary impurities.
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a

y

m�2

a

m�1

� n

m�2

a

y

m

a

m�1

i

�

2


2

(0)s

2

0

(�

m

)

�(�

m

)

n

m�1

a

y

m�2

a

m

�

+ h:
:; (3.9f)

where

�(u) � s

2

(u)s

�2

(u) (3.10)

and h.
. denotes the hermitian 
onjugate with ( 

�

)

�

= � 

�

; �

�

= ��; �

�

= �. Here,

H

(b)

1

and H

(b)

N

are the general boundary terms whi
h are responsible for the sour
es

and sinks with parti
le inje
tion and eje
tion at the boundaries; H

(h)

m;m�1;m�2


onsists

of nearest- and next-nearest-neighbour hopping terms involving the sites m, m� 1 and

m � 2; H

(d)

m;m�1;m�2


ontains an onsite potential and density-density intera
tion terms

between neighbours and next-nearest neighbours; and H

(
)

m;m�1;m�2

involves 
urrent-

density intera
tions (see �gure 1). The Hamiltonian in the presen
e of more than one

impurity 
an easily be 
onstru
ted, if the two nearest impurities are still well separated.

In this 
ase, the Hamiltonian redu
es to a sum over the isolated impurities like in the


ase of the Heisenberg periodi
 
hain [8, 9, 10℄.

4. Integrable impurities 
oupled to the boundaries

Kondo-like impurities of lo
al impurity spins 
oupled to 1D strongly 
orrelated


ondu
tion ele
trons have attra
ted mu
h interest [17, 19℄ espe
ially in the 
ontext

of the BA solution [3℄. To every 
omplex-valued K-matrix solution of the RE (3.3a)

and (3.3b), one may 
onstru
t a 
lass of \regular" solutions [27℄, i.e.,

~

K

�

(u) = L(u)K

�

(u)L

�1

(�u);

~

K

+

(u) = K

+

(u) (4.1)
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to the same RE. In order to study Kondo impurities for 1D ele
tron systems [19, 27℄,

it is better to 
onstru
t \non-regular", i.e. non-trivial operator-valued, solutions, to the

RE. Wang and 
oworkers [18℄ 
onstru
ted a 
lass of integrable impurities 
oupled to

ea
h boundary of the spin-

1

2

Heisenberg XXZ 
hain by a spe
ial 
hoi
e of boundary K

�

-

matri
es, i.e., K

�

= 1. But in their approa
h the parameters 
hara
terizing the strength

of the magneti
 impurities | related to our potential impurities via the 
ustomary

Jordan-Wigner transformation [1℄ | disappear in the Hamiltonian as well as in the BA

equations. Here we present a di�erent approa
h to integrable impurities: from \regular"

solutions of the graded RE (3.3a) and (3.3b), we 
onstru
t a 
lass of integrable impurities

[8, 9, 10℄ 
oupled to ea
h of the boundaries of a fermion 
hain with general open BC.

We stress that these impurities are not Kondo-like. If we embed two fermioni
 impurity

verti
es at the boundaries,

T (u) = L

r

(u+ �

r

)L

N

(u) � � �L

m

(u) � � �L

1

(u)L

`

(u+ �

`

); (4.2a)

T

�1

(�u) = L

�1

`

(�u+ �

`

)L

�1

1

(�u) � � �L

�1

m

(�u) � � �L

�1

N

(�u)L

�1

r

(�u + �

r

); (4.2b)

one 
an show that

U

�

(u) = T (u)K

�

(u)T

�1

(�u) (4.3)

also satis�es (3.3a) and so does the solution L

`

(u + �

`

)K

�

(u)L

�1

`

(�u + �

`

). It follows

that there exists a family of transfer matri
es

� (u) = Str

0

[K

+

(u)U

�

(u)℄ (4.4)

and its members 
ommute with ea
h other for di�erent spe
tral parameters. Similarly to

(2.16), we 
an formulate the expli
it expression of the Hamiltonian for an open fermion


hain with boundary impurities,

H =

N

X

j=2

H

j;j�1

+

1

Str

0

[K

+

(0)℄

�

Str

0

[K

+

(0)L

0

r

(�

r

)L

�1

r

(�

r

)℄

+Str

0

[K

+

(0)L

r

(�

r

)L

0

N

(0)L

�1

N

(0)L

�1

r

(�

r

)℄

	

+

1

2

L

1

(0)L

`

(�

`

)K

0

�

(0)L

�1

`

(�

`

)L

�1

1

(0) + L

1

(0)L

0

`

(�

`

)L

�1

`

(�

`

)L

�1

1

(0): (4.5)

Substituting (3.7a) and (3.7b) into (4.5), the 
orresponding Hamiltonian is given as

H =

N

X

j=2

H

j;j�1

+

s

2

(0)

�(�

r

)s

0

( 

+

)

h

H

(b)

N

+H

(b)

r

+H

(i)

N;r

i

+

s

2

(0)

�(�

`

)s

0

( 

�

)

h

H

(b)

1

+H

(b)

`

+H

(i)

1;`

i

(4.6)

where

H

(b)

N

= s

0

(�

r

)

h

s

0

( 

+

� �

r

)n

N

+ is

2

(�

r

)�

+

a

y

N

+ is

�2

(�

r

)�

+

a

N

i

� 


2

(�

r

)s

�2

(�

r

)s

0

( 

+

)n

N

; (4.7a)

H

(b)

r

= s

2

(0)

�

s

2

( 

+

)n

r

� is

2

(�

r

)�

+

a

y

r

+ is

�2

(�

r

)�

+

a

r

�

; (4.7b)

H

(i)

N;r

= � s

2

(0)


2

(0)

�

s

0

( 

+

)n

r

� 2is

0

(�

r

)(�

+

a

y

r

� �

+

a

r

)

�

n

N
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l               1          2                                                                                       N-1       N              r

Figure 2. Impurities 
oupled to ea
h of the boundaries.

1           2                                            m-2      m-1         m                                           N-1         N

Figure 3. Integrable impurities situated at the boundaries.

� 


2

(0)

h

s

2

(0)s

0

( 

+

)n

N

+ 2is

2

0

(�

r

)(�

+

a

y

N

+ �

+

a

N

)

i

n

r

;

� s

2

(0)

h

s

0

(�

r

+  

+

)a

y

N

a

r

� s

0

(�

r

�  

+

)a

y

r

a

N

i

; (4.7
)

H

(b)

1

=H

(b)

N

(N ! 1; r! `;  

+

!  

�

; �

+

! �

�

; �

+

! �

�

; �

r

! ��

`

); (4.7d)

H

(b)

`

=H

(b)

r

(N ! 1; r! `;  

+

!  

�

; �

+

! �

�

; �

+

! �

�

; �

r

! ��

`

); (4.7e)

H

(i)

1;`

=H

(i)

N;r

(N ! 1; r ! `;  

+

!  

�

; �

+

! �

�

; �

+

! �

�

; �

r

! ��

`

); (4.7f)

where H

(b)


an be interpreted as fermion sour
es and sinks with parti
le inje
tion

and eje
tion at the boundaries and at the impurity sites. However, unlike the previous

Hamiltonian (3.8), the boundary parameters and impurity parameters are both involved.

H

(i)

des
ribes the intera
tion between impurities and boundaries (see �gure 2).

On the other hand, if we move the impurity in the bulk to ea
h boundary of the


hain as shown in �gure 3 with the monodromy matrix

T (u) = L

N

(u+ �

N

) � � �L

m

(u) � � �L

1

(u+ �

1

); (4.8a)

T

�1

(�u) = L

�1

1

(�u+ �

1

) � � �L

�1

m

(�u) � � �L

�1

N

(�u+ �

N

); (4.8b)

one �nds that the Hamiltonian is same as (4.6) apart from the numbering

r ! N;N ! N � 1; `! 1; 1! 2:

Although the eigenvalues of the open 
hain do not depend on the position of the

impurities in the bulk due to the absen
e of ba
k-s
attering, the open boundary is

a perfe
t ba
k-s
atterer with vanishing transmission at ea
h end of the open 
hain for

�

�

= �

�

= 0. Moreover, it is easy to obtain a model with the impurities 
oupled to

ea
h boundary together with f well separated impurities (see �gure 4) at positions m

i

for i = 1; : : : ; f , i.e.

H =

N

X

j=2

H

j;j�1

+

s

2

(0)

�(�

r

)s

0

( 

+

)

h

H

(b)

N

+H

(b)

r

+H

(i)

N;r

i

+

s

2

(0)

�(�

`

)s

0

( 

�

)

h

H

(b)

1

+H

(b)

`

+H

(i)

1;`

i
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      m-5                               m-1

l             1                               m-6     m-4        m-3        m-2        m                              N            r

Figure 4. Two well-separated bulk impurities at sites m

1

= m and m

2

= m � 4

together with the boundary impurities.

+

f

X

i=1

(H

(h)

m

i

;m

i

�1;m

i

�2

+H

(d)

m

i

;m

i

�1;m

i

�2

+H

(
)

m

i

;m

i

�1;m

i

�2

): (4.9)

The terms H

(b)

; H

(i)

are the same as in (4.7a)-(4.7f), and the terms H

(
)

;H

(d)

and

H

(h)

are given in (3.9d){(3.9f). To keep these Hamiltonians (3.8), (4.6) and (4.9)

hermitian, the parameters � and  

�

must be purely imaginary, � is real and �

y

�

= �

�

.

All terms in the Hamiltonians are needed to ensure the integrability of the models.

In the next se
tion we shall pro
eed with the algebrai
 solutions for the small-polaron

model with di�erent kinds of impurities in the most interesting spe
ial 
ase of perfe
tly

ba
k-s
attering boundaries without sour
es and sinks.

5. Bethe ansatz solution for �nite 
hains

Following the method of [11, 26℄, we shall study the algebrai
 BA solutions for the open

fermion 
hain with di�erent kinds of impurities. We �rst note that the general open

BC spoil the pseudo va
uum state. Therefore it seems diÆ
ult to solve the models with

general open BC by means of the QISM. We thus restri
t ourselves to the simpler

situation �

�

= 0, �

�

= 0 in the following. In this 
ase, the Hamiltonians (3.8),

(4.6) and (4.9) do not 
ontain any Grassmannian sour
e and sink terms and are 
harge


onserving. They still 
ontain the potential impurities and are perfe
t ba
k-s
atterers.

Thus these Hamiltonians are ideal for the proposed investigation of the interplay of

forward-s
attering bulk impurities with ba
kward-s
attering boundaries.

Let us for simpli
ity �rst 
onsider the Hamiltonian (4.6). In the 
ase �

�

= 0,

�

�

= 0, the Hamiltonian (4.6) 
omprises

H

(b)

N

=

�

s

2

(0)


2

(0)s

0

( 

+

)� s

2

0

(�

r

)


0

( 

+

)

�

n

N

; (5.1a)

H

(b)

r

=

�

s

2

(0)


2

(0)s

0

( 

+

) + s

2

2

(0)


0

( 

+

)

�

n

r

; (5.1b)

H

(i)

N;r

= � s

2

(0)

h

s

0

(�

r

+  

+

)a

y

N

a

r

� s

0

(�

r

�  

+

)a

y

r

a

N

i

� s

4

(0)s

0

( 

+

)n

r

n

N

(5.1
)

and H

(b)

1

, H

(b)

`

, and H

(i)

1;`

follow as in (4.7d){(4.7f). H

(b)

des
ribes the boundary

impurities. H

(i)


ontains the intera
tion terms with ex
hange 
oupling between the

bulk and the impurities (see �gure 2). As mentioned before, this Hamiltonian 
onserves
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the parti
le number due to the absen
e of sour
es and sinks with parti
le inje
tion and

eje
tion at the boundaries.

Now we pro
eed to establish the Bethe eigenve
tors for the Hamiltonian (4.6) with

(5.1a)-(5.1
) by means of the algebrai
 BA [14℄. Let

T (u) =

�

A B

C D

�

; T

�1

(�u) =

�

�

A

�

B

�

C

�

D

�

; (5.2)

be the monodromy matri
es a
ting on the pseudo va
uum state de�ned by a

j

j0i =

0; j = 1; � � � ; N . Then we have

Aj0i = s

N

0

(u)s

0

(u+ �

`

)s

0

(u+ �

r

)j0i; (5.3a)

Dj0i = s

N

2

(u)s

2

(u+ �

`

)s

2

(u+ �

r

)j0i; (5.3b)

Bj0i = 0; (5.3
)

Cj0i 6= 0; (5.3d)

�

Aj0i =

(�1)

N

s

N

0

(u)s

0

(u� �

`

)s

0

(u� �

r

)

Æ [T (�u)℄

j0i; (5.3e)

�

Dj0i =

(�1)

N

s

N

2

(u)s

2

(u� �

`

)s

2

(u� �

r

)

Æ [T (�u)℄

j0i; (5.3f)

�

Bj0i = 0; (5.3g)

�

Cj0i 6= 0; (5.3h)

where the quantum determinant [28℄ is Æ [T (�u)℄ = �

N

(u)�(u � �

`

)�(u � �

r

):Let us

de�ne

U

�

(u) =

�

~

A

~

B

~

C

~

D

�

: (5.4)

From (4.3), we then have

~

A =

1

s

0

( 

�

)

[�s

0

(u�  

�

)A

�

A+ s

0

(u+  

�

)B

�

C℄; (5.5a)

~

D =

1

s

0

( 

�

)

[�s

0

(u�  

�

)C

�

B + s

0

(u+  

�

)D

�

D℄: (5.5b)

Noting the following form of the graded YBA

2

T

�1

(�u)R

12

(2u)

1

T

(u) =

1

T

(u)R

12

(2u)

2

T

�1

(�u); (5.6)

it is possible to derive the 
ommutation relation

B

�

C =

s

2

(0)

s

2

(2u)

(

�

DD � A

�

A): (5.7)

With the help of the graded RE (3.3a) we obtain | after a lengthy 
al
ulation | the


ommutation relations

^

A(u)

~

C(v) =

s

2

(u� v)s

4

(u+ v)

s

0

(u� v)s

2

(u+ v)

~

C(v)

^

A(u)�

s

2

(0)s

4

(2u)

s

2

(2u)s

0

(u� v)

~

C(u)

^

A(v)

+

s

2

(0)s

0

(2v)s

4

(2u)

s

2

(2v)s

2

(2u)s

2

(u+ v)

~

C(u)

~

D(v); (5.8a)
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~

D(u)

~

C(v) =

s

0

(u+ v)s

�2

(u� v)

s

0

(u� v)s

2

(u+ v)

~

C(v)

~

D(u) +

s

2

(0)s

0

(2v)

s

0

(u� v)s

2

(2v)

~

C(u)

~

D(v)

�

s

2

(0)

s

2

(u+ v)

~

C(u)

^

A(v); (5.8b)

where we introdu
ed the transformation

^

A(u) =

~

A(u)�

s

2

(0)

s

2

(2u)

~

D(u): (5.9)

From (5.3a)-(5.3h) and (5.4), we 
an 
hoose an M -parti
le ex
itation as

j�(v

1

� � � v

M

)i =

~

C(v

1

) � � �

~

C(v

M

)j0i: (5.10)

Using the 
ommutation relations (5.8a) and (5.8b), one obtains the eigenvalue � of the

transfer matrix (4.4)

�(u)j�(v

1

� � � v

M

)i = �(u; v

1

� � � v

M

)j�(v

1

� � � v

M

)i; (5.11)

where

�(u; v

1

� � � v

M

) = �

(�1)

N

s

2

(2u)Æ [T (�u)℄ s

0

( 

�

)

�

(

s

2

(u�  

+

)s

2

(u�  

�

)s

0

(u� �

`

)s

0

(u+ �

`

)s

0

(2u)s

2N

0

(u)

�s

0

(u� �

r

)s

0

(u+ �

r

)

M

Y

j=1

s

4

(u+ v

j

)s

2

(u� v

j

)

s

0

(u� v

j

)s

2

(u+ v

j

)

+s

0

(u+  

+

)s

0

(u+  

�

)s

2

(u+ �

`

)s

2

(u� �

`

)s

4

(2u)s

2N

2

(u)

�s

2

(u+ �

r

)s

2

(u� �

r

)

M

Y

j=1

s

0

(u+ v

j

)s

�2

(u� v

j

)

s

0

(u� v

j

)s

2

(u+ v

j

)

)

; (5.12)

provided that

s

1

(v

j

�  

�

)s

1

(v

j

�  

+

)s

2N

�1

(v

j

)

s

�1

(v

j

+  

�

)s

�1

(v

j

+  

+

)s

2N

1

(v

j

)

=

Y

m=`;r

s

1

(v

j

+ �

m

)s

1

(v

j

� �

m

)

s

�1

(v

j

+ �

m

)s

�1

(v

j

� �

m

)

M

Y

k = 1

k 6= j

s

�2

(v

j

+ v

k

)s

�2

(v

j

� v

k

)

s

2

(v

j

+ v

k

)s

2

(v

j

� v

k

)

(5.13)

for all j = 1; : : : ;M . In the above BA equations, we have shifted the parameter

v

j

! v

j

� �. From the relation (2.16), the eigenvalue E of the Hamiltonian (4.6)

for �

�

= �

�

= 0 follows as

E = �s

2

(0)

"


ot 

�

+ 
ot 

+

+ 2(N + 1) 
ot 2� � 2 
ot(�

r

� 2�)� 2 
ot(�

`

� 2�)

�

M

X

j=1

2s

2

(0)

s

�1

(v

j

)s

1

(v

j

)

#

: (5.14)
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On the right hand side of (5.14) we have dropped a multipli
ative term 1=2 
os(2�) as

is 
ustomary [11℄. Following the same pro
edure, the BA equations and the eigenvalues

for the Hamiltonian (3.8) are given as

s

1

(v

j

�  

�

)s

1

(v

j

�  

+

)s

2(N�1)

�1

(v

j

)

s

�1

(v

j

+  

�

)s

�1

(v

j

+  

+

)s

2(N�1)

1

(v

j

)

=

s

1

(v

j

+ �

m

)s

1

(v

j

� �

m

)

s

�1

(v

j

+ �

m

)s

�1

(v

j

� �

m

)

M

Y

k = 1

k 6= j

s

�2

(v

j

+ v

k

)s

�2

(v

j

� v

k

)

s

2

(v

j

+ v

k

)s

2

(v

j

� v

k

)

(5.15)

for all j = 1; : : : ;M , and

E = �s

2

(0)

"


ot 

�

+ 
ot 

+

+ 2N 
ot 2� � 2 
ot(�

m

� 2�)�

M

X

j=1

2s

2

(0)

s

�1

(v

j

)s

1

(v

j

)

#

: (5.16)

For the Hamiltonian (4.9) we �nd

s

1

(v

j

�  

�

)s

1

(v

j

�  

+

)s

2(N�f)

�1

(v

j

)

s

�1

(v

j

+  

�

)s

�1

(v

j

+  

+

)s

2(N�f)

1

(v

j

)

=

f;`;r

Y

m=1

s

1

(v

j

+ �

m

)s

1

(v

j

� �

m

)

s

�1

(v

j

+ �

m

)s

�1

(v

j

� �

m

)

M

Y

k = 1

k 6= j

s

�2

(v

j

+ v

k

)s

�2

(v

j

� v

k

)

s

2

(v

j

+ v

k

)s

2

(v

j

� v

k

)

; (5.17)

where

Q

f;`;r

m=1

denotes the produ
t over the f isolated impurities in the bulk as well as

the boundary impurities. The energy spe
trum is given as

E = �s

2

(0)

"


ot 

�

+ 
ot 

+

+ 2(N � f + 1) 
ot 2� � 2

f;`;r

X

m=1


ot(�

m

� 2�)

�

M

X

j=1

2s

2

(0)

s

�1

(v

j

)s

1

(v

j

)

#

: (5.18)

When 
omparing (5.17), (5.18) to (5.15), (5.16) and (5.13), (5.14), we see that using

(5.17), (5.18) 
orresponding to the Hamiltonian (4.9), we 
an reprodu
e the results for

the other two Hamiltonians (3.8) and (4.6). Namely, with f = 1 and �

r

= �

l

= 0 we get

the result for (3.8) with (5.15), (5.16) and with f = 0 and �

r

; �

l

6= 0 we �nd for (4.6)

the BA equations (5.13) with energy (5.14). Thus the Hamiltonian (4.9) 
ontains the

other two Hamiltonians as spe
ial 
ases, although the 
onstru
tion by QISM pro
eeds

independently. We note that 
are has to be paid to the varying number of sites N when

doing this pro
edure.

6. Ground-state properties in the thermodynami
 limit

We note that the bulk terms of the Hamiltonians (3.8), (4.6) and (4.9) are equivalent

to the 
ounter part of the 1D Heisenberg XXZ model with periodi
 BC via a Jordan-

Wigner transformation. The �nite-size 
orre
tions and thermodynami
s for the XXZ
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model with or without boundary magneti
 �elds have been studied in many papers

[29, 30℄. As mentioned before, the Jordan-Wigner transformation does not preserve the

boundary terms nor the impurity terms due to its nonlo
ality. The BA equations we

obtained provide a more meaningful des
ription of the ground-state properties due to

the presen
e of the boundary potential terms and the impurity parameters. In what

follows, we shall study the ground-state properties for the resulting models following

the s
heme in [9, 18, 29, 30℄.

For 
onvenien
e, let us �rst rede�ne the variable v

j

! iv

j

. Then, taking the

logarithm, we rewrite the BA equations (5.13) for the Hamiltonian (4.6) as follows:

2�I

j

= 2N�(v

j

; �) + �(v

j

;  

+

� �) + �(v

j

;  

�

� �) + �(v

j

+ �

r

; �) + �(v

j

� �

r

; �)

+�(v

j

+ �

`

; �) + �(v

j

� �

`

; �)�

M

X

k = 1

k 6= j

�(v

j

� v

k

; 2�) + �(v

j

+ v

k

; 2�); (6.1)

for all j = 1; � � � ;M , where the two-body phase shift [2, 13, 14℄ is

�(v

j

; �) = i ln

sinh(v

j

+ i�)

sinh(v

j

� i�)

= 2ar

ot (tanh v

j


ot �) : (6.2)

We now de�ne v

�k

as �v

k

and de�ne v

0

= 0. Then the density of the roots fv

j

g 
an be

de�ned as

�

N

(v) =

dZ

N

(v)

dv

; Z

N

=

I

j

N

(6.3)

and the �nite-size BA equation (6.1) be
omes

Z

N

(v) =

1

�

(

�(v; �) +

1

2N

�

�

(i)

(v) + �

(b)

(v)

�

�

1

2N

M

X

k=�M

�(v � v

k

; 2�)

)

; (6.4)

where

�

(i)

(v) = �(v + �

r

; �) + �(v � �

r

; �) + �(v + �

`

; �) + �(v � �

`

; �); (6.5a)

�

(b)

(v) = �(v; 2�) + �(2v; 2�) + �(v;  

+

� �) + �(v;  

�

� �): (6.5b)

We note that the �rst two terms in (6.5b) arise due to the non-periodi
ity of the 
hain,

whereas the last two terms are due to the boundary potentials at sites 1 and N . Taking

the thermodynami
 limit and di�erentiating (6.4) with respe
t to the spe
tral parameter

v, we have

�

1

(v) =

1

�

�

�

0

(v; �) +

1

2N

h

�

(i)

0

(v) + �

(b)

0

(v)

i

�

�

1

2�

Z

�

��

du�

1

(u)�

0

(v � u; 2�); (6.6)

where the integration boundary � is determined by

Z

�

��

�

1

(v)dv =

2M + 1

N

+O(N

�2

): (6.7)
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The prime denotes the derivative with respe
t to v. Due to the linearity of (6.6), one

may formally solve the following three linear integral equations:

�

(0)

1

(v) =

1

�

�

0

(v; �)�

1

2�

Z

�

��

du�

(0)

1

(u)�

0

(v � u; 2�); (6.8a)

�

(i)

1

(v) =

1

�

�

(i)

0

(v)�

1

2�

Z

�

��

du�

(i)

1

(u)�

0

(v � u; 2�); (6.8b)

�

(b)

1

(v) =

1

�

�

(b)

0

(v)�

1

2�

Z

�

��

du�

(b)

1

(u)�

0

(v � u; 2�); (6.8
)

In this way, the solution of (6.6) 
an be expressed as

�

1

(v) = �

(0)

1

(v) +

1

2N

[�

(i)

1

(v) + �

(b)

1

(v)℄; (6.9)

where �

(0)

1

(v);

1

2N

�

(i)

1

(v) and

1

2N

�

(b)

1

(v) are the 
ontributions of the bulk, the impurities

and the boundary e�e
t to the root density, respe
tively. The ground-state energy

(5.14) is minimized at the 
uto� � in the thermodynami
 limit as dis
ussed in [29, 30℄.

Following the argument in [29, 30℄, we �nd the 
uto� � = 1 su
h that the parti
le

density is M=N = 1=2.

By using the Fourier transforms, the formal solutions to the equations (6.8a){(6.8
)

read

~�

1

(!; �) =

2

~

�(!; �)

2� +

~

�(!; 2�)

; (6.10)

where

~

�(!; �) =

Z

1

�1

�

0

(v; �)e

i!v

dv: (6.11)

From the residue theorem, we obtain

�

(0)

1

(v) =

2

� 
osh

�

2�

v

; (6.12a)

�

(i)

1

(v) =

X

m=r;`

4 
osh

�

2�

v 
osh

�

2�

�

m

� 
osh

�

2�

(v + �

m

) 
osh

�

2�

(v � �

m

)

; (6.12b)

�

(b)

1

(v) =

1

2�

Z

1

�1

�

~�

(be)

1

(!) + ~�

(bp)

1

(!)

�

e

�i!v

d!; (6.12
)

where

~�

(be)

1

(!) =

2 sinh(

�

2

� 2�)! + 4 
os

�

4

! sinh(

�

4

� �)!

sinh

�

2

! + sinh(

�

2

� 2�)!

; (6.13a)

~�

(bp)

1

(!) =

2 sinh(

�

2

+ � �  

+

)! + 2 sinh(

�

2

+ � �  

�

)!

sinh

�

2

! + sinh(

�

2

� 2�)!

: (6.13b)

Here ~�

(be)

1

(!) and ~�

(bp)

1

(!) are the 
ontributions to the root density from the boundary

e�e
t and the boundary potential terms, respe
tively, due to (6.5b). Then, from (5.14),

we also obtain the ground-state energy in the thermodynami
 limit as

E

g

= N

Z

1

�1

dv

4 sin

2

2�


osh 2v � 
osh 2�

�

1

(v) + E

0

; (6.14)
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with

E

0

= �p

+

� p

�

� 2(N + 1) 
os 2� + 2 sin 2�

X

m=r;`


ot(�

m

� 2�): (6.15)

The boundary energy [30℄ is given by

E

b

=

Z

1

�1

dv

2 sin

2

2�


osh 2v � 
osh 2�

[�

(i)

1

(v) + �

(b)

1

(v)℄ (6.16)

� p

+

� p

�

� 2 
os 2� + 2 sin 2�

X

m=r;`


ot(�

m

� 2�):

We thus note that the boundary potential terms do not only enter the expression for

the ground-state energy expli
itly as �p

+

� p

�

, but also impli
itly via ~�

(b)

1

of (6.12
).

We remark that in [18℄ no boundary magneti
 �eld terms like (6.13b) 
ontribute to

the root density due to the la
k of free boundary parameters in the boundary K

�

-

matri
es. The presen
e of boundary potentials (magneti
 �elds) and the impurity

parameters 
hanges the asymptoti
 behaviour of the BA equations (6.1) resulting in

string solutions di�erent from those dis
ussed in the papers [30℄. Indeed, either the

boundary parameters p

�

(or  

�

) or the impurity strength parameters �

m

, �

`

and �

r

a�e
t the boundary string solutions to the BA equations. It is obvious that the ground-

state energy of the bulk is same as in the periodi
 
ase [29℄. In general, the boundary

states are asso
iated with 
omplex roots of the BA equations.

Analogously, we obtain the ground-state energy (6.14) for the Hamiltonians (3.8)

and (4.9). The di�eren
es to the ground states for these Hamiltonians are only the


ontributions from the impurities expressed in �

(i)

1

(v). Thus we get for the Hamiltonian

(3.8)

�

(i)

1

(v) =

4 
osh

�

2�

v 
osh

�

2�

�

m

� 
osh

�

2�

(v + �

m

) 
osh

�

2�

(v � �

m

)

�

4

� 
osh

�

2�

v

; (6.17)

E

0

= � p

+

� p

�

� 2N 
os 2� + 2 sin 2� 
ot(�

m

� 2�): (6.18)

For the most general Hamiltonian (4.9), we have

�

(i)

1

(v) =

f;r;`

X

m

"

4 
osh

�

2�

v 
osh

��

2�

�

m

� 
osh

�

2�

(v + �

m

) 
osh

�

2�

(v � �

m

)

#

� f

4

� 
osh

�

2�

v

: (6.19)

E

0

= � p

+

� p

�

� 2(N + 1� f) 
os 2�

+ 2 sin 2�

f;r;`

X

m=1


ot(�

m

� 2�): (6.20)

Further thermodynami
 properties su
h as 
ompressibilities and sus
eptibilities 
an be


al
ulated as demonstrated previously in [8, 10, 15℄. Results will be presented elsewhere.

7. Con
lusions and dis
ussion

In the present work, we have 
onsidered the interplay of integrable impurities and general

open boundary 
onditions for the example of the small-polaron model. The impurities
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have been 
onstru
ted via inhomogeneous shifts in the spe
tral parameters of the Lax

operators su
h that the YBE are satis�ed. The boundary terms are taken to obey

the RE. In both 
ases, we dealt with the graded version of the equations due to the

fermioni
 nature of the parti
les and the boundary terms. Thus by 
onstru
tion, the

model remains integrable. We have shown that this is true even when pla
ing the

impurities dire
tly at the boundaries.

The most general boundary terms 
onsidered in (2.1) in
lude fermioni
 parti
le

sour
es and sink terms as well as more standard density terms. However, these

linear terms in 
reation and annihilation operators 
ontain 
oeÆ
ients that are

odd Grassmann variables. Thus a straightforward physi
al interpretation appears

problemati
. Representing these 
oeÆ
ients �

�

, �

�

as additional fermioni
 operators

a

�

, a

y

�

, we arrive at a 
hain with two additional sites but without sour
es and sinks.

The boundary terms 
oupling to the parti
le density 
an be viewed as potential

impurities | mu
h like in the Anderson model of lo
alization [31℄ | situated at the

boundaries. For the spe
ial 
ase with only these potential impurities and the integrable

impurities present, we solve the BA equations and 
ompute the ground-state energy in

the thermodynami
 limit for half-�lling. We �nd that the solution is possible regardless

whether the integrable impurities are lo
ated within the bulk or at the boundaries.

The two types of impurities enter the expressions for the ground-state energy

additively. Thus the simultaneous presen
e of both purely forward s
attering integrable

impurities and purely re
e
ting boundary potential terms does not seem to 
hange the

physi
s in a substantial way. We therefore do not expe
t to see the onset of lo
alization

as might be expe
ted from the form of the boundary impurities.

An analogue of the integrable impurities 
an be found in the 
ase of light waves.

Consider a long strip of glass, interspersed with pie
es of bifringent material of the same

index of refra
tion as the glass. Then as 
ir
ular polarized light enters the strip and

rea
hes the �rst bifringent slab, its plane of polarization will be rotated by an angle

� / �l

1

where l

1

represents the length of the �rst slab and � is the material spe
i�


rotation angle per unit length [32℄. There is no re
e
tion at the 
onta
t due to the

identi
al indi
es of refra
tion. After the next slab, we have � = �l

1

+ �l

2

and so on.

Thus the net e�e
t of the bifringent slabs is a rotation of the plane of polarization, i.e.,

a 
hange in the overall phase of the wave fun
tion of light just as for the ele
troni
 wave

fun
tion in Ref. [8, 9, 10℄. In this pi
ture the integrable boundaries satisfying the RE

then simply 
orrespond to perfe
t mirrors at both ends of the strip.
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